SlideShare una empresa de Scribd logo
1 de 37
Barcelona , 24 de mayo de 2015
REPUBLICA BOLIVARIANA DE VENEZUELA
MINISTERIO PARA EL PODER POPULAR PARA LA EDUCACION
SUPERIOR INSTITUTO UNIVERSITARIO POLITECNICO
“SANTIAGO MARIÑO”
Bachiller: Román Rincón
Cedula: V-20605259
Profesor: Asdrúbal Rodríguez
CONJUNTO:
Grupo de objetos con una o
más características comunes.
También se puede decir que
es una colección
desordenada de objetos. Un
conjunto está bien definido
si es posible conocer todos
sus elementos.
Conjunto
EJEMPLOS:
 Las Vocales del Alfabeto V = {a; e; i; o; u}
V = Nombre del conjunto en mayúscula
a, e, i, o, u = Nombre de los elementos en minúscula.
 Los enteros positivos impares menores a 10
I = {1; 3; 5; 7; 9}
Los elementos pueden ser también números.
 B = {a; 2; Roberto; Francia}
Los elementos de un conjunto pueden también no estar
relacionados.
Elementos de un conjunto
Son los objetos que componen un conjunto,
también se les conoce como miembros. Se dice que
el conjunto contiene a sus elementos y los
elementos pertenecen al conjunto.
 Si un elemento “a” pertenece a un conjunto “V”, se
denota por: a  V
 Si un elemento “d” no pertenece a un conjunto
“V”, se denota por: d  V
Modos de representación de un
conjunto
 a) EXTENSIÓN:
Se detallan todos los elementos del conjunto.
Ejemplo:
V = {a; e; i; o; u}
 b) COMPRENSIÓN:
Se da una idea que representa los elementos.
Ejemplo:
Las vocales del alfabeto.
Modos de representación de un
conjunto
 c) DESCRIPCIÓN POR CONSTRUCCIÓN:
Se caracterizan todos los elementos del conjunto
declarando la propiedad o propiedades que deben tener
sus miembros.
Ejemplo: Conjunto I de todos los números enteros
positivos menores que 10.
I = {x | x es un entero positivo menor que 10}
I = {x | x Z+, x < 10}
Modos de representación de un
conjunto
 d) DIAGRAMA DE VENN:
Es una forma gráfica de representar un conjunto.
Parte del concepto de conjunto Universal.
Se define el Conjunto Universal ‘U’ como aquel que
contiene todos los elementos que están siendo objeto de
estudio. Se representa por un rectángulo y la letra U.
El diagrama se construye con el conjunto universal
representado por un rectángulo, y luego utilizando círculos
dentro del rectángulo se representan los conjuntos,
identificados con letras mayúsculas. Los elementos se
representan dentro de los conjuntos, utilizando letras
minúsculas.
U
V
Conjunto de Vocales
Conjunto Universal
.a
.e
.i
.o
.u
Elementos
Modos de representación de un
conjunto
Tipos de conjuntos según el número
de elementos
 a) CONJUNTO VACÍO:
Es aquel que no tiene elementos. Se representa
por Φ, también puede ser denotado por Φ o { }.
 b) CONJUNTO UNITARIO:
Es aquel que tiene un solo elemento.
Ejemplo: {a}, {Φ}, {5}
 c) CONJUNTO FINITO:
Es aquel que tiene un número n de elementos
definidos, n > 0. Ejemplo: las vocales.
 d) CONJUNTO INFINITO:
Es aquel que no es finito, es decir tiene elementos
no definidos.
Ejemplo: el conjunto de los enteros positivos.
Tipos de conjuntos según el
número de elementos
 e) SUBCONJUNTO:
Se dice que el conjunto A es subconjunto de B, si y
solo si todo elemento de A es también un elemento de
B.
A  B
Tipos de conjuntos según el
número de elementos
Teorema de Subconjuntos
 a) Φ  S y S  S Todo conjunto no vacío S, tiene 2
subconjuntos, el vacío y el propio conjunto.
 b) A  B y B  A Entonces se concluye que A = B
 c) Para enfatizar que A es subconjunto de B pero que A
