SlideShare una empresa de Scribd logo

Algebra banco unprg

1. El documento contiene 25 problemas de álgebra que involucran operaciones como división de polinomios, cocientes notables y simplificación de expresiones algebraicas. 2. Los problemas van desde determinar residuos y sumas de coeficientes hasta calcular valores numéricos y relaciones entre variables. 3. El documento provee una serie de ejercicios para practicar diferentes conceptos y técnicas algebraicas.

1 de 21
Descargar para leer sin conexión
-1-
Álgebra
1. Al dividir )2x()3x( -- entre )1x( - el residuo
es 1R . Al dividir )1x()2x( -- entre )1x( + el
resto es 2R . Determinar 21 RR + .
a) 5 b) 6 c) 7 d) 8 e) 9
2. Si al dividir 3bxax4
-+ entre 1x 2
- se obtiene
un cociente exacto. Hallar 22 baba ++
a) 3 b) 6 c) 9 d) -6 e) -2
3. Calcular el valor de “a” para el cual el trinomio
baxx7 ++ es divisible entre
2
)1x( +
a) –5 b) -4 c) –6 d) -7 e) –8
4. En la división exacta :
bx2x3
ax10x5x4x6
2
234
++
+--+
Hallar 22 ba +
a) 625 b) 25 c) 650 d) 620 e) 600
5. El término independiente del cociente de:
23x
6212x32x22x)23( 35
--
++--- es:
a) 32 - b) 23 +
c) 13 + d) 23 - e) 12 +
6. Calcular el valor de pnm ++ sabiendo que el
polinomio:
pnxmxx8x10x11x6 23456
++++-+ Es
divisible entre: 2xxx3 23 +++
a) –4 b) 7 c) –1 d) 5 e) –9
7. Del esquema de Ruffini:
Determinar la suma de los coeficientes del dividendo.
a) 1 b) 2 c) 3 d) 0 e) –1
8. El residuo de la siguiente división:
b1x
bbxbxx)2b(x 2234
--
+++++-
, es:
a) 1 b) 2 c) -1 d) -2 e) 0
9. Un polinomio P(x) de tercer grado tiene siempre el
mismo valor numérico 1 para x = -2, - 3, -4,
sabiendo que al dividirlo entre ( x – 1) el residuo es
121. Calcular el resto de dividirlo entre (x – 2).
a) 122 b) 119 c) 239 d) 241 e) 242
10. Hallar el valor numérico para x = -1 del término de
lugar 31 del cociente notable:
( )
3x2
x3x 3636
+
-+
a) 128 b) 64 c) 144 d) 16 e) 32
11. El término central del cociente notable
48z
37
yx
baes
ba
ba
-
-
Calcular el valor de ( x – y + z )
a) 343 b) 159 c) 197 d) 244 e) 315
12. La suma de todos los exponentes de las variables del
desarrollo de:
44
100100
yx
yx
-
-
es:
a) 2400 b) 2500 c) 2600
d) 2700 e) 2800
13. Si el residuo de la división del polinomio P(x) entre
)4x( + es 7 y la suma de los coeficientes del
cociente es 6. Hallar el residuo de dividir P(x) entre
)1x( - :
a) 0 b) 30 c) 7 d) 37 e) 51
14. Hallar el resto de la división:
)2x()1x(
x3
++
:
a) 7x+5 b) 7x+2 c) 7x+6
d) 6x-1 e) 3x-1
15. Hallar “n” si la división:
4x3
nx9x16x12 2930
+
+++
, es exacta:
a) 6 b) 8 c) 10 d) 12 e) 16
16. Calcular el resto en:
2x2x
)4x()8x()1x(
2
3n4
+-
-+-
:
a) -20 b) 40 c) 20 d) 14 e) -10
17. Si el cociente notable
1x
1x
a
8
+
-
tiene 4 términos,
entonces el valor de la suma:
3aa..........aaa 2789 ++++++
a) 1024 b) 1025 c) -1024
d) -1025 e) 1026
18. ¿Qué lugar ocupa en el desarrollo del C.N.
74
280160
yx
yx
-
-
, el término con grado absoluto igual a
252?
a) 30 b) 31 c) 32 d) 33 e) 34
A B C P
1 1 2 3
A D E 0
-2-
19. Hallar el número de término del C.N.
3n21n
11n69n3
yx
yx
--
++
+
+
a) 7 b) 6 c) 8 d) 9 e) 4
20. En la división
6x
12x6x6x62x 234
-
-++-
, el coeficiente
del término lineal del cociente es :
a) - 6 b) 6 c) 1 d) 0 e) 6
21. Hallar el valor de m.n si al dividir el polinomio x4
+
2x2
+ mx + n entre el polinomio x2
– 2x + 3, resulta
un cociente exacto.
a) 6 b) 5 c) 3 d) 4 e) 0
22. El coeficiente del término lineal del cociente que
resulta al dividir:
6x3
- 19x2
+ 19x – 16 entre 3x – 2 es:
a) 1 b) –5 c) 3 d) 4 e) -4
Calcular ab
si el polinomio
P(x) = x3
+ ax +b es divisible por (x-1)2
a) 12 b) 6 c) 16 d) 9 e) 25
23. ¿Qué valor debe asumir “m” para que la suma de
coeficientes del cociente de la división:
2x
mx3xx5x2 234
-
+++-
, sea igual al resto:
a) -2 b) -1 c) 1 d) 2 e) 0
24. Indicar la suma de coeficientes del cociente y
residuo al dividir:
5x3x
15x30x13xx
2
234
++
----
:
a) -9 b) 13 c) 10 d) 14 e) 1
25. Determinar el valor de “m” en el C.N.
1m5m
5m121m5
yx
yx
--
--
-
-
a) 10 b) 6 c) 7 d) 8 e) 12
26. Calcular el valor de “a” para que la suma de
coeficientes del cociente sea 161 y resto 16, en
1x
ab2xb2xa 51
-
-++
a) 1 b) 2 c) 3 d) 4 e) 5
27. Hallar a + b + c + d + e + f , si en la división
2xxx3
fxexdxcxbaxx21
23
23546
--+
++++++
el cociente
tiene coeficientes que van disminuyendo de 2 en 2 y un
residuo igual a 3
a) –4 b) –2 c) 2 d) 4 e) -3
28. Uno de los términos del desarrollo del cociente
notable
x
y)yx( nn
-+
es
1325
y)yx( + . Hallar el
lugar que ocupa dicho término contado a partir del
final:
a) 24 b) 25 c) 26 d) 27 e) 28
29. Al dividir un polinomio P(x) entre )ax2( a
+ se
obtiene como residuo (-1) y un cociente entero
cuya suma de coeficientes es 5. Hallar el valor de
“a”, si al dividir P(x) entre (x - 1) se obtiene como
residuo 29.
a) 4 b) 3 c) 2 d) -2 e) –4
30. Sean:
)1xx...xx(A nn2n19n20
+++++= , y
)1xx...xx(B nn2n19n20
+-++-=
Hallar el número de términos de A.B.
a) 20 b) 21 c) 40 d) 42 e) 42n
31. El resto de la división:
)xy(2)1yx(
)xy()yx(
2
2729
-++-
---
,
es:
a) yx - b) y2x2 -
c) x2 d) y2- e) 0
32. Determinar un polinomio mónico de cuarto grado
que sea divisible separadamente por x2
– 3x + 2; x2
– 4; x2
+ x – 2 y al ser dividido entre x – 3
deja un resto igual a 100, luego indique el residuo de
dividir dicho polinomio entre x + 1.
a) 18 b) 34 c) 36 d) 72 e) 48
33. Sabiendo que xa
y24
es el término central del
desarrollo del cociente notable
x75
– yb
xc
– y2
Calcular a + b + c
a) 10 b) 40 c) 59 d) 89 e) 99
34. ¿Cual es el resto que se obtiene al dividir 2x119
+ 1
entre x2
– x + 1
a) 3-2x b) 2x-3 c) 3+2x2
d) 2x2–3 e) 3-x
35. Si xm
– 8 entre (x-2) es una división notable
exacta, calcule el valor numérico de:
m39
- m38
+ m37
–........... – m2
+ m – 1
m35
- m30
+ m25
–........ – m10
+ m5
– 1
a) 142 b) 121 c) 216 d) 125 e) 61
36. Calcular el número de términos fraccionarios en el
cociente notable
23
6090
xx
xx
-
-
-
-
a) 10 b) 12 c) 15 d) 18 e) 20
37. Calcular el resto de dividir
3x2
9x6x54x8x16
n
n2n1n32n4
-
---+ +++
a) 27x-13
b) 27x c) 27x-18
d) 27 e) 18
38. Sabiendo que al dividir
1313
22
mm
nn
yx
yx
--
-
-
, el segundo
término de su cociente es 816 yx . ¿Cuántos término
posee el cociente notable?:
a) 4 b) 3 c) 5 d) 7 e) 6
39. Calcular el número de términos del desarrollo del
C.N. que tienen los términos consecutivos
-3-
......+ x 70
y 12
- x 63
y 15
+......
a) 14 b) 15 c) 16 d) 17 e) 18
40. Hallar el valor de:
22
ba + en:
3
4
3
ba
baba
a b
b a
=-
a) 13 b) 18 c) 14 d) 15 e) 10
41. Luego de resolver la ecuación exponencial:
5,0x
5,0
x
=
el valor de x toma la forma
n
4 donde “n” es igual a:
a) -4 b) -7 c) -10 d) -12 e) -16
42. Reducir:
( ) ( ) ( )
y
zx
.
zyx
zxyzxy
A
11
n
nnn
nnn --
---
++
++
=
{} 0xyz;1Nn ¹-Î"
a) 1 b) 0 c) x
d)
nnn
zyx e) xyz
43. Si: abx = , resolver:
( )
1xa
bx
ab
1
nn2
n2n
2
n
+
+
-
a) 1 b)
b
a
c) 2ab
d)
a
b
3 e) ÷÷
ø
ö
çç
è
æ 2
1
ab
44. Reducir:
( )
( )1xx
xx
4x
xxx5 xx
+
+
+
+
-
, si 5=x
x
a) 1 b) x c) x+1 d)
2
x e)
5
x
45. Hallar la relación entre “m” y “n” , si se cumple que:
m
n
nmnm
nmnm
n
m
n
m
m
n
m
n
n
m
÷
÷
ø
ö
ç
ç
è
æ
=
÷
ø
ö
ç
è
æ
÷
ø
ö
ç
è
æ
÷
ø
ö
ç
è
æ
÷
ø
ö
ç
è
æ
-+
-+
a) m = n b) 2m = n
c) mn2 = d) m + n = 2
e) mn = 1
46. Hallar el valor de "x" en:
1x2x
48
42
+-
=
47.
a) 2 b) 4 c) 3 d) 6 e) 9
48. Calcular “m ” si:
12 7
3
(0,5) (0,125) m
- -
- -
=
a) 14
27 b)
7
9 c)
7
3 3
d)
3
2 3 e)
14
3
49. Al simplificar:
2 2 2
2 2
1
3 2 1
2
5 5 5
5 5
n n n
n n
E
-
+ + +
+
é ù- +
= ê ú
-ê úë û
a) 5 b) 1/5 c) 35/8
d) 8/35 e) 1/8
50. Calcular
5
x
y x-
= , si se cumple:
5
5
3125
xxx
x
x =
a) 5 b) 5
5 c) 1/5
d)
5
5 e)
5
5-
51. Reducir
÷
÷
ø
ö
ç
ç
è
æ
÷
ø
öç
è
æ+÷
ø
öç
è
æ
÷
÷
ø
ö
ç
ç
è
æ
= 8/1
n/2
8 n4
n/4
8 n2
n8
n2
2
nn
n
1
K
a) 32 b) 64 c) 128 d) 256 e) 512
52. La simplificación de
1n 3 n273
646464E + --
=
a) 8 b) 6 c) 4 d) 2 e) 1
53. Si
24
2a
a = ;
18
3b
b = . Hallar
b a
a -
a) 512 b) 216 c) 8 d) 81 e) 256
54. Simplificar: yx
xyxy
yxyx
yx
yx-
--
--
+
+
a) x b) x/y c) xy d) y/x e) 1
55. El exponente final de “x” en:
25 3 3 800100505025
x5xxx6x5E --
= es:
a) 5 b) 4 c) 3 d) 2 e) 1
56. Efectuar:
9 7 5 3 22468
1010101010Q =
a)
5
10 b)
4
10 c)
3
10 d)
2
10 e) 10
57. Señale verdadero (V) o falso (F):
I. 4logyx
2
x
)x(P 12
8
++= -
es una E.A.R.E.
II.
22
3)( xyxxQ += no es una E.A.I.
III. ....xx1)x(N 32
+++= es una E.A.R.E.
-4-
IV.
3472/1
73/2412
zyx6
xzx3y)y,x(R
-
---
-
++=
es una E.A.R.F.
a) VFFV b) VVFV c) FVFV
d) FVVF e) VFVF
58. Si la expresión:
1n 3
1n 61n)1n(5 153n
x
zyxx
+
+++-
es
racional entera, entonces su equivalente es:
a)
62
yzx b) zyx 62
c)
62
zxy
d)
262
zyx e)
362
zyz
59. Si los términos algebraicos:
2 2
1 15
1( , ) (4 3 ) a b
t x y a b x y+ +
= +
2 2 8 1
2 ( , ) ( 4) a b
t x y ab x y -
= - son semejantes,
hallar la suma de sus coeficientes.
a) 0 b) 12 c) 16 d) 28 e) -16
60. Resolver: ( ) 8/1
xx
x
xx
x
=
úû
ù
êë
é -
a) 2-
1 b) 2 c) 1/4 d) 1/10 e) 2
61. Al simplificar:
3
2/1
1
2-
1-
2/13/2
yx
xy
yx
yx
ú
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ê
ë
é
÷÷
ø
ö
çç
è
æ
-
-
Se obtiene:
a) x b) 2x c) x/2 d) x2
e) 1/x
62. El exponente final de "x" al simplificar:
x x 1xx x
x
+
, es:
a) x b) 1 c) x d) x2
e) x + 1
63. Si E = n
nnn
nnnnnn
532
535232
---
++
++
, hallar
8
2E +
.
a) 8 b) 3 c) 4 d) 2 e) 6
64. Simplificar:
3
3
3
16
16
16
...444
E
M
=
a) 1 b) 2 c) 3 d) 4 e) 5
Hallar "m", si el exponente final de x en: 3
6 4m5
4 m1m
x
x.x
-
-
,
es la unidad:
a) 1 b) 2 c) 3 d) 4 e) 8
65. Efectuar:
E =
111
543
32
1
16
1
8
1
---
---
÷
ø
ö
ç
è
æ
-+÷
ø
ö
ç
è
æ
+÷
ø
ö
ç
è
æ -
a) -6 b) -4 c) -2 d) 0 e) 2
66. Si la expresión
3
2
x
xx
es equivalente a xn
.
Entonces xn+1/n
es:
a) EARE b) EARF c) EAI
d) Exponencial e) Trascendente
67. La expresión:
x x )x1(1)1x1(1n m )mn(
x
- +--+-
Se puede clasificar como:
a) EARE b) EARF c) EAI
d) b y c e) Trascendente
68. ¿Qué valor mínimo debe tener "n" para que: x
3 3 3 n11
xxx ---
sean EARF
a) 42 b) 27 c) 15 d) -1 e) 12
69. Resolver: 1x
5,0x
04,0
55
2,0 -
-
=
a) 0,2 b) 3/2 c) -2 d) 3 e) 5-1
70. Señale el producto de:
3(6 4) 2
5 12 1
1 3 3 3
( 1) (5 1)
5 . ... 4
. . ... 2 . ...
n veces
n n
n
n veces n veces
x x x x x
x x x x x x x x
- -
+ +
-
+ - - -
ì üì ü ì ü
ï ïï ï ï ïï ï
í ýí ý í ý
ï ïï ï ï ï
î þ î þï ïî þ
64748
14243 14243
a)
9
x b)
9
10x c) 5x d) 2x e) 10
71. Luego de reducir:
2
1
5 6
10
( 2 )( 3)
x x
x x
x x
E
x x x+
- +
= +
- -
la expresión algebraica que resulta es:
a) Irracional b) exponencial
c) trascendente d) racional fraccionaria
e) racional entera
72. Si 2
a
a
a = , el valor de
2
2
aa a
a
E a
+
= es:
a) 256 b) 128 c) 64 d) 32 e) 16
73. Si
p
p nn n
m m
-
= . Hallar “ p ”
a) -1 b) 1 c) 0,5 d) -0,5 e)0,25
74. Simplificar la expresión:
E =
30
16
x
x
x
x
1
-
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ë
é
a) x b) x c)
2
x d)
1
x
e) 1
75. Sabiendo que:
13
13 13
13x = simplificar y encontrar
el valor de:
1313 13 1313 13
13
13 13x x x
E x x xé ùé ù= + +ë û ê úë û
-5-
a) x b) 13
13 c) 13 d) 26 e) 39
76. Siendo
3 2
1
m m n
t mx y+ +
=
2 1 3 1
2
n m
t nx y- +
=
términos semejantes.
Calcular:
3 2
3 2m n+
