SlideShare una empresa de Scribd logo
1 de 20
Descargar para leer sin conexión
0
LABORATORIO DE MECÁNICA DE FLUIDOS
INFORME DE PRACTICA Nº 5
ALUMNO: ERICK CÓRDOVA LAVADO
CÓDIGO: 20131471 HORARIO: 060D
TEMA: ESTUDIOS DE PÉRDIDAS EN TUBERÍAS, TUBO PITOT
TIPO PRANDTL
JEFE DE PRÁCTICA: JOEL TAPIA HUERTA
FECHA DE REALIZACIÓN: 26/11/2015
CALIFICACIÓN:
ITEM PUNTOS
PRUEBA DE
ENTRADA
TRABAJO Y
PARTICIPACIÓN
INFORME DE
LABORATORIO
NOTA DE
LABORATORIO
FIRMA DEL JEFE DE PRÁCTICA:
1
ÍNDICE:
1. Introducción.......................................................................................................................... 2
1.1. Objetivos ....................................................................................................................... 2
1.2. Aplicaciones prácticas en la ingeniería.......................................................................... 2
2. Metodología y datos............................................................................................................. 3
2.1. Fundamento teórico...................................................................................................... 3
2.2. Procedimiento............................................................................................................... 5
2.3. Descripción de los datos y resolución de los datos....................................................... 8
3. Resultados y discusión de resultados ................................................................................11
3.1. Resultados ...................................................................................................................11
3.2. Discusión de resultados...............................................................................................12
4. Conclusiones y recomendaciones ......................................................................................16
5. Bibliografía..........................................................................................................................19
2
1. Introducción
1.1. Objetivos:
 MF1-07:
En este experimento se van a estudiar las pérdidas de carga debido a la rugosidad
de la tubería analizada conociendo la carga y el caudal circulante. Además se
tomarán en cuenta dos hipótesis, incluyendo la altura de velocidad y sin incluir la
altura de velocidad, por lo que también se observarán y compararán los resultados
del experimento teniendo en cuenta estos análisis.
 MF1-08:
El objetivo de este experimento es determinar la distribución de velocidades con
el fin de hallar el caudal que pasa por el canal, a través de las velocidades medidas
en puntos específicos con el uso del tubo Pitot.
1.2. Aplicaciones prácticas en la ingeniería
El tema concerniente al estudio de pérdidas en tuberías (Tanque de oscilaciones) tiene
una aplicación muy importante en ingeniería como por ejemplo las instalaciones de
cisternas y tanques de reservorios de agua, estos accesorios son útiles para edificios,
casas que se encuentren en un nivel muy alto.
En cambio la otra aplicación sobre el tubo de Pitot tipo Prandtl, es en la construcción
de canales y represas, puesto que se debe conocer la velocidad del cauce para
aprovechar y generar energía.
Fig. 1: Reservorio de Agua que abastece a
un pueblo.
Fig. 2: Instalación de una cisterna de una
casa.
Fig. 3: Represa de Santa Cruz (Argentina) Fig. 4: Central hidroeléctrica Upstate New York
3
2. Metodología y datos
2.1. Fundamento teórico
 MF1-07:
La pérdida de carga en tuberías, es la pérdida de energía del fluido producida por
la fricción que existe entre el fluido y las paredes de la tubería o la fricción que
existe entre las mismas partículas del fluido.
Estas pérdidas pueden determinarse aplicando las siguientes fórmulas:
 Fórmula de Darcy – Weisbach:
En 1850, se dedujo la fórmula de Darcy - Weisbach para el cálculo de
pérdidas por fricción en tubos y solo se utiliza para tuberías cortas, es decir
2000
D
L
g
V
D
L
fhf
2
2

Donde: ℎ 𝑓 = Pérdida de carga (m)
L = Longitud de tubería (m)
D = Diámetro de tubería (m)
V = Velocidad media del flujo (m/s)
f = Coeficiente de fricción
 Ecuación de Colebrook-White:









fD
k
f Re
51.2
71.3
log2
1
 Ecuación de Barr:




 89.0
Re
1286.5
71.3
log2
1
D
k
f
Pero si el flujo es laminar, es más simple el cálculo del valor de “f”
Re
64
f
Finalmente, con el cálculo de la constate “k”, se puede definir la rugosidad
relativa (ɛ)
k
D
 
4
 Fórmula de Chezy:
La fórmula se expresa como: RSCV 
Dónde: V: Velocidad media de flujo
R: Radio hidráulico
S: Pendiente de la línea de energía
C: Coeficiente de Chezy
Además:
Pm
Am
R 
L
h
S
f
















7
2
.12
log.18
k
R
C
gRS


6.11

Reemplazando estas últimas fórmulas en las anteriores podemos obtener hf .
Finalmente, relacionando las fórmulas de Darcy – Weisbach y Chezy se obtiene
la siguiente relación:
8g
C
f

 MF1-08:
Existen muchas formas de medir los caudales en los canales, pero en esta
oportunidad se señalará la correspondiente para determinar la distribución de
velocidades en él para así determinar los caudales contribuyentes y por ende el
caudal total.
5
Debido a que la perturbación es pequeña se puede suponer que las condiciones
de flujo en el punto 0 se restablecen en el punto 3.
Así:
2
0 0 1
2
P V P
g 
  … (1)
Pero 1 ( )P h y   ; 0 3P P y 
Entonces: 0 2V g h 
2.2. Procedimiento
 MF1-08: Tanque de Oscilaciones:
El sistema “Tanque de oscilaciones” consta de un reservorio con rebose, que
alimenta a una tubería de 42 mm de diámetro. Al final del conducto se puede
observar un tubo piezométrico de material acrílico, así como una caja medidora
de caudal con sus válvulas esférica y de compuerta. Para poder leer directamente
la altura piezométrica usaremos el tubo de acrílico, mientras que la válvula de
compuerta nos permite regular el caudal que circula en el sistema. Todo esto es
posible gracias a que el tanque elevado alimenta con agua este sistema.
Se considerará dos hipótesis:
1. Se incluye la altura de velocidad.
2. No se incluye la altura de velocidad.
El procedimiento será el que sigue a continuación:
 Abrir la llave que alimenta al tanque elevado que viene directamente de
la línea de la calle.
 Abrir gradualmente la llave que baja del tanque elevado al reservorio
cilíndrico con rebose que a su vez alimentará de agua la tubería en
estudio.
 Abriendo la válvula de compuerta situada al final de la tubería podremos
regular el caudal.
6
 Se debe de tratar de igualar el caudal de ingreso al caudal de salida
teniendo con esto un rebose mínimo.
 Con el tubo piezométrico se registra el desnivel. Inicialmente, la lectura
correspondiente al nivel de cresta del vertedero de rebose es de 70 cm.
 Utilizando el medidor volumétrico situado al final de la tubería y el
cronómetro podremos obtener el volumen y el tiempo por lo que
encontraremos el caudal respectivo. Se tomará tres veces la lectura en
este punto.
 Repetir la experiencia para un caudal más.
 Cerrar todas las llaves al terminar todo la experiencia.
 MF1-10: Tubo Pitot tipo Prandtl
 El canal de corriente horizontal de sección rectangular, de 46.3 cm de
ancho aproximadamente, con paredes de vidrio, y fondo de concreto.
Fig. 5: Se trató de mantener el rebose al
mínimo.
Fig. 6: Se midieron los caudales y los
tiempos a los que circulaban los caudales.
Fig. 7: Se midió la altura de
presión antes que pase el
flujo y luego que pasaban
cada uno delos flujos.
7
 Un tubo Pitot tipo Prandtl para la medición de velocidades en el canal; el
cuál se conectará de forma conveniente al banco de manómetros que se
encuentra en el laboratorio.
 Un carro porta – Pitot, que permitirá ubicar al tubo Pitot en los distintos
puntos predeterminados para la experiencia.
 Estando instado el tubo Pitot en el carrito, se procederá a generar un
caudal apropiado en el canal. Para conseguir eso se levantará ligeramente
la compuerta situada aguas abajo del canal cuidando que el tirante de agua
( y ) no sobrepase el nivel de las paredes de vidrio del canal. Una vez que
se elija una sección del canal, se efectuará la medición de velocidades en
los puntos que a continuación se especifica:
( 15;0.125 )
( 15;0.375 )
( 15;0.615 )
( 15;0.875 )
y
y
y
y