y B son diferentes, se denota A  B
Teorema de Subconjuntos
• d) En un diagrama de Venn, A  B se representa por:
U
A
B
Características de Conjuntos
• a) IGUALDAD DE CONJUNTOS:
Dos conjuntos son iguales si, y solo si, tienen los
mismos elementos. Ejemplo:
{1; 2; 4} = {2; 4; 1} = {1; 2; 2; 2; 4}
.1
.2
.4
.2
.4
.1
.1
.2
.2
.2
.4
= =
• b) TAMAÑO DE UN CONJUNTO:
Sea S un conjunto, si hay exactamente n elementos
“distintos” en S, donde n es un entero no negativo, se dice que S es
un conjunto finito y n es el cardinal de S, el cual define su tamaño.
El cardinal del conjunto S se denota por |S|.
Ejemplos:
• A = Conjunto de los enteros positivos impares menores a 10. |A|
= 5
• S = Conjunto de las letras del alfabeto. |S| = 28
• V = Conjunto de las vocales. |V| = 5
• Φ = Conjunto vacío. |Φ| = 0 (ya que no tiene elementos)
Características de Conjuntos
Conjuntos numéricos fundamentales
NÚMEROS NATURALES (N)
N = {0; 1; 2; 3; …}
NÚMEROS ENTEROS (Z)
Z = {…; -3; -2; -1; 1; 2; 3; …}
NÚMEROS RACIONALES (Q)
Q = {p/q | p q Z, q  0} = {…; -1; -½; 0; 1/5; ½; 1; 3/2; 2; …}
NÚMEROS IRRACIONALES (I)
I = {…; 2; 3; p; …}
NÚMEROS REALES (R)
R = {…; -2; -1; 0; 1; 2; 3; …}
NÚMEROS COMPLEJOS (C)
C = {…; -2; -½; 0; 1; 2; 3; 2+3i; 3; …}
Conjuntos numéricos fundamentales
CR
QZ
N
I
Operaciones con Conjuntos
• a) UNIÓN DE CONJUNTOS:
Sean A y B conjuntos. La unión de los conjuntos A y B,
denotada por A  B, es el conjunto que contiene aquellos
elementos que están en A o bien en B, o en ambos.
A  B = {x | x A  x B}
A BA B
Operaciones con Conjuntos
EJEMPLO DE UNIÓN DE CONJUNTOS:
A = {1; 3; 5} B = {1; 2; 3; 4}
A  B = {1; 2; 3; 4; 5}
.3
.1
.5 .4
.2
U
PROPIEDADES DE LA UNIÓN DE CONJUNTOS:
Operaciones con Conjuntos
• 1) A  A = A
• 2) A  B = B  A
• 3) A  Φ = A
• 4) A  U = U
• 5) (A  B)  C = A  (B  C)
• Si A  B = Φ entonces A = Φ B = Φ
Operaciones con Conjuntos
• b) INTERSECCIÓN DE CONJUNTOS:
• Sean A y B conjuntos. La intersección de los conjuntos A y
B, denotada por A ∩ B, es el conjunto que contiene aquellos
elementos que están tanto en A como en B.
A ∩ B = {x | xA  xB}
A BA B
EJEMPLO DE INTERSECCIÓN DE CONJUNTOS:
A = {1; 3; 5; 7} B = {1; 2; 3; 4}
Operaciones con Conjuntos
.3
.1
.5
.4
.2
U
.7
A  B = {1; 3}
Operaciones con Conjuntos
PROPIEDADES DE LA INTERSECCIÓN DE
CONJUNTOS:
• 1) A  A = A
• 2) A  B = B  A
• 3) A  Φ = Φ
• 4) A  U = A
• 5) (A  B)  C = A  (B  C)
• 6) A  (B  C) = (A  B)  (A  C)
A  (B  C) = (A  B)  (A  C)
Operaciones con Conjuntos
• c) DIFERENCIA DE CONJUNTOS:
Sean A y B conjuntos. La diferencia de los conjuntos A y B,
denotada por A – B, es el conjunto que contiene aquellos elementos
que están en A pero no en B. La diferencia de A – B se llama
también el complementario de B respecto a A.
A – B = {x | xA  xB}
A B
U
Operaciones con Conjuntos
EJEMPLO DE DIFERENCIA DE CONJUNTOS:
A = {1; 3; 5} B = {1; 2; 3}
A B
U
A - B = {5}
.5
.3
.1
.2
A B
U
B - A = {2}
.5
.3
.1
.2
Operaciones con Conjuntos
• d) DIFERENCIA SIMÉTRICA DE CONJUNTOS:
Sean A y B conjuntos. La diferencia simétrica de los
conjuntos A y B, denotada por A  B, es el conjunto que contiene
aquellos elementos que están en A o que están en B, pero no en
ambos. Es lo opuesto a la intersección.
A  B = {x | xA  xB}
A B
EJEMPLO DE DIFERENCIA SIMÉTRICA DE CONJUNTOS:
A = {1; 3; 5} B = {1; 2; 3}
Operaciones con Conjuntos
.5
.2
.3
.1
U
A  B = {2; 5}
A B
Operaciones con Conjuntos
• e) CONJUNTO COMPLEMENTARIO:
Sean U el conjunto universal. El conjunto complementario
de A, denotado por A’ se define como los elementos que faltan a A
para ser igual a U.
_ _
A = U – A A = {x | xA}
Un elemento pertenece al complemento de A, si y solo si  A.
Operaciones con Conjuntos
U
AComplement
o de A.
_
A
• e) CONJUNTO COMPLEMENTARIO:
EJEMPLO DE CONJUNTO COMPLEMENTARIO
A = {a, e, i, o, u} y U = abecedario
B = {enteros positivos mayores que 10}
__
A = {todas las letras excepto las vocales}
__
B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Operaciones con Conjuntos
Operaciones con Conjuntos
• d) PRODUCTO CARTESIANO DE CONJUNTOS:
La n-tupla ordenada (a1, a2,….., an) es la colección
ordenada en la que a1 es su primer elemento, a2 el segundo y an el
elemento n-esimo. Las 2-tuplas, se conocen como pares
ordenados. Ejemplo: (a, b) y (c, d).
Sean A y B conjuntos, el Producto cartesiano de A y B
se denota por AxB y se define como el conjunto de todos los
pares ordenados (a, b) donde aA y bB. Por tanto:
AxB = {(a, b) | aA  bB}
Nota: Se puede comprobar que AxB ≠ BxA, es decir no es conmutativo.
EJEMPLO DE PRODUCTO CARTESIANO DE CONJUNTOS
Sean los conjuntos A y B
A = todos los estudiantes de la universidad
B = asignaturas ofertadas
Entonces AxB = todas las posibles matriculaciones de
los estudiantes de la universidad.
Ejemplo: sean A = {1; 2} y B = {a; b; c}
Entonces AxB = {(1; a); (1; b); (1; c); (2; a); (2; b); (2; c)}
Operaciones con Conjuntos
Identidades entre Conjuntos
IDENTIDAD NOMBRE
A U ø = A
A ∩ U = A Leyes de Identidad
A U U = U
A ∩ ø = ø Leyes de Dominación
A U A = A
A ∩ A = A Leyes Idempotentes
__
__
(A) = A
Ley de Complementación
A U B = B U A
A ∩ B = B ∩ A Leyes Conmutativas
A U (B U C) = (A U B) U C
A ∩ (B ∩ C) = (A ∩ B) ∩ C Leyes Asociativas
A ∩ (B U C) = (A ∩ B) U (A ∩ C)
A U (B ∩ C) = (A U B) ∩ (A U C) Leyes Distributivas
_____ _ _
A U B = B ∩ A
_____ _ _
A ∩ B = B U A
Leyes de Morgan
A U (A ∩ B) = A
A ∩ (A U B) = A Leyes de Absorción
_
A U A = U
_
A ∩ A = ø
Leyes de Complemento
Identidades entre Conjuntos
EJEMPLO DE IDENTIDADES ENTRE CONJUNTOS
_________ _ _ _
Demostrar que A U (B U C) = (C ∩ B) ∩ A
_________ _ _____
A U (B U C) = A ∩ (B ∩ C) 1era Ley de Morgan
_ _ _
= A ∩ (B U C) 2da Ley de Morgan
_ _ _
= (B U C) ∩ A Conmutativa Intersección
_ _ _
= (C U B) ∩ A Conmutativa Unión
Representación de Conjuntos en un
Computador
Se tiene un conjunto U, donde A  U y A = {a1,
a2,…….an} , el conjunto se representa a través de una
cadena de bits de longitud “n” en donde el bit i-esimo es 1
si aA y el bit i-esimo es 0 si aA.
Los bits (sistema binario) tienen 2 posibles estados,
0 y 1, las cadenas se agrupan en grupos de 4 bits para mayor
flexibilidad en el manejo de la información.
Ejemplo:
Sea U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Representar en cadenas de bits los siguientes subconjuntos:
A = Subconjunto de los impares de U. A = 10 1010 1010
B = Subconjunto de los pares de U. B = 01 0101 0101
C = Subconjunto de los enteros menores a 5 C = 11 1110 0000
_
El complemento de A A = 01 0101 0101
Representación de Conjuntos en un
Computador
Las operaciones Unión e Intersección se hacen a
través de operaciones tipo Bit, es decir las cadenas se
operan bit a bit para obtener el resultado de la unión o
intersección de conjuntos.
0 U 0 = 0
0 U 1 = 1
1 U 1 = 1
0 ∩ 0 = 0
0 ∩ 1 = 0
1 ∩ 1 = 1
Representación de Conjuntos en un
Computador

