SlideShare una empresa de Scribd logo
1 de 29
Elementos de la circunferencia y del círculo
Circunferencia es el conjunto de todos los puntos del plano que equidistan de
un mismo punto llamado centro de la circunferencia.El punto centro no
pertenece a la circunferencia.La circunferencia se nombra con la letra del
centro y un radio.
Círculo es la figura plana formada por una circunferencia más toda su región o
área interior
Ejemplos prácticos de una circunferencia: Aro, anillo,hula-hula,borde de
vaso, la orilla de un plato, etc.
Perímetrode la circunferencia: 2  · r  · d
Elementos de la circunferencia
Rectas en la circunferencia
Radio: Es un segmento que une el centro de la circunferencia con
cualquier punto de ella.
El radio se nombra con la letra “r” o bien con sus puntos extremos.
La medida del radio es constante.
Cuerda: es el segmento que une dos puntos de la circunferencia.
Las cuerdas tienen distintas medidas.
Diámetro: Es la cuerda que pasa por el centro de la
circunferencia.
El diámetro es la cuerda de mayor medida.
El diámetro se nombra con la letra “d”.
El diámetro siempre es el doble del radio:d = 2r r = d/2 .
Tangente: es la recta que intersecta en un solo punto a la
circunferencia.
Secante: es la recta que intersecta en dos puntos a la circunferencia.
Arco: es una parte de la circunferencia comprendida entre dos
puntos de ella.
Ángulos en una circunferencia
Ángulo del centro: Es el ángulo cuyo vértice es el centro de la circunferencia y sus lados son dos radios de
ella.
Figura Características Medida
Vértice en el centro de la circunferencia
Lados que contienen radios de ella
m (< AOB) =
m (arco AB)
Ejemplo:
(Debe leerse:arco SR es igual a un tercio
de la circunferencia.Calcular el ángulo X))
Por definición del Teorema del ángulo del centro la medida del arco SR es igual a la medida del ángulo del
centro (x). Como la circunferencia en el sistema sexagesimal tiene 360ºsignifica que el arco SR mide 1/3 de
360º, esto es dividir 360 en 3 partes y tomar 1 sola.
360º : 3 = 120º < SOR = 120º
Ángulo Inscrito: Es el ángulo cuyo vértice está sobre la circunferencia y sus lados son cuerdas de ella.Para
todo ángulo inscrito,existe un ángulo del centro que subtiende el mismo arco.El ángulo inscrito es igual a
la mitad del ángulo del centro que subtiende el mismo arco.
Figura Características Medida
< ABC inscrito que
subtiende arco AC
< AOC del centro que
subtiende arco AC
Vértice en la circunferencia.
Los lados son cuerdas de
ella.
< ABC subtiende arco AC.
El centro de la
circunferencia está en el
interior del ángulo.
m ( <ABC) =
½ m (<AOC)
(Debe
leerse:
medida del
ángulo
(ABC) es
igual a la
mitad del
ángulo
(AOC)
Ejemplo:
Si ángulo y es igual a 54 grados
Entonces ¿cuánto mide el ángulo x ?
El ángulo “y” es un ángulo del centro; el ángulo “x” es un ángulo inscrito que
subtiende un arco común con el ángulo del centro (AB), por lo tanto, se debe
aplicar el Teorema del ángulo inscrito.
Por Teorema: x = 1/2 y x = 1/2 · 54 = 54/2 = 27º
Caso Especial:
Si un ángulo inscrito subtiende
una semicircunferencia,entonces es recto.
α = 180º β = 90º
CIRCULO O REGION CIRCULAR: Es todo el espacio interior encerrado por una circunferencia..
REPRESENTACIONES MATERIALES DEL CIRCULO: Disco,plato, fondo de vaso, tapa de tarro, CD, etc
AREA DEL CIRCULO:  · r2
Elementos del círculo
Segmento circular: es cada una de las partes en que se
divide un círculo cuando se traza una cuerda (A - B). Si la
cuerda es un diámetro,cada parte será un semicírculo.
Sector circular: es la parte del círculo limitada por dos
radios y un arco.
Corona circular: es la porción del plano comprendida entre
dos circunferencias concéntricas.
Ecuación de la circunferencia
La circunferencia es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado
centro (recordar que estamos hablando del PlanoCartesiano y es respecto a éste que trabajamos).
Determinación de una circunferencia
Una circunferencia queda determinada cuando conocemos:
Tres puntos de la misma,equidistantes del centro.
El centro y el radio.
El centro y un punto en ella.
El centro y una recta tangente a la circunferencia.
También podemos decir que la circunferencia es la línea
formada por todos los puntos que están a la misma distancia
de otro punto,llamado centro.
Esta propiedad es la clave para hallar la expresión analítica
de una circunferencia (la ecuación de la circunferencia).
Entonces, entrando en el terreno de la Geometría Analítica,
(dentro del Plano Cartesiano) diremos que ─para cualquier
punto, P (x, y), de una circunferencia cuyo centro es el punto C (a, b) y con radio r─, la ecuación ordinaria es
(x ─ a)2
+ (y ─ b)2
= r2
¿Qué significa esto?
En el contexto de la Geometría Analítica significa que una circunferencia graficada con un centro definido
(coordenadas) en el plano Cartesiano y con radio conocido la podemos “ver” como gráfico y también la
podemos “transformar” o expresar como una ecuación matemática.
Así la vemos Así podemos expresarla
Donde:
(d) Distancia CP = r
y
Fórmula que elevada al cuadrado nos da
(x ─ a)2
+ (y ─ b)2
= r2
También se usa como
(x ─ h)2
+ (y ─ k)2
= r2
Recordar siempre que en esta fórmula la x y la y serán las coordenadas de cualquier punto (P) sobre la
circunferencia, equidistante del centro un radio (r). Y que la a y la b (o la h y la k, según se use)
corresponderán a las coordenadas del centro de la circunferencia C(a, b).
Nota importante:
Los ejercicios sobre esta materia pueden hacerse en uno u otro sentido.
Es decir, si nos dan la ecuación de una circunferencia, a partir de ella podemos encontrar las coordenadas
de su centro y el valor de su radio para graficarla o dibujarla.
Y si nos dan las coordenadas del centro de una circunferencia y el radio o datos para encontrarlo, podemos
llegar a la ecuación de la misma circunferencia.
Cuadrado del binomio
Aquí haremos una pausa para recordar el cuadrado del binomio ya que es muy importante para lo que sigue:
El binomio al cuadrado de la forma (a ─ b)2
podemos desarrollarlo como (a ─ b) (a ─ b) o convertirlo en un
trinomio de la forma a2 ─ 2ab + b2.
Sigamos nuestro razonamiento sobre la ecuación (x ─ a)2
+ (y ─ b)2
= r2
(que en forma matemática
representa una circunferencia).
De la ecuación ordinaria a la ecuación general
Si en esta ecuación ordinaria ─cuyo primer miembro (lado izquierdo) está formado por la suma de dos
cuadrados de binomio─, eliminamos los paréntesis desarrollando dichos binomios, pasamos todos los
términos al primer miembro y la igualamos a cero,tendremos:
x2
─ 2ax + a2
+ y2
─ 2by + b2
─ r2
= 0 ecuación que ordenada sería
x2
+ y2
─ 2ax ─ 2by + a2
+ b2
─ r2
= 0
Si para tener una ecuación más sintetizada hacemos las siguientes asignaciones:
─ 2a = D,
─ 2b = E,
a2
+ b2
─ r2
= F
la ecuación quedaría expresada de la forma:
x2 + y2 + Dx + Ey + F = 0 conocida como Ecuación General de la Circunferencia, la cual debe cumplir las
siguientes condiciones para serlo:
No existe término en xy
Los coeficientes de x2
e y2
son iguales.
Si D = ─ 2a entonces
Si E = ─ 2b entonces
Si F = a2
+ b2
─ r2
entonces
Además, otra condición necesaria para que una ecuación dada represente una circunferencia es que:
a2
+ b2
─ F > 0 (a2
+ b2
─ F debe ser mayor que cero)
Nota:
Para simplificar la ecuación general de la circunferencia (x2
+ y2
─ 2ax ─ 2by + a2
+ b2
─ r2
= 0) algunos
textos o docentes utilizan otra convención y hacen:
─ 2a = A,
─ 2b = B,
a2
+ b2
─ r2
= C para tener finalmente
x2
+ y2
+ Ax + By + C = 0 que es lo mismo que x2
+ y2
+ Dx + Ey + F = 0
A modo de recapitulación
Si conocemos las coordenadas del centro y el radio de una circunferencia, podemos construir su ecuacion
ordinaria, y si operamos los binomios cuadrados que la conforman, obtenemos la forma general de la
ecuación de la circunferencia.
Ecuación reducida de la circunferencia
Volviendo a nuestra ecuación ordinaria (x ─ a)2
+ (y ─ b)2
= r2
, debemos consignar que si el centro de la
circunferencia coincide con el origen de coordenadas (0,0) la ecuación queda reducida a:
(x ─ a)2
+ (y ─ b)2
= r2
(x ─ 0)2 + (y ─ 0)2 = r2
x2
+ y2
= r2
Obtener la ecuación de la circunferencia conocida su gráfica
Para lograrlo debemos conocer dos elementos importantes:
- el centro de la circunferencia (C),dado por sus coordenadas
- el radio (r) de la misma circunferencia
Definido esto,tendremos dos posibilidades:
A) Circunferencia con centro (C) en el origen de las coordenadas; expresado como C(0, 0)
B) Y circunferencia con centro(C) fuera del origen de las coordenadas; expresado, por ejemplo, como C (3,
2).
Circunferencia con centro (C) en el origen de las coordenadas;
expresado como C (0, 0)
A continuación analizaremos cuatro casos
Caso 1
Veamos la gráfica siguiente:
Los datos que nos entrega son:
Centro: C (0, 0), el centro se ubica en el origen de las coordenadas x e y
radio: r = 3, lo indica el 3 en cada una de las coordenadas.
Recordar esto:
Cuando el centro (C) de la circunferencia sea (0,0) se usará la ecuación x2
+ y2
= r2
para expresar dicha
circunferencia en forma analítica (Geometría analítica). Esta ecuación se conoce como ecuación reducida.
Para la gráfica de nuestro ejemplo, reemplazamos el valor de r en la fórmula x2
+ y2
= 32
y nos queda x2
+ y2
= 9 como la ecuación reducida de la circunferencia graficada arriba.
Ojo:
Si nos dieran la ecuación x2
+ y2
= 9 y nos preguntaran qué representa, razonamos en sentido inverso y
diremos que representa una circunferencia, con centro (C) en el origen de las coordenadas (0, 0) y cuyo
radio es 3 (32
= 9 y la raíz cuadrada de 9 es 3)
Circunferencia con centro (C) en el origen de las coordenadas;
expresado como C (0, 0)
Caso 2
Veamos la gráfica siguiente:
Los datos que nos entrega son:
Centro: C (0, 0), el centro se ubica en el origen de las coordenadas x e y
radio: r, lo desconocemos, pero tenemos un dato:el punto P (3, 4) ubicado en la circunferencia.
Recordemos de nuevo:
Cuando el centro (C) de la circunferencia sea (0,0) se usará la ecuación x2
+ y2
= r2
para expresar dicha
circunferencia en forma analítica. Esta ecuación se conoce como ecuación reducida.
Para la gráfica de nuestro ejemplo, deberíamos colocar el valor de r en la fórmula x2
+ y2
= r2
, pero resulta
