SlideShare una empresa de Scribd logo
1 de 7
Cromatina<br />Diferentes niveles de condensación de ADN. (1) Hebra simple de ADN. (2) Hebra de cromatina (ADN con histonas, quot;
cuenta de collarquot;
). (3) Cromatina durante la interfase con centrómero. (4) Cromatina condensada durante la profase (Dos copias de ADN están presentes). (5) Cromosoma durante la metafase.<br />La cromatina es el conjunto de ADN, histonas y proteínas no histónicas que se encuentra en el núcleo de las células eucariotas y que constituye el cromosoma eucariótico.<br />Las unidades básicas de la cromatina son los nucleosomas. Éstos se encuentran formados por aproximadamente 146 pares de bases de longitud (el número depende del organismo), asociados a un complejo específico de 8 histonas nucleosómicas (octámero de histonas). Cada partícula tiene una forma de disco, con un diámetro de 11 nm y contiene dos copias de cada una de las 4 histonas H3, H4, H2A y H2B. Este octámero forma un núcleo proteico alrededor del que se enrolla la hélice de ADN (da aproximadamente 1,8 vueltas). Entre cada una de las asociaciones de ARN e histonas existe un ADN libre llamado ADN quot;
espaciadorquot;
, de longitud variable entre 0 y 80 pares de nucleótidos que garantiza flexibilidad a la fibra de cromatina. Este tipo de organización, permite un primer paso de compactación del material genético, y da lugar a una estructura parecida a un quot;
collar de cuentasquot;
.<br />Posteriormente, un segundo nivel de organización de orden superior lo constituye la quot;
fibra de 30nmquot;
 compuestas por grupos de nucleosomas empaquetados uno sobre otros adoptando disposiciones regulares gracias a la acción de la histona H1.<br />Finalmente continua el incremento del empaquetamiento del ADN hasta obtener los cromosomas que observamos en la metafase, el cual es el máximo nivel de condensación del ADN.<br />Contenido[ocultar]1 Tipos de cromatina2 Rol de la cromatina en la expresión génica3 Referencias4 Véase también5 Enlaces externos<br />[editar] Tipos de cromatina<br />La cromatina se puede encontrar en 3 formas<br />Heterocromatina, es una forma inactiva condensada localizada sobre todo en la periferia del núcleo, que se tiñe fuertemente con las coloraciones. En 1928 Emil HEITZ, basándose en observaciones histológicas, definió la heterocromatina (HC) como los segmentos cromosómicos que aparecían muy condensados y oscuros en el núcleo en interfase. De hecho, la cromatina está formada de una maraña de fibras cuyo diámetro no solo varía durante el ciclo celular sino que también depende de la región del cromosoma observada.<br />La eucromatina activa está formada por una fibra de un diámetro que corresponde al del nucleosoma, que es un segmento de ADN bicatenario enrollado alrededor de homodímeros de las histonas H2A, H2B, H3, y H4. En la eucromatina inactiva, esta fibra se enrolla sobre sí misma gracias a las histonas H1 para formar el solenoide. La interacción con otras proteínas no histonas (topoisomerasa II, proteínas de andamiaje, lamininas, …) provoca mayores grados de organización. En cuanto a la heterocromatina, la fibra que la constituye se encuentra más condensada y a menudo aparece formada por agregados. Su formación require numerosas proteínas adicionales, que incluyen las proteínas HP1 (Heterochromatin Protein 1 o proteína de la heterocromatina 1). La heterocromatina puede ser de dos tipos diferentes,la riqueza en ADN satélite determina tanto la naturaleza permanente o reversible de la heterocromatina, como su polimorfismo y propiedades de tinción. :<br />la constitutiva, idéntica para todas las células del organismo y que carece de información genética, incluye a los telómeros y centrómeros del cromosoma que no expresan su ADN. La heterocromatina constitutiva contiene un tipo particular de ADN denominado ADN satélite, formado por gran número de secuencias cortas repetidas en tándem. Los tipos principales de este ADN son el ADN satélite alfa, y los ADN satélite I, II y III. Estas secuencias de ADN satélite son capaces de plegarse sobre sí mismas y pueden tener un papel importante en la formación de la estructura altamente compacta de la heterocromatina constitutiva. La heterocromatina constitutiva es estable y conserva sus propiedades heterocromáticas durante todas las etapas del desarrollo y en todos los tejidos. La heterocromatina constitutiva es altamente polimórfica, probablemente debido a la inestabilidad del ADN satélite. Este polimorfismos puede afectar, no solamente a su tamaño sino también a la localización de la heterocromatina, y aparentemente no tiene un efecto fenotípico. La heterocromatina constitutiva se encuentra fuertemente teñida en la técnica de bandas C, lo que es el resultado de una renaturalización muy rápida del ADN satélite tras la desnaturalización.<br />la facultativa, diferente en los distintos tipos celulares, contiene información sobre todos aquellos genes que no se expresan o que pueden expresarse en algún momento. Incluye al ADN satélite y al corpúsculo de Barr. La heterocromatina facultativa se caracteriza por la presencia de secuencias repetidas tipo LINE. Estas secuencias, dispersas a lo largo del genoma, podrían promover la propagación de una estructura de cromatina condensada. La heterocromatina facultativa es reversible, su estado heterocromático depende de la etapa del desarrollo y del tipo celular. Dos ejemplos de este tipo de heterocromatina son el cromosoma X inactivo (cuerpo de Barr) de las células somáticas femeninas y la vesícula sexual inactiva en la etapa del paquiteno de las meiosis masculinas. La heterocromatina facultativa no es particularmente rica en ADN satélite, y por ello, no es polimórfica. La heterocromatina facultativa no se encuentra nunca teñida en la técnica de bandas C.<br />Se ha visto que en la formación de heterocromatina frecuentemente participa el fenómeno de ARN interferente. Por ejemplo, en Schizosaccharomyces pombe, la heterocromatina se forma en el centrómero, telómeros y en el loci mating-type.[1] La formación de la heterocromatina en el centrómero depende del mecanismo de ARN interferente ( HYPERLINK quot;
http://es.wikipedia.org/wiki/ARNiquot;
  quot;
ARNiquot;
 ARNi). ARN doble cadena complementarios son producidos de secuencias repetidas localizadas en el centrómero, que inducen ARNi y seguidamente metilación de la lisina 9 histona 3 y enlazamiento de Swi6 (proteína estructural de la heterocromatina, la cual es homóloga a HP1 en mamíferos)[2] .<br />Propiedades de la heterocromatina<br />A pesar de las diferencias descritas anteriormente, la heterocromatina constitutiva y la heterocromatina facultativa tienen propiedades muy similares.<br />1. La heterocromatina está condensada Este es, de hecho, lo que define la heterocromatina, y por ello es aplicable tanto a la heterocromatina constitutiva como a la facultativa. Esta elevada condensación la hace fuertemente cromofílica e inaccesible a la DNAsa I y, en general, a otras enzimas de restricción.<br />2. El ADN de la heterocromatina se replica más tarde La incorporación de varios análogos de nucleótidos muestra que el ADN de ambos tipos de heterocromatina se replica tarde. Esto es el resultado, por un lado, de su elevado grado de condensación, que evita que la maquinaria replicativa accede fácilmente al ADN y, por otro lado, de su localización en un dominio nuclear periférico pobre en elementos activos.<br />3.El ADN de la heterocromatina se encuentra metilado •El ADN de la heterocromatina constitutiva se encuentra altamente metilado en las citosinas. Por ello, un anticuerpo anti-5-metil citosina marca fuertemente todas las regiones de este tipo de heterocromatina. •Por lo que se refiere a la heterocromatina facultativa, la metilación de su ADN es menor, aunque los análisis mediante enzimas de restricción sensibles a metilación revelan una importante metilación de los islotes CpG, específicamente localizados en las regiones que controlan la expresión de los genes.<br />4. En la heterocromatina las histonas se encuentran hipoacetiladas Las histonas puede sufrir una serie de modificaciones post-traduccionales en sus extremos N-terminales que pueden afectar a la propia actividad genética de la cromatina. •La hipoacetilación de las colas N-terminales de las histonas, principalmente en las lisinas, están asociadas con la cromatina inactiva. Por el contrario, las histonas hiperacetiladas son características de la cromatina activa. •La acetilación/desacetilación de histonas es un mecanismos absolutamente esencial para el control de la expresión génica. Existen numerosos factores de transcripción que presentan una actividad acetiltransferasa de histonas (HAT, Histone Acetyl Transferase) o desacetilasa de histonas (HDAc o Histone De-Acetylase).