( 5;0.125 )
( 5;0.375 )
( 5;0.615 )
( 5;0.875 )
y
y
y
y




(5;0.125 )
(5;0.375 )
(5;0.615 )
(5;0.875 )
y
y
y
y
(15;0.125 )
(15;0.375 )
(15;0.615 )
(15;0.875 )
y
y
y
y
Con estos valores podemos hallar los caudales en cada franja vertical y por ende el
caudal total.
Fig. 8: Con el caudalímetro se mide el caudal
real que pasa por la tubería.
Fig. 9: Se colocó el tubo de Pitot a cierta
distancia del medio y en forma opuesta al
flujo para realizar las mediciones.
8
2.3. Descripción de los datos y resolución de los datos
De los datos mencionados en la parte de fundamento teórico son datos que se obtiene
experimentalmente que nos ayudan para poder analizar ciertos parámetros, muchos
de ellos son obtenidos mediante aproximaciones generando un error relativo.
Algunos de ellos son el resultado de fórmulas como el principio de energía de punto a
punto, principio de flujos laminares y turbulentos.
Resolución de datos:
Para la experiencia 07:
 Caudal:
𝑄 =
𝑉𝑜𝑙
𝑡
=
1
4.52
= 0.2212
𝑙
𝑠
 Velocidad de flujo:
𝑉𝑓𝑙𝑢𝑗𝑜 =
𝑄
𝐴
𝑉𝑓𝑙𝑢𝑗𝑜 =
0.2212/1000
𝜋 ∗ 0.021^2
= 0.1597 𝑚/𝑠
 Número de Reynolds:
𝑅𝑒 =
𝑉𝐷
𝜐
Fig. 10: Se midieron las alturas de
velocidades por lo poco que se tuvieron
que calcular las pérdidas de energía.
Fig. 11: Con la ayuda de un carro móvil
colocamos el Pitot.
9
𝑅𝑒 =
(0.1597)(0.042)
0.893𝑥10−6
= 7510.5
 Pérdidas:
 Sin incluir Altura de Velocidad
ℎ 𝑓 =
𝑝2 − 𝑝1
𝛾
= ∆𝑝𝑖𝑒𝑧𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑜
ℎ 𝑓 = 162 − 158 = 4 𝑐𝑚
𝑃é𝑟𝑑𝑖𝑑𝑎 𝑓 = 4 𝑐𝑚
Coeficiente de fricción (Darcy-Weisbach)
𝑓 = ℎ 𝑓
2𝑔𝐷
𝐿𝑉2
𝑓 = (1.1)
2(9.81)(0.042)
(6)(0.1597)2
= 0.059
Colebrook-White
1
√0.059
= −2 log [
𝑘
3.71(0.042)
+
2.51
(7510.5 )√0.059
]
k = 0.0012 m
→ 𝜀1 =
𝑘
𝐷
= 0.028
Barr
1
√𝑓
= −2 log [
𝑘
3.71𝐷
+
5.1286
𝑅𝑒0.89 ]
1
√0.059
= −2 log [
𝑘
3.71(0.042)
+
5.1286
7510.50.89]
k = 0.001 m
→ 𝜀1 =
𝑘
𝐷
= 0.026
Para el cálculo del coeficiente de Chezy se reemplazaron los datos en la fórmula:
𝑐𝑜𝑛 𝐾1 = 0.0012
10
𝐶 = 18 ∗ 𝐿𝑜𝑔
(
12 ∗
0.042
4
0.0012 +
2
7
11.6 ∗ 0.893𝐸 − 06
√9.81 ∗
0.042
4 ∗
0.011
6 )
= 35.307
𝑐𝑜𝑛 𝑘2 = 0.001
𝐶 = 18 ∗ 𝐿𝑜𝑔
(
12 ∗
0.042
4
0.001 +
2
7
11.6 ∗ 0.893𝐸 − 06
√9.81 ∗ 0.0105 ∗
0.011
6 )
= 35.706
Comprobación de la fórmula:
𝐶 = √
8𝑔
𝑓
𝐶 = √
8 ∗ 9.81
0.059
= 36.471
Para la experiencia 08:
 Para cada sección se calculará el caudal y luego se procederá a sumar dichos
caudales por franja, y posteriormente el caudal total.
H = -15cm:
𝑉1 = √2𝑔(0.8)(0.4/100) = 0.2801 𝑚/𝑠
𝑉2 = √2𝑔(0.9)(0.5/100) = 0.3132 𝑚/𝑠
𝑉3 = √2𝑔(0.9)(0.6/100) = 0.3431 𝑚/𝑠
𝑉4 = √2𝑔(0.9)(0.5/100) = 0.3132
𝑚
𝑠
𝑉𝑝𝑟𝑜𝑚 =
0 .2801 + 0.3132 + 0.3431 + 0.3132
4
= 0.3124
Ahora, para calcular el caudal tenemos:
𝑄 = 0.27 ∗ 0.1 ∗ 0.3124 ∗ 1000
11
𝑄 = 8.591 𝑙𝑝𝑠
- De la misma manera se desarrollará para cada franja y se procederá a calcular el
caudal de cada columna y posteriormente el caudal total que es igual a :
𝑄𝑡𝑜𝑡 = ∑ 𝑄𝑖 = 35.125 𝑙𝑝𝑠
3. Resultados y discusión de resultados
3.1. Resultados:
 EXPERIENCIA 07:
Δ Piezométrico (cm) Volumen medido (L) Tiempo Medido (s)
1.1 1 4.52
10.5 2 2.81
14.5 2 2.31
Qr (L/s)
V flujo
(m/s)
RE
Perdidas en
columnas
de agua
(cm)
Darcy
Weisbach
Colebrook
White
Bar Chezy C
k1 E1 K2 E2 con k1 con k2 δ
0.2212 0.1597 7510.536 1.1 0.059 0.0012 0.028 0.001 0.026 35.307 35.716 0.00075
0.7117 0.5137 24162.01 10.5 0.055 0.0011 0.025 0.001 0.025 36.838 37.056 0.00024
0.8658 0.6249 29391.88 14.5 0.051 0.0009 0.021 0.001 0.021 38.192 38.403 0.00021
Diámetro (m) 0.042
Long de tubería (m) 6
Material de la tubería
Fierro
Galvanizado
Viscosidad cine. del agua 0.000000893
Temperatura: 25°C
12
 EXPERIENCIA 08:
y 0.275
Área 0.04125
Profundidad del pitot (cm)
Velocidad de Flujo Velocidad media por
fila(m/s)d-15cm d-5cm d 5cm d 15cm
0.125y 3.4375 0.2801 0.3431 0.2426 0.1981 0.2660
0.375y 10.3125 0.3132 0.3431 0.3962 0.3706 0.3558
0.625y 17.1875 0.3431 0.3431 0.3431 0.2801 0.3274
0.875y 24.0625 0.3132 0.3431 0.3132 0.3431 0.3282
Velocidad media por cada
columna (m/s)
0.3124 0.3431 0.3238 0.2980
Caudal por columna (L/s) 8.591 9.435 8.904 8.1945
Caudal total (L/s) 35.125
Interpolando los valores para V (0, 2y), V (0, 8y) y V (0, 5), tenemos:
𝑉 (0, 2𝑦) = 0.266 −
(0.266 − 0.356) ∗ (3.44 − 0.2 ∗ 27.95)
3.44 − 10.3125
= 0.293
𝑉 (0, 8𝑦) = 0.3279
𝑉 (0, 5𝑦) = 0.3416
Entonces:
Vm= V (0,5y)= (V (0, 2y)+ V (0, 8y))/ 2
Vm= 0.3416 ≈ 0.31045
Profundidad del Pitot (cm)
Diferencial piezométrico
d-15cm d-5cm d 5cm d 15cm
0.125y 3.44 0.4 0.6 0.3 0.2
0.375y 10.31 0.5 0.6 0.8 0.7
0.625y 17.19 0.6 0.6 0.6 0.4
0.875y 24.06 0.5 0.6 0.5 0.6
13
EXPERIENCIA VIRTUAL: (SOYA)
De la sección S1:
De la sección S2:
0
5
10
15
20
25
30
0.0000 0.1000 0.2000 0.3000 0.4000
Y(cm)
Velocidad (m/s)
V vs Y
V vs Y
0.2900
0.3000
0.3100
0.3200
0.3300
0.3400
0.3500
-20 -10 0 10 20
Velocidad(m/s)
Distancia (cm)
V vs X
V vs X
Fig. 12: Distribución de las velocidades en
función de la profundidad sumergida del
tubo de Pitot.
Fig. 13: Distribución de velocidades a lo
largo de una fila a una determinada
altura.
0
0.1
0.2
0.3
0.4
0.5
0.6
0 0.005 0.01 0.015 0.02 0.025
V_r [m/s]
-0.024
-0.004
0.016
0.072 0.122
Z[m]
Y [m]
Velocity Distribution at
Pipe
VelocData
PipeWall
V=0.4617m/
s
14
-0.024
-0.004
0.016
0.072 0.122
Z[m]
Y [m]
Velocity Distribution at
Pipe
VelocData
PipeWall
V=0.4598m/
s
0
0.1
0.2
0.3
0.4
0.5
0.6
0 0.005 0.01 0.015 0.02 0.025
V_r [m/s]
-0.024
-0.014
-0.004
0.006
0.016
0.072 0.122
Z[m]
Y [m]
Velocity Distribution at
Pipe
VelocData
PipeWall
V=0.4597m/
s
V=0.4811m/
s
0
0.1
0.2
0.3
0.4
0.5
0.6
0 0.005 0.01 0.015 0.02 0.025
V_r [m/s]
De la sección S3
De la sección S4:
0
0.1
0.2
0.3
0.4
0.5
0.6
0 0.005 0.01 0.015 0.02 0.025
V_r [m/s] (S2)
-0.024
-0.014
-0.004
0.006
0.016
0.072 0.092 0.112
Z[m]
Y [m]
Velocity Distribution at
Pipe
VelocData
PipeWall
V=0.4606m/s
V=0.4812m/s
V=0.4752m/s
V=0.4524m/s
15
0
0.1
0.2
0.3
0.4
0.5
0.6
0 0.005 0.01 0.015 0.02 0.025
V_r [m/s]
-0.024
-0.014
-0.004
0.006
0.016
0.072 0.122
Z[m]
Y [m]
Velocity Distribution at
Pipe
VelocData
PipeWall
V=0.4614m/s
V=0.4811m/s
V=0.4748m/s
V=0.4513m/s
0
0.1
0.2
0.3
0.4
0.5
0.6
0 0.005 0.01 0.015 0.02 0.025
V_r [m/s]
-0.024
-0.014
-0.004
0.006
0.016
0.072 0.092 0.112
Z[m]
Y [m]
Velocity Distribution at
Pipe
VelocData
PipeWall
V=0.4609m/s
V=0.4814m/s
V=0.4752m/s
V=0.452m/s
Series7
4.65E-01
