SlideShare una empresa de Scribd logo
1 de 26
UTILIDAD DEL MONITOREOUTILIDAD DEL MONITOREO
EN EMERGENCIAEN EMERGENCIA
Mg. CESAR E. SISNIEGAS VERGARAMg. CESAR E. SISNIEGAS VERGARA
SERVICIO DE EMERGENCIA HNAAASERVICIO DE EMERGENCIA HNAAA
EsSALUDEsSALUD
CASO CLINICOCASO CLINICO
 Paciente varón de 65 años que ingresa a EmergenciaPaciente varón de 65 años que ingresa a Emergencia
ante la sospecha de neumonía.ante la sospecha de neumonía.
 FR = 40x’, cianóticoFR = 40x’, cianótico
 Fibrilación auricular con 140x’, con PA 80/40 mmHG.Fibrilación auricular con 140x’, con PA 80/40 mmHG.
 Mantiene calor periférico pero su llenado capilar es de 5Mantiene calor periférico pero su llenado capilar es de 5
segseg
 Abre sus ojos al llamado, obedece órdenes y estáAbre sus ojos al llamado, obedece órdenes y está
confuso.confuso.
 Tiene °T timpánica de 34°CTiene °T timpánica de 34°C
CASO CLINICOCASO CLINICO
 Recibe alto flujo de ORecibe alto flujo de O22 (máscara con bolsa).(máscara con bolsa).
 Recibe coloides intravenosos rápidamente.Recibe coloides intravenosos rápidamente.
 Se deteriora y presenta PCR.Se deteriora y presenta PCR.
 Se verifica AESP.Se verifica AESP.
 Recibe compresiones torácicas, adrenalina EV.Recibe compresiones torácicas, adrenalina EV.
 Es intubado (N°8)Es intubado (N°8)
 La radiografía torácica descarta neumotórax.La radiografía torácica descarta neumotórax.
OBJETIVOS DEL MONITOREOOBJETIVOS DEL MONITOREO
 Detectar y prevenir disfunción de órganos.Detectar y prevenir disfunción de órganos.
 Guiar la restauración y el mantenimiento de la entregaGuiar la restauración y el mantenimiento de la entrega
de oxígeno a los tejidos.de oxígeno a los tejidos.
 Cuantifica la reserva fisiológica de los pacientesCuantifica la reserva fisiológica de los pacientes
 Indica la efectividad de las intervenciones.Indica la efectividad de las intervenciones.
 Es importante reconocer sus limitacionesEs importante reconocer sus limitaciones
TECNICAS DE MONITOREO ACTUAL ENTECNICAS DE MONITOREO ACTUAL EN
EMERGENCIAEMERGENCIA
 Tidal final de COTidal final de CO22
 PulsioximetríaPulsioximetría
 PASPAS
 PVCPVC
 Sat. OSat. O22 Venosa central contínuaVenosa central contínua
 TemperaturaTemperatura
 Gasto urinarioGasto urinario
MONITOREARMONITOREAR
 Latin “monere”: “recordar, aconsejar, advertir”Latin “monere”: “recordar, aconsejar, advertir”
 La respuesta fisiológica de la enfermedad está ligadaLa respuesta fisiológica de la enfermedad está ligada
fuertemente al resultado.fuertemente al resultado.
ENTREGA DE OXIGENO A LOS TEJIDOSENTREGA DE OXIGENO A LOS TEJIDOS
 GC x Contenido de OGC x Contenido de O22
 GC = VS x FCGC = VS x FC
 Contenido de OContenido de O22 : Hb y Sat O: Hb y Sat O22
EARLY GOAL-DIRECTED THERAPY ENEARLY GOAL-DIRECTED THERAPY EN
EMERGENCIAEMERGENCIA
 Reduce la mortalidad de los pacientes críticamenteReduce la mortalidad de los pacientes críticamente
enfermos.enfermos.
 Esta estrategia depende de un monitoreo especializadoEsta estrategia depende de un monitoreo especializado
 Mejora la entrega de oxígeno a los tejidos.Mejora la entrega de oxígeno a los tejidos.
LA DISFUNCION DE ORGANOSLA DISFUNCION DE ORGANOS
 Depende del órgano afectado.Depende del órgano afectado.
 Puede ser monitoreadoPuede ser monitoreado
 Gasto urinario es un monitor de la función renal.Gasto urinario es un monitor de la función renal.
ETCOETCO22
 Se usa para confirmar la ubicación delSe usa para confirmar la ubicación del
tubo endotraqueal (TE).tubo endotraqueal (TE).
 Si no se detecta en presencia de GC laSi no se detecta en presencia de GC la
ubicación del TE está en el esófago.ubicación del TE está en el esófago.
 Capnometría es la medición de COCapnometría es la medición de CO22
expirado.expirado.
 Capnografía es la curva de ETCOCapnografía es la curva de ETCO22
contínuacontínua
CAPNOMETROSCAPNOMETROS
SIDESTREAM
DEVICES
MAINSTREAM
MONITOR
ETCOETCO22
 Obstrucción vía áereaObstrucción vía áerea