a) 18 b) 42 c) 24 d) 22 e) 0
77. Resolver:
62
2
3
x
x
x =
a) 3
6 b) 3
3 c) 6
3
d) 6
6 e) 18
18
78. En la ecuación: 16 256 60.4x x
- = el valor de
x
x es:
a) 8 b) 2 c) 16 d) 27 e) 4
79. Reducir:
19899
9999
99 99
99 99 99
99M
+
úû
ù
êë
é
=
a) 9 b) 99 c)
9
9 d)
99
9 e)
11
9
80. Si:
2
2 1 2 1 2x
x x
x
- +
= - . Indicar el valor de:
2
2x
E x=
a) 27 b) 81 c) 9 d) 16 e) 25
81. Calcular el grado del polinomio:
P(x,y) = n4yn5
8
xy2n4x -+-+-
a) 4 b) 5 c) 6 d) 7 e) 9
82. Si los polinomios:
R1(x,y) = [a2
(a+b)+3] 3by2b12ax ++-
( ) ( ) ( ) 1b4y2b1a2x4abyx,2R -+-+=
son idénticos, hallar: a2
+ b2
a) 0 b) 14 c) 16 d) 8 e) 17
83. Hallar “a” si la expresión:
M(x) =
22a
1a2a1aa3a5a
)3xx(
)1xx.()5xx(
+-
+-++ --+++
Sea de grado 64; ( a > 0)
a) 1 b) 3 c) 5 d) 8 e) 10
84. Si el polinomio es idénticamente nulo: P(x) =
a(3x2
-x+2) + b(2x-1) – c(x2
-x) – 6x
Calcular: a+b+c
a) 1 b) 2 c) 4 d) 6 e) 8
85. El grado de homogeneidad del polinomio :
)yx.(y.x3)y,x(P 3n271n2m ---
+= es 16. Hallar :
m - n
a) 1 b) 2 c) 3 d) 4 e) 5
86. Halle la suma de coeficientes del polinomio
homogéneo.
( )
( ) 3ba
xy2n
2
nb5
8
y
3
n3n
x
2
n4b2a2
25n
y
3
n
xna5y)P(x;
+
-+-
+
---
+
+=
÷
ø
öç
è
æ
÷
ø
öç
è
æ
a) 22
b) 40 c) 45 d) 27 e) 30
El grado de:
n
Q(x)
3
(x)
3
P.H(x)
÷
÷
÷
ø
ö
ç
ç
ç
è
æ
es: 3n
Calcular el grado de:
ú
ú
û
ù
ê
ê
ë
é
Q(x)
3
H(x)
. P(x)
a) 1 b) 2 c) 3 d) 4 e) 5
87. Si a, b, c, pertenecen al conjunto de los naturales y el
desarrollo de ( ) ( ) ( )cba
2cx1xaxP ++= es un
polinomio completo de 85 términos, cuyo término
independiente es 72 y su coeficiente principal es 243,
entonces el valor de (a + b + c) es:
a) 19 b) 21 c) 23 d) 24 e) 81
88. Sabiendo que “P” y “Q” son dos polinomios tal que
GA(P)=5 y GA(Q)=3; entonces indicar el valor de
verdad de las siguientes afirmaciones:
I. Grado de ( 22
QP + ) = 8
II. Grado de (P2
Q2
+Q2
) = 22
III. Grado de (P2
+ Q2
)2
=20
a) VVV b) FFV c) FVF
d) FFF e) VVF
89. En el polinomio:
( )
1n3m
2n2mn1m1nm
yx6
yx7yx3yx2y,xP
++
+---
+
++=
el grado
relativo a “x” es 12 y el grado absoluto del polinomio es
18. Hallar el grado relativo a “y”.
a) 1 b) 3 c) 5 d) 7 e) 9
90. Sea P(x) un polinomio mónico de primer grado tal
que: P(P(x))=4+ P(x), hallar la suma
de coeficientes:
a) 5 b) 4 c) 3 d) 2 e) 1
91. Dado el polinomio homogéneo
P(x,y) = nmmy6mx6y2nx
nmmx2m
+
++
-
Hallar la suma de sus coeficientes.
a) 4 b) 5 c) 6 d) 7 e) 8
92. Si el polinomio:
P(x,y) = (4a+2)x2b-a
y3
-(b+1)xa+b-6
+abx3a-4b
ya-b
Es completo y ordenado con respecto a “x” en forma
decreciente, hallar la suma de sus coeficientes.
a) 6 b) 16 c) 26 d) 28 e) 32
93. Dado el polinomio:
P(2x-3) =(2x+3)4m
+2(12x-6)2m
+(2x+1)2m
Calcular “m", si su término independiente es igual a 1
600.
a) 1 b) 7 c) 0 d) 3 e) 2
94. En el polinomio
-6-
P(x) = (1 + 2x)n
+ (1 + 3x)n
La suma de coeficientes excede en 23 al término
independiente.
Según ello establecer el valor de verdad de las siguientes
proposiciones:
I. El polinomio P(x) es de grado 2
II. La suma de sus coeficientes es 25
III. El término cuadrático de P(x) es 12x2
a) VVV b) VFV c) VVF
d) FVV e) FFV
95. Sea el polinomio: P(x + 1) = x2
+ 1, si el polinomio
Qx) se define así:
Q (x) =
î
í
ì
<-+
³++-
1sixx)P(P(x)
1six1)P(x1)P(x
Determinar: Q(0) + Q(1)
a) 5 b) 6 c) 7 d) 8 e) 10
96. Sean los polinomios idénticos:
P(x) = (m + n)x2
+ (n + p) x + m + p
Q(x) = 2
÷
÷
ø
ö
ç
ç
è
æ
++
n
1
m
x
p
2
x
mnp
Calcular: M =
2p)n(m
2p2n2m
++
++
a) 2/5 b) 3/5 c) 5/3 d) 2/3 e) 1/3
97. Si el polinomio:
P(x,y) = bxa-1
- cx2n
ym+c
+ axa+b
yn
- ny2n-5+a
Es homogéneo y la suma de sus coeficientes es 4.
calcular: m2
+ n2
.
a) 10 b) 20 c) 15 d) 30 e) 25
98. Dados los polinomios P(x) y Q(x), se sabe que los
polinomios: P(x) . Q5
(x) y
(x)
2
Q
(x)
5
P
, son de grado 13 y
11 respectivamente.
Hallar el grado de P2
(x) . Q(x).
a) 7 b) 9 c) 10 d) 11 e) 8
99. Sean los polinomios:
P(x) = 2x2
- 15 Ù Q(x,y) = 2x + 3y – 2
Hallar el término independiente del polinomio H(t); H(t)
= Q(P(3), 3t - 1)
a) -5 b) -15 c) -2 d) 1 e) 7
100.Sean los polinomios:
A(x) = 2x3
+ 5x2
+ 4x + 1
B(x) = (ax + b)c
(cx + d)a
+ k
K ¹ 1; donde: A(x) – B(x) º 0
Calcular:
)
a
.c
c
(a
k1
a
d
c
b
÷
÷
ø
ö
ç
ç
è
æ
-
a) -1 b) 2 c) 1 d) -2 e) 4
101.Se tiene un polinomio de cuarto grado cuya suma de
coeficientes es 5 y el término independiente es 2.
Además
P (x - 1) - P(x) = P (x + 1) + x
Hallar: P(0) + P(-1) + P (1) + P(2)
a) 8 b) 9 c) 10 d) 11 e) 12
102.Un polinomio cuadrático mónico P(x) genera el
siguiente resultado:
P(x) x
3 1
7 2
Calcular el término independiente de P(x)
a) 0 b) 4 c) 2 d) 1 e) 5
103.Si la expresión:
1bby26x5b255y1aax3a)y,x(P -+-=
se reduce a un monomio. Hallar su coeficiente
a) 1053 b)1052 c)1051
d)1050 e)1049
104.Si los polinomios definidos por
5y5x5)yx()y,x(P --+= y
)3y3x(mxy2)yx(2mx)y,x(Q +++=
son equivalentes, hallar “m”
a)2 b)4 c)5 d)6 e)7
105.Si la expresión:
5 4 16x8a4x9a2x16a2x8)x(E =
es de 2º grado, entonces el valor de a es:
a) 2 b) 3 c) 4 d) 5 e) 9
106.Si el monomio:
6by7a5ax3)y,x(M --= , es de grado 23 con
respecto a “x” y de grado 12 con respecto a y.
Entonces el valor de b/a es
a) 3 b) 5 c) 7 d) 9 e) 11
107.Si el grado absoluto de:
P(x,y) = x3n-1
yn
– 2x2n-2
y2n
+ xn-3
y3n
Es 11. Calcular el valor de “n”.
a) 3 b) 5 c) 7 d) 9 e) 11
108.Calcular el valor del coeficiente del monomio:
( ) nm5n2m3m
yxn4y,xS -+
=
si su grado absoluto es 10 y el grado relativo con respecto
a “x” es 7.
a) 10 b) 8 c) 6 d) 12 e) 9
109.Hallar el grado del producto:
P(x) = (6x2
+1)2
(x2
+x+1)5
(x3
-8)
a) 15 b) 7 c) 20 d) 17 e) 19
110.Si: x
b
a
bax
bax
P =÷
ø
ö
ç
è
æ
-
+
, calcular:
)10(P)....4(P).3(P).2(P
a) 5 b) 25 c) 55 d) 35 e) 45
111.Sea: P(x) = 2 + x2003
– 3x2002
Calcule:
a) 2 b) 2002 c) –2 d) 0 e) 2003
112.Hallar el grado de P(x):
5
)2x)(3x(2)1x2x(
)8x)(5x)(2x()83x(5)1x2x(3)12x6(
)x(P
+--+-
++-+-+++
=
)2003()2002(
)1()3(
PP
PP
+
+ -
-7-
a) 3 b) 5 c) 8 d) 9 e) 10
113.Hallar )ba( + si el polinomio es homogéneo:
20208abba83aa
yabxybxyax)y,x(P -+= ++
a) 2 b) 4 c) 6 d) 8 e) 10
114.Hallar "n" para que la expresión sea de segundo
grado:
4 n2
3 n2
xzxcx
cxbxax
)x(M = , x ¹ 0
a) 40 b) 80 c) 20 d) 10 e) 160
115.Si el polinomio:
( ) ( ) ...22122)( 22122 +-+-+= -- aaa xaxaaxxP es
completo y de ( )a+4 términos, hallar el valor de a.
a) 6 b) 5 c) 4 d) 3 e) 2
116.En base a los polinomios idénticos:
( ) ( )
( ) 72n
2n1n2
xm3x
4
p
)x(Q
x3nx5m)x(P
-+=
-+-=
-
--
Establecer el valor de verdad de las proposiciones:
I. La suma de sus coeficientes es 0.
II. Son de grado 7
III. El valor de: 22
pn
m
+
es 0,125.
a) VVV b) VVF c) VFV
d) VFF e) FVV
117.Siendo: 1x)1x(F n
-=+ , Halle “n” si:
8
7
)3(F
-
=
a)
3
1-
b)
3
1
c)
3
2
d)
3
2-
e)
5
1
118. Si: 3mx)x(P 2
-= y
9x28)x3(P)x2(P)x(P 2
-=++ Hallar el valor de
“m”
a) 1 b) 2 c) 4 d) 5 e) 7
119.Si
12
1ka += ; calcular el valor de
kaaaaaaaa -+--+++-+ )1)(1)(1)(1)(1( 222242
a) 0 b) 2 c) 3 d) -1 e) -2
120.Si a + b + c = 0 ; calcular:
222
222
cba
)a2cb()b2ca()c2ba(
E
++
-++-++-+
=
a) 0 b) 3abc c) 3 d) 6 e) 9
121.Para a.b ≠ 0 , simplificar:
[ ]
233233
222222
)()(
)(4)()(
baba
bababa
E
+--
---++
=
a)
ab
2
b)
ab
2
- c)
ab
4
-
d)
ab
4
e)
4
ab
122.Simplificar:
44
3333
ba
)ba)(ba()ba)(ba(
E
-
+-+-+
= a) a
b) ab c) 2a d) 2 e) 2b
123.Calcular valor de:
ab
x
bx2a
)bx)(ax(
E
3
-
++
++
=
Si: 2
)ba()bx2a)(bx2a( -=+-++
a) x b) ab c) 0 d) 1 e) 2
124.Si: 5abc5cba ==+++ , el valor de la expresión;
444
)ca(ac)cb(bc)ba(abE +++++= ; es:
a) 15 b)25 c) 50 d) 75 e) 85
125.Si la expresión: 5cx6x3 2 -++ es un trinomio
cuadrado perfecto, hallar el valor de “c”.
a) 3 b) 5 c) 6 d) 8 e) 12
126.Si 27)a3b(b)b3a(a 2222
++=+ , entonces
un valor para a-b es:
a) -3 b) 0 c) 2 d) 3 e) 27
127.Determine el grado del producto :
factores10).....5x)(3x)(1x()x(P 963 +++= a) 30 b)
90 c) 120 d) 150 e) 165
128.Si a, b, c Î RÙ a2
+b2
+c2
= ab+bc+ca
Hallar el valor de:
1n
n
nnn
)cba(
cba
A -
++
++
=
a) 1 b) 2 c) ½ d) 3 e) 1/3
129.Efectuar:
M =(x+a)(x – a)(x2
+ax + a2
)(x2
– ax + a2
)
a) x3
– a3
b) x6
– a6
c) x3
+ a3
d) x6
+ a6
e) x + a
Si x + y + z = 0 . El equivalente de:
( ) ( ) ( )
( )( )( )xz3zy3yx3
xz3zy3yx3
E
333
+++
+++++
= a) 1 b) 2
c) 3 d) 4 e) 5
130.Si x + x -1
= (0,5) -1
. Determinar
n32
n321
x...xx
xx...xxxE
+++
++++++= ----
a) 2 b) 2n c) 4n d) n e) n/2
131.Si a + b =
3
3 y a – b =
3
2 .Hallar
)3)(3(4 2222
abbaabE ++=
a) 4 b) 5 c) 10 d) 12 e)18
132.Si (x+y+2z)2
+ (x+y-2z)2
= 8(x+y) z. Hallar :
333
z2
yx
xz
zy
yz
zx
E ÷
ø
ö
ç
è
æ +
+÷
ø
ö
ç
è
æ
-
-
+÷÷
ø
ö
çç
è
æ
-
-
= a) 0 b) 1
c) 3 d) 5 e) 9
133.Dado que 32x += , el valor de
22
xx -
+ es:
a) 2 b) 5 c) 1 d) 8 e) 14
134.Si:
331
aa)aa(F --
+=+ , hallar F(3)
-8-
a) 18 b) 27 c) 36 d) 72 e) 81
135.Si: 3
x)x(P = , [ ] 1x3x3x)x(q(P 23
+++= .
Hallar: )5(q :
a) 3 b) 6 c) 9 d) 12 e) 13
136.Si: a + b + c = 0, abc = 5 , hallar
333
)c2ba()cb2a()cba2(E ++++++++=
a) 5 b) 9 c) 18 d) 15 e) 45
137.Conociendo que:
ax+by = 8 ay – bx = 6
a2
+b2
= 5
Calcule : x2
+y2
a) 16 b) 18 c) 20 d) 24 e) 25
138.Dados : x+y = 3
x3
+y3
= 9
Luego x.y resulta :
a) 1 b) –1 c) 2 d) –2 e) 3
139.Si: babaxbax +=---++
Calcular ( )baxbaxE +++--=
a) a+b b) x – a c) 2 d) a.b e) a.c
140.Si: (a+b)=3 y ab=2. Calcular
22
33
ba
ba
N
+
+
=
a) 5/9 b) 5/7 c) 7/5 d) 9/5 e) 2/4
141.Siendo: ab = 110100 33
+- Ù
322
101+=+ ba .
Determine el valor de (a - b)4
- (a + b)4
a) 44 b) 22 c) – 88 d) 45 e) 88
142.Sabiendo que: a – b = b – c = 7
7 . Determine el
valor numérico de:
70
)ba()cb()ca( 777
-+-+-
a) 10 b) 13 c) 2 d) 16 e) 12
143.Si: 5abc5cba ==+++ , el valor de la expresión
444
)ca(ac)cb(bc)ba(abE +++++= ; es:
a) 15 b)25 c) 50 d) 75 e)85
144.Si
12
1ka += ; calcular el valor de :
m)1xx)(1x(
)1xx)(1xx)(1x(E
22
2242
-+--
+++-+=
a) -2 b) -1 c) 0 d) 2 e) 3
145.¿Cuál es el valor de verdad de las siguientes
proposiciones?
Ø El grado del polinomio producto, es igual a la suma
de los grados de los polinomios factores.
Ø El término independiente del polinomio producto es
igual al producto de los términos independientes de
los factores.
Ø El coeficiente principal del polinomio producto es
igual al producto de los coeficientes principales de
los factores.
Ø El coeficiente principal es el mayor coeficiente de los
términos de un polinomio.
a) VVVV b) VVVF c) VFVF
d) FVVF e) FFFV
146.Si a + b + c = 3 y 9cba 333
=++ ,
Calcular: )ac)(cb)(ba(N +++=
a) 4 b) 5 c) 6 d) 7 e) 8
147.Si 01x3x 24
=+- , hallar
86
848688
x
xxx
E
++
=
a) 8 b) 6 c) 4 d) 2 e) 1
148.Si a ≠ 1 Simplificar:
ú
ú
û
ù
ê
ê
ë
é
-+
--
-
--
-+
-
=
1aa
1aa
1aa
1aa
1a
1
W
2
2
2
2
2
a) 4 b)
2a c) 3a d) 4a e) 5a
149.El área de un cuadrado de lado (a+b) es 8 veces el
área de un triángulo de base “a” y altura “b”.
Calcular;
222222
44
)ba4()ba4(
)ba()ba(
E
--+
--+
=
a) 2 b) 3 c) 4 d) 1 e) 5
150.Si
5
5
yx
xy
22
=
+
, Entonces el valor de:
44
x
y
y
x
E ÷
ø
ö
ç
è
æ
+÷÷
ø
ö
çç
è
æ
= es:
a) 1 b) 2 c) 5 d) 7 e) 9
151.El valor entero de k que hace que el trinomio:
3k2x)3k5(x)1k( 2
++-++ , sea un cuadrado perfecto
es:
a) 2 b) -3 c) 3 d) -2 e) 7
152.Simplificar:
8
84
4
2
2
n
1
n
1
n
n
1
n
n
1
nK +÷
ø
ö
ç
è
æ
+÷
ø
ö
ç
è
æ
+÷
ø
ö
ç
è
æ
+=
Para ¸
Î+= Zn;1nn2
a) n b) -n c) 1/n2
d) n2