que no lo conocemos.
Entonces, a partir del dato P (3, 4) podemos calcular el valor del trazo que une este punto con el centro C (0,
0) (trazo PC con línea punteada en la figura), el cual corresponde al radio de la circunferencia dada.
¿Cómo calculamos el valor de la distancia (d) entre P y C (el radio de la circunferencia)?
Para calcular la distancia (d) entre dos puntos (encontrar su valor) contamos con la siguiente fórmula:
No olvidemos que esta fórmula es para encontrar o conocer la distancia entre dos puntos; por lo mismo,
debemos saber que en ella
(x2 ─ x1)2
representa al punto 1, y ese punto 1 (P1) lo haremos corresponder con el punto que pasa por el
centro C (0, 0)
(y2 ─ y1)2
representa al punto 2, y ese punto 2 (P2) lo haremos corresponder con el punto que pasa por P (3,
4).
Es muy importante conocer o designar este orden ya que
Establecido este orden o equivalencia, podemos sustituir los valores en la fórmula anterior para conocer la
distancia (d) entre los dos puntos que nos interesan, la cual será nuestro radio:
El 5 nos indica la distancia entre los dos puntos, el centro de la circunferencia y uno de sus puntos, lo cual
corresponde al radio.
Recapitulemos:
Para expresar u obtener la ecuación de una circunferencia cuyo centro está en el origen, necesitamos conocer
el centro, ya sabemos que es C (0, 0), y conocer el radio,que ahora sabemos que es 5.
¿Se acuerdan cuál es la fórnula?
Esta: x2
+ y2
= r2
Reemplazamos en ella el valor del radio
x2
+ y2
= 52
y nos queda
x2
+ y2
= 25 como la ecuación reducida de la circunferencia graficada arriba (en la cual nos indicaron un
centro y un punto en ella).
Ojo:
Si nos dieran la ecuación x2
+ y2
= 25 y nos preguntaran qué representa, razonamos en sentido inverso y
diremos que representa una circunferencia, con centro (C) en el origen de las coordenadas (0, 0) y cuyo
radio es 5 (52
= 25 y la raíz cuadrada de 25 es 5).
Circunferencia con centro (C) en el origen de las coordenadas;
expresado como C (0, 0)
Caso 3
Tenemos la gráfica de una circunferencia cuyo centro (C) es el origen de las coordenadas (0,0), y nos dan
dos puntos opuestos en la circunferencia, , A (-3, -2) y B (3, 2), los cuales unidos corresponden al diámetro
de la misma.
Recordemos de nuevo:
Cuando el centro (C) de la circunferencia sea (0,0) se usará la ecuación x2
+ y2
= r2
para expresar dicha
circunferencia en forma analítica. Esta ecuación se conoce como ecuación reducida.
Para la gráfica de nuestro ejemplo, deberíamos colocar el valor de r en la fórmula x2
+ y2
= r2
, pero resulta
que no lo conocemos.
Pero tenemos identificados dos puntos opuestos en la circunferencia, los cuales unidos entre sí(la línea
punteada entre A y B en la gráfica) representan al diámetro de la misma.Entonces, a partir de esos puntos,A
(-3, -2) y B (3, 2), podemos calcular el valor del trazo que los une (trazo AB con línea punteada en la figura),el
cual corresponde al diámetro de la circunferencia dada.
¿Cómo calculamos el valor de la distancia (d) entre A y B (el diámetro de la circunferencia)?
Para calcular la distancia (d) entre dos puntos (encontrar su valor) contamos con la siguiente fórmula:
No olvidemos que esta fórmula es para encontrar o conocer la distancia entre dos puntos; por lo mismo,
debemos saber que en ella
(x2 ─ x1)2 representa al punto 1, y ese punto 1 (P1) lo haremos corresponder con el punto A (-3, -2)
(y2 ─ y1)2
representa al punto 2, y ese punto 2 (P2) lo haremos corresponder con el punto B (3, 2).
Es muy importante conocer o designar este orden ya que
Establecido este orden o equivalencia, podemos sustituir los valores en la fórmula anterior para conocer la
distancia (d) entre los dos puntos que nos interesan, la cual será nuestro diámetro
El 7,2 (valor aproximado) nos indica la distancia entre los dos puntos,A y B, la cual corresponde al diámetro
de la circunferencia.
Para conocer el valor del radio, simplemente dividimos por 2 dicho diámetro, y nos queda r = 3,6 ≈
Conocido el radio lo reemplazaremos en la ecuación de la circunferencia cuyo centro está en el origen de las
coordenadas, que es:
x2
+ y2
= r2
la cual nos queda
x2
+ y2
= (3,6)2
.
x2 + y2 = 13 ≈ como la ecuación reducida de la circunferencia graficada arriba (en la cual nos indicaron un
centro y dos puntos opuestos en ella).
Esta ecuación también podía obtenerse haciendo el cálculo para la distancia entre uno de los puntos dados y
el centro, como se vio en el caso 2
Ojo:
Si nos dieran la ecuación x2
+ y2
= 13 y nos preguntaran qué representa, razonamos en sentido inverso y
diremos que representa una circunferencia, con centro (C) en el origen de las coordenadas (0, 0) y cuyo
radio es 3,6 (3,6)2
= 13 y la raíz cuadrada de 13 es 3,6 ≈).
Circunferencia con centro (C) en el origen de las coordenadas;
expresado como C (0, 0)
Caso 4
Tenemos la gráfica de una circunferencia con centro (C) en el origen de las coordenadas (0,0), no hay otro
dato sobre coordenadas, pero se me indica que tiene un área de 10 u2
(diez unidades cuadráticas).
Recordemos de nuevo:
Cuando el centro (C) de la circunferencia sea (0,0) se usará la ecuación x2
+ y2
= r2
para expresar dicha
circunferencia en forma analítica. Esta ecuación se conoce como ecuación ordinaria.
Para la gráfica de nuestro ejemplo, deberíamos colocar el valor de r en la fórmula x2 + y2 = r2 , pero resulta
que no lo conocemos.
Pero conocemos el área de la circunferencia (10 u2
) y a partir de este dato podemos calcular el radio de la
misma.
¿Cómo calculamos el radio de la circunferencia si conocemos su área?
Repasemos el cálculo del área (A) de una circunferencia:
A = π • r2
A = 10 (dato conocido),
entonces 10 = π • r2
y
, este dato podría ser suficiente para reemplazar el valor de r2
en la fórmula,pero podemos
avanzar un poco y hacemos
Volvamos a nuestra fórmula inicial
x2
+ y2
= r2
Como ahora conocemos el radio:
x2
+ y2
= (1,78)2
x2
+ y2
= 3,18 ≈
También pudimos hacer
Ojo:
Si nos dieran la ecuación x2
+ y2
= 3,18 ≈ y nos preguntaran qué representa, razonamos en sentido inverso y
diremos que representa una circunferencia, con centro (C) en el origen de las coordenadas (0, 0) y cuyo
radio es 1,78 (1,78)2
= 3,18 y la raíz cuadrada de 3,18 es 1,78 ≈).
Obtener la Ecuación de la circunferencia con centro (C) fuera
del origen de las coordenadas
Tomemos,por ejemplo, la circunferencia cuyo centro está dado por C (2, ─3), con radio r = 5 que se muestra
en la figura
Para obtener la ecuación general de la circunferencia que estamos viendo podemos usar dos métodos:
Método por desarrollo y
Método con las fórmulas conocidas.
Método por desarrollo
Como conocemos el centro,C (2, ─3) y el radio (r = 5) entonces la fórmula ordinaria de la circunferencia será
(x ─ a)2
+ (y ─ b)2
= r2
donde a y b son las coordenadas del centro C (a, b), que en nuestro caso
corresponde a C (2, ─3)
entonces, nuestra ecuación ordinaria quedará como
(x ─ 2)2
+ (y ─ ─ 3)2
= 52
(x ─ 2)2
+ (y + 3)2
= 52
(x ─ 2)2
+ (y + 3)2
= 25
Nota: algunos usan otras letras,como (x ─ h)2
+ (y ─ k)2
Sigamos.
Tenemos nuestra ecuación ordinaria
(x ─ 2)2
+ (y + 3)2
= 25
y desarrollamos sus dos binomios:
(x ─ 2) (x ─ 2) + (y + 3) (y + 3) = 25
(x2
─ 2x ─ 2x + 4) + (y2
+ 3y + 3y + 9) = 25
(x2
─ 4x + 4) + (y2
+ 6y + 9) = 25
Recordemos que la estructura de la ecuación general de la circunferencia es
x2
+ y2
+ Dx + Ey + F = 0
Entonces, ordenamos nuestra ecuación anterior yla acomodamos de acuerdo con la fórmula general:
x2
+ y2
─ 4x + 6y + 4 + 9 ─ 25 = 0
x2
+ y2
─ 4x + 6y ─ 12 = 0
que es la ecuación general de la circunferencia con centro en las coordenadas 2, ─3 y cuyo radio es 5.
Método con las fórmulas conocidas
Como conocemos el centro,C (2, ─3) y el radio (r = 5) entonces aplicamos las fórmulas
Si entonces D = ─ 2a
Si entonces E = ─ 2b
Si entonces F = a2
+ b2
─ r2
Recordemos que C (2, ─3) corresponde a C (a, b)
Entonces, hacemos:
F = 4 + 9 ─ 25 = ─12
Si recordamos que la estructura de la ecuación general de la circunferencia es
x2
+ y2
+ Dx + Ey + F = 0
y en ella sustituimos los valores ahora conocidos de D,E y F, tendremos
x2
+ y2
+ ─4x + 6y + ─12 = 0
x2
+ y2
+ ─4x + 6y ─12 = 0
obtenemos la misma ecuación general de la circunferencia que logramos mediante el método del
desarrollo.
Ahora, hagamos algunos ejercicios
Ejercicio 1
Encuentre la ecuación general de la circunferencia cuyo centro está en las coordenadas y que
tiene un radio igual a
.
Resolución por desarrollo
En este caso podemos usar las fracciones o convertirlas a decimales:.
Como el centro no está en el origen vamos a usar la fórmula ordinaria para llegar a la desarrollada:
Para hacerlo, partamos de aquí:
(x ─ a)2
+ (y ─ b)2
= r2
Nota:
Debemos recordar que x e y corresponden a las coordenadas de cualquier punto en la circunferencia, P (x,
y), distante un radio desde el centro.
Volvamos a la fórmula:
Reemplacemos los valores en las coordenadas del centro,C (a, b):
y aquí tenemos la ecuación ordinaria (formada por dos cuadrados de binomio) la cual ahora desarrollaremos
para llegar a la ecuación general:
Recordemos el cuadrado del binomio:
a2
+ 2ab + b2
Primer término al cuadrado (x)2
, más el doble del producto del primero por el segundo término
2(x)(0,5), más el cuadrado del segundo término (0,5)2
Pongamos los valores de nuestros binomios al cuadrado:
(x)2
+ 2(x)(0,5) + (0,5)2
+ (y)2
+ 2(y)(─1,25) + (─1,25)2
= 3
x2
+ x + 0,25 + y2
─2,50y + 1,56 = 3
ahora acomodamos los términos e igualamos a cero,para obtener la ecuación general:
x2
+ y2
+ x ─ 2,50y + 0,25 + 1,56 ─ 3 = 0
x2
+ y2
+ x ─ 2,50y ─ 1,19 = 0
Resolución por el sistema de fórmulas conocidas
Tenemos:
Centro de la circunferencia (coordenadas)
Radio
r =
Y las fórmulas
D = ─2a
E = ─2b
F = a2
+ b2
─ r2
Recuerde que la ecuación general de la circunferencia tiene esta estructura:
x2
+ y2
+ Dx + Ey + F = 0
Por lo que solo debemos calcular D,E y F
Ahora que ya conocemos D, E y F los acomodamos en la fórmula general y tendremos:
x2
+ y2
+ x + ─2,50y + ─1,19 = 0
x2 + y2 + x ─ 2,50y ─ 1,19 = 0 fórmula general de la circunferencia dibujada arriba.
Importante
Los dos métodos utilizados aquípara encontrar la ecuación de la circunferencia nos indican que si nos dan