<br />5. Las histonas de la heterocromatina se encuentran metiladas en la lisina 9 La metilación de la lisina 9 de la histona H3 (H3-K9) parece que está muy relacionada con el proceso de heterocromatinización del genoma, tanto en la formación de heterocromatina constitutiva como facultativa.<br />6. La heterocromatina es transcripcionalmente inactiva •A diferencia de lo que ocurre en Drosophila, la heterocromatina constitutiva humana no contiene genes y la incorporación de uridina tritiada en los cultivos celulares no producen ningún tipo de marcaje a este nivel. •La heterocromatina facultativa es relativamente pobre en genes, y éstos generalmente no se transcriben en el estado de heterocromatina.<br />7. La heterocromatina no participa en la recombinación genética •De modo general se acepta que la heterocromatina constitutiva no participa en la recombinación genética. La no existencia de un emparejamiento preliminar de las regiones heterocromatínicas homólogas se podría deber al polimorfismo característico de estas regiones que lo dificultarían, aunque no lo harían imposible. La heterocromatina constitutiva también actúa reprimiendo la recombinación en la regiones de eucromatina adyacentes.•Por lo que respecta a la heterocromatina facultativa, tampoco participa en la recombinación meiótica cuando se encuentra en su forma inactiva.<br />Funciones de la heterocromatina<br />Durante mucho tiempo el papel concreto de la heterocromatina ha sido un misterio, ya que su polimorfismo no parecía tener ningún efecto funcional o fenotípico.<br />1. Papel de la heterocromatina en la organización de los dominios nucleares •La heterocromatina y la eucromatina ocupan dominios nucleares distintos. La heterocromatina se localiza generalmente en la periferia del núcleo anclada a la membrana nuclear. Por el contrario, la cromatina activa se localiza en una posición más central. •La localización preferencial de la heterocromatina contra la membrana nuclear puede deberse a la interacción de la proteína HP1 con el receptor de la lámina B, componente de la membrana interna del núcleo. •La localización periférica de la heterocromatina concentra los elementos activos en la porción central del núcleo, permitiendo que eucromatina activa se replique y transcriba con una eficiencia máxima.<br />2. Papel de la heterocromatina en la función del centrómero En la mayor parte de eucariotas, los centrómeros se encuentran rodeados de una considerable masa de heterocromatina. Se ha sugerido que la heterocromatina centromérica sería necesaria para la cohesión de las cromátidas hermanas y que permitiría la disyunción normal de los cromosomas mitóticos.<br />•En la levadura Schizosaccharomyces pombe, el homólogo Swi6 de la proteína HP1 es absolutamente esencial para la cohesión eficiente de las cromátidas hermanas durante la división celular. •Los experimentos en los cuales se ha realizado la deleción del ADN satellite muestran que una gran región de repeticiones de este tipo de ADN es indispensable para el funcionamiento correcto del centrómero. Se supone que la heterocromatina centromérica podría, de facto, crear un compartimento mediante el incremento de la concentración local de la variante centromérica de las histonas, CENP-A, y mediante la promoción de la incorporación de la CENP-A en lugar de la histona H3 durante la replicación.<br />3. Papel de la heterocromatina en la represión génica (regulación epigenética) La expresión génica puede estar controlada a dos niveles:<br />•Primero, a nivel local o control transcripcional, gracias a la formación de complejos locales de transcripción. Este nivel involucra secuencias de ADN relativamente pequeñas unidas a genes. •A nivel más global, en cuyo caso se dice que hay un control de la transcriptabilidad. Este control involucra a secuencias más largas que representan un gran dominio de cromatina, que puede estar en estado activo o inactivo. En este caso es la heterocromatina la que parece estar involucrada. Los genes que generalmente se encuentran en la eucromatina pueden, por tanto, ser silenciados cuando se encuentran cercanos a un dominio de heterocromatina.<br />Mecanismo de inactivación en cis : Los reordenamientos cromosómicos pueden provocar que una región eucromática se yuxtaponga a una región heterocromática. En el momento en el que el reordenamiento elimina ciertas barreras que protegen la eucromatina la estructura heterocromática es capaz de propagarse en cis a la eucromatina adyacente, inactivando los genes que se encuentran en ella. Este es el mecanismo observado en la variegación por efecto de posición (PEV) en Drosophila y en la inactivación de ciertos transgenes en ratón.<br />Mecanismo de inactivación en trans: Durante la diferenciación celular, ciertos genes activos pueden transponerse a un dominio nuclear heterocromático haciendo que se inactiven. Este mecanismo es el que se ha propuesto como explicación para la co-localización en los núcleos de linfocitos de la proteína IKAROS con la heterocromatina centromérica y de los genes cuya expresión controla.<br />Eucromatina, está diseminada por el resto del núcleo (menor condensación), se tiñe débilmente con la coloraciones (su mayor tinción ocurre en la mitosis y no es visible con el microscopio de luz). Representa la forma activa de la cromatina en la que se está transcribiendo el material genético de las moléculas de ADN a moléculas de ARNm, por lo que es aquí donde se encuentran la mayoría de los genes activos.<br />[editar] Rol de la cromatina en la expresión génica<br />La cromatina juega un rol regulatorio fundamental en la expresión génica. Los distintos estados de compactación pueden asociarse (aunque no unívocamente) al grado de transcripción que exhiben los genes que se encuentran en esas zonas. La cromatina es, en principio, fuertemente represiva para la transcripción, ya que la asociación del ADN con las distintas proteínas dificulta la procesión de las distintas ARN polimerasas. Por lo tanto, existe una variada cantidad de máquinas remodeladoras de la cromatina y modificadoras de histonas.<br />Existe actualmente lo que se conoce como quot;
código de histo squot;
. Las distintas histonas pueden sufrir modificaciones post-traduccionales, como ser la metilación, acetilación, fosforilación, generalmente dada en residuos lisina o arginina. La acetilación está asociada con activación de la trascripción, ya que al acetilarse una lisina, disminuye la carga positiva global de la histona por lo cual tiene una menor afinidad por el ADN (que está cargado negativamente). En consecuencia, el ADN se encuentra unido menos fuertemente lo que permite el acceso de la maquinaria transcripcional. Por el contrario, la metilación está asociada con la represión transcripcional y una unión ADN-histona más fuerte (si bien no siempre esto se cumple). Por ejemplo, en la levadura S. pombe, la metilación en el residuo de lisina 9 de la histona 3 está asociado con represión de la transcripción en la heterocromatina, mientras que la metilación en el residuo de lisina 4 promueve la expresión de genes[2] .<br />Las enzimas que llevan a cabo las funciones de modificaciones de histonas son las acetilasas y desacetilasas de histonas, y las metilasas y desmetilasas de histonas, que forman distintas familias cuyos integrantes se encargan de modificar un residuo en particular de la larga cola de las histonas.<br />Además de las modificaciones de las histonas, existen también maquinarias remodeladoras de la cromatina, como por ejemplo SAGA, que se encargan de reposicionar nucleosomas, ya sea desplazándolos, rotándolos, o incluso desensamblándolos parcialmente, retirando algunas de las histonas constituyentes del nucleosoma y luego volviéndolos a colocar. En general las maquinarias remodeladoras de la cromatina son esenciales para el proceso de transcripción en eucariotas, ya que permiten el acceso y procesividad de las polimerasas.<br />Otra forma de marcación de la cromatina como quot;
inactivaquot;
 puede darse a nivel de la metilación del ADN, en citosinas que pertenezcan a dinucleótidos CpG. En general la metilación del ADN y de la cromatina son procesos sinérgicos, ya que, por ejemplo, al metilarse el ADN, existen enzimas metiladoras de histonas que pueden reconocer citosinas metiladas, y metilan histonas próximas. Del mismo modo, encimas que metilan el ADN pueden reconocer histonas metiladas, y así seguir con la metilación a nivel de ADN.<br />Todas estas modificaciones forman parte de la familia de las modificaciones epigenéticas<br />
Cromatina
Cromatina
Cromatina
Cromatina
Cromatina
Cromatina