4.70E-01
4.75E-01
4.80E-01
4.85E-01
4.90E-01
4.95E-01
5.00E-01
5.05E-01
0 100 200 300 400 500 600 700 800
VELOCIDAD(m/s)
Velocidad a lo largo de la Tubería
Series1
De la sección S5
De la sección S6
16
Velocidad media: (U):
𝑈 =
2𝜋
𝐴
∗ ∑ 𝑉𝑟 ∗ 𝑟
Para la sección S1: Vm= 0.485647 m/s
3.2. Discusión de resultados:
 EXPERIENCIA 07:
En este experimento pudimos observar que las rugosidades, tanto absolutas como
relativas, que obtuvimos mediante las dos fórmulas utilizadas son bastante
similares. También se puede observar que cuando se consideran las pérdidas por
las alturas sin velocidades la rugosidad aumenta, algo esperado ya que se le quita
la energía que aporta la velocidad del flujo.
 EXPERIENCIA 08:
En este experimento se observó que las velocidades halladas a una misma altura
tienden a distribuirse de forma simétrica con respecto a la mitad, es decir desde el
punto 0. Esto se ve corroborado con la gráfica de velocidad promedio por columna
vs X, siendo la distribución parabólica. También se puede observar que la gráfica
de velocidad promedio por fila vs Y no tiene forma definida, esto tiene sentido debido
a que el flujo es turbulento.
También se puede observar que el caudal hallado en el experimento es un valor
bastante cercano al valor medido por el caudalímetro. Por último, se puede observar
que los valores obtenidos para el Vm, el Vm obtenido con el V (0, 2y) y el V (0,8y)
y el Vm obtenido con el V (0,5y) son bastante similares por lo que se podría decir
que la aproximación hecha en el experimento fue casi exacta.
4. Conclusiones y recomendaciones
 Experiencia 07:
La pérdida que se presenta en la tubería en el tanque de oscilaciones es
considerable por lo que no deberían ser ignoradas en el análisis de los tanques de
oscilaciones.
También se pudo comprobar que las fórmulas de Darcy, Colebrook- White, Barr y
Chezy se cumplen, en este caso, para una tubería con flujo turbulento. Se pone
especial énfasis en que la fórmula de Darcy para tuberías cortas si se cumple, pues
debido a sus dimensiones, la tubería analizada es una tubería corta.
Las pérdidas mayormente en este experimento se deben a que el fierro presenta
mayor coeficiente de fricción, logrando que cada vez que el agua llegue al final de
la tubería, este poseía una menor velocidad.
17
Este experimento se vio afectado por distintas fuentes de error. Entre las más
importantes tenemos la medición del rebose de tal forma que se mantenga al
mínimo, que se debe de hacer a simple vista. Otra fuente de error de relevancia en
el experimento es la medición del caudal con el caudalímetro, debido que se debe
determinar un caudal en un tiempo medido con el cronómetro. Errores en la
medición de estos datos podrían haber afectado los resultados del experimento.
En este experimento si se consideraron las pérdidas por rugosidad, sin embargo no
se tomaron en cuenta pérdidas por accesorios. Además otras posibles fuentes de
error son la imperfección de los instrumentos y de los materiales utilizados, errores
humanos, errores de medición y otros factores menos importantes, como una
posible oxidación interna de la tubería.
 Experiencia 08:
En el segundo experimento se obtuvo la aproximación de la distribución de
velocidades en los puntos medios de las secciones en el ancho de la compuerta,
pues el caudal medido con el caudalímetro tiene un valor bastante cercano al caudal
obtenido con el tubo de Pitot- Prandtl, pero que para un valor más exacto se
debieron de haber medido más puntos.
Otra conclusión obtenida fue que todas las filas a distintos puntos de profundidad
tenían una distribución de velocidad casi parabólica, es decir donde el punto medio
de la distancia en el canal presentaba el pico más alto de velocidad y los bordes del
canal tenían poca velocidad.
También cabe mencionar que cada vez que se incrementaba la profundidad se
registraba un mayor cambio de velocidad, por ejemplo, casi en la altura cercana a
la superficie se presentaba una distribución bastante alterada, mientras que en la
profundidad se notaba menor la variación de la velocidad.
Una observación que se pudo notar es que al momento de levantar la plataforma
de salida se lograba que el agua se juntara en el canal, puesto que se obtenía
mayor pendiente, y se registraba una menor velocidad para poder trabajar con
mejores datos.
Entre las posibles fuentes de error, la posición del tubo de Pitot debía estar
exactamente en una posición opuesta al flujo, pues esto afecta considerablemente
los resultados del experimento.
Durante la realización del ensayo se tuvo un error ocasionado por que el soporte
del tubo de Pitot estaba flojo y constantemente se resbalaba y cambiaba su altura,
lo que generaba error, además se contaba con una regla que no registraba datos
exactos puesto que no estaba pegaba al canal sino que nosotros teníamos que
colocarlo aproximadamente perpendicular.
 Experiencia Virtual:
Una de las conclusiones más importantes en esta sesión virtual, fue que las
distribuciones de velocidades en función del radio, con casi constantes, es decir en
cada sección de la tubería se registran una velocidad casi constante, en la gráfica
se observa que tiene una tendencia lineal.
18
Otra conclusión es que la gráfica de curva isovelocidades, se observa que en la
tubería la sección media presenta una mayor velocidad que en el centro como en
los borde, esto se debe a que en los bordes hay presencia de pérdidas de energía,
puesto que sus paredes no son lisas.
19
5. Bibliografía
2015 JOSE CABRERA G., RICHARD PEHOVAZ.
“Guía de laboratorio de mecánica de fluidos”
PONTIFIA UNIVERSIDA CATOLICA DEL PERU pág. 3 – 10
2012 GRUPO JM
“Mecánica de fluidos” Plataforma educativa
https://avdiaz.files.wordpress.com/2008/10/guia1enclase.pdf
1965 LEVI, ENZO.
Mecánica de los fluidos. Universidad Nacional Autónoma de México
2002 POTTER, M. C., WIGGERT, D. C., HONDZO, M., & SHIH, T. I.
Mecánica de fluidos. Thomson.
2003 MUNSON, BRUCE R.
Fundamentos de mecánica de fluidos (libro virtual)
http://dspace.ucbscz.edu.bo/dspace/bitstream/123456789/4411/1/4537.pdf
2000 CHOW, Ven Te.
Hidráulica de canales abiertos. McGraw Hill.
http://dspace.ucbscz.edu.bo/dspace/bitstream/123456789/4971/1/2807.pdf