las coordenadas del centro de una circunferencia distintas de cero y el radio de la misma conviene usar el
método de las fórmulas.
No obstante, si alguien quiere saber exactamente cómo se procede, puede usar el sistema del desarrollo.
Ejercicio 2
Hallar la ecuación general de la circunferencia con centro en C (1, 3) y radio r = 4.
Resolución
Sabemos que debemos obtener un ecuación de la forma
x2
+ y2
+ Dx + Ey + F = 0
por lo que necesitamos saber cuánto valen D, E y F
Para ello,recordamos que
D = ─2a
E = ─2b
F = a2
+ b2
─ r2
Sustituyendo en D y E los valores que nos entregan las coordenadas del centro C (1, 3), donde
a = 1
b = 3
tendremos que
D = ─2(1) = ─2
E = ─2(3) = ─6
Y ahora sustituimos en
F = a2
+ b2
─ r2
F = (1)2
+ (3)2
─ (4)2
F = 1 + 9 ─ 16
F = ─6
Como ya tenemos los valores de
D = ─2
E = ─6
F = ─6
Los usamos para sustituir en la ecuación
x2
+ y2
+ Dx + Ey + F = 0
para quedar
y llegar finalmente a
x2
+ y2
─ 2x ─ 6y ─ 6 = 0 como la fórmula general de la circunferencia dibujada arriba.
Ejercicio 3
Hallar la ecuación general de la circunferencia que pasa por el punto P (─3, 2) y cuyo centro es el punto C (1,
5)
Resolución
Debemos calcular el radio (ya que no lo conocemos), pero como tenemos las coordenadas de un punto y del
centro podemos calcularlo así:
El radio es la distancia de C a P, y como su fórmula para conocer dicha distancia es
Hacemos
Ahora tenemos ubicado el centro C (1, 5) y el radio r = 5
y acudimos a la fórmula ordinaria de la circunferencia
(x ─ a)2
+ (y ─ b)2
= r2
Desarrollamos los cuadrados de los binomios
(x2
+ ─x + ─x + 1) + (y2
+ ─5y + ─5y + 25 = 25
x2
─ 2x + 1 + y2
─ 10y + 25 = 25
x2
+ y2
─ 2x ─ 10y + 1 + 25 ─ 25 = 0
x2
+ y2
─ 2x ─ 10y + 1 = 0
Nota importante:
En este ejercicio conocemos las coordenadas de uno de los puntos de la circunferencia, P (─3,2) pero ese
dato nos sirvió solo para calcular el radio.Conocido éste,la fórmula general que obtendremos ahora servirá
para todos los puntos de la circunferencia equidistantes del centro,representados como P (x, y), por eso en
la fórmula ordinaria de la circunferencia reemplazaremos solo los valores de a y de b como las coordenadas
del centro C (1, 5)
Ejercicio 4
Hallar la ecuación general de la circunferencia cuyo diámetro es el segmento entre los puntos A(2,3) y B(─4,
─9)
Resolución
Como el segmento AB es el diámetro, el centro estará en la mitad de este (radio),y hacemos
Ahora calculamos el radio,que es la distancia desde C(─1, ─3) hasta el punto A(2, 3)
Conocemos ahora las coordenadas del centro C(─1,─3) y el radio
Aplicamos la fórmula ordinaria
Desarrollamos los binomios
(x2
+ x + x + 1)+ (y2
+3y + 3y + 9) = 45
(xsup>2 +2x +1) + (y2
+ 6y + 9) = 45
x2
+ y2
+2x +6y +1+ 9 ─45 = 0
x2
+ y2
+2x +6y ─ 35 = 0 ecuación de la circunferencia graficada arriba.
Como un ejercicio probatorio de la efectividad de la fórmula analítica x2
+ y2
+2x +6y ─ 35 = 0 reemplacemos
los valores de las coordenadas de los puntos Ay B en x e y
Primero el A(2, 3) que sea x = 2, y = 3
22
+ 32
+ 2•2 + 6•3 ─ 35 = 0
4 + 9 + 4 + 18 ─ 35 = 0
Ahora el B(─4, ─9) que sea x = ─4, y = ─9
(─4)2
+ (─9)2
+ 2(─4) + 6(─9) ─ 35 = 0
16 + 81 ─ 8 ─ 54 ─ 35 = 0
Ejercicio 5
Hallar la ecuación de la circunferencia centrada en el punto (5, ─2) y de radio 3.
Resolución
Recordemos nuestra ecuación ordinaria de la circunferencia:
(x ─ a)2 + (y ─ b)2 = r2
Conocemos a y b (5, ─2) y el radio (r = 3)
Entonces reemplacemos
(x ─ 5)2 + (y ─ ─2)2 = 32
(x ─ 5)2
+ (y + 2)2
= 9
Desarrollemos lo binomios cuadrados:
(x ─ 5) (x ─ 5) + (y + 2) (y + 2) = 9
(x2
─ 10x + 25) + (y2
+ 4y + 4) = 9
ordenamos e igualamos a cero
x2
+ y2
─ 10x + 4y + 25 + 4 ─ 9 = 0
x2
+ y2
─ 10x + 4y + 20 = 0
Ejercicio 6
Calcular la ecuación de la circunferencia de centro (1, 1) y que contiene al punto (–2, 3).
Resolución:
Primero debemos conocer el radio
Entonces la ecuación ordinaria nos queda
x2
─ 2x + 1 + y2
─ 2y +1 = 13
x2
+ y2
─ 2x ─ 2y + 1 + 1 ─ 13 = 0
x2
+ y2
─ 2x ─ 2y ─ 11 = 0
Dada la ecuación general de una circunferencia, obtener su
centro y el radio
Para entrar en materia,tenemos la siguiente ecuación general de una circunferencia:
x2
+ y2
− 3x + 4y − 1 = 0
a partir de ella podemos encontrar el centroy el radio de esa circunferencia.
Para hacerlo, existen dos métodos:
Primer método
La ecuación general dada la vamos a convertir en dos binomios al cuadrado igual a r2
, que es la forma de
la ecuación ordinaria,
De nuevo conviene recordar que un binomio al cuadrado se escribe como
(a + b)2
, que dasarrollado queda como
(a + b) + (a + b)
a2
+ ab +ab + b2
a2
+ 2ab + b2
Primer término al cuadrado (x)2
, más el doble del producto del primero por el segundo término
2(x)(0,5), más el cuadrado del segundo término (0,5)2
Aquí debemos fijar nuestra atención en el término 2ab, que está precedido por el 2 y tiene ab (sin elevar al
cuadrado), siendo a el primer término y b el segundo del binomio. Este término (b) será clave para poder
completar los 3 términos que genera el binomio al cuadrado (a + b)2
= a2
+ 2ab + b2
Volviendo a nuestra ecuación general, debemos saber que en ella la x corresponde al primer término −la a de
(a + b)2
− y la ycorresponde al segundo −la b de (a + b)2
−
Reiteramos nuestra ecuación general:
x2
+ y2
− 3x + 4y − 1 = 0 y vamos a separar sus términos para darle forma de dos binomios al cuadrado
desarrollados:
Deberíamos obtener algo como:
, entendido como la suma de dos binomios al cuadrado,
donde en cada binomio encontramos:
el cuadrado del primer término (del binomio) (x2
en uno e y2
en el otro)
el doble producto del primer término por el segundo (−3x en uno y +4y en el otro)
el cuadrado del segundo término (del binomio) (+/− ¿?) en ambos cuadrados yque es ese tercer término que
debemos deducir para cada cuadrado del binomio.
Este tercer término, lo obtendremos del −3x para un binomio y del +4y para el otro.
Respecto a −3x, sabemos que corresponde al segundo término del binomio desarrollado, generalizado
como 2ab.
Ahora, si tenemos vemos que la x (a) está al cuadrado en x2
(a2
) y lineal en x (a), entonces el −3
corresponde a 2b(el segundo término lineal en 2ab).
Y hacemos
Ya conocemos b,entonces lo ponemos en nuestra fórmula
Hacemos lo mismo para el segundo binomio:
Si tenemos vemos que la y (a) está al cuadrado en y2
(a2
) y lineal en y (a), entonces el +4
corresponde a 2b(el segundo término lineal en 2ab).
Y hacemos
Ahora completamos la fórmula
(x2
− 3x + 2,25) + (y2
+ 4y + 4) = 1
Ahora, como en el lado izquierdo de la ecuación agregamos +2,25 y +4, para mantenerla equilibrada debemos
agregar lo mismo en el lado derecho:
(x2
− 3x + 2,25) + (y2
+ 4y + 4) = 1 + 2,25 + 4
(x2
− 3x + 2,25) + (y2
+ 4y + 4) = 7,25
Y ahora tenemos dos trinomios, los cuales nos generarán dos binomios al cuadrado, de la forma:
(x − 1,5)2
+ (y + 2)2
= 7,25
Que es la ecuación ordinaria de la circunferencia,y de donde obtendremos las coordenadas del centro y
el valor del radio.
Recordemos la estructura de la ecuación ordinaria:
(x − h)2
+ (y − k)2
= rsup>2
Reemplazamos yqueda
(x − − 1,5)2
+ (y − + 2)2
= r2
(x + 1,5)2
+ (y − 2)2
= 7,25
Ecuación que nos dice lo siguiente:
La x y la y representan a las coordenadas de cualquier punto sobre la circunferencia equidistante del centro.
Los valores 1,5 y −2 representan las coordenadas del centro de la circunferencia anterior
El valor 7,25 representa a r2
, por lo tanto
Entonces, la ecuación general x2
+ y2
− 3x + 4y − 1 = 0
corresponde a una circunferencia con centro C(1,5 , −2) cuyo radio es ≈ 2,69 como la que vemos en la
figura.
Ecuación general de la circunferencia de la izquierda:
x2 + y2 − 3x + 4y − 1 = 0
Segundo método
Lo llamaremos métodode fórmulas conocidas.
Para este método utilizaremos solo estas fórmulas (que debemos recordar o conocer):
Primero,recordemos la estructura de la ecuación ordinaria:
(x − h)2
+ (y − k)2
= r2
Recordemos que en esta ecuación la x y la y representan las coordenadas de cualquier punto de la
circunferencia que equidiste un radio desde el centro,y que h y k representan las coordenadas del punto
central de la circunferencia (también se utiliza a y b para identificarlas)
Es a partir de esta ecuación que se obtienen las fórmulas que usaremos:
También tenemos que recordar que la estructura de la ecuación general de la circunferencia la podemos
expresar como
x2
+ y2
+ Dx + Ey + F = 0
Y si la comparamos con la ecuación dada tendremos
donde vemos que
D vale −3
E vale +4
F vale −1
y con estos datos y con las fórmulas de arriba vamos a conocer las coordenadas del centro:
Nuestra circunferencia tiene centro en las coordenadas (1,5, −2)
Nuestra circunferencia tiene un radio ≈ 2,69 y sus coordenadas del centro C(1,5, −2)
Ejercicio 1
Calcular el centro y el radio de la circunferencia x2
+ y2
+ 2x − 4y − 4 = 0
Recordemos la estructura de la ecuación general:
x2
+ y2
− 2ax − 2by + a2 + b2 − r2 = 0
Que sintetizada queda
x2
+ y2
+ Dx + Ey + F = 0
Desarrollemos la ecuación
x2
+ y2
+ 2x − 4y − 4 = 0
x2
+ y2
+ 2x − 4y = 4
Busquemos los dos binomios al cuadrado
El tercer término que falta en el primer binomio se obtiene de
Y el tercer término que falta en el segundo binomio se obtiene de
Asi formamos:
Vemos que al lado izquierdo agregamos +1 y +4 (los terceros términos de los binomios) por ello agregamos
los mismos valores a la derecha de la ecuación, para equilibrarla.
Ahora partir de estos dos trinomios podemos definir dos binomios al cuadrado:
(x + 1)2
+ (y − 2)2
= 9
que, como vemos,se asemeja a nuestra ecuación ordinaria de la forma
(x − h)2
+ (y − k)2
= r2
Si comparamos,resulta que
h = +1
k = −2
Reemplazamos ytenemos
(x − +1)2
+ (y − −2)2
= r2
(x − 1)2
+ (y + 2)2
= 9
(x − 1)2
+ (y + 2)2
= 3
Respuesta:
Las coordenadas del centro de la circunferencia dada son (─1,2) y su radio es igual a 3.
Usemos el método de las fórmulas.
Conocemos la estructura de la ecuación ordinaria:
(x − h)2
+ (y − k)2
= r2
Conocemos las fórmulas
Estructura de la ecuación general de la circunferencia:
x2
+ y2
+ Dx + Ey + F = 0
La comparamos con la ecuación dada,y tendremos
donde vemos que
D vale +2
E vale −4
F vale −4
Reemplacemos en las fórmulas:
Nuestra circunferencia tiene centro en las coordenadas (−1, 2)
Y su radio es
Nuestra circunferencia tiene un radio igual a 3