 Cambios en la ventilaciónCambios en la ventilación
del espacio muertodel espacio muerto
 Alveolar COAlveolar CO22
 PaCOPaCO22
 GC disminuidoGC disminuido
 HipovolemiaHipovolemia
Asma
Normal
CAPNOMETRIA FALSO POSITIVACAPNOMETRIA FALSO POSITIVA
 Respiración boca-boca.Respiración boca-boca.
 Ventilación inefectiva con máscara reservorio (distensiónVentilación inefectiva con máscara reservorio (distensión
gástrica).gástrica).
 Ingestión de bebidas carbonatadas.Ingestión de bebidas carbonatadas.
OXIMETRIA DE PULSOOXIMETRIA DE PULSO
 Es la medición contínuaEs la medición contínua
de la saturación de Ode la saturación de O22 dede
Hb arterial.Hb arterial.
 En el pico de la pulsaciónEn el pico de la pulsación
sanguínea.sanguínea.
 SaOSaO22 se mide conse mide con
precisión >75%precisión >75%
OXIMETRIA DE PULSOOXIMETRIA DE PULSO
 No distingue carboxiHb,No distingue carboxiHb,
metaHb y oxyHb.metaHb y oxyHb.
 DishemoglobinemiasDishemoglobinemias
pueden sobrestimar lapueden sobrestimar la
SaOSaO22
 Piel oscura, uñas suciasPiel oscura, uñas sucias
 Curva disociación Hb.Curva disociación Hb.
 EKGEKG
 Drogas vasoactivasDrogas vasoactivas
 Pulsaciones venosasPulsaciones venosas
MONITOREO PAMONITOREO PA
 Medición intrarterial aMedición intrarterial a
través de transductortravés de transductor
calibradocalibrado
 Muestras sanguíneasMuestras sanguíneas
 GC x RVSGC x RVS
 PAMPAM
 Falla de mecanismos deFalla de mecanismos de
autorregulaciónautorregulación
 Drogas vasoactivasDrogas vasoactivas
 AnestesiaAnestesia
MONITOREO PVCMONITOREO PVC
 Herramienta malHerramienta mal
interpretada en análisisinterpretada en análisis
del volumen intravasculardel volumen intravascular
del paciente.del paciente.
 Correlaciona pobrementeCorrelaciona pobremente
con el volumencon el volumen
intravascular.intravascular.
 Inserción guiada conInserción guiada con
ultrasonido (NICE).ultrasonido (NICE).
 Es variableEs variable
 6 a 20 mmHg.6 a 20 mmHg.
 250 a 500ml ss medir250 a 500ml ss medir
PVCPVC
MONITOREO DE LA SATURACIONMONITOREO DE LA SATURACION
VENOSA CENTRAL CONTINUAVENOSA CENTRAL CONTINUA
 Venosa mixta de la AP (SvOVenosa mixta de la AP (SvO22).).
Indicador de la oxigenación tisular.Indicador de la oxigenación tisular.
Pronóstico falla cardiaca o sepsisPronóstico falla cardiaca o sepsis
Monitores de GC no invasivosMonitores de GC no invasivos
 ScvOScvO22 es útil para analizar loses útil para analizar los
cambios de la oferta y demandacambios de la oferta y demanda
global del Oglobal del O22. Sólo requiere PVC.. Sólo requiere PVC.
 EGDT: SvOEGDT: SvO22 >70%, PVC 8->70%, PVC 8-
12mmHg, PAM>65mmHg, gasto12mmHg, PAM>65mmHg, gasto
urinario de 0.5ml/kg/hurinario de 0.5ml/kg/h
 Reducción de la mortalidad 15%Reducción de la mortalidad 15%
en sepsis y shock séptico.en sepsis y shock séptico.
MONITOREO DE LA TEMPERATURAMONITOREO DE LA TEMPERATURA
 A veces no considerada en el monitoreo.A veces no considerada en el monitoreo.
 Hipotermia: coagulopatía, deprime funciónHipotermia: coagulopatía, deprime función
de órganos, incremento respuestasde órganos, incremento respuestas
adrenérgicas.adrenérgicas.
 Recalentamiento incrementa laRecalentamiento incrementa la
inestabilidad hemodinámica.inestabilidad hemodinámica.
 La °T periférica refleja la perfusión tisular.La °T periférica refleja la perfusión tisular.
MONITOREO DEL GASTOMONITOREO DEL GASTO
URINARIOURINARIO
 El gasto urinario horarioEl gasto urinario horario
es una guía de laes una guía de la
adecuación del GC,adecuación del GC,
perfusión esplácnica y laperfusión esplácnica y la
función renal.función renal.
 0.5 ml/kg/h0.5 ml/kg/h
GASTO CARDIACOGASTO CARDIACO
GC = FC x VS
PRECARGA Y POSCARGAPRECARGA Y POSCARGA
POSTCARGA
es
Fuerza de la
Pared de fin
de Sístole
Resistencia
Precarga
Igual
Volumen de
fin de
Diástole
PULSO PARADOJALPULSO PARADOJAL
Utilidad Del Monitoreo En Emergencia
Utilidad Del Monitoreo En Emergencia