Más contenido relacionado

La actualidad más candente

Teorema de Bernoulli laboratorio
Teorema de Bernoulli laboratorioTeorema de Bernoulli laboratorio
Teorema de Bernoulli laboratorioGabo Pérez
 
Energia especifica, cantidad de movimiento
Energia especifica, cantidad de movimientoEnergia especifica, cantidad de movimiento
Energia especifica, cantidad de movimientomaria sequera
 
Informe de Mecanica de Fuidos: Centro de Presiones
Informe de Mecanica de Fuidos: Centro de PresionesInforme de Mecanica de Fuidos: Centro de Presiones
Informe de Mecanica de Fuidos: Centro de PresionesFernando Desposorio
 
Practica de laboratorio reynols
Practica de laboratorio reynolsPractica de laboratorio reynols
Practica de laboratorio reynolscallecjl
 
Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.juanccorreag1
 
LABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAAC
LABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAACLABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAAC
LABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAACALEXANDER HUALLA CHAMPI
 
220592175 informe-medidores-de-flujo
220592175 informe-medidores-de-flujo220592175 informe-medidores-de-flujo
220592175 informe-medidores-de-flujoSergioProvosteRuiz
 
BOMBAS EN SISTEMAS DE TUBERÍAS
BOMBAS EN SISTEMAS DE TUBERÍASBOMBAS EN SISTEMAS DE TUBERÍAS
BOMBAS EN SISTEMAS DE TUBERÍASUTPL
 
208758637 informe-de-laboratorios-de-mecanica-de-fluidos
208758637 informe-de-laboratorios-de-mecanica-de-fluidos208758637 informe-de-laboratorios-de-mecanica-de-fluidos
208758637 informe-de-laboratorios-de-mecanica-de-fluidosronnymarcelo1
 
Solucionario arturo-rocha-cap-4
Solucionario arturo-rocha-cap-4Solucionario arturo-rocha-cap-4
Solucionario arturo-rocha-cap-4Elvis Condor
 
Pérdida de carga en tuberías y accesorios
Pérdida de carga en tuberías y accesorios Pérdida de carga en tuberías y accesorios
Pérdida de carga en tuberías y accesorios yuricomartinez
 

La actualidad más candente (20)

Pérdidas de carga en tuberías
Pérdidas de carga en tuberíasPérdidas de carga en tuberías
Pérdidas de carga en tuberías
 
Informe teorema-de-bernoulli
Informe teorema-de-bernoulliInforme teorema-de-bernoulli
Informe teorema-de-bernoulli
 
Teorema de Bernoulli laboratorio
Teorema de Bernoulli laboratorioTeorema de Bernoulli laboratorio
Teorema de Bernoulli laboratorio
 
Bernoulli
BernoulliBernoulli
Bernoulli
 
Medicion caudal
Medicion caudalMedicion caudal
Medicion caudal
 
Energia específica
Energia específicaEnergia específica
Energia específica
 
Energia especifica, cantidad de movimiento
Energia especifica, cantidad de movimientoEnergia especifica, cantidad de movimiento
Energia especifica, cantidad de movimiento
 
Informe de Mecanica de Fuidos: Centro de Presiones
Informe de Mecanica de Fuidos: Centro de PresionesInforme de Mecanica de Fuidos: Centro de Presiones
Informe de Mecanica de Fuidos: Centro de Presiones
 
Orificios
OrificiosOrificios
Orificios
 
Fpu y diseño de canales
Fpu y diseño de canalesFpu y diseño de canales
Fpu y diseño de canales
 
RESALTO HIDRAULICO
RESALTO HIDRAULICORESALTO HIDRAULICO
RESALTO HIDRAULICO
 
Practica de laboratorio reynols
Practica de laboratorio reynolsPractica de laboratorio reynols
Practica de laboratorio reynols
 
Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.
 
Aforo con flotadores completo
Aforo con flotadores completoAforo con flotadores completo
Aforo con flotadores completo
 
LABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAAC
LABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAACLABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAAC
LABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAAC
 
220592175 informe-medidores-de-flujo
220592175 informe-medidores-de-flujo220592175 informe-medidores-de-flujo
220592175 informe-medidores-de-flujo
 
BOMBAS EN SISTEMAS DE TUBERÍAS
BOMBAS EN SISTEMAS DE TUBERÍASBOMBAS EN SISTEMAS DE TUBERÍAS
BOMBAS EN SISTEMAS DE TUBERÍAS
 
208758637 informe-de-laboratorios-de-mecanica-de-fluidos
208758637 informe-de-laboratorios-de-mecanica-de-fluidos208758637 informe-de-laboratorios-de-mecanica-de-fluidos
208758637 informe-de-laboratorios-de-mecanica-de-fluidos
 
Solucionario arturo-rocha-cap-4
Solucionario arturo-rocha-cap-4Solucionario arturo-rocha-cap-4
Solucionario arturo-rocha-cap-4
 
Pérdida de carga en tuberías y accesorios
Pérdida de carga en tuberías y accesorios Pérdida de carga en tuberías y accesorios
Pérdida de carga en tuberías y accesorios
 

Similar a Informe 5 de Mecánica de Fluídos

Perdidas de carga por longitud
Perdidas de carga por longitudPerdidas de carga por longitud
Perdidas de carga por longitudBYRON ROBALINO
 
Practica n-8-fluidos
Practica n-8-fluidosPractica n-8-fluidos
Practica n-8-fluidosLinoJayo
 
Practica5 mediciones de flujo
Practica5 mediciones de flujoPractica5 mediciones de flujo
Practica5 mediciones de flujo20_masambriento
 
Práctica 5. pérdidas de energía (real)
Práctica 5. pérdidas de energía (real)Práctica 5. pérdidas de energía (real)
Práctica 5. pérdidas de energía (real)JoseHernandez1409
 