e) 1
153.Reducir:
22422
222422
)3x()3x(2)3x(
)1xx()1xx(2)1xx(
-+-++
+-+++-++
a) x b) 1 c) 2
x d) 2
x - e) 1
x-
154.Si 7
x
y
y
x
n
n
n
n
=+ , entonces el valor de
2
n
2
n
nn
yx
yx +
es:
a) 9 b) 7 c) 5 d) 2 e) 3
155.Dado el polinomio
nmz3my2nxn6z2my3nx5)y,x(P +-++--+= , donde
GR(x) – GR(y)=3 y GA=13, luego el valor de
(m+2n) es:
a) 5 b) 7 c) 10 d) 17 e) 18
156.Si xy = 1 , x, y > 0 , Calcular
1y
1x
.y
1x
1y
.xE 2
2
2
2
+
+
+
+
+
=
a) 5 b) 4 c) 3 d) 2 e) 1
-9-
157.Si 3cbba =-=- , hallar el valor de:
12
)ca()cb()ba(
E
222
-+-+-
=
a) 0 b) 1/5 c) 3/2 d) 3/5 e) 4/3
158.Hallar el valor de 3
nn
nn
y.x
yx +
,
Si: 62
x
y
y
x
nn
=÷
ø
ö
ç
è
æ
+÷
÷
ø
ö
ç
ç
è
æ
a) -2 b) 2 c) 1 d) 4 e) -4
159.Si se cumple que
12112mm
12m = . Hallar:
9m9m6mE ---+=
a) 2 b) 3 c) 4 d) 5 ) 6
160.Efectuar: 1
2
aa
2xx
+÷
÷
ø
ö
ç
ç
è
æ - -
a) 1 b) xx
aa -
-
c) )aa(5.0 xx -
- d) )aa(5.0 xx -
+
e) xx
aa -
+
161.Si: )yx(z4)zyx( 2
+=++ , determinar el valor de
z6 y3x3
36P +
=
a) 1296 b) 6 c) 6 d) 36 e)
3
6
162.El resultado de simplificar
2222
22222
]x9)8x)(1x[(
])22x()22x[(
-++
-++
, es:
a) )3x( + b)
1
)3x( -
+
c) 4 d) 3 e) x3
163.Si:
33
2121x -++= entonces el valor de
5x3x3
++ es
a) 7 b) 9 c) 6 d) 5 e) 4
164.Efectuar:
)7x)(13x()9x)(11x(
1)7x)(17x()12x(
P
2
++-++
+++-+
=
a) 13/4 b) 13/2 c) 1
d) 4/3 e) 4/13
165.Si:
8
8
23b
23a
-=
+=
, entonces hallar el valor de
23)ba)(ba)(ba)(ba(E 2244
+-+++=
a) 1 b) 25 c) 2 d) 2 e) 0
166.Si: 2
m
1
m 2
2
=+ , Entonces el valor de :
6
12
m3
1m
E
+
=
a) 2 b) 1 c) 3/2 d) 2/3 e) 2/6
167.Sabiendo que:
yx2
4
y
1
x2
1
+
=+ , entonces el
valor de
10
3
y2x
y3x
yx3
y2
x2
yx3
M +
+
+
+
+
+
+
=
a) 1 b) 2 c) 3 d) 4 e) 5
168.Reducir:
( )[ ]
8)3x)(3x(
13)2x)(2x()2x(2x 22
+-+
--+--++
a) x b) 1 c) -13 d) 3 e) x+2
169.Hallar:
24 1263
)12)(12)(12(71P ++++=
a) 2 b) 8 c) 16 d) 64 e) 5
170. 33
3333
xyyx
)yx)(yx()yx)(yx(
F
-
+---+
=
a) 3 b) 2 c) 4 d) 1 e) 6
171.Simplificar:
)cb)(ba(
)ac(
)ba)(ac(
)cb(
)ac)(cb(
)ba( 222
--
-
+
--
-
+
--
-
a) 1 b) cba ++ c) 0
d) abc e) 3
172.Si ba;ba 33 ¹= , Hallar el valor de:
2
)ba(
b.a
E
-
=
a)1/3 b) -1/3 c) 1 d)1/2 e) 3
173.Determinar “n” si el polinomio:
)53()12()3()( 2
+-+= xxxxxP
nnn
nnnnn
nnn
es de grado 289
a) 3 b) 2 c) 1 d) 4 e) 5
2008 – III
174.Encontrar el valor de “x” en:
x 4
4 = x
a) 1/2 b) 1/4 c) 1/8 d) 2 e) 2
175.Calcular “x” de:
x
22
= 2
2
a) 1 b) -1/4 c) -1/2 d) -2 e) 1/4
176.Resolver: 4
22
=
xx
x y dar el valor de: x2
+ x4
a) 20 b) 6 c) 72 d) 40 e) 3
177.Evaluar “x” si:
22
2x
22
+
+
ú
û
ù
ê
ë
é = 2
a) 2 b) 1/2 c) 2
d)
2
1
e) -2 2
178.Considerando:
35xx
3x =
+
Calcular:
5x5xx3
x
x
+++
a) 0 b) 1 c) 2 d) 3 e) 4
-10-
179.Resolver:
2 (x-2)x = (x - 1)
x - 1
a) 1/4 b) 1/2 c) 12 +
d)
4
2 e)
8
2
180.Si: xx
+ 4x-x
= 4
Calcular el valor de:
1+2xx
x
P =
1+xx
x
a) 1 b) 2 c) 4 d) x2
e) xx
181.Si: xx 2= ; calcular el valor de:
1 x1 2x8
x
E x
++
=
a) 2 b) 4 c) 8 d) 16 e) 256
182.Reducir a su mínima expresión:
(0.125)(0.5)4 2 (0.0625)
M (0.25)(16)=
a) 1 b) 2 c) 4 d) 8 e) 16
183.Si xy = 2 , simplifique:
1
xx x x -6 + 15 x x2E = + x .2 yx x
2 + 5
æ ö
ç ÷
è ø
a) 8 b) 2 c) 4 d) 10x e) 2
184.Reducir:
2008 2008 2008
x x x
2006 2004 2000
x x x
a) x3/2
b) x19/81
c) x33/32
d) x2008/1999
e) x3
185.Resolver:
3 x9 3
27 3
+
=
a) -3 b) -4 c) 3 d) 4 e) 1/4
186.Reducir:
a b b a b a
b a
2b a 2 a b
a b b a
P
a b b a
+ +
- +
=
+
a) a/b b) b/a c) ab
d) 1/ab e) b aa b
187.Simplificar:
n
4n4 n 14
4
1024 4
4
E 16
+é ù
ê ú= ë û
a) 8 b) 16 c) 2 d) 4 e) 64
188.Indicar el valor de “x”,
Sabiendo que:
x x
x 9 1
x
x x
81 x 3
+
=
+
a) 3 b) 27 c) 81 d) 9 e) x
3
189.El valor más simple de:
2n 4
2n 3
2n 5 n 3
225
M
5 . 4 25
+
+
+ +
=
+
, es:
a) 5 b) 15 c) 45 d) 25 e) 225
190.Reducir: ( )
-2
1
1 5
-1 3 2E = a a a
ì ü
é ùï ïï ïê úí ý
ê úï ïë û
ï ïî þ
a) 1 b) a c) –1 d) – a e) 2
191.Simplificar:
52 3 43 4
20 2153/13 4
. .
. .
x y y z z x
R
x y z
=
a) x b) y c) z d) 1 e) 2
192.Efectuar:
( ) ( )
2
2 3
2
3 93 32
3 3 1 1/2 2 2
1
a b a b a b
a b
-
- -
-
æ ö
ç ÷+ - è ø
a) 1 b)
2a
b
c)
a
b
d) 2
1
ab
e)
b
a
193.Si: a 1
a
3
-
= . Calcular el valor de:
a 1
a
a
a 1a
+æ ö
ç ÷
ç ÷
-è ø
a) 32 b) 3 3 c) 3
d) 4 3 e) 5 3
194.Reducir:
n 2 2
n n
4
n
3 .(48) .9
P
12
+
=
a) 3 b) 9 c) 27 d) 1 e) 12
195.De las siguientes proposiciones, son falsas:
I.
3 26
27x y- × es EAI.
II. x3x
– 34
. x2
no es EA.
III. (-0,5)-1
x5
y es una EARF.
IV. 3x 2x
x x
x
2x x
x x
+
+
no es EARE.
a) I y II b) II, III y IV
c) I, II y IV d) I, III y IV
e) Todas
196.Reducir:
- - -
-
- - -
+ +
+ +
x 1 x 1 x 1
x 1
1 x 1 x 1 x
3 4 6
4 6 8
a) 36 b) 144 c) 24 d) 48 e) 12
197.clasifique la expresión siguiente:
π4 3 1/5 2 25x y ex y x
P(x, y, z) = -
-22 -3 -5 2 z72 z x
-
a) EARF b) EARE c) EAI
d) Trascendente e) Exponencial
198.Calcular “x” en la siguiente igualdad:
11 433 3 3 33
3. 33. 3. 33 = x
a) 77 b) 33 c) 1/99 d) 9 e) 99
199.Si:
ab
= 2 ba
=3; el valor de:
2b a+1 b+1a +2 2b 3a
E = a .b es:
a) 2 b) 4 c) 6 d) 8 e) 10
-11-
200.Encontrar el valor de “x” en:
x9
1
31 1
=
9327
æ ö
ç ÷
è øæ ö
ç ÷
è ø
a) 1/2 b) 1/3 c) 2 d) 3 e) 1/4
201.
93x3x
x = 3 , determine el valor de:
(x + 1) (x2
– x +1)
a) 3
3 b) 9
3 c) 9
3 +1
d) 6
3 +1 e) 3
3 +1
202.Si x ∈ ℝ+
talque: x ¹1. Calcular el valor de “n” que
verifica:
1
3 nx
4 1
3 4=x
x
x
æ ö
ç ÷
è ø
a) 9 b) 3 c) 1 d) 0 e) 2
Resolver:
( )
nn
x n n nn nn nx = n
a) n b) n
n c) nn
d) n
n
n
e) n-n
203.Si 2)12)(3()( +-+= xxxxP , se puede escribir en la
forma: )1()1( 3
+++- xxBxAx ; entonces el valor de A
– 2B es:
a) -2 b) -1 c) 0 d) 1 e) 2
204.Determinar 222
cbaM ++= , si
xxxcxbxxaxP 45)()13()35()( 22
----+++= ;
es un polinomio identicamente nulo:
a)215 b)275 c) 305 d)315 e) 300
205.En un polinomio homogéneo, ordenado y completo,
se observa que la suma de los grados absolutos de
todos sus términos es 156 ¿Cuál es el grado de
homogeneidad del polinomio?:
a) 8 b) 14 c) 11 d) 12 e) 10
206.Si la suma de los grados absolutos de los términos
de:
byxyabaxyxE
bb
aa
+-=
-- 7142
)(5),(
es 210
)1( +a
Hallar “b”:
a) 13 b) 14 c) 15 d) 16 e) 17
207.Si baxxP +=)( . Además [ ]{ } 1898)( += xxPPP .
Determinar P(5):
a) 25 b) 37 c) 28 d) 35 e) 40
208.Si 1)1( -=+ xxF m y 875.0)3( -=F . Hallar “m”:
a) 1/2 b) -1/2 c) 1/3 d) -1/3 e) 1
209.Dados lo polinomios P(x) y Q(x) de los que se sabe:
3 )().( xQxP es de cuarto grado; [ ]2
)()( xQxP ¸ es de
octavo grado ¿ cuanto vale el grado de: P(x)+ )(3
xQ
a) 4 b) 8 c) 12 d) 64 e) 72
210.Señale el grado del polinomio ordenado en forma
decreciente:
aaa
xxxxP 2662212
)( ---
++=
a) 5 b) 6 c) 7 d) 8 e) 9
211.Si 3)( 2
+= xx
P pp .Calcular P(Q(3)), si
xxxQ += 2
)( :
a) 8000 b) 90 c) 8100
d) 900 e) 8103
212.Hallar “n”, si la expresión es de 2do. Grado
5 4 3 462
2.3.4.5)( nnn
xxxxxM =
a) 4,9 b) 2,6 c) 5,7 d) 7,3 e) 1,0
213.Si el grado de P(x).Q2
(x) es 13 y el grado de
P2
(x).Q3
(x) es 22. Calcular el grado de P3
(x)+Q2
(x)
a) 12 b) 13 c) 14 d) 15 e) 16
214.Sea
324325
)(2),( +-+-++-
-++= bababaaba
yxbaybxyaxyxP Calcular
“a+b” si su G.A es 18 y la suma de sus coeficientes es 5
a) 1 b) 2 c) 3 d) 4 e) 5
215.Si el grado del polinomio:
)12()1100()725()( 5232
--+= -
xxxxP nn es 49.
Determinar:
17
50
)(Pr xPdeincipaleCoeficient
E=
a) 25 b) 15 c) 18 d) 4 e) 50
216.Hallar el numero de términos del polinomio
completo y ordenado:
...)3()2()( 67
+-+-= -- mm
xmxmxP
a) 4 b) 6 c) 5 d) m-7 e) m-3
217.Si
qnmmqpqpnpnm
wzyxwzyxP ++++++++
+-+= 864),,,( Es
homogéneo. Calcular:
2222
qpnm
mn
k
+++
=
a) 1/2 b)1/3 c) 1/5 d)1/6 e) 1/4
218.Determinar ( ) ca
cbaE
+
++= , si
...987...)( 332
+++++= +++--+ cbacbaca
xxxxxP
Es completo y ordenado descendentemente
a) 1 b) 0 c) -1 d) -2 e) 2
219.Si el polinomio:
5/)20()5/(1 222
23),,( +++++
-+= mmnann
zyxzyxP
Es homogéneo. Hallar “a”, si n<m<9:
a) 3 b) 1 c) -3 d) -1 e) 5
220.Si xxP ++++= ...321)( hallar:
)1(
)().1(
2
-
-
=
xP
xPxP
E
a) 1/2 b) 1 c) 1/3 d) 2 e) 3
-12-
221.Calcular el término independiente del polinomio
P(x) si se cumple: P(x-1) = Q(x) + R(x-1)
NmxxxxxxQ mmm
Î++++++= ++
;1...)( 212
1464)( 234
+-+-= xxxxxR
a) 5 b) 9 c) m
d) m–2 e) m+4
222.Si F(x) = 2 x99
– x100
+ 1
G(x) = 3ax3
– a4
+ 2 - 2x4
.
Hallar F[G(a)]
a) 0 b) –1 c) –2 d) 2 e) 1
223.Dados los polinomios P(x) y Q(x), se sabe que los
polinomios : P3
(x) . Q(x) y P3
(x) ¸ Q2
(x), son de
grado 17 y 2 respectivamente. Hallar el grado
P(x).Q(x).
a) 4 b) 6 c) 10 d) 15 e) 9
224.Dado un polinomio cuadrático mónico P(x) que
genera el siguiente resultado tabulado
Calcular la suma de coeficientes del polinomio
b) 4 b) 2 c) 1 d) 3 e) 5
225.Determinar la suma de coeficientes, de P(x),
sabiendo que su término independiente es 17,
además se cumple que:P(x + 1) = (x + 1) (ax + 2) +
(a – 1) (x + 2) + a
a) 34 b) 27 c) 8 d) 9 e) 7
226.Determinar “m” con la condición que el término
independiente del producto (m > 0) (x + 3)2
(x + 2)3
(x – m)2
(x2
+ 5) sea 1440.
a) 2 b) 10 c) 360 d) 1 e) 1440
Si el polinomio : 3x3
ym
+ 8xn
y4
+mxm
ym+n-6
es
homogéneo; hallar el grado del polinomio: 2x2m
ym+n
+
3xn
ym+n
– 4x3m
a) 15 b) 18 c) 19 d) 20 e) 27
227.Hallar el valor de P(6), sabiendo que:
P(x + 3) = P(2x + 1) + x; además P(9) = 5
a) –2 b) 0 c) 2 d) 4 e) 12
228.Hallar “ab” en la siguiente identidad.
13 – 2x = a(2 – x) + b(1 + x)
a) 3 b) 5 c) 9 d) 15 e) 25
229.Si el polinomio P(x) es completo y ordenado; y tiene
catorce términos. Hallar (a + n); donde:
P(x) = xn-3
+ xn-2
+ xn-1
+ … + xa+4
a) 12 b) 15 c) 3 d) 7 e) 9
230.Hallar m + n + p, si el polinomio es completo y
ordenado en forma descendente.
P(x) = xm-10
– 3xm-n+15
+ 15xp-n+16
a) 10 b) 12 c) 16 d) 48 e) 40
231.Dado el término: 2xa-1
ya
z2a
. Si su grado absoluto
excede en 9 a su grado relativo a “x”; hallar su grado
relativo a “y”.
a) 0 b) 3 c) 4 d) 5 e) 6
232.Efectuar:
(1 10 5 2)(1 10 5 2)+ + + + - -
a) 1 b) 2 c) 3 d) 4 e) 5
233.Si se cumple:
3 3
x y 9+ = ; x y 3+ = . Calcular:
2
(x y)-
a) 1 b) 2 c) 3 d) 4 e) 5
234.Después de simplificar:
32 2 2 2
(x 1) (x 2x 1) (x 1) (x 2x 1)é ù+ + - - - - -
ê úë û
Se
obtiene:
a) 0 b) 2x c) -2x d) -x e) x
235.Si a
x
y
y
x
=+ ; hallar:
3
3
3
3
3
3a
x
y
y
x
S ++=
a) a b) 3a c) 6a d) 9a e) 12a
236.Simplificar:
44
3333
))(())((
ba
babababa
R
-
+-+-+
=
a) 8 b) 6 c) 4 d) 2 e)0
237.Efectuar:
)1(12
)4)(5)(3)(2()2)(3)(4)(1(
2
-+-
-++--+-+-=
xx
xxxxxxxxk
a) 20 b)5 c)0 d)-84 e)1
238.Si: 1
))((
2
=
-+
+
-
-
yzyx
z
yz
zx
Hallar:
222
÷
ø
ö
ç
è
æ -
+÷
ø
ö
ç
è
æ +
+÷÷
ø
ö
çç
è
æ -
=
x
yz
z
yx
y
xz
J
a) 0 b) 3 c) 1 d) 5 e) 7
239.Si: a + b = 7 y ab = 2, hallar:
3232
bbbaaaE +++++=
a) 200 b) 258 c) 353 d) 401 e) 101
240.Si:
yx
yx
A
-
+
= ,
xy
yx
B
22
+
= ; hallar: E =
(A – 1)(B – 2)
a) 6(x + y) b) 4 c) 0 d) 1 e)8
241.Si:
4
3
30333
=
=++
=++
abc
cba
cba
Hallar: 111 ---
++= cbaE
a)0 b)1 c)4-1
d)8 e)-3
242.Si: 6)( 21 =+ -xx ; hallar:
x 2 1
f(x) 7 3
-13-
3 4422
6-+++= --
xxxxE
a)0 b)1 c)4 d)6 e)8
243.Considerando el trinomio cuadrado perfecto:
mqxpx ++2
, determine:
2
2
qpm
qpm
E
-
+
=
a)-1 b)0 c)-5/3 d)1 e)6
244.Efectuar:
16 1684
1)15)(15)(15)(624( ++++=R
a)51/2
b)25 c)105 d)10 e)5
245.Si: xx 612
=- ; hallar:
22 -
+ xx
a)20 b)18 c)38 d)40 e)1
246.Si: 62=+
x
y
y
x
; hallar: 3
xy
yx
E
+
=
a)1 b)2 c)3 d)4 e)5
247.Si:
137
3572
1325