Más contenido relacionado

La actualidad más candente (20)

Cromatina y cromatina y
Cromatina y cromatina yCromatina y cromatina y
Cromatina y cromatina y
 
Genetica
GeneticaGenetica
Genetica
 
Division celular
Division celularDivision celular
Division celular
 
El nucleo
El nucleoEl nucleo
El nucleo
 
Proceso de traducción del adn
Proceso de traducción del adnProceso de traducción del adn
Proceso de traducción del adn
 
Cromatina
CromatinaCromatina
Cromatina
 
Cariotipo
CariotipoCariotipo
Cariotipo
 
Cromatina
CromatinaCromatina
Cromatina
 
Codigo Genetico
Codigo GeneticoCodigo Genetico
Codigo Genetico
 
Nucleo celular
Nucleo celularNucleo celular
Nucleo celular
 
Cromosomas
CromosomasCromosomas
Cromosomas
 
Corpúsculo de barr
Corpúsculo de barrCorpúsculo de barr
Corpúsculo de barr
 
Transcripcion del ADN
Transcripcion del ADNTranscripcion del ADN
Transcripcion del ADN
 
T 12 replicación del dna, caracteristicas. mecanismo.
T 12 replicación del dna, caracteristicas. mecanismo.T 12 replicación del dna, caracteristicas. mecanismo.
T 12 replicación del dna, caracteristicas. mecanismo.
 