Más contenido relacionado

La actualidad más candente

Dolor toracico
Dolor toracicoDolor toracico
Dolor toracicovicangdel
 
Procedimiento para la realización de TAC con Medios de Contraste Yodados
Procedimiento para la realización de TAC con Medios de Contraste YodadosProcedimiento para la realización de TAC con Medios de Contraste Yodados
Procedimiento para la realización de TAC con Medios de Contraste YodadosHospital Guadix
 
EVALUACIÓN AUDIOLÓGICA PEDIÁTRICA: POTENCIALES EVOCADOS AUDITIVOS (PEA)
EVALUACIÓN AUDIOLÓGICA PEDIÁTRICA: POTENCIALES EVOCADOS AUDITIVOS (PEA)EVALUACIÓN AUDIOLÓGICA PEDIÁTRICA: POTENCIALES EVOCADOS AUDITIVOS (PEA)
EVALUACIÓN AUDIOLÓGICA PEDIÁTRICA: POTENCIALES EVOCADOS AUDITIVOS (PEA)Franz Zenker
 
MANEJO TERAPEUTICO DE RESISTENCIA BACTERIANA EN CIRUGIA
MANEJO TERAPEUTICO DE RESISTENCIA BACTERIANA EN CIRUGIAMANEJO TERAPEUTICO DE RESISTENCIA BACTERIANA EN CIRUGIA
MANEJO TERAPEUTICO DE RESISTENCIA BACTERIANA EN CIRUGIAGRACESITA
 
parametros de precarga para optimizacion de volumen en cirugia cardiaca
parametros de precarga para optimizacion de volumen en cirugia cardiacaparametros de precarga para optimizacion de volumen en cirugia cardiaca
parametros de precarga para optimizacion de volumen en cirugia cardiacaLuis Guerrero
 
Flujo Tubular Renal
Flujo Tubular RenalFlujo Tubular Renal
Flujo Tubular RenalUNFV
 

La actualidad más candente (13)

Dolor toracico
Dolor toracicoDolor toracico
Dolor toracico
 
5 Radiologia De Columna
5 Radiologia De Columna5 Radiologia De Columna
5 Radiologia De Columna
 
Procedimiento para la realización de TAC con Medios de Contraste Yodados
Procedimiento para la realización de TAC con Medios de Contraste YodadosProcedimiento para la realización de TAC con Medios de Contraste Yodados
Procedimiento para la realización de TAC con Medios de Contraste Yodados
 
Gasometría
GasometríaGasometría
Gasometría
 
EVALUACIÓN AUDIOLÓGICA PEDIÁTRICA: POTENCIALES EVOCADOS AUDITIVOS (PEA)
EVALUACIÓN AUDIOLÓGICA PEDIÁTRICA: POTENCIALES EVOCADOS AUDITIVOS (PEA)EVALUACIÓN AUDIOLÓGICA PEDIÁTRICA: POTENCIALES EVOCADOS AUDITIVOS (PEA)
EVALUACIÓN AUDIOLÓGICA PEDIÁTRICA: POTENCIALES EVOCADOS AUDITIVOS (PEA)
 
Emergencias en ap i (2)
Emergencias en ap i (2)Emergencias en ap i (2)
Emergencias en ap i (2)
 
Aforos metodos
Aforos metodosAforos metodos
Aforos metodos
 
Espirometria
EspirometriaEspirometria
Espirometria
 
Planeamiento dr giraldo
Planeamiento dr giraldoPlaneamiento dr giraldo
Planeamiento dr giraldo
 
MANEJO TERAPEUTICO DE RESISTENCIA BACTERIANA EN CIRUGIA
MANEJO TERAPEUTICO DE RESISTENCIA BACTERIANA EN CIRUGIAMANEJO TERAPEUTICO DE RESISTENCIA BACTERIANA EN CIRUGIA
MANEJO TERAPEUTICO DE RESISTENCIA BACTERIANA EN CIRUGIA
 
Monitorización
MonitorizaciónMonitorización
Monitorización
 
parametros de precarga para optimizacion de volumen en cirugia cardiaca
parametros de precarga para optimizacion de volumen en cirugia cardiacaparametros de precarga para optimizacion de volumen en cirugia cardiaca
parametros de precarga para optimizacion de volumen en cirugia cardiaca
 
Flujo Tubular Renal
Flujo Tubular RenalFlujo Tubular Renal
Flujo Tubular Renal
 

Destacado (16)

Evolucion supervision
Evolucion supervisionEvolucion supervision
Evolucion supervision
 
Ruggiero saturacion venosa mixta y central
Ruggiero saturacion venosa mixta y centralRuggiero saturacion venosa mixta y central
Ruggiero saturacion venosa mixta y central
 
Saturacion venosa central de oxigeno
Saturacion venosa  central de oxigenoSaturacion venosa  central de oxigeno
Saturacion venosa central de oxigeno
 
Pruebas de funciòn renal
Pruebas de funciòn renalPruebas de funciòn renal
Pruebas de funciòn renal
 
Perfil renal expo
Perfil renal expoPerfil renal expo
Perfil renal expo
 
funcion-renal-eq-4 (1)
funcion-renal-eq-4 (1)funcion-renal-eq-4 (1)
funcion-renal-eq-4 (1)
 
Metodos de estudio de la funcion renal
Metodos de estudio de la funcion renalMetodos de estudio de la funcion renal
Metodos de estudio de la funcion renal
 
Bun y creatinina
Bun y creatininaBun y creatinina
Bun y creatinina
 
Evaluación de la función renal
Evaluación de la función renalEvaluación de la función renal
Evaluación de la función renal
 
Urea en la sangre, bilis,creatina,creatinina
Urea en la sangre, bilis,creatina,creatininaUrea en la sangre, bilis,creatina,creatinina
Urea en la sangre, bilis,creatina,creatinina
 
Pruebas de funciòn renal
Pruebas de funciòn renalPruebas de funciòn renal
Pruebas de funciòn renal
 
Urea, creatinina y acido úrico - Micky Gálvez
Urea, creatinina y acido úrico - Micky GálvezUrea, creatinina y acido úrico - Micky Gálvez
Urea, creatinina y acido úrico - Micky Gálvez
 
Pruebas de funcion renal 1
Pruebas de funcion renal 1Pruebas de funcion renal 1
Pruebas de funcion renal 1
 
Pruebas de función renal - 2015
Pruebas de función renal - 2015Pruebas de función renal - 2015
Pruebas de función renal - 2015
 
TÉCNICAS PARA LA RECOLECCIÓN DE INFORMACIÓN
TÉCNICAS PARA LA RECOLECCIÓN DE INFORMACIÓNTÉCNICAS PARA LA RECOLECCIÓN DE INFORMACIÓN
TÉCNICAS PARA LA RECOLECCIÓN DE INFORMACIÓN
 
Nitrógeno ureico (BUN)
Nitrógeno ureico (BUN)Nitrógeno ureico (BUN)
Nitrógeno ureico (BUN)
 

Similar a Utilidad Del Monitoreo En Emergencia

Protocolos en tomografia pediatrica
Protocolos en tomografia pediatricaProtocolos en tomografia pediatrica
Protocolos en tomografia pediatricaEduardo Silva
 