Más contenido relacionado

La actualidad más candente

Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltosJairo G.M
 
Transformacion de coordenadas
Transformacion de coordenadasTransformacion de coordenadas
Transformacion de coordenadasElizabeth Alvites
 
Problemas y ejercicios resueltos de cónicas
 Problemas y ejercicios resueltos de cónicas Problemas y ejercicios resueltos de cónicas
Problemas y ejercicios resueltos de cónicasPascual Sardella
 
Circunferencia que pasa por tres puntos
Circunferencia que pasa por tres puntosCircunferencia que pasa por tres puntos
Circunferencia que pasa por tres puntosmath class2408
 
rectas paralelas y ortogonales (2)
rectas paralelas y ortogonales (2)rectas paralelas y ortogonales (2)
rectas paralelas y ortogonales (2)Ivan Nina
 
Hallar el centro y el radio a partir de la eg. de la circunferencia
Hallar el centro y el radio a partir de  la eg. de la circunferenciaHallar el centro y el radio a partir de  la eg. de la circunferencia
Hallar el centro y el radio a partir de la eg. de la circunferenciaDRJAIMEBRAVO
 
Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3
Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3
Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3Pascual Sardella
 
APLICACION DE LA INTEGRAL DEFINIDA EN AREAS Y VOLUMENES
APLICACION DE LA INTEGRAL DEFINIDA EN AREAS Y VOLUMENESAPLICACION DE LA INTEGRAL DEFINIDA EN AREAS Y VOLUMENES
APLICACION DE LA INTEGRAL DEFINIDA EN AREAS Y VOLUMENESfer123asdzxc
 
Cónicas, ecuaciones paramétricas y coordenadas polares.math
Cónicas, ecuaciones paramétricas y coordenadas polares.mathCónicas, ecuaciones paramétricas y coordenadas polares.math
Cónicas, ecuaciones paramétricas y coordenadas polares.mathsantiagoantonio24
 
Ecuación de la circunferencia dados el centro y un punto
Ecuación de la circunferencia dados el centro y un puntoEcuación de la circunferencia dados el centro y un punto
Ecuación de la circunferencia dados el centro y un puntomath class2408
 
Cuatro operaciones(multiplicacion y división)
Cuatro operaciones(multiplicacion y división)Cuatro operaciones(multiplicacion y división)
Cuatro operaciones(multiplicacion y división)JENNER HUAMAN
 
la formula de los vectores
la formula de los vectores la formula de los vectores
la formula de los vectores roger kasa
 
Elipse presentacion
Elipse presentacionElipse presentacion
Elipse presentacionkathiip_16
 

La actualidad más candente (20)

Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
Transformacion de coordenadas
Transformacion de coordenadasTransformacion de coordenadas
Transformacion de coordenadas
 
Problemas y ejercicios resueltos de cónicas
 Problemas y ejercicios resueltos de cónicas Problemas y ejercicios resueltos de cónicas
Problemas y ejercicios resueltos de cónicas
 
Casos de factorizacion
Casos de  factorizacionCasos de  factorizacion
Casos de factorizacion
 
Circunferencia que pasa por tres puntos
Circunferencia que pasa por tres puntosCircunferencia que pasa por tres puntos
Circunferencia que pasa por tres puntos
 
rectas paralelas y ortogonales (2)
rectas paralelas y ortogonales (2)rectas paralelas y ortogonales (2)
rectas paralelas y ortogonales (2)
 
Longitud de arco
Longitud de arcoLongitud de arco
Longitud de arco
 
Hallar el centro y el radio a partir de la eg. de la circunferencia
Hallar el centro y el radio a partir de  la eg. de la circunferenciaHallar el centro y el radio a partir de  la eg. de la circunferencia
Hallar el centro y el radio a partir de la eg. de la circunferencia
 
Elipse hiperbola resueltos
Elipse hiperbola resueltosElipse hiperbola resueltos
Elipse hiperbola resueltos
 
Las Conicas
Las ConicasLas Conicas
Las Conicas
 
Circunferencia analitica
Circunferencia analiticaCircunferencia analitica
Circunferencia analitica
 
hiperbola
hiperbolahiperbola
hiperbola
 
Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3
Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3
Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3
 
APLICACION DE LA INTEGRAL DEFINIDA EN AREAS Y VOLUMENES
APLICACION DE LA INTEGRAL DEFINIDA EN AREAS Y VOLUMENESAPLICACION DE LA INTEGRAL DEFINIDA EN AREAS Y VOLUMENES
APLICACION DE LA INTEGRAL DEFINIDA EN AREAS Y VOLUMENES
 
Cónicas, ecuaciones paramétricas y coordenadas polares.math
Cónicas, ecuaciones paramétricas y coordenadas polares.mathCónicas, ecuaciones paramétricas y coordenadas polares.math
Cónicas, ecuaciones paramétricas y coordenadas polares.math
 
Ecuación de la circunferencia dados el centro y un punto
Ecuación de la circunferencia dados el centro y un puntoEcuación de la circunferencia dados el centro y un punto
Ecuación de la circunferencia dados el centro y un punto
 