Estructura de-las-proteinas
Estructura de-las-proteinasEstructura de-las-proteinas
Estructura de-las-proteinas
 
Diferencias transcripcion eucariotas procariotas
Diferencias transcripcion eucariotas procariotasDiferencias transcripcion eucariotas procariotas
Diferencias transcripcion eucariotas procariotas
 
Núcleo celular
Núcleo celularNúcleo celular
Núcleo celular
 
Genética molecular de eucariotas, procariotas y virus
Genética molecular de eucariotas, procariotas y virusGenética molecular de eucariotas, procariotas y virus
Genética molecular de eucariotas, procariotas y virus
 
Estructura Del ADN
Estructura Del ADNEstructura Del ADN
Estructura Del ADN
 
Meiosis diapositivas
Meiosis diapositivasMeiosis diapositivas
Meiosis diapositivas
 

Destacado

Destacado (20)

Caracteristicas generales de la cromatina
Caracteristicas generales de la cromatinaCaracteristicas generales de la cromatina
Caracteristicas generales de la cromatina
 
Cromatina
Cromatina Cromatina
Cromatina
 
Cadena caracteres
Cadena caracteresCadena caracteres
Cadena caracteres
 
El cigoto ¿es persona?
El cigoto ¿es persona?El cigoto ¿es persona?
El cigoto ¿es persona?
 
Estructura de la cromatina en la eucariota
Estructura de la cromatina en la eucariotaEstructura de la cromatina en la eucariota
Estructura de la cromatina en la eucariota
 
Celulas
CelulasCelulas
Celulas
 
Presentación de genetica medica
Presentación de genetica medicaPresentación de genetica medica
Presentación de genetica medica
 
Clase 6 Cromatina Y Cromosomas
Clase 6 Cromatina Y CromosomasClase 6 Cromatina Y Cromosomas
Clase 6 Cromatina Y Cromosomas
 
Interfase
InterfaseInterfase
Interfase
 
El nucleo celular y los cromosomas
El nucleo celular y los cromosomasEl nucleo celular y los cromosomas
El nucleo celular y los cromosomas
 
Nucleotidos
NucleotidosNucleotidos
Nucleotidos
 
Interfase mitosis
Interfase   mitosisInterfase   mitosis
Interfase mitosis
 
Enzimas
EnzimasEnzimas
Enzimas
 
ADN Y ARN
ADN Y ARNADN Y ARN
ADN Y ARN
 
Los Cromosomas
 Los Cromosomas  Los Cromosomas
Los Cromosomas
 
Acidos nucleicos: ADN y ARN
Acidos nucleicos: ADN y ARNAcidos nucleicos: ADN y ARN
Acidos nucleicos: ADN y ARN
 
Nucleótidos
NucleótidosNucleótidos
Nucleótidos
 
El NúCleo Celular
El NúCleo CelularEl NúCleo Celular
El NúCleo Celular
 
Nucleotidos Y Acidos Nucleicos
Nucleotidos Y Acidos NucleicosNucleotidos Y Acidos Nucleicos
Nucleotidos Y Acidos Nucleicos
 
El adn y el arn.
El adn y el arn.El adn y el arn.
El adn y el arn.
 

Similar a Cromatina

Plantilla de presentación propuesta de negocio moderna y elegante .pdf
Plantilla de presentación propuesta de negocio moderna y elegante .pdfPlantilla de presentación propuesta de negocio moderna y elegante .pdf
Plantilla de presentación propuesta de negocio moderna y elegante .pdfAleAS4
 
Clase 9 cromosomas_y_cariotipo
Clase 9 cromosomas_y_cariotipoClase 9 cromosomas_y_cariotipo
Clase 9 cromosomas_y_cariotipoNatalia Merlo
 
Alteraciones numéricas
Alteraciones numéricasAlteraciones numéricas
Alteraciones numéricasJuanjo Fonseca
 
Origen cromosómico y genético.pptx
Origen cromosómico y genético.pptxOrigen cromosómico y genético.pptx
Origen cromosómico y genético.pptxMartinMartinez888848
 
I. bases moleculares_de_la_herencia
I. bases moleculares_de_la_herenciaI. bases moleculares_de_la_herencia
I. bases moleculares_de_la_herenciaaniux1305
 
Niveles de Organización del Material Genético.pdf
Niveles de Organización del Material Genético.pdfNiveles de Organización del Material Genético.pdf
Niveles de Organización del Material Genético.pdfVanessa529862
 
bases-celular-y-molecular-de-la-herencia.pptx.pptx
bases-celular-y-molecular-de-la-herencia.pptx.pptxbases-celular-y-molecular-de-la-herencia.pptx.pptx
bases-celular-y-molecular-de-la-herencia.pptx.pptxChristianCarrasco28
 
Presentación de los cromosomas y el ciclo celular.ppt
Presentación de los cromosomas y el ciclo celular.pptPresentación de los cromosomas y el ciclo celular.ppt
Presentación de los cromosomas y el ciclo celular.pptivansantiana1
 
Biologia molecular adn parte 2
Biologia molecular adn parte 2Biologia molecular adn parte 2
Biologia molecular adn parte 2Angelica Delgado
 
Organización del ADN
Organización  del  ADNOrganización  del  ADN
Organización del ADNAndrea Soto
 
Organización del ADN
Organización  del  ADNOrganización  del  ADN
Organización del ADNAndrea Soto
 

Similar a Cromatina (20)

1. GENERALIDADES.pptx
1. GENERALIDADES.pptx1. GENERALIDADES.pptx
1. GENERALIDADES.pptx
 
Plantilla de presentación propuesta de negocio moderna y elegante .pdf
Plantilla de presentación propuesta de negocio moderna y elegante .pdfPlantilla de presentación propuesta de negocio moderna y elegante .pdf
Plantilla de presentación propuesta de negocio moderna y elegante .pdf
 
Cromosomas
CromosomasCromosomas
Cromosomas
 
Clase 9 cromosomas_y_cariotipo
Clase 9 cromosomas_y_cariotipoClase 9 cromosomas_y_cariotipo
Clase 9 cromosomas_y_cariotipo
 
Alteraciones numéricas
Alteraciones numéricasAlteraciones numéricas
Alteraciones numéricas
 