Equilibrio Ácido Base
Equilibrio Ácido BaseEquilibrio Ácido Base
Equilibrio Ácido BaseEdgar
 
Aga upao 2010 analisis de gases arteriales equilibrio acido base dr hinojosa
Aga upao 2010 analisis de gases arteriales equilibrio acido base dr hinojosaAga upao 2010 analisis de gases arteriales equilibrio acido base dr hinojosa
Aga upao 2010 analisis de gases arteriales equilibrio acido base dr hinojosayork peru
 
Monitorización invasiva
Monitorización invasivaMonitorización invasiva
Monitorización invasivaGaston Droguett
 
ASIGNATURA SOPORTE VITAL: TEMA 6
ASIGNATURA SOPORTE VITAL: TEMA 6ASIGNATURA SOPORTE VITAL: TEMA 6
ASIGNATURA SOPORTE VITAL: TEMA 6reanyma
 
Interpretacion gases arteriales ph sanguineo
Interpretacion gases arteriales ph sanguineoInterpretacion gases arteriales ph sanguineo
Interpretacion gases arteriales ph sanguineoDR. CARLOS Azañero
 
Interpretacion gases arteriales ph sanguineo
Interpretacion gases arteriales ph sanguineoInterpretacion gases arteriales ph sanguineo
Interpretacion gases arteriales ph sanguineoDR. CARLOS Azañero
 
REINA_VentilacionCuidadosCriticos_CHGUV270207.pdf
REINA_VentilacionCuidadosCriticos_CHGUV270207.pdfREINA_VentilacionCuidadosCriticos_CHGUV270207.pdf
REINA_VentilacionCuidadosCriticos_CHGUV270207.pdfJorgeBc9
 
Sistemas de administración anestésica inhalada
Sistemas de administración anestésica inhaladaSistemas de administración anestésica inhalada
Sistemas de administración anestésica inhaladaKicho Perez
 
GASOMETRIA R4 Condori.ppt
GASOMETRIA R4 Condori.pptGASOMETRIA R4 Condori.ppt
GASOMETRIA R4 Condori.pptCristhyAzucena
 
2oxigenoterapia 1225239684244443-9
2oxigenoterapia 1225239684244443-92oxigenoterapia 1225239684244443-9
2oxigenoterapia 1225239684244443-9Janny Melo
 

Similar a Utilidad Del Monitoreo En Emergencia (20)

Rcp basica del adulto guias 2010
Rcp basica del adulto guias 2010Rcp basica del adulto guias 2010
Rcp basica del adulto guias 2010
 
Rcp basica del adulto guias 2010
Rcp basica del adulto guias 2010Rcp basica del adulto guias 2010
Rcp basica del adulto guias 2010
 
Protocolos en tomografia pediatrica
Protocolos en tomografia pediatricaProtocolos en tomografia pediatrica
Protocolos en tomografia pediatrica
 
Monitorizacion Del Paciente
Monitorizacion Del PacienteMonitorizacion Del Paciente
Monitorizacion Del Paciente
 
Equilibrio Ácido Base
Equilibrio Ácido BaseEquilibrio Ácido Base
Equilibrio Ácido Base
 
Aga upao 2010 analisis de gases arteriales equilibrio acido base dr hinojosa
Aga upao 2010 analisis de gases arteriales equilibrio acido base dr hinojosaAga upao 2010 analisis de gases arteriales equilibrio acido base dr hinojosa
Aga upao 2010 analisis de gases arteriales equilibrio acido base dr hinojosa
 
Monitorización invasiva
Monitorización invasivaMonitorización invasiva
Monitorización invasiva
 
ASIGNATURA SOPORTE VITAL: TEMA 6
ASIGNATURA SOPORTE VITAL: TEMA 6ASIGNATURA SOPORTE VITAL: TEMA 6
ASIGNATURA SOPORTE VITAL: TEMA 6
 
Edema pulmonar agudo.
Edema pulmonar agudo.Edema pulmonar agudo.
Edema pulmonar agudo.
 
Gases en sangre
Gases en sangreGases en sangre
Gases en sangre
 
Interpretacion gases arteriales ph sanguineo
Interpretacion gases arteriales ph sanguineoInterpretacion gases arteriales ph sanguineo
Interpretacion gases arteriales ph sanguineo
 
Membrana Hialina
Membrana HialinaMembrana Hialina
Membrana Hialina
 
Interpretacion gases arteriales ph sanguineo
Interpretacion gases arteriales ph sanguineoInterpretacion gases arteriales ph sanguineo
Interpretacion gases arteriales ph sanguineo
 
REINA_VentilacionCuidadosCriticos_CHGUV270207.pdf
REINA_VentilacionCuidadosCriticos_CHGUV270207.pdfREINA_VentilacionCuidadosCriticos_CHGUV270207.pdf
REINA_VentilacionCuidadosCriticos_CHGUV270207.pdf
 
Epoc
EpocEpoc
Epoc
 
Sistemas de administración anestésica inhalada
Sistemas de administración anestésica inhaladaSistemas de administración anestésica inhalada
Sistemas de administración anestésica inhalada
 
Shock 2015
Shock 2015Shock 2015
Shock 2015
 
Jose maria hernandez intervencionismo en valvulopatia mitral
Jose maria hernandez   intervencionismo en valvulopatia mitralJose maria hernandez   intervencionismo en valvulopatia mitral
Jose maria hernandez intervencionismo en valvulopatia mitral
 
GASOMETRIA R4 Condori.ppt
GASOMETRIA R4 Condori.pptGASOMETRIA R4 Condori.ppt
GASOMETRIA R4 Condori.ppt
 
2oxigenoterapia 1225239684244443-9
2oxigenoterapia 1225239684244443-92oxigenoterapia 1225239684244443-9
2oxigenoterapia 1225239684244443-9
 