Medidores de caudal
Medidores de caudalMedidores de caudal
Medidores de caudalSoy Feliz
 
Manual caudal-generacion-presion-sistemas-hidraulicos-flujo-continuidad-bomba...
Manual caudal-generacion-presion-sistemas-hidraulicos-flujo-continuidad-bomba...Manual caudal-generacion-presion-sistemas-hidraulicos-flujo-continuidad-bomba...
Manual caudal-generacion-presion-sistemas-hidraulicos-flujo-continuidad-bomba...universidad jose antonio paez
 
Prevención del golpe de ariete mediante el control del tiempo de cierre, al u...
Prevención del golpe de ariete mediante el control del tiempo de cierre, al u...Prevención del golpe de ariete mediante el control del tiempo de cierre, al u...
Prevención del golpe de ariete mediante el control del tiempo de cierre, al u...jhony ayala ccasani
 
Reporte practica 1 Curva Característica de una Bomba
Reporte practica 1 Curva Característica de una BombaReporte practica 1 Curva Característica de una Bomba
Reporte practica 1 Curva Característica de una BombaBeyda Rolon
 
numero de reynolds
numero de reynoldsnumero de reynolds
numero de reynoldstorrezaj
 
Practica 3 hidrologia
Practica 3 hidrologiaPractica 3 hidrologia
Practica 3 hidrologiaMiguel Rosas
 

Similar a Informe 5 de Mecánica de Fluídos (20)

Perdidas de carga por longitud
Perdidas de carga por longitudPerdidas de carga por longitud
Perdidas de carga por longitud
 
Practica n-8-fluidos
Practica n-8-fluidosPractica n-8-fluidos
Practica n-8-fluidos
 
Practica5 mediciones de flujo
Practica5 mediciones de flujoPractica5 mediciones de flujo
Practica5 mediciones de flujo
 
Labo 07
Labo 07Labo 07
Labo 07
 
Reporte 5 de hidraulica
Reporte 5 de hidraulicaReporte 5 de hidraulica
Reporte 5 de hidraulica
 
Mecánica de Fluidos: Práctica número 3 "Estudio de orificios"
Mecánica de Fluidos: Práctica número 3 "Estudio de orificios"Mecánica de Fluidos: Práctica número 3 "Estudio de orificios"
Mecánica de Fluidos: Práctica número 3 "Estudio de orificios"
 
2 labo tubos dde friccion
2 labo tubos dde friccion2 labo tubos dde friccion
2 labo tubos dde friccion
 
Práctica 5. pérdidas de energía (real)
Práctica 5. pérdidas de energía (real)Práctica 5. pérdidas de energía (real)
Práctica 5. pérdidas de energía (real)
 
Medidores de caudal
Medidores de caudalMedidores de caudal
Medidores de caudal
 
Informe - red de flujo
Informe - red de flujo Informe - red de flujo
Informe - red de flujo
 
Manual caudal-generacion-presion-sistemas-hidraulicos-flujo-continuidad-bomba...
Manual caudal-generacion-presion-sistemas-hidraulicos-flujo-continuidad-bomba...Manual caudal-generacion-presion-sistemas-hidraulicos-flujo-continuidad-bomba...
Manual caudal-generacion-presion-sistemas-hidraulicos-flujo-continuidad-bomba...
 
Texto03
Texto03Texto03
Texto03
 
Lab 10 flujo(rubrica)
Lab 10 flujo(rubrica)Lab 10 flujo(rubrica)
Lab 10 flujo(rubrica)
 
Prevención del golpe de ariete mediante el control del tiempo de cierre, al u...
Prevención del golpe de ariete mediante el control del tiempo de cierre, al u...Prevención del golpe de ariete mediante el control del tiempo de cierre, al u...
Prevención del golpe de ariete mediante el control del tiempo de cierre, al u...
 
Reporte practica 1 Curva Característica de una Bomba
Reporte practica 1 Curva Característica de una BombaReporte practica 1 Curva Característica de una Bomba
Reporte practica 1 Curva Característica de una Bomba
 
Lmf1 p3 g4_b_p1
Lmf1 p3 g4_b_p1Lmf1 p3 g4_b_p1
Lmf1 p3 g4_b_p1
 
Práctica de laboratorio 3: Flujo permanente a través de un orificio
Práctica de laboratorio 3: Flujo permanente a través de un orificioPráctica de laboratorio 3: Flujo permanente a través de un orificio
Práctica de laboratorio 3: Flujo permanente a través de un orificio
 
numero de reynolds
numero de reynoldsnumero de reynolds
numero de reynolds
 
Practica 3 hidrologia
Practica 3 hidrologiaPractica 3 hidrologia
Practica 3 hidrologia
 
20221-08 NSPH bombas.pdf
20221-08 NSPH bombas.pdf20221-08 NSPH bombas.pdf
20221-08 NSPH bombas.pdf
 

Último

Espontaneidad de las reacciones y procesos espontáneos
Espontaneidad de las reacciones y procesos espontáneosEspontaneidad de las reacciones y procesos espontáneos
Espontaneidad de las reacciones y procesos espontáneosOscarGonzalez231938
 
Electromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdfElectromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdfAnonymous0pBRsQXfnx
 
3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdf3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdfRicardoRomeroUrbano
 
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdfSEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdffredyflores58
 
Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaANDECE
 
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfLEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfAdelaHerrera9
 
Tarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaTarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaSebastianQP1
 
NOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptxNOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptxJairReyna1
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.ALEJANDROLEONGALICIA
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionOsdelTacusiPancorbo
 
Diagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxDiagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxHarryArmandoLazaroBa
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIAMayraOchoa35
 
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinaciónEstacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinaciónAlexisHernandez885688
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023ANDECE
 
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...Arquitecto Alejandro Gomez cornejo muñoz
 
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosRevista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosJeanCarlosLorenzo1
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
Fisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfFisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfJessLeonelVargasJimn
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfIsbelRodrguez
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCANDECE
 

Último (20)

Espontaneidad de las reacciones y procesos espontáneos
Espontaneidad de las reacciones y procesos espontáneosEspontaneidad de las reacciones y procesos espontáneos
Espontaneidad de las reacciones y procesos espontáneos
 
Electromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdfElectromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdf
 
3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdf3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdf
 
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdfSEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
 
Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de Almería
 
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfLEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
 
Tarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaTarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieria
 
NOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptxNOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptx
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacion
 
Diagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxDiagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptx
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
 
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinaciónEstacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
 
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
 
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosRevista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
Fisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfFisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdf
 
Historia de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdfHistoria de la Arquitectura II, 1era actividad..pdf
Historia de la Arquitectura II, 1era actividad..pdf
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRC
 