++=
+-=
-+=
c
b
a
Hallar:
ccbaba
ccbaba
E
--+++
+-+++
=
22
22
)(
)(
a) 3 b) 32 + c) 4
d) 5 e) 7
248.Si: 2222
)( cbacba ++=++ ; hallar:
a
caba
E
))(( ++
=
a)0 b)1 c)-2 d)6 e)8
249.Si: x = 0.75; hallar:
xxM --+= 11
a)0 b)1 c)2 d)3 e)4
250. Por cuanto hay que multiplicar a4
– b4
, para
obtener:
))(())(( 3333
babababa +-+-+
a)a b)2 c)b d)a2
+ b2
e)1
251.Simplificar:
3
22422422
))((
3))((
nmnm
nmnnmmnm
E
-+
-++-
=
a)
22
nm - b)
2
m c)
2
n
d)
22
nm + e)1
252.Si:
5
5
22
=
+nm
mn
, hallar:
88
÷
ø
ö
ç
è
æ
+÷
ø
ö
ç
è
æ
=
m
n
n
m
E
a)45 b)46 c)47 d)48 e)49
Si se cumple que:
a b c 0+ + ¹
3 3 3
a b c 3abc+ + =
Calcular el valor numérico de:
+ +
=
+ +
2008
2007
2008 2008 2008
(a b c)
E
a b c
a) 3 b) 2 c) 1 d) 1/2 e) 1/3
253.El valor de k que hace que el trinomio:
2
(k 1)x (5k 3)x 2k 3+ + - + +
Sea un cuadrado perfecto es:
a) 2 b) -2 c) 3 d) -3 e) 17
254.Simplificar:
)2(19)2()1()9)(5)(1(
9)6(10)2)(4)(6()3(
222
4
-+-----+
+-+-----
=
xxxxxxxx
xxxxxxx
E
a)2 b)0 c)1 d)3 e)4
255.Si:
3 3
a b , a b= ¹ . Calcular el valor de:
2
ab
F
(a b)
=
-
.
a) 1/2 b) -1/3 c) -1/2 d) 1/3 e) -3
256.Simplificar:
ab)dcba)(dcba(
)dcb)(dca()dba)(cba(E
+--++++-
++++-++++=
a)0 b)1 c)2 d)cd e)ab
257.Si:
a b b c
c a 1
c a
- +
= Ù + > , determinar el valor de:
( ) ( )
2 2 2
a 2b c a b 2c b c 2a
c ab
- - - - + -æ ö
+ +ç ÷
è ø
a) 3 b) 1 c) 1/3 d) 2 e) 0
258.Hallar el valor de:
23 3 3
2
(x y) (y z) (z x)
(x xy xz yz)(z y)
é ù- + - + -
ê ú
ê ú- - + -ë û
, si
x y z¹ ¹
a) 9 b) 4 c) 25 d) 2 e) 27
259.Si: = + -
2
F(x) x 5x 2 y G(x) 2x 1= - El cociente del
coeficiente del término lineal entre el término
independiente de: F G(x) G F(x)´é ù é ùë û ë û, es:
a) 2 b) -2 c) 3 d) -3 e) 1
260. Si: 632324
2521416 yyxynxx +-+ , es un
trinomio cuadrado perfecto.¿Qué valor debe tomar
“n”?
a)1 b)5 c)3 d)8 e)-8
261.Un polinomio de tercer grado, cuyo primer
coeficiente es la unidad, es divisible por (x - 2) ypor
(x + 1) y al dividirlo por (x - 3) da de resto 20. ¿Qué
resto daría al dividir dicho polinomio por x + 3?
a) 10 b) 20 c) -20 d) -10 e) 4
262.Hallar un polinomio )(xP de segundo grado
divisible por ( )12 +x ; sabiendo además que su
-14-
primer coeficiente es 4 y que al ser dividido por
2-x el resto es 5, reconocer el menor coeficiente
de )(xP .
a) -4 b) -3 c) -5 d) 4 e) 2
263.Si "" A es el penúltimo término del cociente notable
de:
1
1
8
40
-
-
x
x
, señale el término que sigue en el
cociente notable: ....36
++ yxA
a)
44
yx b)
43
yx c)
64
yx
d)
54
yx e)
24
yx
264.La suma de todos los exponentes de las variables del
desarrollo de:
44
100100
yx
yx
-
-
, es:
a) 2400 b) 2500 c) 2600
d) 2700 e) 2800
265.Hallar el lugar que ocupa el término de grado 101 en
el desarrollo de:
49
80180
),(
zx
zx
zxM
-
-
=
a) 2 b) 3 c) 4 d) 5 e) 1
266.Se desea saber el número de términos del cociente
adjunto:
1
1
-
-
x
x a
Si se cumple que: 236
)100().50().10( xTTT =
a) 130 b) 135 c) 134 d) 132 e) 131
267.Indique cuál es el número de términos en:
......... 18561563
baba +- sabiendo que es el desarrollo
notable.
a) 10 b) 15 c) 12 d) 13 e) 14
268.Obtener el resto de la división siguiente:
5 3 2 7
3
10
3
x x
x
a b
b ab
a a b
- -
+ +
+ -
sabiendo que el
dividendo es ordenado y completo.
a) 20 b) 18 c) 10 d) 15 e) 16
269.Si el cociente notable de:
1
18
-
-
m
x
x
tiene 4 términos;
Calcule el valor de: 3...789
+++++ mmmm
a) 1025 b) 1024 c) 1016
d) 1004 e) 1000
270.Calcular el residuo de la división siguiente:
( ) ( )
23
121
2
77
+-
----
xx
xx
a) 1-x b) 2-x c) 1
d) 0 e) -1
271.Hallar el resto de la división:
( ) ( ) ( )
22
313171
2
172835
++
++++++
xx
xxx
a) x2 b) 122 -x c) 52 +x d) 122 +x
e) 72 +x
272.Halla el resto en la siguiente división:
( )( )21
3
++ xx
x
a) 57 +x b) 276 +x c) 67 +x
d) 16 -x e) 13 -x
273.Si el polinomio
cbxaxxx ++++ 245
2 es divisible por 14
-x ,
hallar el valor de:
ba
ba
-
+
a) 3/2 b) -3/2 c) 2/3
d) -2/3 e) -1
274.¿Cuánto debe valer 22
baba ++ para que al dividir
34
-+ bxax entre 12
-x se obtiene un cociente
exacto?
a) 3 b) 6 c) 9 d) -6 e) -2
275.Del esquema de división por Ruffini:
a b c d e f
-1 1 3 5 7 9
m n r s t O
Determinar la suma de coeficientes del polinomio
dividendo.
a) 100 b) 50 c) -50 d) -100 e) -50
276.Si: 1293 23
-+- kxxx es divisible por 3-x
entonces, también es divisible por:
a) 43 2
+- xx b) 43 2
-x c) 43 2
+x
d) 43 -x e) 43 +x
277.Al efectuar la división:
12
3
3
235
++
++++
xx
baxxxx
, deja un residuo:
23 +x . Hallar: ba -
a) 2 b) 3 c) 4 d) 5 e) 1
278.El polinomio )(xP al vivirlo entre ( )2-x da resto 5,
y la suma de los coeficientes del polinomio cociente
es 7. Hallar )1(P
a) 4 b) -2 c) -3 d) -4 e) 3
279.Al dividirlo: 272829
168)( bxxxP ++= entre bx -
el residuo es cero. ¿Cuál es el valor de b? , b o¹
a) -4 b) 8 c) 1 d) 4 e) 2
280.Por cuánto hay que dividir al polinomio
224
+++ xxx , para que el cociente sea 12
+- xx y
el residuo sea 1+x
a) 12
+x b) 12
-x c) xx +2
d) 12
++ xx e) 12
-+ xx
281.Dar el mayor coeficiente del dividendo en la
siguiente división por Horner:
3 a b c d e
f 4 -12
g 6 -18
-14 42
2 3 -7 6 8
a) 20 b) 25 c) 35 d) 38 e) 40
-15-
282.Si el polinomio: bayy 455
+- da un cociente exacto
al dividir entre ( )2
ky - . Hallar “ ab - ” en términos
de k
a) 25
kk - b) kk +5
c) 45
kk -
d) 45
kk + e) 35
kk +
283.Si: baxx ++24
es divisible entre ( )2
1-x , calcular:
“ ab - ”
a) 50 b) 49 c) 48 d) 47 e) 46
284.Hallar “ nm+ ”, sabiendo que la división:
3
23
2
235
+
+-++
x
xnxmxx
da un residuo: 105 -x
a) 11 b) 5 c) 1 d) 7 e) 4
285.Hallar "m" si x3
+ y3
+z3
- mxyz es divisible por :
x + y + z.
a) 2 b) 4 c) 3 d) 1 e) 5
286.En la división:
4 3 2
2 6 6 6 12
6
x x x x
x
- + + -
-
el
coeficiente del término lineal del cociente es:
a) - 6 b) 6 c) 1 d) 0 e) 6
287.Calcular “m” si el grado absoluto de t33 en el
cociente notable
75
75
yx
mymx
-
-
es 209.
a) 45 b) 40 c) 48 d) 30 e) 35
288.En una división de dos polinomios, el término
independiente del dividendo es 4 veces más que el
término independiente del resto, y el término
independiente del cociente es el doble del término
independiente de éste último. El valor del término
independiente del divisor es:
a) 1 b) 2 c) 3 d) 4 e) 5
289.Al identificar las divisiones notables que originaron
los cocientes.
A = x16
– x12
y8
+ x8
y16
– x4
y24
+ y32
B = x15
– x10
y10
+ x5
y20
– y30
La suma de ambos dividendos es :
a) 8x b) 6x2
c) x14
d) 2x20
e) 7x20
290.Hallar un polinomio P(x) de cuarto grado de primer
coeficiente 2, divisible entre (x – 2), (x + 3) y
(x – 4), además al ser dividido entre (x + 1)
proporciona residuo –30. El término independiente
del polinomio es :
a) 24 b) 30 c) 25 d) 15 e) 18
291.Hallar “ nm+ ”, sabiendo que la división:
3
23
2
235
+
+-++
x
xnxmxx
da un residuo: 105 -x
292.
a) 11 b) 5 c) 1 d) 7 e) 4
99-I
293.Calcular el valor de “x” en:
2
1
64
16
=
+
+X
xx
xx
x
x
, si
+
ZÎx
a) 2 b) 4 c) 8 d) 6 e) 32
294.Si 16bab b
== ; Hallar a bE =
a) 2 b) 2/2 c) 4
2
d) 2 e) 4
295.Simplificar: 1
11
11
222
1
35
35
24
20 -
--
--
++
+
+
+
+
+
a
aa
aa
a
aa
a
, si
0>a
a) 10 b) 20 c) 30 d) 1 e) a
296.Si x=3 ; Calcular el valor numérico de E =
( )
1
82
--
- X
X
a) 1 b) 9 c) 3 d) 1/9 e) 1/3
297.Simplificar la Expresión E =
1327
2
-
-
a) 4/2 b) 2 c) 2 d) 1 e) 4
298.Calcular “x” en:
1x24x
273 -+
=
a) 1/5 b) 4/5 c) 3/5 d) 6/5 e) 7/5
299.Reducir la expresió:
5 5
5 5
5 5
5
5 55
5
5
-
-
ú
û
ù
ê
ë
é
ú
ú
û
ù
ê
ê
ë
é
=E
a) 36 b) 25 c) 49 d) 16 e) 9
300.Si la expresión:
( )[ ]
2
20
3
52432172
zzyxxyx
þ
ý
ü
î
í
ì -
-
es semejante
con:
cba
zyx , hallar: cbaM ++=
a) 10 b) 11 c) 12 d) 13 e) 14
301.Clasificar la siguiente expresión:
0,
.
)(
24
4 33
233
>
ïþ
ï
ý
ü
ïî
ï
í
ì
= x
xx
xxxx
xE
a) EARE b) EARF
c) EAI d) Exponencial
e) Expresión trascendente
302.Si ,3xx
= hallar el valor numérico de:
1x
x
x
+
a) 9 b) 343 c) 81 d) 27 e) 25
303.Calcular el valor :
E=
023
321
2
1
3
1
10
1
-
---
ú
ú
û
ù
ê
ê
ë
é
÷
ø
ö
ç
è
æ
+÷
ø
ö
ç
è
æ
+÷
ø
ö
ç
è
æ
a) 39 b) 3 c) 1 d) 33 e) 3
-16-
304.Simplificar la expresión:
n
n
n
n
n
n
n
n
n
32
81
18
41
14
31
13
--- -
-
+
-
-
+
-
-
, 0>n
a) 3 b) 2 c) 4 d) 5 e) 7
305.Reducir a su mínima expresión:
x.xxx
a) x b) x c) 4
x d) 8
x e) 1/x
306.Al simplificar: ,
4
8
2n3
3/5n2
+
+
resulta:
a) 1 b) 8 c) 4 d) 2 e) 16
307.Calcular aproximadamente: ...4242A =
a) 2 b) 3
22 c) 2 d) 16 e) 4 5
2
308.Simplificar la expresión:
2
2
aaa
aa aaaE
-
ú
ú
ú
û
ù
ê
ê
ê
ë
é
=
a) a2
b) a c) a3
d) 1 e) a4
309.
Simplificar " X ZÎ +
x x
x xxx xx
16
3232
E
+
+++
=
--
a) 5/6 b) 1/5 c) 2 d) 3 e) 5
310.Reducir:
3 1245 124
27.243
---
---
=E
a) 1/2 b) 1/3 c) 1/6 d) 1 e) 0
311.Señale el equivalente a la expresión:
÷÷
ø
ö
çç
è
æ
÷÷
ø
ö
çç
è
æ
÷÷
ø
ö
çç
è
æ
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ë
é
÷÷
ø
ö
çç
è
æ
2
1
2
1
2
1
2
1
a) 2
2 b) 2
4 c) 22
2
d) 2
2 e)
1
2
2
-
÷
÷
ø
ö
ç
ç
è
æ
312.Hallar el valor numérico de:
xxxxxx
xW
++
= 2 ; para 2=
xxx
a) 32 b) 24 c) 48 d) 128 e) 64
313.Si: 4x
1x
x
=
+
; El valor numérico de E=
12x2
x
x x
+
a) 12 b) 14 c) 18 d) 1/4 e) 1/2
314.Determinar el valor de “x” en la ecuación:
7123
)125.0()5.0(
--
-
-
= x
a) 5 b) 72 c)
7
3
d) 14
3 e) 14
7
315.Calcular el valor numérico de:
E= ¥-- ......303030
a) 6 b) 9 c) -5 d) 8 e) 5
316.Reducir la expresión:
ú
ú
û
ù
ê
ê
ë
é
¸
ú
ú
û
ù
ê
ê
ë
é
+
+
b
a
b
a
2
2
2
2
2
2
a) 8 b) 128 c) 4 d) 64 e) 16
317.Simplificar la expresión
( ) ( )( ) ( ) 391
5
1
351
4
1
331
3
1
5
1
4
1
3
1
--
÷÷
ø
ö
çç
è
æ
-
--
÷÷
ø
ö
çç
è
æ
-
--
÷÷
ø
ö
çç
è
æ
-
÷÷
ø
ö
çç
è
æ
--÷÷
ø
ö
çç
è
æ
-÷÷
ø
ö
çç
è
æ
--=A a) 2896
b) 2504 c) 3202
d) 2500 e) 3300
318.Si: 99)4(54 x2x
=-+
; Calcular
14332A x
-=
a) 10 b) 8 c) 6 d) 4 e) 2
319.Resolver:
2x
2x
2
=
a)
2
2 b) 21 + c)
3
2
d) 2/1 e) 2
Calcular el valor de:
¥--
¥++
=
......
16
5
16
5
16
5
....606060
3 3 3
K
a) 18 b) 16 c) 15 d) 12 e) 20
320.Resolver: 2x 1x2
=-
a) 4 b) 1/4 c) 3/4 d) 2/3 e) 1/2
321.Resolver:
2xx )1x(
1x
2 +
+=
+
a) 2 b) 22 c) 12 +
d) 12 - e) 122 -
322.Se tiene ( ) 1x1xF n
-=+ ; además:
( ) 8/73F -= . Hallar el valor de “n”
a) -1 b) -1/2 c) -1/3 d) ¼ e) 1/2
323.Si ( )XF es un polinomio definido por:
)1(F)x2(F)1x2(F +=- ; Además 2)0(F = ,
Calcular )3(F
a) 1 b) 0 c) -1 d) 2 e) -2
324.Se tiene un polinomio homogéneo:
A(x,y)=
nmnm
m662m2
yxmyxnxm
+-
++
-17-
Hallar la suma de los coeficientes de:
A(x, y)
a) 2 b) 3 c) 4 d) 5 e) 6
325.Sea el polinomio:
2c1b1a
x5x)5d(x2)x(P +--
+++= , Si
576)2(P,14)1(P == y los grados de sus términos
son consecutivos en forma creciente Hallar: a + b + c
+ d
a) 17 b) 14 c) 21 d) 35 e) 49
326.Dados los polinomios P(x) y Q(x) tales que; los
grados de los polinomios: P2
(x) . Q(x) y
)x(Q
)x(P3
,
son 27 y 23 respectivamente. Hallar el grado de:
)x(P
)x(Q2
a) 3 b) 5 c) 7 d) 4 e) 9
327.Determinar “m” con la condición que el término
independiente del producto:
( ) ( ) ( ) ( )5xmx2x3x 2232
+-++
sea 1440
a) 1 b) 2 c) 3 d) -1 e) -12
328.El polinomio:
)1n(x3....xx 2n21n2
+++++ --
; Posee 18 términos,
hallar el término independiente, si es un polinomio
completo y ordenado
a) 6 b) 7 c) 8 d) 9 e) 10
329.Hallar la suma de coeficientes de la expresión:
[ ] ( )2532
2x1x3x2 ++-
a) -2 b) -1 c) 0 d) 1 e) 2
330.El grado del polinomio:
( ) ( ) ( ) ( )3x1x1001x1x10)x(P 253326
+--++= es:
a) 17 b) 16 c) 15 d) 10 e) 20
331.El polinomio:
4n1mm
bbaa)b,a(P ++= -
,
es homogéneo hallar: m + n
a) 5 b) 3 c) 1 d) 0 e) 4
332.El polinomio: 1....xx 2n31n3
+++ --
, es ordenado y
completo ¿Cuántos términos tiene?
a) 3n-2 b) 3n-1 c) 3n d) n3
e) n3n
333.Hallar la suma de valores de “n” para los cuales la
expresión:
n
n
2
128
2
210
y3x4)y,x(P -=
-
es un polinomio
a) 2 b) 4 c) 6 d) 8 e) 3
334.Sea ( ) 1aaxx7a)x(P 2253
+++-= , un polinomio
mónico; ( ÂÎa ) Hallar el término que no
depende de la variable
a) 2 b) 5 c) 10 d) 17 e) 26
335.La suma de los grados absolutos de todos los
términos de un polinomio entero, homogéneo,
ordenado y completo de dos variables es 600 ¿Cuál
es su grado absoluto?
a) 12 b) 30 c) 24 d) 36 e) 25
336.Con: n 0¹ , la siguiente expresión se puede reducir
a monomio:
2 2 2
2 3 a a 1 n(n 1)a a 2 a a 1
n(n 1) x 2 x (n 2) x- + + - + + -
- - + - El coeficiente
del monomio reducido es:
a) -4 b) -5 c) 2 d) 3 e) 4
337.El valor de “n” ( Nn Î ) si el producto de los
grados relativos de “x” e “y” es 24.
n n
n 2 n 2 n n
P(x, y) x y (xy) y x-
= + -
a) 3 b) 2 c) 1 d) 5 e) 6
338.Si el polinomio Q(x) es idénticamente nulo
3a 2 2 2b 3 3 c
Q(x) (ab 1)x (a c 4)x (b c 8)x= - + - + - Hallar
abc; si a >0, b> 0 y c >0
a) 2 b) 3 c) 4 d) 6 e) 5
339.Hallar el grado absoluto del monomio:
1(2) 2(3) 3(4) 15(16)
M x .y .z ....w=
a) 1260 b) 1600 c) 1770
d) 2000 e) 1360
340.Calcular: f(2) si:
1 2m 1 m
m
m m
m m
m
m m
f(m )
m 1
+ +
-
=
+
a) 1 b) 0 c) 1/2 d) 1/4 e) 2
341.Hallar “n” para que la expresión:
42n n3
M(x) x x= , sea de grado 6
a) 8 b) 6 c) 4 d) 2 e) 1
342.En el polinomio completo y ordenado:
n a b c
P(x) x ........ x x x ..... abc= + + + + + + Calcular
a c
3b
+
a) 1/2 b) 1/3 c) 2/3 d) 3/2 e) 5/3
343.Dar la suma de coeficientes del siguiente polinomio
entero completo y ordenado
( ) ( ) ( ) ( )
6 3 2
6 a a b 3 a b a
P x a b x b a x b a-
= + + - - - a) 2
b) 2 2 c) 4
d)3 2 e) 2 3
344.Si m, n Î N y además el polinomio:
4
m(m 1) 3 m 1 m n 4
P(x, y) x y (x ) y x y- - -
= - + , es
homogéneo, Hallar: m + n
a) 2 b) 4 c) 6 d) 8 e) 10
345.Si el grado de.
2
P(x).Q es 13 y el grado de:
2 3
P (x).Q (x) es 22. Calcular el grado de.
3 2
P (x) Q (x)+
a) 12 b) 13 c) 14 d) 15 e) 16
346.Calcular la suma de los coeficientes del polinomio
homogéneo:
b a a b
2 a 3 b a
P(x,y,z) a x b y abz
-
= - +
a) 12 b) 14 c) 16 d) 15 e) 17
347.Determine: (a+b) si el polinomio
-18-
a 3 b a
a 8 a b 8 20 20
P(x,y) a x y b x y abx y
+
+
= + - es
homogéneo
a) 2 b) 4 c) 6 d) 8 e) 10
348.Determinar el valor de “n” en el polinomio.
2 3 n
P(x)=nx+(n-1)x +(n-2)x +....+x sabiendo
que la suma de sus coeficientes es 153
a) 1 b) 9 c) 17 d) 8 e) 10
349.En un polinomio P(x, y) homogéneo y completo en
“x” e “y”, la suma de los grados absolutos de todos
sus términos es 156, Calcular el número de términos
del polinomio
a) 10 b) 11 c) 12 d) 13 e) 14
350.Cuántos términos posee el polinomio homogéneo:
m m 2 2 m 4 4
P(x,y) x x y x y ......- -
= + + + , Para
que sea de grado 40 , respecto a “y”
a) 41 b) 40 c) 30 d) 20 e) 21
351.Sea un polinomio:
2 3 4 4
Q(x) x 2x 3x 4x .... 100x= + + + + + Hallar:
Q(-1)
a) 100 b) 99 c) 50 d) 25 e) 199
352.Si
2
n =n +1, ( )n +
Î ,
Simplificar:
2 4
8
2 4 8
1 1 1 1
k n n n
n n n n
æ öæ öæ ö
= + + + +ç ÷ç ÷ç ÷
è øè øè ø
a) n b) -n c) 1/n d) n2
e) 1
353.Para ab 0¹ , Simplificar:
( ) ( ) ( )
( ) ( )
2 22 2 2 2
2 23 3 3 3
a b a b 4 a b
a b a b
é ù+ + - - -
ë û
+ - -
a) ab
b) 4 ab c) 4(ab)-1
d) 2 ab e) 2 (ab)-1
354.Si: , ,x y zÙ Î
3 3 3
x y z 3xyz;x y z 0+ + = + + ¹
Hallar el valor de:
( )
3 3 3
3
x y z
E
x y z
+ +
=
+ +
a) 1 b) 1/3 c) 2/3 d) 4/3 e) 3
355.Si
3 3 3
a b c 10+ + =
2 2 2
a b c 6+ + =
a b c 4+ + =
Hallar:
4 4 4
E a b c= + +
a) 8 b) 16 c) 10 d) 18 e) 12
356.Si: a b 10+ =
19
ab
4
=
Hallar: E a b= - . (a > b)
a) -1 b) 2 c) 3 d) 4 e) 1
357.Hallar: E (x 1)(x 2)(x 3)(x 4)= + + + + , para:
5 5
x
2
-
=
a) -1 b) 1 c) 2 d) 6 e) 20
358.Simplificar:
( ) ( ) ( ) ( )
1/32 22 2
E x 1 x 2x 1 x 1 x 2x 1é ù= + + - - - - -
ë û
a) 2x b) -2x c) x d) –x e) 0
359.Sabiendo que a > b Además: 3 3
a b
3
b a
+ = .
Calcular :
a b
E
b a
= -
a) 18 b) 16 c) 9 d) 4 e) 3
360.Si
n n
n n
a b
7
b a
+ =
Hallar:
n n
n n
2 2
a b
E
a .b
-
=
a) 5 b) 5 c) 7
d) 7 e) 3
361.Si:
4 2
x 3x 1 0- + =
Hallar:
88 86 84
86
x x x
E
x
+ +
=
a) 5 b) 4 c) 3 d) 2 e) 1
362.Si: a + b = 6; además:
2 2
a b 30+ =
Hallar:
2 2
a b
b a
+
a) 54 b) 27 c) 18 d) 9 e) -27
363.Siendo:
3 3 3
a b c 30+ + =
a b c 3+ + =
abc 4=
El valor de:
1 1 1
a b c- - -
+ + es:
a) 1/4 b) 5/8 c) 3/2 d) 1/2 e) 7/3
364.Calcular:
3 33
E a 3ab b= - + , Sabiendo que:
( )( )a b a 1 b a 0+ + = ¹
a) -2 b) 0 c) 1 d) -1 e) 2
365.Si: 1 1 4
x y x y
+ =
+
Calcular: 3
x 2
y x y
-
+
a) 0 b) -1 c) 1 d) 2 e) 1/y
-19-
366.¿Cuál es el valor de:
2
r 2r 2- - , Si:
r 2 1= + ?
a) -1 b) 1 c) 2 d) -2 e) 3
367.Al efectuar:
( )( )( )4 2 2
a b a a b b a b+ + + - , resulta:
a)
3 3
a b- b)
6 3
a b-
c)
6 2
a b- d)
6 6
a b-
e)
6 4
a b-
368.Si: ( )
2
2 2
x x 3-
+ =
Hallar:
6 6
x x-
+
a) 0 b) 3 c) 3 d) -1 e)3 3
369.Si
1
n 1
n
+ =
Calcular ( )
3
3 3
n n-
-
a) -1 b) 3 c) 0 d) -2 e) 2
370.Calcular el valor numérico:
( )( )( )8 4 28 1 2 1 2 1 2 1 3+ + + +
a) 1 b) 2 c) 3 d) 4 e) 5
371.Si
1
x 7;
x
+ =
Calcular el valor de:
3
3
1
A x
x
= +
a) 116 b) 110 c) 113
d) 120 e) 115
372.Si xy + xz + yz = 0
Calcular
( )( ) ( )( ) ( )( )1 1 1
E x x z x y y z y z x z z x z y- - -
= + + + + + + + +
a) 1 b) 2 c) 3 d) 4 e) 5
373.Simplificar:
( )( )( )( )2 2 4 4 88E x a x a x a x a a ;x 0= + - + + + >
a) x b) x4
c) x2
– a2
d) x4
+ a4
e) 0
374.Al efectuar: 5 2 6 5 2 6+ -
a) 4 b) 2 c) 1 d) 3 e) 5
375.Si ( )ab a b 420+ = y 3 3
a b 468+ = . Halle el
valor de. M a b 5= + +
a) 14 b) 15 c) 16 d) 17 e) 18
376.Calcular:
2
(x y)- ,
si x y 7+ = , además: xy 4=
a) -7 b) -8 c) -9 d) -10 e) -11
377.Si:
3
1
a 27
a
æ ö
+ =ç ÷
è ø
Hallar:
3
3
1
a
a
+
a) 16 b) 17 c) 18 d) 19 e) 20
378.Si ( ) ( )
2
x y z 3 xy xz yz+ + = + + , entonces al
simplificar la expresión:
( ) ( )
( )
x x y y y z
z z x
+ + +
+
, se
obtiene:
a) 0 b) 1 c) -1 d) 2 e) -2
379.Si a + b + c = 0
Hallar el valor de:
2 2 2
a b c
bc ac ab
+ +
a) 2 b) 1 c) 0 d) 3 e) 4
380.Al efectuar:
( )( ) ( )2 2 8 4
x 1 x 1 x x 1- + ¸ + + , el producto
es:
a)
12
x 12+ b)
12
x 1+
c)
12
x 1- d)
12
x 2-
e)
12
x
381.Si a + b =5 y además: ab = 3
Hallar:
2 2
a b+
a) 19 b) -19 c) 20 d) -20 e) 10
-20-
382.Hallar el cociente de dividir:
3 5 2 4
x 2x x 2x x 2+ + + + + , entre:
4
x 2+
a) x – 1 b) x c) x + 1
d) x + 2 e) x + 4
383.Hallar el resto de dividir:
2
(x y) (x y)(2w 1) w(w 1)
x y w 3
+ + + - + -
+ + -
, donde “w” es
una constante:
a) 6 b) 5 c) 4 d) 3 e) 2
384.Si la división:
4 3 2
2
A x Bx 2x 3x 2
4x x 1
+ - - -
+ +
es
exacta; calcular: AB
a) 84 b) -84 c) 64 d) 48 e) 74
385.Calcular el residuo de dividir:
( ) ( )4 3 2
16x 24x 28x 5 2x 1- + - ¸ -
a) -1/2 b) 1/2 c) 2 d) 1 e) 0
386.En el desarrollo del cociente notable:
148m 296p
2m 4p
x y
x y
-
-
el término de lugar 60 es:
56 708
x .y ,
entonces el grado del término de lugar 21 es:
a) 234 b) 432 c) 214 d) 532 e) 452
387.El tercer término en el cociente notable:
n 5n 18
2 9
a b
M
a b
-
-
=
-
es:
a)
10 16
a b b)
10 16
a b-
c)
15 6
a b d)
32 20
a b
e)
30 18
a b
388.A continuación se muestra parte de un cociente
notable exacto
16 6 12 8
.... x y x y ....+ + + Indicar la
división notable de la cual proviene:
a)
20 10
10 5
x y
x y
-
+
b)
30 10
6 2
x y
x y
+
-
c)
32 16
4 2
x y
x y
-
-
d)
26 13
2
x y
x y
-
-
e)
28 7
4
x y
x y
-
+
389.Hallar “p” si la división:
4 2
6x (p 1)x 6
x 1
+ + +
+
;
deja como resto 19
a) 2 b) 4 c) 10 d) 8 e) 6
390.Hallar el resto de la división:
35 28 17
2
(x 1) 7(x 1) 3(x 1) 3
x 2x 2
+ + + + + +
+ +
a) 2x b) 2x + 12 c) 2x + 5
d) 2x + 7 e) 2x – 12
391.Calcular el resto de dividir:
2 3
(x 2) (x 3)- + - entre
2
x 5x 6- +
a) 2x + 1 b) 2x – 5 c) 2x
d) 2x – 1 e) 3x – 1
392.Calcular el valor de:
( ) ( )21 19 20 18 2
P 2 2 ... 2 2 2 ... 2 1= + + + - + + + + asumiendo
que
11
2 a=
a) ( )( )
1
a 1 a 1
3
- + b) ( )21
a 1
2
-
c) ( )
1
a 1
4
+ d) ( )
1
a 1
3
-
e) ( )a 1-
393.Calcular “m+n” Si:
3 2
x mx nx 1+ + +
es divisible entre: x – 1
a) -1 b) -2 c) 0 d) 1 e) 3
394.Si “m” es el residuo de dividir: 3 2
3x 2x 5x 4+ - +
entre x +2, hallar el residuo de dividir:
4 3
mx 2x (m 1)x 2m+ - + + entre: x – 2
a) 140 b) 141 c) 142 d) 143 e) 144
395.Hallar el término independiente del cociente de:
( ) ( )3 2
x 2 m x 15 m 2 m 15 x
x m
+ - - + + -
-
a) 10b) -
15 c) -5 d) 5 e) 10
396.Calcular el resto de dividir: P(x) ¸ (x–6) , Sabiendo
que el término independiente del cociente es 4 y
además el término independiente del polinomio P(x)
es 6
-21-
a) 30 b) 25 c) 20 d) 15 e) 10
397.Sean los términos consecutivos de un cociente
notable:
300 290 20 280 40
x x y x y ....+ + , y dar como respuesta
el número de términos
a) 30 b) 31 c) 28 d) 27 e) 26
398.Al dividir un polinomio P(x) entre (x+3) se obtuvo
por residuo – 5 y un cociente cuya suma de
coeficiente es igual a 3 .Hallar el residuo de dividir
P(x) entre (x – 1)
a) 5 b) 6 c) 7 d) 8 e) 9
399.Calcular el número de términos del siguiente
producto
( )( )20m 19m 18m m 20m 19m 18m m
E x x x ... x 1 x x x ...... x 1= + + + + + - + - - + a) 31 b)
22
400.Hallar el resto de dividir:
2n 2n 1 3
(x 3) 3(x 3) 5(x 3) 1
(x 2)(x 4)
+
+ + + - + +
+ +
a) 2x b) 2x + 4 c) 2x – 4
d) – 2x – 4 e) – 2x+4
401.Hallar el resto en:
425 424
27x 81x 5x 19
x 3
+ - -
+
a) -1 b) -2 c) -3 d) -4 e) -5
402.Sean los polinomios
2
q(x) ax bx c ; r(x) mx n,= + + = + el cociente y el
residuo respectivamente de la división de:
4 3 2
2
2x 3x 8x 1 4x
x (x 1)
+ - + -
- +
.Calcular
2
(a b c m n)- - - -
a) 1 b) 2 c) 3 d) 4 e) 5
403.Si se tiene que:
4n 2n 2n 4n
a Aa b Bb+ + ,
es divisible entre:
2n n n 2n
a 2a b 2b- + . Hallar: A – B
a) 6 b) -4 c) 5 d) 8 e) 4
404.Si el resto de dividir P(x) entre (x–2) es el mismo
que el dividir P(x) entre (x – 1) e igual a 8 ¿Cuál es
el resto de dividir P(x) entre (x – 1) (x – 2)?
a) 16 b) 11 c) 3 d) 8 e) 64
405.¿Que relación cumplen “p” y “q” tal que:
3
x pq x q- + sea divisible por:
2
x mx 1+ -
( )m +
Î ?
a) p q 0+ = b)
2
pq q 1= +
c)
2
q 1 pq- = d) p q 1- =
e)
2
p 1 pq- =
406.Hallar el residuo de dividir p(x) entre
2
x x 1+ + si
al dividir p(x) entre
3
x 1- se obtiene como residuo
2
x 3x 2+ +
a) x + 1 b) x – 1 c) x + 2
d) 2x + 1 e) 2x – 1
407.Al multiplicar
( )( )2
2x x 4 2x 1- - + y dividir el resultado
entre: ( )2
2x x 2- - , se obtiene como residuo:
a) -4x – 2 b) 4x + 2 c) 2x + 4
d) x + 2 e) 4x – 2
408.Hallar “m + n” , sabiendo que la división
( ) ( )5 3 2 2
3x mx nx x 2 x 3+ + - + ¸ + da un
residuo: 5x – 10
a) 11 b) 5 c) 1 d) 7 e) 4
409.Si la división:
( )4 3 2
ax bx 16x 25 2x x 4+ + - ¸ - + deja como
residuo: 3x – 5. Según esa información, hallar: el
valor de a + b
a) 2 b) 11 c) 33 d) 36 e) 7
410.En la siguiente división:
( )4 3 2 2 2 2
x (2a 1)x (a a 2b 1) x 2(a b ab)x a b x ax bé ù+ + + + + + + + + + + ¸ + +ë û
Tiene
como residuo: 3x + 1. Hallar “a” y “b” (en ese orden)
a) -1, 1 b) -1, 2 c) 2 , -1 d) 2 , 2 e) 2 , 1