Más contenido relacionado

La actualidad más candente

Resolviendo problemas de composicion de funciones en Algebra Superior
Resolviendo problemas de composicion de funciones en Algebra SuperiorResolviendo problemas de composicion de funciones en Algebra Superior
Resolviendo problemas de composicion de funciones en Algebra SuperiorGuzano Morado
 
Problemas De Aplicacion 1
Problemas De Aplicacion 1Problemas De Aplicacion 1
Problemas De Aplicacion 1Ray Mera
 
Capitulo1 conjuntos 3
Capitulo1 conjuntos 3Capitulo1 conjuntos 3
Capitulo1 conjuntos 3mozart32621
 
Cap 4 relaciones y funciones
Cap 4 relaciones y funcionesCap 4 relaciones y funciones
Cap 4 relaciones y funcionesnivelacion008
 
taller de la espol sobre la primera unidad
taller de la espol sobre la primera unidad taller de la espol sobre la primera unidad
taller de la espol sobre la primera unidad Luis Serrano
 
Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)Santiago Arguello
 
Introducción a la teoría de conjuntos
Introducción a la teoría de conjuntosIntroducción a la teoría de conjuntos
Introducción a la teoría de conjuntossofistrickland
 
Arreglos Bidimensionales - Java - NetBeans
Arreglos Bidimensionales - Java - NetBeansArreglos Bidimensionales - Java - NetBeans
Arreglos Bidimensionales - Java - NetBeansDaniel Gómez
 
Algebra de conjuntos (leyes de conjuntos)
Algebra de conjuntos (leyes de conjuntos)Algebra de conjuntos (leyes de conjuntos)
Algebra de conjuntos (leyes de conjuntos)Anthony Mantilla
 
TEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOSTEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOSCESAR V
 
Teoria de-conjuntos (2)
Teoria de-conjuntos (2)Teoria de-conjuntos (2)
Teoria de-conjuntos (2)Paul Coyago
 
Conjuntos resueltos
Conjuntos resueltosConjuntos resueltos
Conjuntos resueltosOjuela Igor
 
Conjuntos
ConjuntosConjuntos
Conjuntos317
 
Diapositivas de estructuras algebraicas
Diapositivas de estructuras algebraicasDiapositivas de estructuras algebraicas
Diapositivas de estructuras algebraicasÄlëx Vïllëğäš
 

La actualidad más candente (20)

Resolviendo problemas de composicion de funciones en Algebra Superior
Resolviendo problemas de composicion de funciones en Algebra SuperiorResolviendo problemas de composicion de funciones en Algebra Superior
Resolviendo problemas de composicion de funciones en Algebra Superior
 
Problemas De Aplicacion 1
Problemas De Aplicacion 1Problemas De Aplicacion 1
Problemas De Aplicacion 1
 
Logica y circuitos logicos ok
Logica y circuitos logicos okLogica y circuitos logicos ok
Logica y circuitos logicos ok
 
Capitulo1 conjuntos 3
Capitulo1 conjuntos 3Capitulo1 conjuntos 3
Capitulo1 conjuntos 3
 