Informe 5 de Mecánica de Fluídos

  • 1. 0 LABORATORIO DE MECÁNICA DE FLUIDOS INFORME DE PRACTICA Nº 5 ALUMNO: ERICK CÓRDOVA LAVADO CÓDIGO: 20131471 HORARIO: 060D TEMA: ESTUDIOS DE PÉRDIDAS EN TUBERÍAS, TUBO PITOT TIPO PRANDTL JEFE DE PRÁCTICA: JOEL TAPIA HUERTA FECHA DE REALIZACIÓN: 26/11/2015 CALIFICACIÓN: ITEM PUNTOS PRUEBA DE ENTRADA TRABAJO Y PARTICIPACIÓN INFORME DE LABORATORIO NOTA DE LABORATORIO FIRMA DEL JEFE DE PRÁCTICA:
  • 2. 1 ÍNDICE: 1. Introducción.......................................................................................................................... 2 1.1. Objetivos ....................................................................................................................... 2 1.2. Aplicaciones prácticas en la ingeniería.......................................................................... 2 2. Metodología y datos............................................................................................................. 3 2.1. Fundamento teórico...................................................................................................... 3 2.2. Procedimiento............................................................................................................... 5 2.3. Descripción de los datos y resolución de los datos....................................................... 8 3. Resultados y discusión de resultados ................................................................................11 3.1. Resultados ...................................................................................................................11 3.2. Discusión de resultados...............................................................................................12 4. Conclusiones y recomendaciones ......................................................................................16 5. Bibliografía..........................................................................................................................19
  • 3. 2 1. Introducción 1.1. Objetivos:  MF1-07: En este experimento se van a estudiar las pérdidas de carga debido a la rugosidad de la tubería analizada conociendo la carga y el caudal circulante. Además se tomarán en cuenta dos hipótesis, incluyendo la altura de velocidad y sin incluir la altura de velocidad, por lo que también se observarán y compararán los resultados del experimento teniendo en cuenta estos análisis.  MF1-08: El objetivo de este experimento es determinar la distribución de velocidades con el fin de hallar el caudal que pasa por el canal, a través de las velocidades medidas en puntos específicos con el uso del tubo Pitot. 1.2. Aplicaciones prácticas en la ingeniería El tema concerniente al estudio de pérdidas en tuberías (Tanque de oscilaciones) tiene una aplicación muy importante en ingeniería como por ejemplo las instalaciones de cisternas y tanques de reservorios de agua, estos accesorios son útiles para edificios, casas que se encuentren en un nivel muy alto. En cambio la otra aplicación sobre el tubo de Pitot tipo Prandtl, es en la construcción de canales y represas, puesto que se debe conocer la velocidad del cauce para aprovechar y generar energía. Fig. 1: Reservorio de Agua que abastece a un pueblo. Fig. 2: Instalación de una cisterna de una casa. Fig. 3: Represa de Santa Cruz (Argentina) Fig. 4: Central hidroeléctrica Upstate New York
  • 4. 3 2. Metodología y datos 2.1. Fundamento teórico  MF1-07: La pérdida de carga en tuberías, es la pérdida de energía del fluido producida por la fricción que existe entre el fluido y las paredes de la tubería o la fricción que existe entre las mismas partículas del fluido. Estas pérdidas pueden determinarse aplicando las siguientes fórmulas:  Fórmula de Darcy – Weisbach: En 1850, se dedujo la fórmula de Darcy - Weisbach para el cálculo de pérdidas por fricción en tubos y solo se utiliza para tuberías cortas, es decir 2000 D L g V D L fhf 2 2  Donde: ℎ 𝑓 = Pérdida de carga (m) L = Longitud de tubería (m) D = Diámetro de tubería (m) V = Velocidad media del flujo (m/s) f = Coeficiente de fricción  Ecuación de Colebrook-White:          fD k f Re 51.2 71.3 log2 1  Ecuación de Barr:      89.0 Re 1286.5 71.3 log2 1 D k f Pero si el flujo es laminar, es más simple el cálculo del valor de “f” Re 64 f Finalmente, con el cálculo de la constate “k”, se puede definir la rugosidad relativa (ɛ) k D  
  • 5. 4  Fórmula de Chezy: La fórmula se expresa como: RSCV  Dónde: V: Velocidad media de flujo R: Radio hidráulico S: Pendiente de la línea de energía C: Coeficiente de Chezy Además: Pm Am R  L h S f                 7 2 .12 log.18 k R C gRS   6.11  Reemplazando estas últimas fórmulas en las anteriores podemos obtener hf . Finalmente, relacionando las fórmulas de Darcy – Weisbach y Chezy se obtiene la siguiente relación: 8g C f   MF1-08: Existen muchas formas de medir los caudales en los canales, pero en esta oportunidad se señalará la correspondiente para determinar la distribución de velocidades en él para así determinar los caudales contribuyentes y por ende el caudal total.
  • 6. 5 Debido a que la perturbación es pequeña se puede suponer que las condiciones de flujo en el punto 0 se restablecen en el punto 3. Así: 2 0 0 1 2 P V P g    … (1) Pero 1 ( )P h y   ; 0 3P P y  Entonces: 0 2V g h  2.2. Procedimiento  MF1-08: Tanque de Oscilaciones: El sistema “Tanque de oscilaciones” consta de un reservorio con rebose, que alimenta a una tubería de 42 mm de diámetro. Al final del conducto se puede observar un tubo piezométrico de material acrílico, así como una caja medidora de caudal con sus válvulas esférica y de compuerta. Para poder leer directamente la altura piezométrica usaremos el tubo de acrílico, mientras que la válvula de compuerta nos permite regular el caudal que circula en el sistema. Todo esto es posible gracias a que el tanque elevado alimenta con agua este sistema. Se considerará dos hipótesis: 1. Se incluye la altura de velocidad. 2. No se incluye la altura de velocidad. El procedimiento será el que sigue a continuación:  Abrir la llave que alimenta al tanque elevado que viene directamente de la línea de la calle.  Abrir gradualmente la llave que baja del tanque elevado al reservorio cilíndrico con rebose que a su vez alimentará de agua la tubería en estudio.  Abriendo la válvula de compuerta situada al final de la tubería podremos regular el caudal.
  • 7. 6  Se debe de tratar de igualar el caudal de ingreso al caudal de salida teniendo con esto un rebose mínimo.  Con el tubo piezométrico se registra el desnivel. Inicialmente, la lectura correspondiente al nivel de cresta del vertedero de rebose es de 70 cm.  Utilizando el medidor volumétrico situado al final de la tubería y el cronómetro podremos obtener el volumen y el tiempo por lo que encontraremos el caudal respectivo. Se tomará tres veces la lectura en este punto.  Repetir la experiencia para un caudal más.  Cerrar todas las llaves al terminar todo la experiencia.  MF1-10: Tubo Pitot tipo Prandtl  El canal de corriente horizontal de sección rectangular, de 46.3 cm de ancho aproximadamente, con paredes de vidrio, y fondo de concreto. Fig. 5: Se trató de mantener el rebose al mínimo. Fig. 6: Se midieron los caudales y los tiempos a los que circulaban los caudales. Fig. 7: Se midió la altura de presión antes que pase el flujo y luego que pasaban cada uno delos flujos.