Recomendados

Aduni repaso trigonometria 1
Aduni repaso trigonometria 1Aduni repaso trigonometria 1
Aduni repaso trigonometria 1Gerson Quiroz
 
Material pedro de valdivia (PSU ) 03 números racionales
Material pedro de valdivia (PSU ) 03 números racionalesMaterial pedro de valdivia (PSU ) 03 números racionales
Material pedro de valdivia (PSU ) 03 números racionalesMarcelo Calderón
 
Aduni repaso algebra 1
Aduni repaso algebra 1Aduni repaso algebra 1
Aduni repaso algebra 1Gerson Quiroz
 
Trigonometria%20(bolet%c3%a dn%20 n%c2%ba%2001%20-%20ab2%20sm%202015)
Trigonometria%20(bolet%c3%a dn%20 n%c2%ba%2001%20-%20ab2%20sm%202015)Trigonometria%20(bolet%c3%a dn%20 n%c2%ba%2001%20-%20ab2%20sm%202015)
Trigonometria%20(bolet%c3%a dn%20 n%c2%ba%2001%20-%20ab2%20sm%202015)Omar Rodriguez Garcia
 

Más contenido relacionado

La actualidad más candente

RELACIONES MÉTRICAS EN LOS TRIÁNGULOS
RELACIONES MÉTRICAS EN LOS TRIÁNGULOSRELACIONES MÉTRICAS EN LOS TRIÁNGULOS
RELACIONES MÉTRICAS EN LOS TRIÁNGULOSOLVINQUISPE
 
Division de polinomios Pre universitario
Division de polinomios  Pre universitarioDivision de polinomios  Pre universitario
Division de polinomios Pre universitarioScarlosAcero
 
PDV: Matemática Guía N°24 [4° Medio] (2012)
PDV: Matemática Guía N°24 [4° Medio] (2012)PDV: Matemática Guía N°24 [4° Medio] (2012)
PDV: Matemática Guía N°24 [4° Medio] (2012)PSU Informator
 
Material pre universitario pedro de valdivia (PSU) 10 porcentajes
Material pre universitario pedro de valdivia (PSU) 10 porcentajesMaterial pre universitario pedro de valdivia (PSU) 10 porcentajes
Material pre universitario pedro de valdivia (PSU) 10 porcentajesMarcelo Calderón
 
Aduni repaso aritmetica 1
Aduni repaso aritmetica 1Aduni repaso aritmetica 1
Aduni repaso aritmetica 1Gerson Quiroz
 
Cálculo de áreas sombreadas
Cálculo de áreas sombreadas Cálculo de áreas sombreadas
Cálculo de áreas sombreadas saliradu
 
Semana 1 teoria de exponentes - 4° escolar - 2015
Semana 1   teoria de exponentes - 4° escolar - 2015Semana 1   teoria de exponentes - 4° escolar - 2015
Semana 1 teoria de exponentes - 4° escolar - 2015Alexander Puicon Salazar
 
55 ejercicios ecuación 2do grado y función cuadrática
55 ejercicios ecuación 2do grado y función cuadrática55 ejercicios ecuación 2do grado y función cuadrática
55 ejercicios ecuación 2do grado y función cuadráticaMarcelo Calderón
 

La actualidad más candente (20)

RELACIONES MÉTRICAS EN LOS TRIÁNGULOS
RELACIONES MÉTRICAS EN LOS TRIÁNGULOSRELACIONES MÉTRICAS EN LOS TRIÁNGULOS
RELACIONES MÉTRICAS EN LOS TRIÁNGULOS
 
Division de polinomios Pre universitario
Division de polinomios  Pre universitarioDivision de polinomios  Pre universitario
Division de polinomios Pre universitario
 
47 ejercicios de funciones
47 ejercicios de funciones47 ejercicios de funciones
47 ejercicios de funciones
 
2014 iii 07 cocientes notables
2014 iii 07 cocientes notables2014 iii 07 cocientes notables
2014 iii 07 cocientes notables
 