Utilidad Del Monitoreo En Emergencia

  • 1. UTILIDAD DEL MONITOREOUTILIDAD DEL MONITOREO EN EMERGENCIAEN EMERGENCIA Mg. CESAR E. SISNIEGAS VERGARAMg. CESAR E. SISNIEGAS VERGARA SERVICIO DE EMERGENCIA HNAAASERVICIO DE EMERGENCIA HNAAA EsSALUDEsSALUD
  • 2. CASO CLINICOCASO CLINICO  Paciente varón de 65 años que ingresa a EmergenciaPaciente varón de 65 años que ingresa a Emergencia ante la sospecha de neumonía.ante la sospecha de neumonía.  FR = 40x’, cianóticoFR = 40x’, cianótico  Fibrilación auricular con 140x’, con PA 80/40 mmHG.Fibrilación auricular con 140x’, con PA 80/40 mmHG.  Mantiene calor periférico pero su llenado capilar es de 5Mantiene calor periférico pero su llenado capilar es de 5 segseg  Abre sus ojos al llamado, obedece órdenes y estáAbre sus ojos al llamado, obedece órdenes y está confuso.confuso.  Tiene °T timpánica de 34°CTiene °T timpánica de 34°C
  • 3. CASO CLINICOCASO CLINICO  Recibe alto flujo de ORecibe alto flujo de O22 (máscara con bolsa).(máscara con bolsa).  Recibe coloides intravenosos rápidamente.Recibe coloides intravenosos rápidamente.  Se deteriora y presenta PCR.Se deteriora y presenta PCR.  Se verifica AESP.Se verifica AESP.  Recibe compresiones torácicas, adrenalina EV.Recibe compresiones torácicas, adrenalina EV.  Es intubado (N°8)Es intubado (N°8)  La radiografía torácica descarta neumotórax.La radiografía torácica descarta neumotórax.
  • 4. OBJETIVOS DEL MONITOREOOBJETIVOS DEL MONITOREO  Detectar y prevenir disfunción de órganos.Detectar y prevenir disfunción de órganos.  Guiar la restauración y el mantenimiento de la entregaGuiar la restauración y el mantenimiento de la entrega de oxígeno a los tejidos.de oxígeno a los tejidos.  Cuantifica la reserva fisiológica de los pacientesCuantifica la reserva fisiológica de los pacientes  Indica la efectividad de las intervenciones.Indica la efectividad de las intervenciones.  Es importante reconocer sus limitacionesEs importante reconocer sus limitaciones
  • 5. TECNICAS DE MONITOREO ACTUAL ENTECNICAS DE MONITOREO ACTUAL EN EMERGENCIAEMERGENCIA  Tidal final de COTidal final de CO22  PulsioximetríaPulsioximetría  PASPAS  PVCPVC  Sat. OSat. O22 Venosa central contínuaVenosa central contínua  TemperaturaTemperatura  Gasto urinarioGasto urinario
  • 6. MONITOREARMONITOREAR  Latin “monere”: “recordar, aconsejar, advertir”Latin “monere”: “recordar, aconsejar, advertir”  La respuesta fisiológica de la enfermedad está ligadaLa respuesta fisiológica de la enfermedad está ligada fuertemente al resultado.fuertemente al resultado.
  • 7. ENTREGA DE OXIGENO A LOS TEJIDOSENTREGA DE OXIGENO A LOS TEJIDOS  GC x Contenido de OGC x Contenido de O22  GC = VS x FCGC = VS x FC  Contenido de OContenido de O22 : Hb y Sat O: Hb y Sat O22
  • 8. EARLY GOAL-DIRECTED THERAPY ENEARLY GOAL-DIRECTED THERAPY EN EMERGENCIAEMERGENCIA  Reduce la mortalidad de los pacientes críticamenteReduce la mortalidad de los pacientes críticamente enfermos.enfermos.  Esta estrategia depende de un monitoreo especializadoEsta estrategia depende de un monitoreo especializado  Mejora la entrega de oxígeno a los tejidos.Mejora la entrega de oxígeno a los tejidos.
  • 9. LA DISFUNCION DE ORGANOSLA DISFUNCION DE ORGANOS  Depende del órgano afectado.Depende del órgano afectado.  Puede ser monitoreadoPuede ser monitoreado  Gasto urinario es un monitor de la función renal.Gasto urinario es un monitor de la función renal.
  • 10. ETCOETCO22  Se usa para confirmar la ubicación delSe usa para confirmar la ubicación del tubo endotraqueal (TE).tubo endotraqueal (TE).  Si no se detecta en presencia de GC laSi no se detecta en presencia de GC la ubicación del TE está en el esófago.ubicación del TE está en el esófago.  Capnometría es la medición de COCapnometría es la medición de CO22 expirado.expirado.  Capnografía es la curva de ETCOCapnografía es la curva de ETCO22 contínuacontínua