Cuatro operaciones(multiplicacion y división)
Cuatro operaciones(multiplicacion y división)Cuatro operaciones(multiplicacion y división)
Cuatro operaciones(multiplicacion y división)
 
Secciones Cónicas
Secciones CónicasSecciones Cónicas
Secciones Cónicas
 
la formula de los vectores
la formula de los vectores la formula de los vectores
la formula de los vectores
 
Elipse presentacion
Elipse presentacionElipse presentacion
Elipse presentacion
 

Similar a Ecuación de la circunferencia

Cuaderno de práctica geometría análitica unidad 3 la circunferencias
Cuaderno de práctica geometría análitica unidad 3 la circunferenciasCuaderno de práctica geometría análitica unidad 3 la circunferencias
Cuaderno de práctica geometría análitica unidad 3 la circunferenciasPascual Sardella
 
Plano Numerico Carlos Camacaro.docx
Plano Numerico Carlos Camacaro.docxPlano Numerico Carlos Camacaro.docx
Plano Numerico Carlos Camacaro.docxcarloscamacaro9
 
Curvas en el plano
Curvas en el planoCurvas en el plano
Curvas en el planojuanherna
 
Circunferencia
CircunferenciaCircunferencia
CircunferenciaMateBivi
 
Bloques 3 elementos de la circunferencia
Bloques 3 elementos de la circunferenciaBloques 3 elementos de la circunferencia
Bloques 3 elementos de la circunferenciajose67
 
Trabajo circunferencia
Trabajo circunferenciaTrabajo circunferencia
Trabajo circunferenciaRodrigators
 
plano numérico, punto medio, trazado de circunferencia hipérbola
plano numérico, punto medio, trazado de circunferencia  hipérbolaplano numérico, punto medio, trazado de circunferencia  hipérbola
plano numérico, punto medio, trazado de circunferencia hipérbolaemily99freitez
 
Diversas formas de la ecuacion de la recta y circunferencias
Diversas formas de la ecuacion de la recta y circunferenciasDiversas formas de la ecuacion de la recta y circunferencias
Diversas formas de la ecuacion de la recta y circunferenciasgaby_2013
 
Trigonometría en Acción
Trigonometría en AcciónTrigonometría en Acción
Trigonometría en AcciónSandra Saltarin
 

Similar a Ecuación de la circunferencia (20)

Cuaderno de práctica geometría análitica unidad 3 la circunferencias
Cuaderno de práctica geometría análitica unidad 3 la circunferenciasCuaderno de práctica geometría análitica unidad 3 la circunferencias
Cuaderno de práctica geometría análitica unidad 3 la circunferencias
 
circunferencia
circunferencia  circunferencia
circunferencia
 
Cónicas
CónicasCónicas
Cónicas
 
Plano Numerico Carlos Camacaro.docx
Plano Numerico Carlos Camacaro.docxPlano Numerico Carlos Camacaro.docx
Plano Numerico Carlos Camacaro.docx
 
Curvas en el plano
Curvas en el planoCurvas en el plano
Curvas en el plano
 
Circunferencia
CircunferenciaCircunferencia
Circunferencia
 
Geometría analítica
Geometría analítica Geometría analítica
Geometría analítica
 
Conicas
ConicasConicas
Conicas
 
Conicas.doc
Conicas.docConicas.doc
Conicas.doc
 
Circunferencia
CircunferenciaCircunferencia
Circunferencia
 
Bloques 3 elementos de la circunferencia
Bloques 3 elementos de la circunferenciaBloques 3 elementos de la circunferencia
Bloques 3 elementos de la circunferencia
 
MATE III
MATE IIIMATE III
MATE III
 
Geo2006clase5
Geo2006clase5Geo2006clase5
Geo2006clase5
 
carlos herrera
carlos herreracarlos herrera
carlos herrera
 
Trabajo circunferencia
Trabajo circunferenciaTrabajo circunferencia
Trabajo circunferencia
 
plano numérico, punto medio, trazado de circunferencia hipérbola
plano numérico, punto medio, trazado de circunferencia  hipérbolaplano numérico, punto medio, trazado de circunferencia  hipérbola
plano numérico, punto medio, trazado de circunferencia hipérbola
 
CIRCUNFERENCIA.pdf
CIRCUNFERENCIA.pdfCIRCUNFERENCIA.pdf
CIRCUNFERENCIA.pdf
 
Diversas formas de la ecuacion de la recta y circunferencias
Diversas formas de la ecuacion de la recta y circunferenciasDiversas formas de la ecuacion de la recta y circunferencias
Diversas formas de la ecuacion de la recta y circunferencias
 
Trigonometría en Acción
Trigonometría en AcciónTrigonometría en Acción
Trigonometría en Acción
 
Conicas
ConicasConicas
Conicas
 

Último

Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
CULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartirCULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartirPaddySydney1
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoFundación YOD YOD
 
Marketing y servicios 2ºBTP Cocina DGETP
Marketing y servicios 2ºBTP Cocina DGETPMarketing y servicios 2ºBTP Cocina DGETP
Marketing y servicios 2ºBTP Cocina DGETPANEP - DETP
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptELENA GALLARDO PAÚLS
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfsamyarrocha1
 
plan-de-trabajo-colegiado en una institucion educativa
plan-de-trabajo-colegiado en una institucion educativaplan-de-trabajo-colegiado en una institucion educativa
plan-de-trabajo-colegiado en una institucion educativafiorelachuctaya2
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...fcastellanos3
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
Movimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en VenezuelaMovimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en Venezuelacocuyelquemao
 

Último (20)

Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
CULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartirCULTURA NAZCA, presentación en aula para compartir
CULTURA NAZCA, presentación en aula para compartir
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativo
 
Marketing y servicios 2ºBTP Cocina DGETP
Marketing y servicios 2ºBTP Cocina DGETPMarketing y servicios 2ºBTP Cocina DGETP
Marketing y servicios 2ºBTP Cocina DGETP
 
Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdf
 
Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.
 
plan-de-trabajo-colegiado en una institucion educativa
plan-de-trabajo-colegiado en una institucion educativaplan-de-trabajo-colegiado en una institucion educativa
plan-de-trabajo-colegiado en una institucion educativa
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
Movimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en VenezuelaMovimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en Venezuela
 