PDV: Matemática Guía N°24 [4° Medio] (2012)
PDV: Matemática Guía N°24 [4° Medio] (2012)PDV: Matemática Guía N°24 [4° Medio] (2012)
PDV: Matemática Guía N°24 [4° Medio] (2012)
 
AREAS SOMBREADAS
AREAS SOMBREADASAREAS SOMBREADAS
AREAS SOMBREADAS
 
46 funciones (parte b)
46 funciones (parte b)46 funciones (parte b)
46 funciones (parte b)
 
Material pre universitario pedro de valdivia (PSU) 10 porcentajes
Material pre universitario pedro de valdivia (PSU) 10 porcentajesMaterial pre universitario pedro de valdivia (PSU) 10 porcentajes
Material pre universitario pedro de valdivia (PSU) 10 porcentajes
 
Aduni repaso aritmetica 1
Aduni repaso aritmetica 1Aduni repaso aritmetica 1
Aduni repaso aritmetica 1
 
Cálculo de áreas sombreadas
Cálculo de áreas sombreadas Cálculo de áreas sombreadas
Cálculo de áreas sombreadas
 
2004 iii 14 funciones
2004 iii 14 funciones2004 iii 14 funciones
2004 iii 14 funciones
 
Metodo de Horner
Metodo de HornerMetodo de Horner
Metodo de Horner
 
Semana 1 ángulo trigonométrico
Semana 1 ángulo trigonométricoSemana 1 ángulo trigonométrico
Semana 1 ángulo trigonométrico
 
Semana 1 teoria de exponentes - 4° escolar - 2015
Semana 1   teoria de exponentes - 4° escolar - 2015Semana 1   teoria de exponentes - 4° escolar - 2015
Semana 1 teoria de exponentes - 4° escolar - 2015
 
55 ejercicios ecuación 2do grado y función cuadrática
55 ejercicios ecuación 2do grado y función cuadrática55 ejercicios ecuación 2do grado y función cuadrática
55 ejercicios ecuación 2do grado y función cuadrática
 
Productos Notables
Productos NotablesProductos Notables
Productos Notables
 
Algebra banco unprg.2
Algebra banco unprg.2Algebra banco unprg.2
Algebra banco unprg.2
 
Magnitudes directa e inversa
Magnitudes directa e inversaMagnitudes directa e inversa
Magnitudes directa e inversa
 
Solucionario semana 2
Solucionario semana 2Solucionario semana 2
Solucionario semana 2
 
Unidad 2 . Seleccion sobre Polinomios
Unidad 2 . Seleccion sobre PolinomiosUnidad 2 . Seleccion sobre Polinomios
Unidad 2 . Seleccion sobre Polinomios
 

Similar a Algebra banco unprg (20)

04. algebra
04. algebra04. algebra
04. algebra
 
Álgebra pre
Álgebra preÁlgebra pre
Álgebra pre
 
Repaso 4
Repaso 4Repaso 4
Repaso 4
 
Algebra pre cocientes notables (propuestos)
Algebra pre cocientes notables (propuestos)Algebra pre cocientes notables (propuestos)
Algebra pre cocientes notables (propuestos)
 
1 ra semana algebra
1 ra semana algebra1 ra semana algebra
1 ra semana algebra
 
Algebra 1
Algebra 1Algebra 1
Algebra 1
 
3ra pd algebra (a-uni)1
3ra pd algebra (a-uni)13ra pd algebra (a-uni)1
3ra pd algebra (a-uni)1
 
2014 iii 06 teorema de resto 1
2014 iii 06 teorema de resto 12014 iii 06 teorema de resto 1
2014 iii 06 teorema de resto 1
 
Examenes bimestrales (m at)
Examenes bimestrales (m at)Examenes bimestrales (m at)
Examenes bimestrales (m at)
 
Problemas de repaso de Álgebra ADUNI ccesa007
Problemas de repaso de Álgebra  ADUNI ccesa007Problemas de repaso de Álgebra  ADUNI ccesa007
Problemas de repaso de Álgebra ADUNI ccesa007
 
Algebra pre factorizacion (propuestos)
Algebra pre factorizacion (propuestos)Algebra pre factorizacion (propuestos)
Algebra pre factorizacion (propuestos)
 
FICHA 02 FACTORIZACIÓN-PARA SECUNDARIA.pdf
FICHA 02 FACTORIZACIÓN-PARA SECUNDARIA.pdfFICHA 02 FACTORIZACIÓN-PARA SECUNDARIA.pdf
FICHA 02 FACTORIZACIÓN-PARA SECUNDARIA.pdf
 
Ecuaciones de expone
Ecuaciones de exponeEcuaciones de expone
Ecuaciones de expone
 
Alg. (02) repaso ii 02 03-18
Alg. (02) repaso ii 02 03-18Alg. (02) repaso ii 02 03-18
Alg. (02) repaso ii 02 03-18
 
Algebra
AlgebraAlgebra
Algebra
 
Productos notables division
Productos notables   divisionProductos notables   division
Productos notables division
 
Ejercicios de polinomios
Ejercicios de polinomiosEjercicios de polinomios
Ejercicios de polinomios
 
2014 iii 09 factorización
2014 iii 09 factorización2014 iii 09 factorización
2014 iii 09 factorización
 
2014 iii 09 factorización
2014 iii 09 factorización2014 iii 09 factorización
2014 iii 09 factorización
 
Mat i 3
Mat i 3Mat i 3
Mat i 3
 

Último

MORFOFISIOLOGIA_HUMANA_1_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_1_MILENA_MOYA.pptxMORFOFISIOLOGIA_HUMANA_1_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_1_MILENA_MOYA.pptxmilenamoyaniacato25
 
DIVISION_CELULAR_REPRODUCCIÓN_5_MILENA_MOYA.pptx
DIVISION_CELULAR_REPRODUCCIÓN_5_MILENA_MOYA.pptxDIVISION_CELULAR_REPRODUCCIÓN_5_MILENA_MOYA.pptx
DIVISION_CELULAR_REPRODUCCIÓN_5_MILENA_MOYA.pptxmilenamoyaniacato25
 
MORFOFISIOLOGIA_HUMANA_5_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_5_MILENA_MOYA.pptxMORFOFISIOLOGIA_HUMANA_5_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_5_MILENA_MOYA.pptxmilenamoyaniacato25
 
la zanahoria datos interesantes y mas :3
la zanahoria datos interesantes y mas :3la zanahoria datos interesantes y mas :3
la zanahoria datos interesantes y mas :3SandraCarro4
 
1886 -1887-El 12 de octubre de 1886 Alexandre Ciurcu recibió la patente franc...
1886 -1887-El 12 de octubre de 1886 Alexandre Ciurcu recibió la patente franc...1886 -1887-El 12 de octubre de 1886 Alexandre Ciurcu recibió la patente franc...
1886 -1887-El 12 de octubre de 1886 Alexandre Ciurcu recibió la patente franc...Champs Elysee Roldan
 
MORFOFISIOLOGIA_HUMANA_2_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_2_MILENA_MOYA.pptxMORFOFISIOLOGIA_HUMANA_2_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_2_MILENA_MOYA.pptxmilenamoyaniacato25
 
CÉLULA VEGETAL Y SUS PARTES Y FUNCIONES.pdf
CÉLULA VEGETAL Y SUS PARTES Y FUNCIONES.pdfCÉLULA VEGETAL Y SUS PARTES Y FUNCIONES.pdf
CÉLULA VEGETAL Y SUS PARTES Y FUNCIONES.pdfJherikmatteoChamorro
 
presentación electrónica de la producción de la zanahoria
presentación electrónica de la producción de la zanahoriapresentación electrónica de la producción de la zanahoria
presentación electrónica de la producción de la zanahoriang8096507
 
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el ConventoSor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el ConventoSOCIEDAD JULIO GARAVITO
 
Producción de la zanahoria y los sus beneficios
Producción de la zanahoria y los sus beneficiosProducción de la zanahoria y los sus beneficios
Producción de la zanahoria y los sus beneficiosocamposusan137
 
MORFOFISIOLOGIA_HUMANA_3_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_3_MILENA_MOYA.pptxMORFOFISIOLOGIA_HUMANA_3_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_3_MILENA_MOYA.pptxmilenamoyaniacato25
 

Último (12)

MORFOFISIOLOGIA_HUMANA_1_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_1_MILENA_MOYA.pptxMORFOFISIOLOGIA_HUMANA_1_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_1_MILENA_MOYA.pptx
 
DIVISION_CELULAR_REPRODUCCIÓN_5_MILENA_MOYA.pptx
DIVISION_CELULAR_REPRODUCCIÓN_5_MILENA_MOYA.pptxDIVISION_CELULAR_REPRODUCCIÓN_5_MILENA_MOYA.pptx
DIVISION_CELULAR_REPRODUCCIÓN_5_MILENA_MOYA.pptx
 
MORFOFISIOLOGIA_HUMANA_5_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_5_MILENA_MOYA.pptxMORFOFISIOLOGIA_HUMANA_5_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_5_MILENA_MOYA.pptx
 
la zanahoria datos interesantes y mas :3
la zanahoria datos interesantes y mas :3la zanahoria datos interesantes y mas :3
la zanahoria datos interesantes y mas :3
 
1886 -1887-El 12 de octubre de 1886 Alexandre Ciurcu recibió la patente franc...
1886 -1887-El 12 de octubre de 1886 Alexandre Ciurcu recibió la patente franc...1886 -1887-El 12 de octubre de 1886 Alexandre Ciurcu recibió la patente franc...
1886 -1887-El 12 de octubre de 1886 Alexandre Ciurcu recibió la patente franc...
 
MORFOFISIOLOGIA_HUMANA_2_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_2_MILENA_MOYA.pptxMORFOFISIOLOGIA_HUMANA_2_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_2_MILENA_MOYA.pptx
 
CÉLULA VEGETAL Y SUS PARTES Y FUNCIONES.pdf
CÉLULA VEGETAL Y SUS PARTES Y FUNCIONES.pdfCÉLULA VEGETAL Y SUS PARTES Y FUNCIONES.pdf
CÉLULA VEGETAL Y SUS PARTES Y FUNCIONES.pdf
 
presentación electrónica de la producción de la zanahoria
presentación electrónica de la producción de la zanahoriapresentación electrónica de la producción de la zanahoria
presentación electrónica de la producción de la zanahoria
 
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el ConventoSor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
Sor Maria Celeste-Dios y Cielo - La Ciencias Oculta en el Convento
 
Producción de la zanahoria y los sus beneficios
Producción de la zanahoria y los sus beneficiosProducción de la zanahoria y los sus beneficios
Producción de la zanahoria y los sus beneficios
 
Proceso de la FOTOSÍNTESIS (PASO A PASO)
Proceso de la FOTOSÍNTESIS (PASO A PASO)Proceso de la FOTOSÍNTESIS (PASO A PASO)
Proceso de la FOTOSÍNTESIS (PASO A PASO)
 
MORFOFISIOLOGIA_HUMANA_3_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_3_MILENA_MOYA.pptxMORFOFISIOLOGIA_HUMANA_3_MILENA_MOYA.pptx
MORFOFISIOLOGIA_HUMANA_3_MILENA_MOYA.pptx
 