  • 12. ETCOETCO22  Obstrucción vía áereaObstrucción vía áerea  Cambios en la ventilaciónCambios en la ventilación del espacio muertodel espacio muerto  Alveolar COAlveolar CO22  PaCOPaCO22  GC disminuidoGC disminuido  HipovolemiaHipovolemia Asma Normal
  • 13. CAPNOMETRIA FALSO POSITIVACAPNOMETRIA FALSO POSITIVA  Respiración boca-boca.Respiración boca-boca.  Ventilación inefectiva con máscara reservorio (distensiónVentilación inefectiva con máscara reservorio (distensión gástrica).gástrica).  Ingestión de bebidas carbonatadas.Ingestión de bebidas carbonatadas.
  • 14. OXIMETRIA DE PULSOOXIMETRIA DE PULSO  Es la medición contínuaEs la medición contínua de la saturación de Ode la saturación de O22 dede Hb arterial.Hb arterial.  En el pico de la pulsaciónEn el pico de la pulsación sanguínea.sanguínea.  SaOSaO22 se mide conse mide con precisión >75%precisión >75%
  • 15. OXIMETRIA DE PULSOOXIMETRIA DE PULSO  No distingue carboxiHb,No distingue carboxiHb, metaHb y oxyHb.metaHb y oxyHb.  DishemoglobinemiasDishemoglobinemias pueden sobrestimar lapueden sobrestimar la SaOSaO22  Piel oscura, uñas suciasPiel oscura, uñas sucias  Curva disociación Hb.Curva disociación Hb.  EKGEKG  Drogas vasoactivasDrogas vasoactivas  Pulsaciones venosasPulsaciones venosas
  • 16. MONITOREO PAMONITOREO PA  Medición intrarterial aMedición intrarterial a través de transductortravés de transductor calibradocalibrado  Muestras sanguíneasMuestras sanguíneas  GC x RVSGC x RVS  PAMPAM  Falla de mecanismos deFalla de mecanismos de autorregulaciónautorregulación  Drogas vasoactivasDrogas vasoactivas  AnestesiaAnestesia
  • 17. MONITOREO PVCMONITOREO PVC  Herramienta malHerramienta mal interpretada en análisisinterpretada en análisis del volumen intravasculardel volumen intravascular del paciente.del paciente.  Correlaciona pobrementeCorrelaciona pobremente con el volumencon el volumen intravascular.intravascular.  Inserción guiada conInserción guiada con ultrasonido (NICE).ultrasonido (NICE).  Es variableEs variable  6 a 20 mmHg.6 a 20 mmHg.  250 a 500ml ss medir250 a 500ml ss medir PVCPVC
  • 18. MONITOREO DE LA SATURACIONMONITOREO DE LA SATURACION VENOSA CENTRAL CONTINUAVENOSA CENTRAL CONTINUA  Venosa mixta de la AP (SvOVenosa mixta de la AP (SvO22).). Indicador de la oxigenación tisular.Indicador de la oxigenación tisular. Pronóstico falla cardiaca o sepsisPronóstico falla cardiaca o sepsis Monitores de GC no invasivosMonitores de GC no invasivos  ScvOScvO22 es útil para analizar loses útil para analizar los cambios de la oferta y demandacambios de la oferta y demanda global del Oglobal del O22. Sólo requiere PVC.. Sólo requiere PVC.  EGDT: SvOEGDT: SvO22 >70%, PVC 8->70%, PVC 8- 12mmHg, PAM>65mmHg, gasto12mmHg, PAM>65mmHg, gasto urinario de 0.5ml/kg/hurinario de 0.5ml/kg/h  Reducción de la mortalidad 15%Reducción de la mortalidad 15% en sepsis y shock séptico.en sepsis y shock séptico.
  • 19. MONITOREO DE LA TEMPERATURAMONITOREO DE LA TEMPERATURA  A veces no considerada en el monitoreo.A veces no considerada en el monitoreo.  Hipotermia: coagulopatía, deprime funciónHipotermia: coagulopatía, deprime función de órganos, incremento respuestasde órganos, incremento respuestas adrenérgicas.adrenérgicas.  Recalentamiento incrementa laRecalentamiento incrementa la inestabilidad hemodinámica.inestabilidad hemodinámica.  La °T periférica refleja la perfusión tisular.La °T periférica refleja la perfusión tisular.
  • 20. MONITOREO DEL GASTOMONITOREO DEL GASTO URINARIOURINARIO  El gasto urinario horarioEl gasto urinario horario es una guía de laes una guía de la adecuación del GC,adecuación del GC, perfusión esplácnica y laperfusión esplácnica y la función renal.función renal.  0.5 ml/kg/h0.5 ml/kg/h
  • 21.
  • 23. PRECARGA Y POSCARGAPRECARGA Y POSCARGA POSTCARGA es Fuerza de la Pared de fin de Sístole Resistencia Precarga Igual Volumen de fin de Diástole