  • 8. 7  Un tubo Pitot tipo Prandtl para la medición de velocidades en el canal; el cuál se conectará de forma conveniente al banco de manómetros que se encuentra en el laboratorio.  Un carro porta – Pitot, que permitirá ubicar al tubo Pitot en los distintos puntos predeterminados para la experiencia.  Estando instado el tubo Pitot en el carrito, se procederá a generar un caudal apropiado en el canal. Para conseguir eso se levantará ligeramente la compuerta situada aguas abajo del canal cuidando que el tirante de agua ( y ) no sobrepase el nivel de las paredes de vidrio del canal. Una vez que se elija una sección del canal, se efectuará la medición de velocidades en los puntos que a continuación se especifica: ( 15;0.125 ) ( 15;0.375 ) ( 15;0.615 ) ( 15;0.875 ) y y y y     ( 5;0.125 ) ( 5;0.375 ) ( 5;0.615 ) ( 5;0.875 ) y y y y     (5;0.125 ) (5;0.375 ) (5;0.615 ) (5;0.875 ) y y y y (15;0.125 ) (15;0.375 ) (15;0.615 ) (15;0.875 ) y y y y Con estos valores podemos hallar los caudales en cada franja vertical y por ende el caudal total. Fig. 8: Con el caudalímetro se mide el caudal real que pasa por la tubería. Fig. 9: Se colocó el tubo de Pitot a cierta distancia del medio y en forma opuesta al flujo para realizar las mediciones.
  • 9. 8 2.3. Descripción de los datos y resolución de los datos De los datos mencionados en la parte de fundamento teórico son datos que se obtiene experimentalmente que nos ayudan para poder analizar ciertos parámetros, muchos de ellos son obtenidos mediante aproximaciones generando un error relativo. Algunos de ellos son el resultado de fórmulas como el principio de energía de punto a punto, principio de flujos laminares y turbulentos. Resolución de datos: Para la experiencia 07:  Caudal: 𝑄 = 𝑉𝑜𝑙 𝑡 = 1 4.52 = 0.2212 𝑙 𝑠  Velocidad de flujo: 𝑉𝑓𝑙𝑢𝑗𝑜 = 𝑄 𝐴 𝑉𝑓𝑙𝑢𝑗𝑜 = 0.2212/1000 𝜋 ∗ 0.021^2 = 0.1597 𝑚/𝑠  Número de Reynolds: 𝑅𝑒 = 𝑉𝐷 𝜐 Fig. 10: Se midieron las alturas de velocidades por lo poco que se tuvieron que calcular las pérdidas de energía. Fig. 11: Con la ayuda de un carro móvil colocamos el Pitot.
  • 10. 9 𝑅𝑒 = (0.1597)(0.042) 0.893𝑥10−6 = 7510.5  Pérdidas:  Sin incluir Altura de Velocidad ℎ 𝑓 = 𝑝2 − 𝑝1 𝛾 = ∆𝑝𝑖𝑒𝑧𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑜 ℎ 𝑓 = 162 − 158 = 4 𝑐𝑚 𝑃é𝑟𝑑𝑖𝑑𝑎 𝑓 = 4 𝑐𝑚 Coeficiente de fricción (Darcy-Weisbach) 𝑓 = ℎ 𝑓 2𝑔𝐷 𝐿𝑉2 𝑓 = (1.1) 2(9.81)(0.042) (6)(0.1597)2 = 0.059 Colebrook-White 1 √0.059 = −2 log [ 𝑘 3.71(0.042) + 2.51 (7510.5 )√0.059 ] k = 0.0012 m → 𝜀1 = 𝑘 𝐷 = 0.028 Barr 1 √𝑓 = −2 log [ 𝑘 3.71𝐷 + 5.1286 𝑅𝑒0.89 ] 1 √0.059 = −2 log [ 𝑘 3.71(0.042) + 5.1286 7510.50.89] k = 0.001 m → 𝜀1 = 𝑘 𝐷 = 0.026 Para el cálculo del coeficiente de Chezy se reemplazaron los datos en la fórmula: 𝑐𝑜𝑛 𝐾1 = 0.0012
  • 11. 10 𝐶 = 18 ∗ 𝐿𝑜𝑔 ( 12 ∗ 0.042 4 0.0012 + 2 7 11.6 ∗ 0.893𝐸 − 06 √9.81 ∗ 0.042 4 ∗ 0.011 6 ) = 35.307 𝑐𝑜𝑛 𝑘2 = 0.001 𝐶 = 18 ∗ 𝐿𝑜𝑔 ( 12 ∗ 0.042 4 0.001 + 2 7 11.6 ∗ 0.893𝐸 − 06 √9.81 ∗ 0.0105 ∗ 0.011 6 ) = 35.706 Comprobación de la fórmula: 𝐶 = √ 8𝑔 𝑓 𝐶 = √ 8 ∗ 9.81 0.059 = 36.471 Para la experiencia 08:  Para cada sección se calculará el caudal y luego se procederá a sumar dichos caudales por franja, y posteriormente el caudal total. H = -15cm: 𝑉1 = √2𝑔(0.8)(0.4/100) = 0.2801 𝑚/𝑠 𝑉2 = √2𝑔(0.9)(0.5/100) = 0.3132 𝑚/𝑠 𝑉3 = √2𝑔(0.9)(0.6/100) = 0.3431 𝑚/𝑠 𝑉4 = √2𝑔(0.9)(0.5/100) = 0.3132 𝑚 𝑠 𝑉𝑝𝑟𝑜𝑚 = 0 .2801 + 0.3132 + 0.3431 + 0.3132 4 = 0.3124 Ahora, para calcular el caudal tenemos: 𝑄 = 0.27 ∗ 0.1 ∗ 0.3124 ∗ 1000
  • 12. 11 𝑄 = 8.591 𝑙𝑝𝑠 - De la misma manera se desarrollará para cada franja y se procederá a calcular el caudal de cada columna y posteriormente el caudal total que es igual a : 𝑄𝑡𝑜𝑡 = ∑ 𝑄𝑖 = 35.125 𝑙𝑝𝑠 3. Resultados y discusión de resultados 3.1. Resultados:  EXPERIENCIA 07: Δ Piezométrico (cm) Volumen medido (L) Tiempo Medido (s) 1.1 1 4.52 10.5 2 2.81 14.5 2 2.31 Qr (L/s) V flujo (m/s) RE Perdidas en columnas de agua (cm) Darcy Weisbach Colebrook White Bar Chezy C k1 E1 K2 E2 con k1 con k2 δ 0.2212 0.1597 7510.536 1.1 0.059 0.0012 0.028 0.001 0.026 35.307 35.716 0.00075 0.7117 0.5137 24162.01 10.5 0.055 0.0011 0.025 0.001 0.025 36.838 37.056 0.00024 0.8658 0.6249 29391.88 14.5 0.051 0.0009 0.021 0.001 0.021 38.192 38.403 0.00021 Diámetro (m) 0.042 Long de tubería (m) 6 Material de la tubería Fierro Galvanizado Viscosidad cine. del agua 0.000000893 Temperatura: 25°C
  • 13. 12  EXPERIENCIA 08: y 0.275 Área 0.04125 Profundidad del pitot (cm) Velocidad de Flujo Velocidad media por fila(m/s)d-15cm d-5cm d 5cm d 15cm 0.125y 3.4375 0.2801 0.3431 0.2426 0.1981 0.2660 0.375y 10.3125 0.3132 0.3431 0.3962 0.3706 0.3558 0.625y 17.1875 0.3431 0.3431 0.3431 0.2801 0.3274 0.875y 24.0625 0.3132 0.3431 0.3132 0.3431 0.3282 Velocidad media por cada columna (m/s) 0.3124 0.3431 0.3238 0.2980 Caudal por columna (L/s) 8.591 9.435 8.904 8.1945 Caudal total (L/s) 35.125 Interpolando los valores para V (0, 2y), V (0, 8y) y V (0, 5), tenemos: 𝑉 (0, 2𝑦) = 0.266 − (0.266 − 0.356) ∗ (3.44 − 0.2 ∗ 27.95) 3.44 − 10.3125 = 0.293 𝑉 (0, 8𝑦) = 0.3279 𝑉 (0, 5𝑦) = 0.3416 Entonces: Vm= V (0,5y)= (V (0, 2y)+ V (0, 8y))/ 2 Vm= 0.3416 ≈ 0.31045 Profundidad del Pitot (cm) Diferencial piezométrico d-15cm d-5cm d 5cm d 15cm 0.125y 3.44 0.4 0.6 0.3 0.2 0.375y 10.31 0.5 0.6 0.8 0.7 0.625y 17.19 0.6 0.6 0.6 0.4 0.875y 24.06 0.5 0.6 0.5 0.6
  • 14. 13 EXPERIENCIA VIRTUAL: (SOYA) De la sección S1: De la sección S2: 0 5 10 15 20 25 30 0.0000 0.1000 0.2000 0.3000 0.4000 Y(cm) Velocidad (m/s) V vs Y V vs Y 0.2900 0.3000 0.3100 0.3200 0.3300 0.3400 0.3500 -20 -10 0 10 20 Velocidad(m/s) Distancia (cm) V vs X V vs X Fig. 12: Distribución de las velocidades en función de la profundidad sumergida del tubo de Pitot. Fig. 13: Distribución de velocidades a lo largo de una fila a una determinada altura. 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.005 0.01 0.015 0.02 0.025 V_r [m/s] -0.024 -0.004 0.016 0.072 0.122 Z[m] Y [m] Velocity Distribution at Pipe VelocData PipeWall V=0.4617m/ s
  • 15. 14 -0.024 -0.004 0.016 0.072 0.122 Z[m] Y [m] Velocity Distribution at Pipe VelocData PipeWall V=0.4598m/ s 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.005 0.01 0.015 0.02 0.025 V_r [m/s] -0.024 -0.014 -0.004 0.006 0.016 0.072 0.122 Z[m] Y [m] Velocity Distribution at Pipe VelocData PipeWall V=0.4597m/ s V=0.4811m/ s 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.005 0.01 0.015 0.02 0.025 V_r [m/s] De la sección S3 De la sección S4: 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.005 0.01 0.015 0.02 0.025 V_r [m/s] (S2) -0.024 -0.014 -0.004 0.006 0.016 0.072 0.092 0.112 Z[m] Y [m] Velocity Distribution at Pipe VelocData PipeWall V=0.4606m/s V=0.4812m/s V=0.4752m/s V=0.4524m/s