Cap 4 relaciones y funciones
Cap 4 relaciones y funcionesCap 4 relaciones y funciones
Cap 4 relaciones y funciones
 
Algebra superior
Algebra superiorAlgebra superior
Algebra superior
 
Relaciones y grafos
Relaciones y grafosRelaciones y grafos
Relaciones y grafos
 
taller de la espol sobre la primera unidad
taller de la espol sobre la primera unidad taller de la espol sobre la primera unidad
taller de la espol sobre la primera unidad
 
Calculo proposicional
Calculo proposicionalCalculo proposicional
Calculo proposicional
 
Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)Proyecto de aula matemática (Operaciones de Conjuntos)
Proyecto de aula matemática (Operaciones de Conjuntos)
 
Introducción a la teoría de conjuntos
Introducción a la teoría de conjuntosIntroducción a la teoría de conjuntos
Introducción a la teoría de conjuntos
 
Ensamblador y lenguaje c
Ensamblador y lenguaje cEnsamblador y lenguaje c
Ensamblador y lenguaje c
 
Arreglos Bidimensionales - Java - NetBeans
Arreglos Bidimensionales - Java - NetBeansArreglos Bidimensionales - Java - NetBeans
Arreglos Bidimensionales - Java - NetBeans
 
Algebra de conjuntos (leyes de conjuntos)
Algebra de conjuntos (leyes de conjuntos)Algebra de conjuntos (leyes de conjuntos)
Algebra de conjuntos (leyes de conjuntos)
 
TEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOSTEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOS
 
Teoria de-conjuntos (2)
Teoria de-conjuntos (2)Teoria de-conjuntos (2)
Teoria de-conjuntos (2)
 
Conjuntos resueltos
Conjuntos resueltosConjuntos resueltos
Conjuntos resueltos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Diapositivas de estructuras algebraicas
Diapositivas de estructuras algebraicasDiapositivas de estructuras algebraicas
Diapositivas de estructuras algebraicas
 
Relación de orden
Relación de ordenRelación de orden
Relación de orden
 

Similar a Leyes de Conjuntos (20)

Clase 1 6º
Clase 1   6ºClase 1   6º
Clase 1 6º
 
Presentación Conjuntos
Presentación ConjuntosPresentación Conjuntos
Presentación Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Teoria de-conjuntos romeo gobbo
Teoria de-conjuntos romeo gobboTeoria de-conjuntos romeo gobbo
Teoria de-conjuntos romeo gobbo
 
Estructura paola briceño
Estructura paola briceñoEstructura paola briceño
Estructura paola briceño
 
Estructura
EstructuraEstructura
Estructura
 
Estructura
EstructuraEstructura
Estructura
 
Teoria de Conjuntos
Teoria de ConjuntosTeoria de Conjuntos
Teoria de Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos22
Conjuntos22Conjuntos22
Conjuntos22
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Teoria conjuntos
Teoria conjuntosTeoria conjuntos
Teoria conjuntos
 
Algebra bien
Algebra bienAlgebra bien
Algebra bien
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Conjuntos 2013
Conjuntos 2013Conjuntos 2013
Conjuntos 2013
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 

Último

Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxMapyMerma1
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...fcastellanos3
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIAAbelardoVelaAlbrecht1
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Baker Publishing Company
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfsamyarrocha1
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 

Último (20)

Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptx
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
PPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptxPPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptx
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdf
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 