Origen cromosómico y genético.pptx
Origen cromosómico y genético.pptxOrigen cromosómico y genético.pptx
Origen cromosómico y genético.pptx
 
Tarea 2 la genetica
Tarea 2 la geneticaTarea 2 la genetica
Tarea 2 la genetica
 
I. bases moleculares_de_la_herencia
I. bases moleculares_de_la_herenciaI. bases moleculares_de_la_herencia
I. bases moleculares_de_la_herencia
 
Niveles de Organización del Material Genético.pdf
Niveles de Organización del Material Genético.pdfNiveles de Organización del Material Genético.pdf
Niveles de Organización del Material Genético.pdf
 
El cromosoma eucariótico
El cromosoma eucarióticoEl cromosoma eucariótico
El cromosoma eucariótico
 
Neurofisiología cap 1 2
Neurofisiología cap 1 2Neurofisiología cap 1 2
Neurofisiología cap 1 2
 
GENOMA HUMANO
GENOMA HUMANOGENOMA HUMANO
GENOMA HUMANO
 
bases-celular-y-molecular-de-la-herencia.pptx.pptx
bases-celular-y-molecular-de-la-herencia.pptx.pptxbases-celular-y-molecular-de-la-herencia.pptx.pptx
bases-celular-y-molecular-de-la-herencia.pptx.pptx
 
Presentación de los cromosomas y el ciclo celular.ppt
Presentación de los cromosomas y el ciclo celular.pptPresentación de los cromosomas y el ciclo celular.ppt
Presentación de los cromosomas y el ciclo celular.ppt
 
Biologia molecular adn parte 2
Biologia molecular adn parte 2Biologia molecular adn parte 2
Biologia molecular adn parte 2
 
Organización del ADN
Organización  del  ADNOrganización  del  ADN
Organización del ADN
 
Organización del ADN
Organización  del  ADNOrganización  del  ADN
Organización del ADN
 
TRABAJO DE BIOLOGÍA
TRABAJO DE BIOLOGÍATRABAJO DE BIOLOGÍA
TRABAJO DE BIOLOGÍA
 
Citogenética
CitogenéticaCitogenética
Citogenética
 
Capitulo 7
Capitulo 7Capitulo 7
Capitulo 7
 

Más de Mi rincón de Medicina

Robert mendelshon como criar un hijo sano...a pesar de su medico
Robert mendelshon   como criar un hijo sano...a pesar de su medicoRobert mendelshon   como criar un hijo sano...a pesar de su medico
Robert mendelshon como criar un hijo sano...a pesar de su medicoMi rincón de Medicina
 
Maria fernanda belmonte tu bebé crece
Maria fernanda belmonte   tu bebé creceMaria fernanda belmonte   tu bebé crece
Maria fernanda belmonte tu bebé creceMi rincón de Medicina
 
Carlos gonzalez porque los bebes se despiertan por las noches
Carlos gonzalez   porque los bebes se despiertan por las nochesCarlos gonzalez   porque los bebes se despiertan por las noches
Carlos gonzalez porque los bebes se despiertan por las nochesMi rincón de Medicina
 
Carlos beccar varela el arte de amamantar
Carlos beccar varela   el arte de amamantarCarlos beccar varela   el arte de amamantar
Carlos beccar varela el arte de amamantarMi rincón de Medicina
 
Alice miller por tu propio bien - raices de la violencia en la educacion de...
Alice miller   por tu propio bien - raices de la violencia en la educacion de...Alice miller   por tu propio bien - raices de la violencia en la educacion de...
Alice miller por tu propio bien - raices de la violencia en la educacion de...Mi rincón de Medicina
 
Docencia de pediatria de residencia medicina familiar
Docencia de pediatria de residencia medicina familiarDocencia de pediatria de residencia medicina familiar
Docencia de pediatria de residencia medicina familiarMi rincón de Medicina
 
Introduccion oncologia universidad (1)
Introduccion oncologia universidad (1)Introduccion oncologia universidad (1)
Introduccion oncologia universidad (1)Mi rincón de Medicina
 
Cáncer de pulmón de células no pequeñas
Cáncer de pulmón de células no pequeñasCáncer de pulmón de células no pequeñas
Cáncer de pulmón de células no pequeñasMi rincón de Medicina
 
Onco expo de cáncer de vías biliares
Onco expo de cáncer de vías biliaresOnco expo de cáncer de vías biliares
Onco expo de cáncer de vías biliaresMi rincón de Medicina
 

Más de Mi rincón de Medicina (20)

Efecto cardiovascular de la cocaína
Efecto cardiovascular de la cocaína Efecto cardiovascular de la cocaína
Efecto cardiovascular de la cocaína
 
Robert mendelshon como criar un hijo sano...a pesar de su medico
Robert mendelshon   como criar un hijo sano...a pesar de su medicoRobert mendelshon   como criar un hijo sano...a pesar de su medico
Robert mendelshon como criar un hijo sano...a pesar de su medico
 
Maria fernanda belmonte tu bebé crece
Maria fernanda belmonte   tu bebé creceMaria fernanda belmonte   tu bebé crece
Maria fernanda belmonte tu bebé crece
 
Daniel goleman inteligencia emocional
Daniel goleman   inteligencia emocionalDaniel goleman   inteligencia emocional
Daniel goleman inteligencia emocional
 
Carlos gonzalez porque los bebes se despiertan por las noches
Carlos gonzalez   porque los bebes se despiertan por las nochesCarlos gonzalez   porque los bebes se despiertan por las noches
Carlos gonzalez porque los bebes se despiertan por las noches
 
Carlos beccar varela el arte de amamantar
Carlos beccar varela   el arte de amamantarCarlos beccar varela   el arte de amamantar
Carlos beccar varela el arte de amamantar
 
Alice miller por tu propio bien - raices de la violencia en la educacion de...
Alice miller   por tu propio bien - raices de la violencia en la educacion de...Alice miller   por tu propio bien - raices de la violencia en la educacion de...
Alice miller por tu propio bien - raices de la violencia en la educacion de...
 