Ecuación de la circunferencia

  • 1. Elementos de la circunferencia y del círculo Circunferencia es el conjunto de todos los puntos del plano que equidistan de un mismo punto llamado centro de la circunferencia.El punto centro no pertenece a la circunferencia.La circunferencia se nombra con la letra del centro y un radio. Círculo es la figura plana formada por una circunferencia más toda su región o área interior Ejemplos prácticos de una circunferencia: Aro, anillo,hula-hula,borde de vaso, la orilla de un plato, etc. Perímetrode la circunferencia: 2  · r  · d Elementos de la circunferencia Rectas en la circunferencia Radio: Es un segmento que une el centro de la circunferencia con cualquier punto de ella. El radio se nombra con la letra “r” o bien con sus puntos extremos. La medida del radio es constante. Cuerda: es el segmento que une dos puntos de la circunferencia. Las cuerdas tienen distintas medidas.
  • 2. Diámetro: Es la cuerda que pasa por el centro de la circunferencia. El diámetro es la cuerda de mayor medida. El diámetro se nombra con la letra “d”. El diámetro siempre es el doble del radio:d = 2r r = d/2 . Tangente: es la recta que intersecta en un solo punto a la circunferencia. Secante: es la recta que intersecta en dos puntos a la circunferencia. Arco: es una parte de la circunferencia comprendida entre dos puntos de ella. Ángulos en una circunferencia Ángulo del centro: Es el ángulo cuyo vértice es el centro de la circunferencia y sus lados son dos radios de ella. Figura Características Medida
  • 3. Vértice en el centro de la circunferencia Lados que contienen radios de ella m (< AOB) = m (arco AB) Ejemplo: (Debe leerse:arco SR es igual a un tercio de la circunferencia.Calcular el ángulo X)) Por definición del Teorema del ángulo del centro la medida del arco SR es igual a la medida del ángulo del centro (x). Como la circunferencia en el sistema sexagesimal tiene 360ºsignifica que el arco SR mide 1/3 de 360º, esto es dividir 360 en 3 partes y tomar 1 sola. 360º : 3 = 120º < SOR = 120º Ángulo Inscrito: Es el ángulo cuyo vértice está sobre la circunferencia y sus lados son cuerdas de ella.Para todo ángulo inscrito,existe un ángulo del centro que subtiende el mismo arco.El ángulo inscrito es igual a la mitad del ángulo del centro que subtiende el mismo arco. Figura Características Medida < ABC inscrito que subtiende arco AC < AOC del centro que subtiende arco AC Vértice en la circunferencia. Los lados son cuerdas de ella. < ABC subtiende arco AC. El centro de la circunferencia está en el interior del ángulo. m ( <ABC) = ½ m (<AOC) (Debe leerse: medida del ángulo (ABC) es igual a la mitad del ángulo (AOC) Ejemplo:
  • 4. Si ángulo y es igual a 54 grados Entonces ¿cuánto mide el ángulo x ? El ángulo “y” es un ángulo del centro; el ángulo “x” es un ángulo inscrito que subtiende un arco común con el ángulo del centro (AB), por lo tanto, se debe aplicar el Teorema del ángulo inscrito. Por Teorema: x = 1/2 y x = 1/2 · 54 = 54/2 = 27º Caso Especial: Si un ángulo inscrito subtiende una semicircunferencia,entonces es recto. α = 180º β = 90º CIRCULO O REGION CIRCULAR: Es todo el espacio interior encerrado por una circunferencia.. REPRESENTACIONES MATERIALES DEL CIRCULO: Disco,plato, fondo de vaso, tapa de tarro, CD, etc AREA DEL CIRCULO:  · r2 Elementos del círculo Segmento circular: es cada una de las partes en que se divide un círculo cuando se traza una cuerda (A - B). Si la cuerda es un diámetro,cada parte será un semicírculo. Sector circular: es la parte del círculo limitada por dos radios y un arco. Corona circular: es la porción del plano comprendida entre dos circunferencias concéntricas.
  • 5. Ecuación de la circunferencia La circunferencia es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro (recordar que estamos hablando del PlanoCartesiano y es respecto a éste que trabajamos). Determinación de una circunferencia Una circunferencia queda determinada cuando conocemos: Tres puntos de la misma,equidistantes del centro. El centro y el radio. El centro y un punto en ella. El centro y una recta tangente a la circunferencia. También podemos decir que la circunferencia es la línea formada por todos los puntos que están a la misma distancia de otro punto,llamado centro. Esta propiedad es la clave para hallar la expresión analítica de una circunferencia (la ecuación de la circunferencia). Entonces, entrando en el terreno de la Geometría Analítica, (dentro del Plano Cartesiano) diremos que ─para cualquier punto, P (x, y), de una circunferencia cuyo centro es el punto C (a, b) y con radio r─, la ecuación ordinaria es (x ─ a)2 + (y ─ b)2 = r2 ¿Qué significa esto? En el contexto de la Geometría Analítica significa que una circunferencia graficada con un centro definido (coordenadas) en el plano Cartesiano y con radio conocido la podemos “ver” como gráfico y también la podemos “transformar” o expresar como una ecuación matemática. Así la vemos Así podemos expresarla Donde: (d) Distancia CP = r y Fórmula que elevada al cuadrado nos da (x ─ a)2 + (y ─ b)2 = r2 También se usa como (x ─ h)2 + (y ─ k)2 = r2
  • 6. Recordar siempre que en esta fórmula la x y la y serán las coordenadas de cualquier punto (P) sobre la circunferencia, equidistante del centro un radio (r). Y que la a y la b (o la h y la k, según se use) corresponderán a las coordenadas del centro de la circunferencia C(a, b). Nota importante: Los ejercicios sobre esta materia pueden hacerse en uno u otro sentido. Es decir, si nos dan la ecuación de una circunferencia, a partir de ella podemos encontrar las coordenadas de su centro y el valor de su radio para graficarla o dibujarla. Y si nos dan las coordenadas del centro de una circunferencia y el radio o datos para encontrarlo, podemos llegar a la ecuación de la misma circunferencia. Cuadrado del binomio Aquí haremos una pausa para recordar el cuadrado del binomio ya que es muy importante para lo que sigue: El binomio al cuadrado de la forma (a ─ b)2 podemos desarrollarlo como (a ─ b) (a ─ b) o convertirlo en un trinomio de la forma a2 ─ 2ab + b2. Sigamos nuestro razonamiento sobre la ecuación (x ─ a)2 + (y ─ b)2 = r2 (que en forma matemática representa una circunferencia). De la ecuación ordinaria a la ecuación general Si en esta ecuación ordinaria ─cuyo primer miembro (lado izquierdo) está formado por la suma de dos cuadrados de binomio─, eliminamos los paréntesis desarrollando dichos binomios, pasamos todos los términos al primer miembro y la igualamos a cero,tendremos: x2 ─ 2ax + a2 + y2 ─ 2by + b2 ─ r2 = 0 ecuación que ordenada sería x2 + y2 ─ 2ax ─ 2by + a2 + b2 ─ r2 = 0 Si para tener una ecuación más sintetizada hacemos las siguientes asignaciones: ─ 2a = D, ─ 2b = E, a2 + b2 ─ r2 = F la ecuación quedaría expresada de la forma: x2 + y2 + Dx + Ey + F = 0 conocida como Ecuación General de la Circunferencia, la cual debe cumplir las siguientes condiciones para serlo: No existe término en xy Los coeficientes de x2 e y2 son iguales. Si D = ─ 2a entonces Si E = ─ 2b entonces
  • 7. Si F = a2 + b2 ─ r2 entonces Además, otra condición necesaria para que una ecuación dada represente una circunferencia es que: a2 + b2 ─ F > 0 (a2 + b2 ─ F debe ser mayor que cero) Nota: Para simplificar la ecuación general de la circunferencia (x2 + y2 ─ 2ax ─ 2by + a2 + b2 ─ r2 = 0) algunos textos o docentes utilizan otra convención y hacen: ─ 2a = A, ─ 2b = B, a2 + b2 ─ r2 = C para tener finalmente x2 + y2 + Ax + By + C = 0 que es lo mismo que x2 + y2 + Dx + Ey + F = 0 A modo de recapitulación Si conocemos las coordenadas del centro y el radio de una circunferencia, podemos construir su ecuacion ordinaria, y si operamos los binomios cuadrados que la conforman, obtenemos la forma general de la ecuación de la circunferencia. Ecuación reducida de la circunferencia Volviendo a nuestra ecuación ordinaria (x ─ a)2 + (y ─ b)2 = r2 , debemos consignar que si el centro de la circunferencia coincide con el origen de coordenadas (0,0) la ecuación queda reducida a: (x ─ a)2 + (y ─ b)2 = r2 (x ─ 0)2 + (y ─ 0)2 = r2 x2 + y2 = r2 Obtener la ecuación de la circunferencia conocida su gráfica Para lograrlo debemos conocer dos elementos importantes: - el centro de la circunferencia (C),dado por sus coordenadas - el radio (r) de la misma circunferencia Definido esto,tendremos dos posibilidades: A) Circunferencia con centro (C) en el origen de las coordenadas; expresado como C(0, 0) B) Y circunferencia con centro(C) fuera del origen de las coordenadas; expresado, por ejemplo, como C (3, 2).
  • 8. Circunferencia con centro (C) en el origen de las coordenadas; expresado como C (0, 0) A continuación analizaremos cuatro casos Caso 1 Veamos la gráfica siguiente: Los datos que nos entrega son: Centro: C (0, 0), el centro se ubica en el origen de las coordenadas x e y radio: r = 3, lo indica el 3 en cada una de las coordenadas. Recordar esto: Cuando el centro (C) de la circunferencia sea (0,0) se usará la ecuación x2 + y2 = r2 para expresar dicha circunferencia en forma analítica (Geometría analítica). Esta ecuación se conoce como ecuación reducida. Para la gráfica de nuestro ejemplo, reemplazamos el valor de r en la fórmula x2 + y2 = 32 y nos queda x2 + y2 = 9 como la ecuación reducida de la circunferencia graficada arriba. Ojo: Si nos dieran la ecuación x2 + y2 = 9 y nos preguntaran qué representa, razonamos en sentido inverso y diremos que representa una circunferencia, con centro (C) en el origen de las coordenadas (0, 0) y cuyo radio es 3 (32 = 9 y la raíz cuadrada de 9 es 3) Circunferencia con centro (C) en el origen de las coordenadas; expresado como C (0, 0) Caso 2 Veamos la gráfica siguiente:
  • 9. Los datos que nos entrega son: Centro: C (0, 0), el centro se ubica en el origen de las coordenadas x e y radio: r, lo desconocemos, pero tenemos un dato:el punto P (3, 4) ubicado en la circunferencia. Recordemos de nuevo: Cuando el centro (C) de la circunferencia sea (0,0) se usará la ecuación x2 + y2 = r2 para expresar dicha circunferencia en forma analítica. Esta ecuación se conoce como ecuación reducida. Para la gráfica de nuestro ejemplo, deberíamos colocar el valor de r en la fórmula x2 + y2 = r2 , pero resulta que no lo conocemos. Entonces, a partir del dato P (3, 4) podemos calcular el valor del trazo que une este punto con el centro C (0, 0) (trazo PC con línea punteada en la figura), el cual corresponde al radio de la circunferencia dada. ¿Cómo calculamos el valor de la distancia (d) entre P y C (el radio de la circunferencia)? Para calcular la distancia (d) entre dos puntos (encontrar su valor) contamos con la siguiente fórmula: No olvidemos que esta fórmula es para encontrar o conocer la distancia entre dos puntos; por lo mismo, debemos saber que en ella (x2 ─ x1)2 representa al punto 1, y ese punto 1 (P1) lo haremos corresponder con el punto que pasa por el centro C (0, 0) (y2 ─ y1)2 representa al punto 2, y ese punto 2 (P2) lo haremos corresponder con el punto que pasa por P (3, 4). Es muy importante conocer o designar este orden ya que
  • 10. Establecido este orden o equivalencia, podemos sustituir los valores en la fórmula anterior para conocer la distancia (d) entre los dos puntos que nos interesan, la cual será nuestro radio: El 5 nos indica la distancia entre los dos puntos, el centro de la circunferencia y uno de sus puntos, lo cual corresponde al radio. Recapitulemos: Para expresar u obtener la ecuación de una circunferencia cuyo centro está en el origen, necesitamos conocer el centro, ya sabemos que es C (0, 0), y conocer el radio,que ahora sabemos que es 5. ¿Se acuerdan cuál es la fórnula? Esta: x2 + y2 = r2 Reemplazamos en ella el valor del radio x2 + y2 = 52 y nos queda x2 + y2 = 25 como la ecuación reducida de la circunferencia graficada arriba (en la cual nos indicaron un centro y un punto en ella). Ojo: Si nos dieran la ecuación x2 + y2 = 25 y nos preguntaran qué representa, razonamos en sentido inverso y diremos que representa una circunferencia, con centro (C) en el origen de las coordenadas (0, 0) y cuyo radio es 5 (52 = 25 y la raíz cuadrada de 25 es 5). Circunferencia con centro (C) en el origen de las coordenadas; expresado como C (0, 0) Caso 3 Tenemos la gráfica de una circunferencia cuyo centro (C) es el origen de las coordenadas (0,0), y nos dan dos puntos opuestos en la circunferencia, , A (-3, -2) y B (3, 2), los cuales unidos corresponden al diámetro de la misma.
  • 11. Recordemos de nuevo: Cuando el centro (C) de la circunferencia sea (0,0) se usará la ecuación x2 + y2 = r2 para expresar dicha circunferencia en forma analítica. Esta ecuación se conoce como ecuación reducida. Para la gráfica de nuestro ejemplo, deberíamos colocar el valor de r en la fórmula x2 + y2 = r2 , pero resulta que no lo conocemos. Pero tenemos identificados dos puntos opuestos en la circunferencia, los cuales unidos entre sí(la línea punteada entre A y B en la gráfica) representan al diámetro de la misma.Entonces, a partir de esos puntos,A (-3, -2) y B (3, 2), podemos calcular el valor del trazo que los une (trazo AB con línea punteada en la figura),el cual corresponde al diámetro de la circunferencia dada. ¿Cómo calculamos el valor de la distancia (d) entre A y B (el diámetro de la circunferencia)? Para calcular la distancia (d) entre dos puntos (encontrar su valor) contamos con la siguiente fórmula: No olvidemos que esta fórmula es para encontrar o conocer la distancia entre dos puntos; por lo mismo, debemos saber que en ella (x2 ─ x1)2 representa al punto 1, y ese punto 1 (P1) lo haremos corresponder con el punto A (-3, -2) (y2 ─ y1)2 representa al punto 2, y ese punto 2 (P2) lo haremos corresponder con el punto B (3, 2). Es muy importante conocer o designar este orden ya que Establecido este orden o equivalencia, podemos sustituir los valores en la fórmula anterior para conocer la distancia (d) entre los dos puntos que nos interesan, la cual será nuestro diámetro
  • 12. El 7,2 (valor aproximado) nos indica la distancia entre los dos puntos,A y B, la cual corresponde al diámetro de la circunferencia. Para conocer el valor del radio, simplemente dividimos por 2 dicho diámetro, y nos queda r = 3,6 ≈ Conocido el radio lo reemplazaremos en la ecuación de la circunferencia cuyo centro está en el origen de las coordenadas, que es: x2 + y2 = r2 la cual nos queda x2 + y2 = (3,6)2 . x2 + y2 = 13 ≈ como la ecuación reducida de la circunferencia graficada arriba (en la cual nos indicaron un centro y dos puntos opuestos en ella). Esta ecuación también podía obtenerse haciendo el cálculo para la distancia entre uno de los puntos dados y el centro, como se vio en el caso 2 Ojo: Si nos dieran la ecuación x2 + y2 = 13 y nos preguntaran qué representa, razonamos en sentido inverso y diremos que representa una circunferencia, con centro (C) en el origen de las coordenadas (0, 0) y cuyo radio es 3,6 (3,6)2 = 13 y la raíz cuadrada de 13 es 3,6 ≈). Circunferencia con centro (C) en el origen de las coordenadas; expresado como C (0, 0) Caso 4 Tenemos la gráfica de una circunferencia con centro (C) en el origen de las coordenadas (0,0), no hay otro dato sobre coordenadas, pero se me indica que tiene un área de 10 u2 (diez unidades cuadráticas).
  • 13. Recordemos de nuevo: Cuando el centro (C) de la circunferencia sea (0,0) se usará la ecuación x2 + y2 = r2 para expresar dicha circunferencia en forma analítica. Esta ecuación se conoce como ecuación ordinaria. Para la gráfica de nuestro ejemplo, deberíamos colocar el valor de r en la fórmula x2 + y2 = r2 , pero resulta que no lo conocemos. Pero conocemos el área de la circunferencia (10 u2 ) y a partir de este dato podemos calcular el radio de la misma. ¿Cómo calculamos el radio de la circunferencia si conocemos su área? Repasemos el cálculo del área (A) de una circunferencia: A = π • r2 A = 10 (dato conocido), entonces 10 = π • r2 y , este dato podría ser suficiente para reemplazar el valor de r2 en la fórmula,pero podemos avanzar un poco y hacemos Volvamos a nuestra fórmula inicial x2 + y2 = r2 Como ahora conocemos el radio: x2 + y2 = (1,78)2 x2 + y2 = 3,18 ≈ También pudimos hacer
  • 14. Ojo: Si nos dieran la ecuación x2 + y2 = 3,18 ≈ y nos preguntaran qué representa, razonamos en sentido inverso y diremos que representa una circunferencia, con centro (C) en el origen de las coordenadas (0, 0) y cuyo radio es 1,78 (1,78)2 = 3,18 y la raíz cuadrada de 3,18 es 1,78 ≈). Obtener la Ecuación de la circunferencia con centro (C) fuera del origen de las coordenadas Tomemos,por ejemplo, la circunferencia cuyo centro está dado por C (2, ─3), con radio r = 5 que se muestra en la figura Para obtener la ecuación general de la circunferencia que estamos viendo podemos usar dos métodos: Método por desarrollo y Método con las fórmulas conocidas. Método por desarrollo Como conocemos el centro,C (2, ─3) y el radio (r = 5) entonces la fórmula ordinaria de la circunferencia será (x ─ a)2 + (y ─ b)2 = r2 donde a y b son las coordenadas del centro C (a, b), que en nuestro caso corresponde a C (2, ─3) entonces, nuestra ecuación ordinaria quedará como (x ─ 2)2 + (y ─ ─ 3)2 = 52 (x ─ 2)2 + (y + 3)2 = 52 (x ─ 2)2 + (y + 3)2 = 25 Nota: algunos usan otras letras,como (x ─ h)2 + (y ─ k)2 Sigamos.
  • 15. Tenemos nuestra ecuación ordinaria (x ─ 2)2 + (y + 3)2 = 25 y desarrollamos sus dos binomios: (x ─ 2) (x ─ 2) + (y + 3) (y + 3) = 25 (x2 ─ 2x ─ 2x + 4) + (y2 + 3y + 3y + 9) = 25 (x2 ─ 4x + 4) + (y2 + 6y + 9) = 25 Recordemos que la estructura de la ecuación general de la circunferencia es x2 + y2 + Dx + Ey + F = 0 Entonces, ordenamos nuestra ecuación anterior yla acomodamos de acuerdo con la fórmula general: x2 + y2 ─ 4x + 6y + 4 + 9 ─ 25 = 0 x2 + y2 ─ 4x + 6y ─ 12 = 0 que es la ecuación general de la circunferencia con centro en las coordenadas 2, ─3 y cuyo radio es 5. Método con las fórmulas conocidas Como conocemos el centro,C (2, ─3) y el radio (r = 5) entonces aplicamos las fórmulas Si entonces D = ─ 2a Si entonces E = ─ 2b Si entonces F = a2 + b2 ─ r2 Recordemos que C (2, ─3) corresponde a C (a, b) Entonces, hacemos: F = 4 + 9 ─ 25 = ─12 Si recordamos que la estructura de la ecuación general de la circunferencia es x2 + y2 + Dx + Ey + F = 0 y en ella sustituimos los valores ahora conocidos de D,E y F, tendremos x2 + y2 + ─4x + 6y + ─12 = 0
  • 16. x2 + y2 + ─4x + 6y ─12 = 0 obtenemos la misma ecuación general de la circunferencia que logramos mediante el método del desarrollo. Ahora, hagamos algunos ejercicios Ejercicio 1 Encuentre la ecuación general de la circunferencia cuyo centro está en las coordenadas y que tiene un radio igual a . Resolución por desarrollo En este caso podemos usar las fracciones o convertirlas a decimales:. Como el centro no está en el origen vamos a usar la fórmula ordinaria para llegar a la desarrollada: Para hacerlo, partamos de aquí: (x ─ a)2 + (y ─ b)2 = r2 Nota: Debemos recordar que x e y corresponden a las coordenadas de cualquier punto en la circunferencia, P (x, y), distante un radio desde el centro. Volvamos a la fórmula: Reemplacemos los valores en las coordenadas del centro,C (a, b):
  • 17. y aquí tenemos la ecuación ordinaria (formada por dos cuadrados de binomio) la cual ahora desarrollaremos para llegar a la ecuación general: Recordemos el cuadrado del binomio: a2 + 2ab + b2 Primer término al cuadrado (x)2 , más el doble del producto del primero por el segundo término 2(x)(0,5), más el cuadrado del segundo término (0,5)2 Pongamos los valores de nuestros binomios al cuadrado: (x)2 + 2(x)(0,5) + (0,5)2 + (y)2 + 2(y)(─1,25) + (─1,25)2 = 3 x2 + x + 0,25 + y2 ─2,50y + 1,56 = 3 ahora acomodamos los términos e igualamos a cero,para obtener la ecuación general: x2 + y2 + x ─ 2,50y + 0,25 + 1,56 ─ 3 = 0 x2 + y2 + x ─ 2,50y ─ 1,19 = 0 Resolución por el sistema de fórmulas conocidas Tenemos: Centro de la circunferencia (coordenadas) Radio r = Y las fórmulas D = ─2a E = ─2b F = a2 + b2 ─ r2 Recuerde que la ecuación general de la circunferencia tiene esta estructura: x2 + y2 + Dx + Ey + F = 0 Por lo que solo debemos calcular D,E y F