Leyes de Conjuntos

  • 1. Barcelona , 24 de mayo de 2015 REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO PARA EL PODER POPULAR PARA LA EDUCACION SUPERIOR INSTITUTO UNIVERSITARIO POLITECNICO “SANTIAGO MARIÑO” Bachiller: Román Rincón Cedula: V-20605259 Profesor: Asdrúbal Rodríguez
  • 2. CONJUNTO: Grupo de objetos con una o más características comunes. También se puede decir que es una colección desordenada de objetos. Un conjunto está bien definido si es posible conocer todos sus elementos.
  • 3. Conjunto EJEMPLOS:  Las Vocales del Alfabeto V = {a; e; i; o; u} V = Nombre del conjunto en mayúscula a, e, i, o, u = Nombre de los elementos en minúscula.  Los enteros positivos impares menores a 10 I = {1; 3; 5; 7; 9} Los elementos pueden ser también números.  B = {a; 2; Roberto; Francia} Los elementos de un conjunto pueden también no estar relacionados.
  • 4. Elementos de un conjunto Son los objetos que componen un conjunto, también se les conoce como miembros. Se dice que el conjunto contiene a sus elementos y los elementos pertenecen al conjunto.  Si un elemento “a” pertenece a un conjunto “V”, se denota por: a  V  Si un elemento “d” no pertenece a un conjunto “V”, se denota por: d  V
  • 5. Modos de representación de un conjunto  a) EXTENSIÓN: Se detallan todos los elementos del conjunto. Ejemplo: V = {a; e; i; o; u}  b) COMPRENSIÓN: Se da una idea que representa los elementos. Ejemplo: Las vocales del alfabeto.
  • 6. Modos de representación de un conjunto  c) DESCRIPCIÓN POR CONSTRUCCIÓN: Se caracterizan todos los elementos del conjunto declarando la propiedad o propiedades que deben tener sus miembros. Ejemplo: Conjunto I de todos los números enteros positivos menores que 10. I = {x | x es un entero positivo menor que 10} I = {x | x Z+, x < 10}
  • 7. Modos de representación de un conjunto  d) DIAGRAMA DE VENN: Es una forma gráfica de representar un conjunto. Parte del concepto de conjunto Universal. Se define el Conjunto Universal ‘U’ como aquel que contiene todos los elementos que están siendo objeto de estudio. Se representa por un rectángulo y la letra U. El diagrama se construye con el conjunto universal representado por un rectángulo, y luego utilizando círculos dentro del rectángulo se representan los conjuntos, identificados con letras mayúsculas. Los elementos se representan dentro de los conjuntos, utilizando letras minúsculas.
  • 8. U V Conjunto de Vocales Conjunto Universal .a .e .i .o .u Elementos Modos de representación de un conjunto
  • 9. Tipos de conjuntos según el número de elementos  a) CONJUNTO VACÍO: Es aquel que no tiene elementos. Se representa por Φ, también puede ser denotado por Φ o { }.  b) CONJUNTO UNITARIO: Es aquel que tiene un solo elemento. Ejemplo: {a}, {Φ}, {5}
  • 10.  c) CONJUNTO FINITO: Es aquel que tiene un número n de elementos definidos, n > 0. Ejemplo: las vocales.  d) CONJUNTO INFINITO: Es aquel que no es finito, es decir tiene elementos no definidos. Ejemplo: el conjunto de los enteros positivos. Tipos de conjuntos según el número de elementos
  • 11.  e) SUBCONJUNTO: Se dice que el conjunto A es subconjunto de B, si y solo si todo elemento de A es también un elemento de B. A  B Tipos de conjuntos según el número de elementos
  • 12. Teorema de Subconjuntos  a) Φ  S y S  S Todo conjunto no vacío S, tiene 2 subconjuntos, el vacío y el propio conjunto.  b) A  B y B  A Entonces se concluye que A = B  c) Para enfatizar que A es subconjunto de B pero que A y B son diferentes, se denota A  B