Notas del editor

  1. Capnometry is defined as the measurement of expired carbon dioxide; this is achieved most simply by attaching a single-use colourimetric detector to the tracheal tube. A pH-sensitive indicator strip enables semi-quantitative detection of exhaled carbon dioxide. The absence of carbon dioxide is indicated by a purple colour, while a yellow colour indicates a CO2 concentration of more than 2%, indicating successful tube placement in the upper airways.
  2. Electronic capnometers use infrared light absorption to measure the concentration of CO2 in the exhaled gas which relates inversely to quantity of infrared light transmitted. The monitor may be placed directly in line with the patient’s breathing system or a constant sample of gas can be diverted to the capnometer (this is known as a sidestream analyser). Sidestream devices are lighter and more flexible, but have a slower response time of 1–2 s, and some gas mixing occurs so that the measured values of CO2 may be slightly less than in mainstream monitors.
  3. Normal capnograph pattern from an intubated patient and (B) capnograph pattern from a patient with bronchcospasm or obstructed endotracheal tube. Changes in the shape of the graph (fig) enable correlation with clinical conditions such as airflow obstruction and changes in dead space ventilation following a pulmonary embolus. For example, in patients with expiratory obstruction of the small airways, such as asthma, late emptying of poorly entilated alveoli causes an upwardsloping plateau phase during expiration, and partial obstruction of a mainstem bronchus may be indicated by a ‘‘stepladder’’ appearance at the beginning of expiration. ETCO2 is measured at the end of the expiratory phase (after dead space volume has been exhaled) and approximates the alveolar CO2 concentration. The ETCO2 provides a very indirect indication of PaCO2 (arterial carbon dioxide partial pressure), but this is unreliable because of variation in the alveolar-arterial CO2 gradient. Arterial blood gas analysis will enable the ETCO2 to be calibrated against the PaCO2; the capnometer can then be used as an indirect, continuous monitor of PaCO2 and therefore ventilation. Decreases in cardiac output due to hypovolaemia or cardiac dysfunction reduce pulmonary perfusion and increase the alveolar dead space, which reduces the ETCO2 independently of any change in ventilation. Thus, the capnometer is not an absolutely reliable monitor of ventilation and requires frequent calibration against arterial blood gases. Nonetheless, the capnometer is used commonly to monitor the adequacy of ventilation, for example during the transfer of head injured patients.
  4. Carbon dioxide is eliminated within 10–15 s of applying ventilation; hence, at least six ventilations should be undertaken before using a colourimetric capnometer. Infrared capnometers are more accurate and reliable than colourimetric capnometers, especially in shocked patients.2 During cardiac arrest there is no delivery of carbon dioxide to the lungs and in 25% of cases carbon dioxide will not be detected despite correct placement of the tracheal tube.
  5. The measurement is based on the Beer-Lambert law: optical absorbency is proportional to the thickness of the medium and the concentration of the substance being measured. Both red and infrared light are transmitted through the tissue with pulsatile blood flow. Oxygenated and deoxygenated haemoglobin differ in their capacity to absorb red (600–750 nm wavelengths) and infrared light (850–1000 nm wavelengths): oxygenated haemoglobin absorbs more infrared light than deoxygenated haemoglobin which, in turn, absorbs more red light than oxygenated haemoglobin. Comparison of absorbances at two different wavelengths (for example, 660 and 940 nm) enables estimation of the relative concentrations of oxygenated and deoxygenated haemoglobin
  6. La SaO2 y la PaO2 están relacionadas por la curva de disociación del oxígeno y bajo ciertas condiciones de intercambio gaseoso se desplaza la curva de disociación del oxígeno. Esta curva es exponencial y la mostramos en el gráfico 1. Este gráfico nos muestra como la cantidad de oxígeno en sangre aumenta al aumentar la saturación. Pero dado el carácter exponencial de la curva, a saturaciones bajas aumenta rápidamente el oxígeno arterial. Pero con pequeñas modificaciones en la parte alta de la curva se producen grandes caídas en la concentración de oxígeno. Por lo que desaturaciones de un 10% (bajar de 100% a 90%), supone pasar de tener un oxígeno arterial de 100 mmHg a 60 mmHg (es decir una caída del 40%). Por tanto, pequeños cambios en la saturación de oxígeno, llevan aparejados grandes variaciones en la perfusión de oxígeno a nivel celular. Pulse oximetry is reliable down to haemoglobin concentrations of 5 g/dl,5 but very low cardiac output affects the readings significantly. Pulse oximeters cannot distinguish between carboxyhaemoglobin or methaemoglobin and oxyhaemoglobin because their absorption spectra are similar; in the presence of these dyshaemoglobinaemias the SpO2 overestimates the oxygen saturation.6 Occasionally, dark fingernail polish or very dark skin will cause the oximeter to under-read by up to 5%. The relationship between SaO2 and PaO2 (arterial oxygen partial pressure) is described by the haemoglobin dissociation curve, but the curve is relatively flat above an SaO2 of 90%. Therefore, hypoxaemia may develop in patients with an initial high PaO2 with relatively little change at first in the SpO2.7 The ECG monitored heart rate should match that of the pulse oximeter; a difference in the readings implies that the pulse oximeter is not detecting arterial pulsation or that an artefact is contaminating the signal. Cardiac arrhythmias do not usually affect the accuracy of pulse oximetry but the use of vasoactive drugs may lead to under-reading of the SpO2.8 Dependent venous pooling or valvular insufficiency may cause venous pulsation resulting in erroneous readings; this also occurs during cardiac arrest.
  7. Normal arterial pressure waveform and (B) over-damped arterial pressure waveform, due to partially blocked arterial cannula or air bubbles in circuit. A pressurised flushing circuit maintains a low flow of saline to keep the cannula patent. The system is calibrated against zero by opening the transducer to air. Arterial blood pressure is an unreliable marker of cardiac output because the latter is influenced significantly by systemic vascular resistance (SVR). Critically ill patients have a very variable SVR, ranging from very low in septic shock to very high in cardiogenic or hypovolaemic shock. Arterial pressure is also affected by changes in intravascular volume and cardiac output. A significant decrease in mean arterial pressure (MAP) in the critically ill patient often signifies inadequate blood flow to vital tissue. Autoregulatory mechanisms in the vasculature of the brain and kidney may fail because of this impaired oxygen delivery and the perfusion of these organs is then a direct function of the blood pressure. MAP is the main determinant of blood flow to tissues but is not simply the average of the systolic and diastolic pressure. Electronic arterial pressure monitors derive MAP from the area under the pressure waveform and the duration of the cardiac cycle. Insertion of arterial catheters can cause several complications including thrombosis, embolism, haematoma, pseudoaneurysm, ischaemic necrosis, and infection. Despite these potential complications, invasive direct blood pressure monitoring is a very valuable tool and is essential for monitoring when inotropic and vasopressor drugs are being used and when anaesthesia is induced in a critically ill patient.