Material de sutura
Material de suturaMaterial de sutura
Material de sutura
 
Traumatismo de cerrado abdomen
Traumatismo de cerrado abdomenTraumatismo de cerrado abdomen
Traumatismo de cerrado abdomen
 
Trauma abdomen-12
Trauma abdomen-12Trauma abdomen-12
Trauma abdomen-12
 
Protocolo de pediatria hrusvp
Protocolo de pediatria hrusvp Protocolo de pediatria hrusvp
Protocolo de pediatria hrusvp
 
Docencia de pediatria de residencia medicina familiar
Docencia de pediatria de residencia medicina familiarDocencia de pediatria de residencia medicina familiar
Docencia de pediatria de residencia medicina familiar
 
Aspectos preventivos del cancer
Aspectos preventivos del cancerAspectos preventivos del cancer
Aspectos preventivos del cancer
 
Tratamiento oncologico cirugia
Tratamiento oncologico cirugiaTratamiento oncologico cirugia
Tratamiento oncologico cirugia
 
Oncologia exp.
Oncologia exp.Oncologia exp.
Oncologia exp.
 
Introduccion oncologia universidad (1)
Introduccion oncologia universidad (1)Introduccion oncologia universidad (1)
Introduccion oncologia universidad (1)
 
Expo onco.
Expo onco.Expo onco.
Expo onco.
 
Cáncer de pulmón de células no pequeñas
Cáncer de pulmón de células no pequeñasCáncer de pulmón de células no pequeñas
Cáncer de pulmón de células no pequeñas
 
Vesicula biliar onco
Vesicula biliar oncoVesicula biliar onco
Vesicula biliar onco
 
Onco expo de cáncer de vías biliares
Onco expo de cáncer de vías biliaresOnco expo de cáncer de vías biliares
Onco expo de cáncer de vías biliares
 