  • 13. Teorema de Subconjuntos • d) En un diagrama de Venn, A  B se representa por: U A B
  • 14. Características de Conjuntos • a) IGUALDAD DE CONJUNTOS: Dos conjuntos son iguales si, y solo si, tienen los mismos elementos. Ejemplo: {1; 2; 4} = {2; 4; 1} = {1; 2; 2; 2; 4} .1 .2 .4 .2 .4 .1 .1 .2 .2 .2 .4 = =
  • 15. • b) TAMAÑO DE UN CONJUNTO: Sea S un conjunto, si hay exactamente n elementos “distintos” en S, donde n es un entero no negativo, se dice que S es un conjunto finito y n es el cardinal de S, el cual define su tamaño. El cardinal del conjunto S se denota por |S|. Ejemplos: • A = Conjunto de los enteros positivos impares menores a 10. |A| = 5 • S = Conjunto de las letras del alfabeto. |S| = 28 • V = Conjunto de las vocales. |V| = 5 • Φ = Conjunto vacío. |Φ| = 0 (ya que no tiene elementos) Características de Conjuntos
  • 16. Conjuntos numéricos fundamentales NÚMEROS NATURALES (N) N = {0; 1; 2; 3; …} NÚMEROS ENTEROS (Z) Z = {…; -3; -2; -1; 1; 2; 3; …} NÚMEROS RACIONALES (Q) Q = {p/q | p q Z, q  0} = {…; -1; -½; 0; 1/5; ½; 1; 3/2; 2; …} NÚMEROS IRRACIONALES (I) I = {…; 2; 3; p; …} NÚMEROS REALES (R) R = {…; -2; -1; 0; 1; 2; 3; …} NÚMEROS COMPLEJOS (C) C = {…; -2; -½; 0; 1; 2; 3; 2+3i; 3; …}
  • 18. Operaciones con Conjuntos • a) UNIÓN DE CONJUNTOS: Sean A y B conjuntos. La unión de los conjuntos A y B, denotada por A  B, es el conjunto que contiene aquellos elementos que están en A o bien en B, o en ambos. A  B = {x | x A  x B} A BA B
  • 19. Operaciones con Conjuntos EJEMPLO DE UNIÓN DE CONJUNTOS: A = {1; 3; 5} B = {1; 2; 3; 4} A  B = {1; 2; 3; 4; 5} .3 .1 .5 .4 .2 U
  • 20. PROPIEDADES DE LA UNIÓN DE CONJUNTOS: Operaciones con Conjuntos • 1) A  A = A • 2) A  B = B  A • 3) A  Φ = A • 4) A  U = U • 5) (A  B)  C = A  (B  C) • Si A  B = Φ entonces A = Φ B = Φ
  • 21. Operaciones con Conjuntos • b) INTERSECCIÓN DE CONJUNTOS: • Sean A y B conjuntos. La intersección de los conjuntos A y B, denotada por A ∩ B, es el conjunto que contiene aquellos elementos que están tanto en A como en B. A ∩ B = {x | xA  xB} A BA B
  • 22. EJEMPLO DE INTERSECCIÓN DE CONJUNTOS: A = {1; 3; 5; 7} B = {1; 2; 3; 4} Operaciones con Conjuntos .3 .1 .5 .4 .2 U .7 A  B = {1; 3}
  • 23. Operaciones con Conjuntos PROPIEDADES DE LA INTERSECCIÓN DE CONJUNTOS: • 1) A  A = A • 2) A  B = B  A • 3) A  Φ = Φ • 4) A  U = A • 5) (A  B)  C = A  (B  C) • 6) A  (B  C) = (A  B)  (A  C) A  (B  C) = (A  B)  (A  C)
  • 24. Operaciones con Conjuntos • c) DIFERENCIA DE CONJUNTOS: Sean A y B conjuntos. La diferencia de los conjuntos A y B, denotada por A – B, es el conjunto que contiene aquellos elementos que están en A pero no en B. La diferencia de A – B se llama también el complementario de B respecto a A. A – B = {x | xA  xB} A B U
  • 25. Operaciones con Conjuntos EJEMPLO DE DIFERENCIA DE CONJUNTOS: A = {1; 3; 5} B = {1; 2; 3} A B U A - B = {5} .5 .3 .1 .2 A B U B - A = {2} .5 .3 .1 .2
  • 26. Operaciones con Conjuntos • d) DIFERENCIA SIMÉTRICA DE CONJUNTOS: Sean A y B conjuntos. La diferencia simétrica de los conjuntos A y B, denotada por A  B, es el conjunto que contiene aquellos elementos que están en A o que están en B, pero no en ambos. Es lo opuesto a la intersección. A  B = {x | xA  xB} A B
  • 27. EJEMPLO DE DIFERENCIA SIMÉTRICA DE CONJUNTOS: A = {1; 3; 5} B = {1; 2; 3} Operaciones con Conjuntos .5 .2 .3 .1 U A  B = {2; 5} A B