  8. Central venous pressure (CVP) is a potentially useful but often misinterpreted tool for assessing the intravascular volume status of the critically ill patient. Although the CVP is useful for guiding fluid therapy in the critically ill, single CVP measurements correlate poorly with intravascular volume. Central venous catheters are inserted usually into the internal jugular or subclavian vein. Recent National Institute of Clinical Excellence (NICE) guidelines recommend the use of ultrasound to guide insertion.9 The Seldinger technique is used for insertion and the CVP measured using a pressure transducer. Normal CVP is very variable and depends not only on intravascular volume, but also on patient position, venous tone, intrathoracic pressure, and cardiac valvular disease. Depending on the circumstances, a value anywhere between 6 and 20 mm Hg could be compatible with normovolaemia. The ventricular preload is determined by the transmural vascular pressure (intravascular minus extravascular pressure), but the CVP transducer measures only intravascular pressure. Changes in the capnograph waveform occur in significant clinical conditions, such as airflow obstruction or increased dead space ventilation (as seen with pulmonary embolism). During spontaneous breathing, the intrathoracicpressure is usually close to zero at the end of expiration and therefore the CVP should be measured at the end of expiration. The measured CVP may fluctuate spontaneously by a few mm Hg without any change in the clinical condition of the patient. The adequacy of intravascular volume is determined by watching the response of the CVP after a fluid bolus of 250–500 ml: no change or a small temporary increase in CVP implies hypovolaemia, a sustained small rise implies normovolaemia, and a significant and rapid rise may indicate hypervolaemia. There will be a discrepancy between the CVP and left side heart filling pressures in patients with chronic obstructive pulmonary disease, pulmonary hypertension, or mitral valve disease. Complications of insertion include pneumothorax, haemothorax, and arterial puncture, as well as later infective complications. Figure. Schematic of physical arrangement for setting central venous pressure. Venous return, intercepted via a cannula in the right atrium, was pumped into the pulmonary artery. Between the right atrium and the pump was a section of flexible tubing and a "Starling resistor". The latter is formed with a length of flaccid tubing so that it collapses if intramural pressure becomes even slightly subatmospheric. It serves as a visual indicator and controller of pressure, a convenient means of verifying that pressure is zero at the inflow end. In solid lines, the resistor and connecting tubing are shown as located 10 cm below the reference level of the heart. With zero pressure at the entrance to the Starling resistor, this means that pressure at the right atrium is -10 cm. In dashed lines, the assembly is shown elevated 10 cm above the heart. After appropriate adjustments of pump rate, pressure at the entrance to the Starling resistor is again zero. Five centimeters below, pressure in the right atrium is therefore at + 10 cm. In the schematic representation of the peripheral vasculature, the solid lines represent the volume distribution in the venous vasculature when pressure in the right atrium was -10 cm. With this low pressure in the large collecting veins, represented as the segment nearest the heart, distending pressure is low and volume within the segment is correspondingly low. Pressures are relatively high in the peripheral veins, shown bulged out in the representation of volume in the peripheral vasculature. After elevation of the Starling resistor to produce positive pressure in the right atrium, the distribution of flow is altered in the direction suggested by the dashed lines. The volume in the segment near the heart is relatively large, increased by D V, due to the larger distending pressures. At the low level of cardiac output associated with the condition of high central venous pressure, pressures are relatively low in the peripheral venous vasculature; the dashed line suggests the corresponding reduction of volume by DV . Changes of volume in the relatively incompliant arterial vasculature are ignored.
  9. Measurement of pulmonary artery mixed venous oxygen saturation (SvO2) has been advocated as a useful index of tissue oxygenation and it has been demonstrated that patients with a wide variety of critical conditions such as cardiac failure and sepsis have a poorer outcome when the SvO2 is decreased. However, this measurement requires the insertion of a pulmonary artery catheter (PAC), which is relatively invasive and associated with several complications. The use of PACs is on the decline and they are being replaced gradually by non-invasive cardiac output monitors. The monitoring of central venous oxygen saturation (ScvO2) has been advocated as a simple method of assessing changes in the global oxygen supply-to-demand ratio in various clinical settings.10 The advantage of ScvO2 measurement is that it requires only the insertion of a central venous catheter rather than a PAC. A recent prospective randomised study conducted in an emergency department comparing two algorithms for early goal-directed therapy in patients with severe sepsis and septic shock has demonstrated the utility of ScvO2 monitoring in improving the outcome from early sepsis.11 Maintenance of ScvO2 above 70% (in addition to maintaining CVP above 8– 12 mm Hg, MAP above 65 mm Hg, and urine output above 0.5 ml/kg/h) resulted in a 15% absolute reduction in mortality compared to the same treatment without ScvO2 monitoring. These findings have rekindled interest in ScvO2 measurements in critically ill patients. In healthy individuals, ScvO2 is slightly less than SvO2; however, for patients with shock, ScvO2 becomes greater than SvO2, particularly in sepsis. This is because of the redistribution of blood towards the cerebral and coronary circulation, away from the splenic, renal, and mesenteric vascular system. In critically ill patients, changes in ScvO2 paralleled changes in SvO2 and therefore the absolute differences between the two measurements are less important. 12 Measurements are not affected by any of the variables that might influence reflection spectrophotometry, such as dysfunctional haemoglobins, abnormal pH, and blood temperature.
  10. Temperature monitoring is a vital but often neglected part of the management of a critically ill patient. Hypothermia causes coagulopathy and increases blood loss as well as depressing the functions of all organs. Rewarming increases cardiovascular instability because of vasodilatation and shivering. These patients often have substantial oxygen debt and this is exacerbated by shivering. Adrenergic responses are increased in hypothermia and this increases cardiac morbidity. Peripheral temperature reflects tissue perfusion and is affected by vasoconstriction and low cardiac output. Core temperature can be monitored at the tympanic membrane, oesophagus, bladder, or rectum. In shock there is an increased gradient between core and peripheral temperature and this provides a useful non-specific monitor of the effectiveness of resuscitation. Thermistors are used commonly for monitoring core temperatures and are based on the principle of changing resistance with temperature. Core temperature can be assessed rapidly using non-invasive tympanic thermometers, but these are not always reliable in critically ill patients.13 Oesophageal and urinary bladder methods measure temperature continuously but have the disadvantage of being suitable only for intubated and sedated patients, or patients with a urinary catheter, respectively.14 Studies have shown that oesophageal and urinary bladder methods are highly reliable and superior to rectal methods.