  • 18. Ahora que ya conocemos D, E y F los acomodamos en la fórmula general y tendremos: x2 + y2 + x + ─2,50y + ─1,19 = 0 x2 + y2 + x ─ 2,50y ─ 1,19 = 0 fórmula general de la circunferencia dibujada arriba. Importante Los dos métodos utilizados aquípara encontrar la ecuación de la circunferencia nos indican que si nos dan las coordenadas del centro de una circunferencia distintas de cero y el radio de la misma conviene usar el método de las fórmulas. No obstante, si alguien quiere saber exactamente cómo se procede, puede usar el sistema del desarrollo. Ejercicio 2 Hallar la ecuación general de la circunferencia con centro en C (1, 3) y radio r = 4. Resolución Sabemos que debemos obtener un ecuación de la forma x2 + y2 + Dx + Ey + F = 0 por lo que necesitamos saber cuánto valen D, E y F
  • 19. Para ello,recordamos que D = ─2a E = ─2b F = a2 + b2 ─ r2 Sustituyendo en D y E los valores que nos entregan las coordenadas del centro C (1, 3), donde a = 1 b = 3 tendremos que D = ─2(1) = ─2 E = ─2(3) = ─6 Y ahora sustituimos en F = a2 + b2 ─ r2 F = (1)2 + (3)2 ─ (4)2 F = 1 + 9 ─ 16 F = ─6 Como ya tenemos los valores de D = ─2 E = ─6 F = ─6 Los usamos para sustituir en la ecuación x2 + y2 + Dx + Ey + F = 0 para quedar y llegar finalmente a x2 + y2 ─ 2x ─ 6y ─ 6 = 0 como la fórmula general de la circunferencia dibujada arriba. Ejercicio 3 Hallar la ecuación general de la circunferencia que pasa por el punto P (─3, 2) y cuyo centro es el punto C (1, 5)
  • 20. Resolución Debemos calcular el radio (ya que no lo conocemos), pero como tenemos las coordenadas de un punto y del centro podemos calcularlo así: El radio es la distancia de C a P, y como su fórmula para conocer dicha distancia es Hacemos Ahora tenemos ubicado el centro C (1, 5) y el radio r = 5 y acudimos a la fórmula ordinaria de la circunferencia (x ─ a)2 + (y ─ b)2 = r2 Desarrollamos los cuadrados de los binomios (x2 + ─x + ─x + 1) + (y2 + ─5y + ─5y + 25 = 25 x2 ─ 2x + 1 + y2 ─ 10y + 25 = 25 x2 + y2 ─ 2x ─ 10y + 1 + 25 ─ 25 = 0 x2 + y2 ─ 2x ─ 10y + 1 = 0 Nota importante: En este ejercicio conocemos las coordenadas de uno de los puntos de la circunferencia, P (─3,2) pero ese dato nos sirvió solo para calcular el radio.Conocido éste,la fórmula general que obtendremos ahora servirá
  • 21. para todos los puntos de la circunferencia equidistantes del centro,representados como P (x, y), por eso en la fórmula ordinaria de la circunferencia reemplazaremos solo los valores de a y de b como las coordenadas del centro C (1, 5) Ejercicio 4 Hallar la ecuación general de la circunferencia cuyo diámetro es el segmento entre los puntos A(2,3) y B(─4, ─9) Resolución Como el segmento AB es el diámetro, el centro estará en la mitad de este (radio),y hacemos Ahora calculamos el radio,que es la distancia desde C(─1, ─3) hasta el punto A(2, 3) Conocemos ahora las coordenadas del centro C(─1,─3) y el radio Aplicamos la fórmula ordinaria Desarrollamos los binomios (x2 + x + x + 1)+ (y2 +3y + 3y + 9) = 45 (xsup>2 +2x +1) + (y2 + 6y + 9) = 45
  • 22. x2 + y2 +2x +6y +1+ 9 ─45 = 0 x2 + y2 +2x +6y ─ 35 = 0 ecuación de la circunferencia graficada arriba. Como un ejercicio probatorio de la efectividad de la fórmula analítica x2 + y2 +2x +6y ─ 35 = 0 reemplacemos los valores de las coordenadas de los puntos Ay B en x e y Primero el A(2, 3) que sea x = 2, y = 3 22 + 32 + 2•2 + 6•3 ─ 35 = 0 4 + 9 + 4 + 18 ─ 35 = 0 Ahora el B(─4, ─9) que sea x = ─4, y = ─9 (─4)2 + (─9)2 + 2(─4) + 6(─9) ─ 35 = 0 16 + 81 ─ 8 ─ 54 ─ 35 = 0 Ejercicio 5 Hallar la ecuación de la circunferencia centrada en el punto (5, ─2) y de radio 3. Resolución Recordemos nuestra ecuación ordinaria de la circunferencia: (x ─ a)2 + (y ─ b)2 = r2 Conocemos a y b (5, ─2) y el radio (r = 3) Entonces reemplacemos (x ─ 5)2 + (y ─ ─2)2 = 32 (x ─ 5)2 + (y + 2)2 = 9 Desarrollemos lo binomios cuadrados: (x ─ 5) (x ─ 5) + (y + 2) (y + 2) = 9 (x2 ─ 10x + 25) + (y2 + 4y + 4) = 9 ordenamos e igualamos a cero x2 + y2 ─ 10x + 4y + 25 + 4 ─ 9 = 0
  • 23. x2 + y2 ─ 10x + 4y + 20 = 0 Ejercicio 6 Calcular la ecuación de la circunferencia de centro (1, 1) y que contiene al punto (–2, 3). Resolución: Primero debemos conocer el radio Entonces la ecuación ordinaria nos queda x2 ─ 2x + 1 + y2 ─ 2y +1 = 13 x2 + y2 ─ 2x ─ 2y + 1 + 1 ─ 13 = 0 x2 + y2 ─ 2x ─ 2y ─ 11 = 0 Dada la ecuación general de una circunferencia, obtener su centro y el radio Para entrar en materia,tenemos la siguiente ecuación general de una circunferencia: x2 + y2 − 3x + 4y − 1 = 0 a partir de ella podemos encontrar el centroy el radio de esa circunferencia. Para hacerlo, existen dos métodos: Primer método La ecuación general dada la vamos a convertir en dos binomios al cuadrado igual a r2 , que es la forma de la ecuación ordinaria, De nuevo conviene recordar que un binomio al cuadrado se escribe como (a + b)2 , que dasarrollado queda como (a + b) + (a + b) a2 + ab +ab + b2 a2 + 2ab + b2 Primer término al cuadrado (x)2 , más el doble del producto del primero por el segundo término 2(x)(0,5), más el cuadrado del segundo término (0,5)2
  • 24. Aquí debemos fijar nuestra atención en el término 2ab, que está precedido por el 2 y tiene ab (sin elevar al cuadrado), siendo a el primer término y b el segundo del binomio. Este término (b) será clave para poder completar los 3 términos que genera el binomio al cuadrado (a + b)2 = a2 + 2ab + b2 Volviendo a nuestra ecuación general, debemos saber que en ella la x corresponde al primer término −la a de (a + b)2 − y la ycorresponde al segundo −la b de (a + b)2 − Reiteramos nuestra ecuación general: x2 + y2 − 3x + 4y − 1 = 0 y vamos a separar sus términos para darle forma de dos binomios al cuadrado desarrollados: Deberíamos obtener algo como: , entendido como la suma de dos binomios al cuadrado, donde en cada binomio encontramos: el cuadrado del primer término (del binomio) (x2 en uno e y2 en el otro) el doble producto del primer término por el segundo (−3x en uno y +4y en el otro) el cuadrado del segundo término (del binomio) (+/− ¿?) en ambos cuadrados yque es ese tercer término que debemos deducir para cada cuadrado del binomio. Este tercer término, lo obtendremos del −3x para un binomio y del +4y para el otro. Respecto a −3x, sabemos que corresponde al segundo término del binomio desarrollado, generalizado como 2ab. Ahora, si tenemos vemos que la x (a) está al cuadrado en x2 (a2 ) y lineal en x (a), entonces el −3 corresponde a 2b(el segundo término lineal en 2ab). Y hacemos Ya conocemos b,entonces lo ponemos en nuestra fórmula Hacemos lo mismo para el segundo binomio: Si tenemos vemos que la y (a) está al cuadrado en y2 (a2 ) y lineal en y (a), entonces el +4 corresponde a 2b(el segundo término lineal en 2ab). Y hacemos
  • 25. Ahora completamos la fórmula (x2 − 3x + 2,25) + (y2 + 4y + 4) = 1 Ahora, como en el lado izquierdo de la ecuación agregamos +2,25 y +4, para mantenerla equilibrada debemos agregar lo mismo en el lado derecho: (x2 − 3x + 2,25) + (y2 + 4y + 4) = 1 + 2,25 + 4 (x2 − 3x + 2,25) + (y2 + 4y + 4) = 7,25 Y ahora tenemos dos trinomios, los cuales nos generarán dos binomios al cuadrado, de la forma: (x − 1,5)2 + (y + 2)2 = 7,25 Que es la ecuación ordinaria de la circunferencia,y de donde obtendremos las coordenadas del centro y el valor del radio. Recordemos la estructura de la ecuación ordinaria: (x − h)2 + (y − k)2 = rsup>2 Reemplazamos yqueda (x − − 1,5)2 + (y − + 2)2 = r2 (x + 1,5)2 + (y − 2)2 = 7,25 Ecuación que nos dice lo siguiente: La x y la y representan a las coordenadas de cualquier punto sobre la circunferencia equidistante del centro. Los valores 1,5 y −2 representan las coordenadas del centro de la circunferencia anterior El valor 7,25 representa a r2 , por lo tanto Entonces, la ecuación general x2 + y2 − 3x + 4y − 1 = 0 corresponde a una circunferencia con centro C(1,5 , −2) cuyo radio es ≈ 2,69 como la que vemos en la figura. Ecuación general de la circunferencia de la izquierda: x2 + y2 − 3x + 4y − 1 = 0
  • 26. Segundo método Lo llamaremos métodode fórmulas conocidas. Para este método utilizaremos solo estas fórmulas (que debemos recordar o conocer): Primero,recordemos la estructura de la ecuación ordinaria: (x − h)2 + (y − k)2 = r2 Recordemos que en esta ecuación la x y la y representan las coordenadas de cualquier punto de la circunferencia que equidiste un radio desde el centro,y que h y k representan las coordenadas del punto central de la circunferencia (también se utiliza a y b para identificarlas) Es a partir de esta ecuación que se obtienen las fórmulas que usaremos: También tenemos que recordar que la estructura de la ecuación general de la circunferencia la podemos expresar como x2 + y2 + Dx + Ey + F = 0 Y si la comparamos con la ecuación dada tendremos donde vemos que D vale −3 E vale +4 F vale −1 y con estos datos y con las fórmulas de arriba vamos a conocer las coordenadas del centro: Nuestra circunferencia tiene centro en las coordenadas (1,5, −2)
  • 27. Nuestra circunferencia tiene un radio ≈ 2,69 y sus coordenadas del centro C(1,5, −2) Ejercicio 1 Calcular el centro y el radio de la circunferencia x2 + y2 + 2x − 4y − 4 = 0 Recordemos la estructura de la ecuación general: x2 + y2 − 2ax − 2by + a2 + b2 − r2 = 0 Que sintetizada queda x2 + y2 + Dx + Ey + F = 0 Desarrollemos la ecuación x2 + y2 + 2x − 4y − 4 = 0 x2 + y2 + 2x − 4y = 4 Busquemos los dos binomios al cuadrado El tercer término que falta en el primer binomio se obtiene de Y el tercer término que falta en el segundo binomio se obtiene de Asi formamos:
  • 28. Vemos que al lado izquierdo agregamos +1 y +4 (los terceros términos de los binomios) por ello agregamos los mismos valores a la derecha de la ecuación, para equilibrarla. Ahora partir de estos dos trinomios podemos definir dos binomios al cuadrado: (x + 1)2 + (y − 2)2 = 9 que, como vemos,se asemeja a nuestra ecuación ordinaria de la forma (x − h)2 + (y − k)2 = r2 Si comparamos,resulta que h = +1 k = −2 Reemplazamos ytenemos (x − +1)2 + (y − −2)2 = r2 (x − 1)2 + (y + 2)2 = 9 (x − 1)2 + (y + 2)2 = 3 Respuesta: Las coordenadas del centro de la circunferencia dada son (─1,2) y su radio es igual a 3. Usemos el método de las fórmulas. Conocemos la estructura de la ecuación ordinaria: (x − h)2 + (y − k)2 = r2 Conocemos las fórmulas
  • 29. Estructura de la ecuación general de la circunferencia: x2 + y2 + Dx + Ey + F = 0 La comparamos con la ecuación dada,y tendremos donde vemos que D vale +2 E vale −4 F vale −4 Reemplacemos en las fórmulas: Nuestra circunferencia tiene centro en las coordenadas (−1, 2) Y su radio es Nuestra circunferencia tiene un radio igual a 3