  • 28. Operaciones con Conjuntos • e) CONJUNTO COMPLEMENTARIO: Sean U el conjunto universal. El conjunto complementario de A, denotado por A’ se define como los elementos que faltan a A para ser igual a U. _ _ A = U – A A = {x | xA} Un elemento pertenece al complemento de A, si y solo si  A.
  • 29. Operaciones con Conjuntos U AComplement o de A. _ A • e) CONJUNTO COMPLEMENTARIO:
  • 30. EJEMPLO DE CONJUNTO COMPLEMENTARIO A = {a, e, i, o, u} y U = abecedario B = {enteros positivos mayores que 10} __ A = {todas las letras excepto las vocales} __ B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Operaciones con Conjuntos
  • 31. Operaciones con Conjuntos • d) PRODUCTO CARTESIANO DE CONJUNTOS: La n-tupla ordenada (a1, a2,….., an) es la colección ordenada en la que a1 es su primer elemento, a2 el segundo y an el elemento n-esimo. Las 2-tuplas, se conocen como pares ordenados. Ejemplo: (a, b) y (c, d). Sean A y B conjuntos, el Producto cartesiano de A y B se denota por AxB y se define como el conjunto de todos los pares ordenados (a, b) donde aA y bB. Por tanto: AxB = {(a, b) | aA  bB} Nota: Se puede comprobar que AxB ≠ BxA, es decir no es conmutativo.
  • 32. EJEMPLO DE PRODUCTO CARTESIANO DE CONJUNTOS Sean los conjuntos A y B A = todos los estudiantes de la universidad B = asignaturas ofertadas Entonces AxB = todas las posibles matriculaciones de los estudiantes de la universidad. Ejemplo: sean A = {1; 2} y B = {a; b; c} Entonces AxB = {(1; a); (1; b); (1; c); (2; a); (2; b); (2; c)} Operaciones con Conjuntos
  • 33. Identidades entre Conjuntos IDENTIDAD NOMBRE A U ø = A A ∩ U = A Leyes de Identidad A U U = U A ∩ ø = ø Leyes de Dominación A U A = A A ∩ A = A Leyes Idempotentes __ __ (A) = A Ley de Complementación A U B = B U A A ∩ B = B ∩ A Leyes Conmutativas A U (B U C) = (A U B) U C A ∩ (B ∩ C) = (A ∩ B) ∩ C Leyes Asociativas A ∩ (B U C) = (A ∩ B) U (A ∩ C) A U (B ∩ C) = (A U B) ∩ (A U C) Leyes Distributivas _____ _ _ A U B = B ∩ A _____ _ _ A ∩ B = B U A Leyes de Morgan A U (A ∩ B) = A A ∩ (A U B) = A Leyes de Absorción _ A U A = U _ A ∩ A = ø Leyes de Complemento
  • 34. Identidades entre Conjuntos EJEMPLO DE IDENTIDADES ENTRE CONJUNTOS _________ _ _ _ Demostrar que A U (B U C) = (C ∩ B) ∩ A _________ _ _____ A U (B U C) = A ∩ (B ∩ C) 1era Ley de Morgan _ _ _ = A ∩ (B U C) 2da Ley de Morgan _ _ _ = (B U C) ∩ A Conmutativa Intersección _ _ _ = (C U B) ∩ A Conmutativa Unión
  • 35. Representación de Conjuntos en un Computador Se tiene un conjunto U, donde A  U y A = {a1, a2,…….an} , el conjunto se representa a través de una cadena de bits de longitud “n” en donde el bit i-esimo es 1 si aA y el bit i-esimo es 0 si aA. Los bits (sistema binario) tienen 2 posibles estados, 0 y 1, las cadenas se agrupan en grupos de 4 bits para mayor flexibilidad en el manejo de la información.
  • 36. Ejemplo: Sea U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Representar en cadenas de bits los siguientes subconjuntos: A = Subconjunto de los impares de U. A = 10 1010 1010 B = Subconjunto de los pares de U. B = 01 0101 0101 C = Subconjunto de los enteros menores a 5 C = 11 1110 0000 _ El complemento de A A = 01 0101 0101 Representación de Conjuntos en un Computador
  • 37. Las operaciones Unión e Intersección se hacen a través de operaciones tipo Bit, es decir las cadenas se operan bit a bit para obtener el resultado de la unión o intersección de conjuntos. 0 U 0 = 0 0 U 1 = 1 1 U 1 = 1 0 ∩ 0 = 0 0 ∩ 1 = 0 1 ∩ 1 = 1 Representación de Conjuntos en un Computador