Cromatina

  • 1. Cromatina<br />Diferentes niveles de condensación de ADN. (1) Hebra simple de ADN. (2) Hebra de cromatina (ADN con histonas, quot; cuenta de collarquot; ). (3) Cromatina durante la interfase con centrómero. (4) Cromatina condensada durante la profase (Dos copias de ADN están presentes). (5) Cromosoma durante la metafase.<br />La cromatina es el conjunto de ADN, histonas y proteínas no histónicas que se encuentra en el núcleo de las células eucariotas y que constituye el cromosoma eucariótico.<br />Las unidades básicas de la cromatina son los nucleosomas. Éstos se encuentran formados por aproximadamente 146 pares de bases de longitud (el número depende del organismo), asociados a un complejo específico de 8 histonas nucleosómicas (octámero de histonas). Cada partícula tiene una forma de disco, con un diámetro de 11 nm y contiene dos copias de cada una de las 4 histonas H3, H4, H2A y H2B. Este octámero forma un núcleo proteico alrededor del que se enrolla la hélice de ADN (da aproximadamente 1,8 vueltas). Entre cada una de las asociaciones de ARN e histonas existe un ADN libre llamado ADN quot; espaciadorquot; , de longitud variable entre 0 y 80 pares de nucleótidos que garantiza flexibilidad a la fibra de cromatina. Este tipo de organización, permite un primer paso de compactación del material genético, y da lugar a una estructura parecida a un quot; collar de cuentasquot; .<br />Posteriormente, un segundo nivel de organización de orden superior lo constituye la quot; fibra de 30nmquot; compuestas por grupos de nucleosomas empaquetados uno sobre otros adoptando disposiciones regulares gracias a la acción de la histona H1.<br />Finalmente continua el incremento del empaquetamiento del ADN hasta obtener los cromosomas que observamos en la metafase, el cual es el máximo nivel de condensación del ADN.<br />Contenido[ocultar]1 Tipos de cromatina2 Rol de la cromatina en la expresión génica3 Referencias4 Véase también5 Enlaces externos<br />[editar] Tipos de cromatina<br />La cromatina se puede encontrar en 3 formas<br />Heterocromatina, es una forma inactiva condensada localizada sobre todo en la periferia del núcleo, que se tiñe fuertemente con las coloraciones. En 1928 Emil HEITZ, basándose en observaciones histológicas, definió la heterocromatina (HC) como los segmentos cromosómicos que aparecían muy condensados y oscuros en el núcleo en interfase. De hecho, la cromatina está formada de una maraña de fibras cuyo diámetro no solo varía durante el ciclo celular sino que también depende de la región del cromosoma observada.<br />La eucromatina activa está formada por una fibra de un diámetro que corresponde al del nucleosoma, que es un segmento de ADN bicatenario enrollado alrededor de homodímeros de las histonas H2A, H2B, H3, y H4. En la eucromatina inactiva, esta fibra se enrolla sobre sí misma gracias a las histonas H1 para formar el solenoide. La interacción con otras proteínas no histonas (topoisomerasa II, proteínas de andamiaje, lamininas, …) provoca mayores grados de organización. En cuanto a la heterocromatina, la fibra que la constituye se encuentra más condensada y a menudo aparece formada por agregados. Su formación require numerosas proteínas adicionales, que incluyen las proteínas HP1 (Heterochromatin Protein 1 o proteína de la heterocromatina 1). La heterocromatina puede ser de dos tipos diferentes,la riqueza en ADN satélite determina tanto la naturaleza permanente o reversible de la heterocromatina, como su polimorfismo y propiedades de tinción. :<br />la constitutiva, idéntica para todas las células del organismo y que carece de información genética, incluye a los telómeros y centrómeros del cromosoma que no expresan su ADN. La heterocromatina constitutiva contiene un tipo particular de ADN denominado ADN satélite, formado por gran número de secuencias cortas repetidas en tándem. Los tipos principales de este ADN son el ADN satélite alfa, y los ADN satélite I, II y III. Estas secuencias de ADN satélite son capaces de plegarse sobre sí mismas y pueden tener un papel importante en la formación de la estructura altamente compacta de la heterocromatina constitutiva. La heterocromatina constitutiva es estable y conserva sus propiedades heterocromáticas durante todas las etapas del desarrollo y en todos los tejidos. La heterocromatina constitutiva es altamente polimórfica, probablemente debido a la inestabilidad del ADN satélite. Este polimorfismos puede afectar, no solamente a su tamaño sino también a la localización de la heterocromatina, y aparentemente no tiene un efecto fenotípico. La heterocromatina constitutiva se encuentra fuertemente teñida en la técnica de bandas C, lo que es el resultado de una renaturalización muy rápida del ADN satélite tras la desnaturalización.<br />la facultativa, diferente en los distintos tipos celulares, contiene información sobre todos aquellos genes que no se expresan o que pueden expresarse en algún momento. Incluye al ADN satélite y al corpúsculo de Barr. La heterocromatina facultativa se caracteriza por la presencia de secuencias repetidas tipo LINE. Estas secuencias, dispersas a lo largo del genoma, podrían promover la propagación de una estructura de cromatina condensada. La heterocromatina facultativa es reversible, su estado heterocromático depende de la etapa del desarrollo y del tipo celular. Dos ejemplos de este tipo de heterocromatina son el cromosoma X inactivo (cuerpo de Barr) de las células somáticas femeninas y la vesícula sexual inactiva en la etapa del paquiteno de las meiosis masculinas. La heterocromatina facultativa no es particularmente rica en ADN satélite, y por ello, no es polimórfica. La heterocromatina facultativa no se encuentra nunca teñida en la técnica de bandas C.<br />Se ha visto que en la formación de heterocromatina frecuentemente participa el fenómeno de ARN interferente. Por ejemplo, en Schizosaccharomyces pombe, la heterocromatina se forma en el centrómero, telómeros y en el loci mating-type.[1] La formación de la heterocromatina en el centrómero depende del mecanismo de ARN interferente ( HYPERLINK quot; http://es.wikipedia.org/wiki/ARNiquot; quot; ARNiquot; ARNi). ARN doble cadena complementarios son producidos de secuencias repetidas localizadas en el centrómero, que inducen ARNi y seguidamente metilación de la lisina 9 histona 3 y enlazamiento de Swi6 (proteína estructural de la heterocromatina, la cual es homóloga a HP1 en mamíferos)[2] .<br />Propiedades de la heterocromatina<br />A pesar de las diferencias descritas anteriormente, la heterocromatina constitutiva y la heterocromatina facultativa tienen propiedades muy similares.<br />1. La heterocromatina está condensada Este es, de hecho, lo que define la heterocromatina, y por ello es aplicable tanto a la heterocromatina constitutiva como a la facultativa. Esta elevada condensación la hace fuertemente cromofílica e inaccesible a la DNAsa I y, en general, a otras enzimas de restricción.<br />2. El ADN de la heterocromatina se replica más tarde La incorporación de varios análogos de nucleótidos muestra que el ADN de ambos tipos de heterocromatina se replica tarde. Esto es el resultado, por un lado, de su elevado grado de condensación, que evita que la maquinaria replicativa accede fácilmente al ADN y, por otro lado, de su localización en un dominio nuclear periférico pobre en elementos activos.<br />3.El ADN de la heterocromatina se encuentra metilado •El ADN de la heterocromatina constitutiva se encuentra altamente metilado en las citosinas. Por ello, un anticuerpo anti-5-metil citosina marca fuertemente todas las regiones de este tipo de heterocromatina. •Por lo que se refiere a la heterocromatina facultativa, la metilación de su ADN es menor, aunque los análisis mediante enzimas de restricción sensibles a metilación revelan una importante metilación de los islotes CpG, específicamente localizados en las regiones que controlan la expresión de los genes.<br />4. En la heterocromatina las histonas se encuentran hipoacetiladas Las histonas puede sufrir una serie de modificaciones post-traduccionales en sus extremos N-terminales que pueden afectar a la propia actividad genética de la cromatina. •La hipoacetilación de las colas N-terminales de las histonas, principalmente en las lisinas, están asociadas con la cromatina inactiva. Por el contrario, las histonas hiperacetiladas son características de la cromatina activa. •La acetilación/desacetilación de histonas es un mecanismos absolutamente esencial para el control de la expresión génica. Existen numerosos factores de transcripción que presentan una actividad acetiltransferasa de histonas (HAT, Histone Acetyl Transferase) o desacetilasa de histonas (HDAc o Histone De-Acetylase).