  • 16. 15 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.005 0.01 0.015 0.02 0.025 V_r [m/s] -0.024 -0.014 -0.004 0.006 0.016 0.072 0.122 Z[m] Y [m] Velocity Distribution at Pipe VelocData PipeWall V=0.4614m/s V=0.4811m/s V=0.4748m/s V=0.4513m/s 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.005 0.01 0.015 0.02 0.025 V_r [m/s] -0.024 -0.014 -0.004 0.006 0.016 0.072 0.092 0.112 Z[m] Y [m] Velocity Distribution at Pipe VelocData PipeWall V=0.4609m/s V=0.4814m/s V=0.4752m/s V=0.452m/s Series7 4.65E-01 4.70E-01 4.75E-01 4.80E-01 4.85E-01 4.90E-01 4.95E-01 5.00E-01 5.05E-01 0 100 200 300 400 500 600 700 800 VELOCIDAD(m/s) Velocidad a lo largo de la Tubería Series1 De la sección S5 De la sección S6
  • 17. 16 Velocidad media: (U): 𝑈 = 2𝜋 𝐴 ∗ ∑ 𝑉𝑟 ∗ 𝑟 Para la sección S1: Vm= 0.485647 m/s 3.2. Discusión de resultados:  EXPERIENCIA 07: En este experimento pudimos observar que las rugosidades, tanto absolutas como relativas, que obtuvimos mediante las dos fórmulas utilizadas son bastante similares. También se puede observar que cuando se consideran las pérdidas por las alturas sin velocidades la rugosidad aumenta, algo esperado ya que se le quita la energía que aporta la velocidad del flujo.  EXPERIENCIA 08: En este experimento se observó que las velocidades halladas a una misma altura tienden a distribuirse de forma simétrica con respecto a la mitad, es decir desde el punto 0. Esto se ve corroborado con la gráfica de velocidad promedio por columna vs X, siendo la distribución parabólica. También se puede observar que la gráfica de velocidad promedio por fila vs Y no tiene forma definida, esto tiene sentido debido a que el flujo es turbulento. También se puede observar que el caudal hallado en el experimento es un valor bastante cercano al valor medido por el caudalímetro. Por último, se puede observar que los valores obtenidos para el Vm, el Vm obtenido con el V (0, 2y) y el V (0,8y) y el Vm obtenido con el V (0,5y) son bastante similares por lo que se podría decir que la aproximación hecha en el experimento fue casi exacta. 4. Conclusiones y recomendaciones  Experiencia 07: La pérdida que se presenta en la tubería en el tanque de oscilaciones es considerable por lo que no deberían ser ignoradas en el análisis de los tanques de oscilaciones. También se pudo comprobar que las fórmulas de Darcy, Colebrook- White, Barr y Chezy se cumplen, en este caso, para una tubería con flujo turbulento. Se pone especial énfasis en que la fórmula de Darcy para tuberías cortas si se cumple, pues debido a sus dimensiones, la tubería analizada es una tubería corta. Las pérdidas mayormente en este experimento se deben a que el fierro presenta mayor coeficiente de fricción, logrando que cada vez que el agua llegue al final de la tubería, este poseía una menor velocidad.
  • 18. 17 Este experimento se vio afectado por distintas fuentes de error. Entre las más importantes tenemos la medición del rebose de tal forma que se mantenga al mínimo, que se debe de hacer a simple vista. Otra fuente de error de relevancia en el experimento es la medición del caudal con el caudalímetro, debido que se debe determinar un caudal en un tiempo medido con el cronómetro. Errores en la medición de estos datos podrían haber afectado los resultados del experimento. En este experimento si se consideraron las pérdidas por rugosidad, sin embargo no se tomaron en cuenta pérdidas por accesorios. Además otras posibles fuentes de error son la imperfección de los instrumentos y de los materiales utilizados, errores humanos, errores de medición y otros factores menos importantes, como una posible oxidación interna de la tubería.  Experiencia 08: En el segundo experimento se obtuvo la aproximación de la distribución de velocidades en los puntos medios de las secciones en el ancho de la compuerta, pues el caudal medido con el caudalímetro tiene un valor bastante cercano al caudal obtenido con el tubo de Pitot- Prandtl, pero que para un valor más exacto se debieron de haber medido más puntos. Otra conclusión obtenida fue que todas las filas a distintos puntos de profundidad tenían una distribución de velocidad casi parabólica, es decir donde el punto medio de la distancia en el canal presentaba el pico más alto de velocidad y los bordes del canal tenían poca velocidad. También cabe mencionar que cada vez que se incrementaba la profundidad se registraba un mayor cambio de velocidad, por ejemplo, casi en la altura cercana a la superficie se presentaba una distribución bastante alterada, mientras que en la profundidad se notaba menor la variación de la velocidad. Una observación que se pudo notar es que al momento de levantar la plataforma de salida se lograba que el agua se juntara en el canal, puesto que se obtenía mayor pendiente, y se registraba una menor velocidad para poder trabajar con mejores datos. Entre las posibles fuentes de error, la posición del tubo de Pitot debía estar exactamente en una posición opuesta al flujo, pues esto afecta considerablemente los resultados del experimento. Durante la realización del ensayo se tuvo un error ocasionado por que el soporte del tubo de Pitot estaba flojo y constantemente se resbalaba y cambiaba su altura, lo que generaba error, además se contaba con una regla que no registraba datos exactos puesto que no estaba pegaba al canal sino que nosotros teníamos que colocarlo aproximadamente perpendicular.  Experiencia Virtual: Una de las conclusiones más importantes en esta sesión virtual, fue que las distribuciones de velocidades en función del radio, con casi constantes, es decir en cada sección de la tubería se registran una velocidad casi constante, en la gráfica se observa que tiene una tendencia lineal.
  • 19. 18 Otra conclusión es que la gráfica de curva isovelocidades, se observa que en la tubería la sección media presenta una mayor velocidad que en el centro como en los borde, esto se debe a que en los bordes hay presencia de pérdidas de energía, puesto que sus paredes no son lisas.
  • 20. 19 5. Bibliografía 2015 JOSE CABRERA G., RICHARD PEHOVAZ. “Guía de laboratorio de mecánica de fluidos” PONTIFIA UNIVERSIDA CATOLICA DEL PERU pág. 3 – 10 2012 GRUPO JM “Mecánica de fluidos” Plataforma educativa https://avdiaz.files.wordpress.com/2008/10/guia1enclase.pdf 1965 LEVI, ENZO. Mecánica de los fluidos. Universidad Nacional Autónoma de México 2002 POTTER, M. C., WIGGERT, D. C., HONDZO, M., & SHIH, T. I. Mecánica de fluidos. Thomson. 2003 MUNSON, BRUCE R. Fundamentos de mecánica de fluidos (libro virtual) http://dspace.ucbscz.edu.bo/dspace/bitstream/123456789/4411/1/4537.pdf 2000 CHOW, Ven Te. Hidráulica de canales abiertos. McGraw Hill. http://dspace.ucbscz.edu.bo/dspace/bitstream/123456789/4971/1/2807.pdf