<br />5. Las histonas de la heterocromatina se encuentran metiladas en la lisina 9 La metilación de la lisina 9 de la histona H3 (H3-K9) parece que está muy relacionada con el proceso de heterocromatinización del genoma, tanto en la formación de heterocromatina constitutiva como facultativa.<br />6. La heterocromatina es transcripcionalmente inactiva •A diferencia de lo que ocurre en Drosophila, la heterocromatina constitutiva humana no contiene genes y la incorporación de uridina tritiada en los cultivos celulares no producen ningún tipo de marcaje a este nivel. •La heterocromatina facultativa es relativamente pobre en genes, y éstos generalmente no se transcriben en el estado de heterocromatina.<br />7. La heterocromatina no participa en la recombinación genética •De modo general se acepta que la heterocromatina constitutiva no participa en la recombinación genética. La no existencia de un emparejamiento preliminar de las regiones heterocromatínicas homólogas se podría deber al polimorfismo característico de estas regiones que lo dificultarían, aunque no lo harían imposible. La heterocromatina constitutiva también actúa reprimiendo la recombinación en la regiones de eucromatina adyacentes.•Por lo que respecta a la heterocromatina facultativa, tampoco participa en la recombinación meiótica cuando se encuentra en su forma inactiva.<br />Funciones de la heterocromatina<br />Durante mucho tiempo el papel concreto de la heterocromatina ha sido un misterio, ya que su polimorfismo no parecía tener ningún efecto funcional o fenotípico.<br />1. Papel de la heterocromatina en la organización de los dominios nucleares •La heterocromatina y la eucromatina ocupan dominios nucleares distintos. La heterocromatina se localiza generalmente en la periferia del núcleo anclada a la membrana nuclear. Por el contrario, la cromatina activa se localiza en una posición más central. •La localización preferencial de la heterocromatina contra la membrana nuclear puede deberse a la interacción de la proteína HP1 con el receptor de la lámina B, componente de la membrana interna del núcleo. •La localización periférica de la heterocromatina concentra los elementos activos en la porción central del núcleo, permitiendo que eucromatina activa se replique y transcriba con una eficiencia máxima.<br />2. Papel de la heterocromatina en la función del centrómero En la mayor parte de eucariotas, los centrómeros se encuentran rodeados de una considerable masa de heterocromatina. Se ha sugerido que la heterocromatina centromérica sería necesaria para la cohesión de las cromátidas hermanas y que permitiría la disyunción normal de los cromosomas mitóticos.<br />•En la levadura Schizosaccharomyces pombe, el homólogo Swi6 de la proteína HP1 es absolutamente esencial para la cohesión eficiente de las cromátidas hermanas durante la división celular. •Los experimentos en los cuales se ha realizado la deleción del ADN satellite muestran que una gran región de repeticiones de este tipo de ADN es indispensable para el funcionamiento correcto del centrómero. Se supone que la heterocromatina centromérica podría, de facto, crear un compartimento mediante el incremento de la concentración local de la variante centromérica de las histonas, CENP-A, y mediante la promoción de la incorporación de la CENP-A en lugar de la histona H3 durante la replicación.<br />3. Papel de la heterocromatina en la represión génica (regulación epigenética) La expresión génica puede estar controlada a dos niveles:<br />•Primero, a nivel local o control transcripcional, gracias a la formación de complejos locales de transcripción. Este nivel involucra secuencias de ADN relativamente pequeñas unidas a genes. •A nivel más global, en cuyo caso se dice que hay un control de la transcriptabilidad. Este control involucra a secuencias más largas que representan un gran dominio de cromatina, que puede estar en estado activo o inactivo. En este caso es la heterocromatina la que parece estar involucrada. Los genes que generalmente se encuentran en la eucromatina pueden, por tanto, ser silenciados cuando se encuentran cercanos a un dominio de heterocromatina.<br />Mecanismo de inactivación en cis : Los reordenamientos cromosómicos pueden provocar que una región eucromática se yuxtaponga a una región heterocromática. En el momento en el que el reordenamiento elimina ciertas barreras que protegen la eucromatina la estructura heterocromática es capaz de propagarse en cis a la eucromatina adyacente, inactivando los genes que se encuentran en ella. Este es el mecanismo observado en la variegación por efecto de posición (PEV) en Drosophila y en la inactivación de ciertos transgenes en ratón.<br />Mecanismo de inactivación en trans: Durante la diferenciación celular, ciertos genes activos pueden transponerse a un dominio nuclear heterocromático haciendo que se inactiven. Este mecanismo es el que se ha propuesto como explicación para la co-localización en los núcleos de linfocitos de la proteína IKAROS con la heterocromatina centromérica y de los genes cuya expresión controla.<br />Eucromatina, está diseminada por el resto del núcleo (menor condensación), se tiñe débilmente con la coloraciones (su mayor tinción ocurre en la mitosis y no es visible con el microscopio de luz). Representa la forma activa de la cromatina en la que se está transcribiendo el material genético de las moléculas de ADN a moléculas de ARNm, por lo que es aquí donde se encuentran la mayoría de los genes activos.<br />[editar] Rol de la cromatina en la expresión génica<br />La cromatina juega un rol regulatorio fundamental en la expresión génica. Los distintos estados de compactación pueden asociarse (aunque no unívocamente) al grado de transcripción que exhiben los genes que se encuentran en esas zonas. La cromatina es, en principio, fuertemente represiva para la transcripción, ya que la asociación del ADN con las distintas proteínas dificulta la procesión de las distintas ARN polimerasas. Por lo tanto, existe una variada cantidad de máquinas remodeladoras de la cromatina y modificadoras de histonas.<br />Existe actualmente lo que se conoce como quot; código de histo squot; . Las distintas histonas pueden sufrir modificaciones post-traduccionales, como ser la metilación, acetilación, fosforilación, generalmente dada en residuos lisina o arginina. La acetilación está asociada con activación de la trascripción, ya que al acetilarse una lisina, disminuye la carga positiva global de la histona por lo cual tiene una menor afinidad por el ADN (que está cargado negativamente). En consecuencia, el ADN se encuentra unido menos fuertemente lo que permite el acceso de la maquinaria transcripcional. Por el contrario, la metilación está asociada con la represión transcripcional y una unión ADN-histona más fuerte (si bien no siempre esto se cumple). Por ejemplo, en la levadura S. pombe, la metilación en el residuo de lisina 9 de la histona 3 está asociado con represión de la transcripción en la heterocromatina, mientras que la metilación en el residuo de lisina 4 promueve la expresión de genes[2] .<br />Las enzimas que llevan a cabo las funciones de modificaciones de histonas son las acetilasas y desacetilasas de histonas, y las metilasas y desmetilasas de histonas, que forman distintas familias cuyos integrantes se encargan de modificar un residuo en particular de la larga cola de las histonas.<br />Además de las modificaciones de las histonas, existen también maquinarias remodeladoras de la cromatina, como por ejemplo SAGA, que se encargan de reposicionar nucleosomas, ya sea desplazándolos, rotándolos, o incluso desensamblándolos parcialmente, retirando algunas de las histonas constituyentes del nucleosoma y luego volviéndolos a colocar. En general las maquinarias remodeladoras de la cromatina son esenciales para el proceso de transcripción en eucariotas, ya que permiten el acceso y procesividad de las polimerasas.<br />Otra forma de marcación de la cromatina como quot; inactivaquot; puede darse a nivel de la metilación del ADN, en citosinas que pertenezcan a dinucleótidos CpG. En general la metilación del ADN y de la cromatina son procesos sinérgicos, ya que, por ejemplo, al metilarse el ADN, existen enzimas metiladoras de histonas que pueden reconocer citosinas metiladas, y metilan histonas próximas. Del mismo modo, encimas que metilan el ADN pueden reconocer histonas metiladas, y así seguir con la metilación a nivel de ADN.<br />Todas estas modificaciones forman parte de la familia de las modificaciones epigenéticas<br />