Algebra banco unprg

  • 1. -1- Álgebra 1. Al dividir )2x()3x( -- entre )1x( - el residuo es 1R . Al dividir )1x()2x( -- entre )1x( + el resto es 2R . Determinar 21 RR + . a) 5 b) 6 c) 7 d) 8 e) 9 2. Si al dividir 3bxax4 -+ entre 1x 2 - se obtiene un cociente exacto. Hallar 22 baba ++ a) 3 b) 6 c) 9 d) -6 e) -2 3. Calcular el valor de “a” para el cual el trinomio baxx7 ++ es divisible entre 2 )1x( + a) –5 b) -4 c) –6 d) -7 e) –8 4. En la división exacta : bx2x3 ax10x5x4x6 2 234 ++ +--+ Hallar 22 ba + a) 625 b) 25 c) 650 d) 620 e) 600 5. El término independiente del cociente de: 23x 6212x32x22x)23( 35 -- ++--- es: a) 32 - b) 23 + c) 13 + d) 23 - e) 12 + 6. Calcular el valor de pnm ++ sabiendo que el polinomio: pnxmxx8x10x11x6 23456 ++++-+ Es divisible entre: 2xxx3 23 +++ a) –4 b) 7 c) –1 d) 5 e) –9 7. Del esquema de Ruffini: Determinar la suma de los coeficientes del dividendo. a) 1 b) 2 c) 3 d) 0 e) –1 8. El residuo de la siguiente división: b1x bbxbxx)2b(x 2234 -- +++++- , es: a) 1 b) 2 c) -1 d) -2 e) 0 9. Un polinomio P(x) de tercer grado tiene siempre el mismo valor numérico 1 para x = -2, - 3, -4, sabiendo que al dividirlo entre ( x – 1) el residuo es 121. Calcular el resto de dividirlo entre (x – 2). a) 122 b) 119 c) 239 d) 241 e) 242 10. Hallar el valor numérico para x = -1 del término de lugar 31 del cociente notable: ( ) 3x2 x3x 3636 + -+ a) 128 b) 64 c) 144 d) 16 e) 32 11. El término central del cociente notable 48z 37 yx baes ba ba - - Calcular el valor de ( x – y + z ) a) 343 b) 159 c) 197 d) 244 e) 315 12. La suma de todos los exponentes de las variables del desarrollo de: 44 100100 yx yx - - es: a) 2400 b) 2500 c) 2600 d) 2700 e) 2800 13. Si el residuo de la división del polinomio P(x) entre )4x( + es 7 y la suma de los coeficientes del cociente es 6. Hallar el residuo de dividir P(x) entre )1x( - : a) 0 b) 30 c) 7 d) 37 e) 51 14. Hallar el resto de la división: )2x()1x( x3 ++ : a) 7x+5 b) 7x+2 c) 7x+6 d) 6x-1 e) 3x-1 15. Hallar “n” si la división: 4x3 nx9x16x12 2930 + +++ , es exacta: a) 6 b) 8 c) 10 d) 12 e) 16 16. Calcular el resto en: 2x2x )4x()8x()1x( 2 3n4 +- -+- : a) -20 b) 40 c) 20 d) 14 e) -10 17. Si el cociente notable 1x 1x a 8 + - tiene 4 términos, entonces el valor de la suma: 3aa..........aaa 2789 ++++++ a) 1024 b) 1025 c) -1024 d) -1025 e) 1026 18. ¿Qué lugar ocupa en el desarrollo del C.N. 74 280160 yx yx - - , el término con grado absoluto igual a 252? a) 30 b) 31 c) 32 d) 33 e) 34 A B C P 1 1 2 3 A D E 0
  • 2. -2- 19. Hallar el número de término del C.N. 3n21n 11n69n3 yx yx -- ++ + + a) 7 b) 6 c) 8 d) 9 e) 4 20. En la división 6x 12x6x6x62x 234 - -++- , el coeficiente del término lineal del cociente es : a) - 6 b) 6 c) 1 d) 0 e) 6 21. Hallar el valor de m.n si al dividir el polinomio x4 + 2x2 + mx + n entre el polinomio x2 – 2x + 3, resulta un cociente exacto. a) 6 b) 5 c) 3 d) 4 e) 0 22. El coeficiente del término lineal del cociente que resulta al dividir: 6x3 - 19x2 + 19x – 16 entre 3x – 2 es: a) 1 b) –5 c) 3 d) 4 e) -4 Calcular ab si el polinomio P(x) = x3 + ax +b es divisible por (x-1)2 a) 12 b) 6 c) 16 d) 9 e) 25 23. ¿Qué valor debe asumir “m” para que la suma de coeficientes del cociente de la división: 2x mx3xx5x2 234 - +++- , sea igual al resto: a) -2 b) -1 c) 1 d) 2 e) 0 24. Indicar la suma de coeficientes del cociente y residuo al dividir: 5x3x 15x30x13xx 2 234 ++ ---- : a) -9 b) 13 c) 10 d) 14 e) 1 25. Determinar el valor de “m” en el C.N. 1m5m 5m121m5 yx yx -- -- - - a) 10 b) 6 c) 7 d) 8 e) 12 26. Calcular el valor de “a” para que la suma de coeficientes del cociente sea 161 y resto 16, en 1x ab2xb2xa 51 - -++ a) 1 b) 2 c) 3 d) 4 e) 5 27. Hallar a + b + c + d + e + f , si en la división 2xxx3 fxexdxcxbaxx21 23 23546 --+ ++++++ el cociente tiene coeficientes que van disminuyendo de 2 en 2 y un residuo igual a 3 a) –4 b) –2 c) 2 d) 4 e) -3 28. Uno de los términos del desarrollo del cociente notable x y)yx( nn -+ es 1325 y)yx( + . Hallar el lugar que ocupa dicho término contado a partir del final: a) 24 b) 25 c) 26 d) 27 e) 28 29. Al dividir un polinomio P(x) entre )ax2( a + se obtiene como residuo (-1) y un cociente entero cuya suma de coeficientes es 5. Hallar el valor de “a”, si al dividir P(x) entre (x - 1) se obtiene como residuo 29. a) 4 b) 3 c) 2 d) -2 e) –4 30. Sean: )1xx...xx(A nn2n19n20 +++++= , y )1xx...xx(B nn2n19n20 +-++-= Hallar el número de términos de A.B. a) 20 b) 21 c) 40 d) 42 e) 42n 31. El resto de la división: )xy(2)1yx( )xy()yx( 2 2729 -++- --- , es: a) yx - b) y2x2 - c) x2 d) y2- e) 0 32. Determinar un polinomio mónico de cuarto grado que sea divisible separadamente por x2 – 3x + 2; x2 – 4; x2 + x – 2 y al ser dividido entre x – 3 deja un resto igual a 100, luego indique el residuo de dividir dicho polinomio entre x + 1. a) 18 b) 34 c) 36 d) 72 e) 48 33. Sabiendo que xa y24 es el término central del desarrollo del cociente notable x75 – yb xc – y2 Calcular a + b + c a) 10 b) 40 c) 59 d) 89 e) 99 34. ¿Cual es el resto que se obtiene al dividir 2x119 + 1 entre x2 – x + 1 a) 3-2x b) 2x-3 c) 3+2x2 d) 2x2–3 e) 3-x 35. Si xm – 8 entre (x-2) es una división notable exacta, calcule el valor numérico de: m39 - m38 + m37 –........... – m2 + m – 1 m35 - m30 + m25 –........ – m10 + m5 – 1 a) 142 b) 121 c) 216 d) 125 e) 61 36. Calcular el número de términos fraccionarios en el cociente notable 23 6090 xx xx - - - - a) 10 b) 12 c) 15 d) 18 e) 20 37. Calcular el resto de dividir 3x2 9x6x54x8x16 n n2n1n32n4 - ---+ +++ a) 27x-13 b) 27x c) 27x-18 d) 27 e) 18 38. Sabiendo que al dividir 1313 22 mm nn yx yx -- - - , el segundo término de su cociente es 816 yx . ¿Cuántos término posee el cociente notable?: a) 4 b) 3 c) 5 d) 7 e) 6 39. Calcular el número de términos del desarrollo del C.N. que tienen los términos consecutivos
  • 3. -3- ......+ x 70 y 12 - x 63 y 15 +...... a) 14 b) 15 c) 16 d) 17 e) 18 40. Hallar el valor de: 22 ba + en: 3 4 3 ba baba a b b a =- a) 13 b) 18 c) 14 d) 15 e) 10 41. Luego de resolver la ecuación exponencial: 5,0x 5,0 x = el valor de x toma la forma n 4 donde “n” es igual a: a) -4 b) -7 c) -10 d) -12 e) -16 42. Reducir: ( ) ( ) ( ) y zx . zyx zxyzxy A 11 n nnn nnn -- --- ++ ++ = {} 0xyz;1Nn ¹-Î" a) 1 b) 0 c) x d) nnn zyx e) xyz 43. Si: abx = , resolver: ( ) 1xa bx ab 1 nn2 n2n 2 n + + - a) 1 b) b a c) 2ab d) a b 3 e) ÷÷ ø ö çç è æ 2 1 ab 44. Reducir: ( ) ( )1xx xx 4x xxx5 xx + + + + - , si 5=x x a) 1 b) x c) x+1 d) 2 x e) 5 x 45. Hallar la relación entre “m” y “n” , si se cumple que: m n nmnm nmnm n m n m m n m n n m ÷ ÷ ø ö ç ç è æ = ÷ ø ö ç è æ ÷ ø ö ç è æ ÷ ø ö ç è æ ÷ ø ö ç è æ -+ -+ a) m = n b) 2m = n c) mn2 = d) m + n = 2 e) mn = 1 46. Hallar el valor de "x" en: 1x2x 48 42 +- = 47. a) 2 b) 4 c) 3 d) 6 e) 9 48. Calcular “m ” si: 12 7 3 (0,5) (0,125) m - - - - = a) 14 27 b) 7 9 c) 7 3 3 d) 3 2 3 e) 14 3 49. Al simplificar: 2 2 2 2 2 1 3 2 1 2 5 5 5 5 5 n n n n n E - + + + + é ù- + = ê ú -ê úë û a) 5 b) 1/5 c) 35/8 d) 8/35 e) 1/8 50. Calcular 5 x y x- = , si se cumple: 5 5 3125 xxx x x = a) 5 b) 5 5 c) 1/5 d) 5 5 e) 5 5- 51. Reducir ÷ ÷ ø ö ç ç è æ ÷ ø öç è æ+÷ ø öç è æ ÷ ÷ ø ö ç ç è æ = 8/1 n/2 8 n4 n/4 8 n2 n8 n2 2 nn n 1 K a) 32 b) 64 c) 128 d) 256 e) 512 52. La simplificación de 1n 3 n273 646464E + -- = a) 8 b) 6 c) 4 d) 2 e) 1 53. Si 24 2a a = ; 18 3b b = . Hallar b a a - a) 512 b) 216 c) 8 d) 81 e) 256 54. Simplificar: yx xyxy yxyx yx yx- -- -- + + a) x b) x/y c) xy d) y/x e) 1 55. El exponente final de “x” en: 25 3 3 800100505025 x5xxx6x5E -- = es: a) 5 b) 4 c) 3 d) 2 e) 1 56. Efectuar: 9 7 5 3 22468 1010101010Q = a) 5 10 b) 4 10 c) 3 10 d) 2 10 e) 10 57. Señale verdadero (V) o falso (F): I. 4logyx 2 x )x(P 12 8 ++= - es una E.A.R.E. II. 22 3)( xyxxQ += no es una E.A.I. III. ....xx1)x(N 32 +++= es una E.A.R.E.
  • 4. -4- IV. 3472/1 73/2412 zyx6 xzx3y)y,x(R - --- - ++= es una E.A.R.F. a) VFFV b) VVFV c) FVFV d) FVVF e) VFVF 58. Si la expresión: 1n 3 1n 61n)1n(5 153n x zyxx + +++- es racional entera, entonces su equivalente es: a) 62 yzx b) zyx 62 c) 62 zxy d) 262 zyx e) 362 zyz 59. Si los términos algebraicos: 2 2 1 15 1( , ) (4 3 ) a b t x y a b x y+ + = + 2 2 8 1 2 ( , ) ( 4) a b t x y ab x y - = - son semejantes, hallar la suma de sus coeficientes. a) 0 b) 12 c) 16 d) 28 e) -16 60. Resolver: ( ) 8/1 xx x xx x = úû ù êë é - a) 2- 1 b) 2 c) 1/4 d) 1/10 e) 2 61. Al simplificar: 3 2/1 1 2- 1- 2/13/2 yx xy yx yx ú ú ú ú ú û ù ê ê ê ê ê ë é ÷÷ ø ö çç è æ - - Se obtiene: a) x b) 2x c) x/2 d) x2 e) 1/x 62. El exponente final de "x" al simplificar: x x 1xx x x + , es: a) x b) 1 c) x d) x2 e) x + 1 63. Si E = n nnn nnnnnn 532 535232 --- ++ ++ , hallar 8 2E + . a) 8 b) 3 c) 4 d) 2 e) 6 64. Simplificar: 3 3 3 16 16 16 ...444 E M = a) 1 b) 2 c) 3 d) 4 e) 5 Hallar "m", si el exponente final de x en: 3 6 4m5 4 m1m x x.x - - , es la unidad: a) 1 b) 2 c) 3 d) 4 e) 8 65. Efectuar: E = 111 543 32 1 16 1 8 1 --- --- ÷ ø ö ç è æ -+÷ ø ö ç è æ +÷ ø ö ç è æ - a) -6 b) -4 c) -2 d) 0 e) 2 66. Si la expresión 3 2 x xx es equivalente a xn . Entonces xn+1/n es: a) EARE b) EARF c) EAI d) Exponencial e) Trascendente 67. La expresión: x x )x1(1)1x1(1n m )mn( x - +--+- Se puede clasificar como: a) EARE b) EARF c) EAI d) b y c e) Trascendente 68. ¿Qué valor mínimo debe tener "n" para que: x 3 3 3 n11 xxx --- sean EARF a) 42 b) 27 c) 15 d) -1 e) 12 69. Resolver: 1x 5,0x 04,0 55 2,0 - - = a) 0,2 b) 3/2 c) -2 d) 3 e) 5-1 70. Señale el producto de: 3(6 4) 2 5 12 1 1 3 3 3 ( 1) (5 1) 5 . ... 4 . . ... 2 . ... n veces n n n n veces n veces x x x x x x x x x x x x x - - + + - + - - - ì üì ü ì ü ï ïï ï ï ïï ï í ýí ý í ý ï ïï ï ï ï î þ î þï ïî þ 64748 14243 14243 a) 9 x b) 9 10x c) 5x d) 2x e) 10 71. Luego de reducir: 2 1 5 6 10 ( 2 )( 3) x x x x x x E x x x+ - + = + - - la expresión algebraica que resulta es: a) Irracional b) exponencial c) trascendente d) racional fraccionaria e) racional entera 72. Si 2 a a a = , el valor de 2 2 aa a a E a + = es: a) 256 b) 128 c) 64 d) 32 e) 16 73. Si p p nn n m m - = . Hallar “ p ” a) -1 b) 1 c) 0,5 d) -0,5 e)0,25 74. Simplificar la expresión: E = 30 16 x x x x 1 - ú ú ú ú ú ú ú ú ú ú ú û ù ê ê ê ê ê ê ê ê ê ê ê ë é a) x b) x c) 2 x d) 1 x e) 1 75. Sabiendo que: 13 13 13 13x = simplificar y encontrar el valor de: 1313 13 1313 13 13 13 13x x x E x x xé ùé ù= + +ë û ê úë û
  • 5. -5- a) x b) 13 13 c) 13 d) 26 e) 39 76. Siendo 3 2 1 m m n t mx y+ + = 2 1 3 1 2 n m t nx y- + = términos semejantes. Calcular: 3 2 3 2m n+ a) 18 b) 42 c) 24 d) 22 e) 0 77. Resolver: 62 2 3 x x x = a) 3 6 b) 3 3 c) 6 3 d) 6 6 e) 18 18 78. En la ecuación: 16 256 60.4x x - = el valor de x x es: a) 8 b) 2 c) 16 d) 27 e) 4 79. Reducir: 19899 9999 99 99 99 99 99 99M + úû ù êë é = a) 9 b) 99 c) 9 9 d) 99 9 e) 11 9 80. Si: 2 2 1 2 1 2x x x x - + = - . Indicar el valor de: 2 2x E x= a) 27 b) 81 c) 9 d) 16 e) 25 81. Calcular el grado del polinomio: P(x,y) = n4yn5 8 xy2n4x -+-+- a) 4 b) 5 c) 6 d) 7 e) 9 82. Si los polinomios: R1(x,y) = [a2 (a+b)+3] 3by2b12ax ++- ( ) ( ) ( ) 1b4y2b1a2x4abyx,2R -+-+= son idénticos, hallar: a2 + b2 a) 0 b) 14 c) 16 d) 8 e) 17 83. Hallar “a” si la expresión: M(x) = 22a 1a2a1aa3a5a )3xx( )1xx.()5xx( +- +-++ --+++ Sea de grado 64; ( a > 0) a) 1 b) 3 c) 5 d) 8 e) 10 84. Si el polinomio es idénticamente nulo: P(x) = a(3x2 -x+2) + b(2x-1) – c(x2 -x) – 6x Calcular: a+b+c a) 1 b) 2 c) 4 d) 6 e) 8 85. El grado de homogeneidad del polinomio : )yx.(y.x3)y,x(P 3n271n2m --- += es 16. Hallar : m - n a) 1 b) 2 c) 3 d) 4 e) 5 86. Halle la suma de coeficientes del polinomio homogéneo. ( ) ( ) 3ba xy2n 2 nb5 8 y 3 n3n x 2 n4b2a2 25n y 3 n xna5y)P(x; + -+- + --- + += ÷ ø öç è æ ÷ ø öç è æ a) 22 b) 40 c) 45 d) 27 e) 30 El grado de: n Q(x) 3 (x) 3 P.H(x) ÷ ÷ ÷ ø ö ç ç ç è æ es: 3n Calcular el grado de: ú ú û ù ê ê ë é Q(x) 3 H(x) . P(x) a) 1 b) 2 c) 3 d) 4 e) 5 87. Si a, b, c, pertenecen al conjunto de los naturales y el desarrollo de ( ) ( ) ( )cba 2cx1xaxP ++= es un polinomio completo de 85 términos, cuyo término independiente es 72 y su coeficiente principal es 243, entonces el valor de (a + b + c) es: a) 19 b) 21 c) 23 d) 24 e) 81 88. Sabiendo que “P” y “Q” son dos polinomios tal que GA(P)=5 y GA(Q)=3; entonces indicar el valor de verdad de las siguientes afirmaciones: I. Grado de ( 22 QP + ) = 8 II. Grado de (P2 Q2 +Q2 ) = 22 III. Grado de (P2 + Q2 )2 =20 a) VVV b) FFV c) FVF d) FFF e) VVF 89. En el polinomio: ( ) 1n3m 2n2mn1m1nm yx6 yx7yx3yx2y,xP ++ +--- + ++= el grado relativo a “x” es 12 y el grado absoluto del polinomio es 18. Hallar el grado relativo a “y”. a) 1 b) 3 c) 5 d) 7 e) 9 90. Sea P(x) un polinomio mónico de primer grado tal que: P(P(x))=4+ P(x), hallar la suma de coeficientes: a) 5 b) 4 c) 3 d) 2 e) 1 91. Dado el polinomio homogéneo P(x,y) = nmmy6mx6y2nx nmmx2m + ++ - Hallar la suma de sus coeficientes. a) 4 b) 5 c) 6 d) 7 e) 8 92. Si el polinomio: P(x,y) = (4a+2)x2b-a y3 -(b+1)xa+b-6 +abx3a-4b ya-b Es completo y ordenado con respecto a “x” en forma decreciente, hallar la suma de sus coeficientes. a) 6 b) 16 c) 26 d) 28 e) 32 93. Dado el polinomio: P(2x-3) =(2x+3)4m +2(12x-6)2m +(2x+1)2m Calcular “m", si su término independiente es igual a 1 600. a) 1 b) 7 c) 0 d) 3 e) 2 94. En el polinomio
  • 6. -6- P(x) = (1 + 2x)n + (1 + 3x)n La suma de coeficientes excede en 23 al término independiente. Según ello establecer el valor de verdad de las siguientes proposiciones: I. El polinomio P(x) es de grado 2 II. La suma de sus coeficientes es 25 III. El término cuadrático de P(x) es 12x2 a) VVV b) VFV c) VVF d) FVV e) FFV 95. Sea el polinomio: P(x + 1) = x2 + 1, si el polinomio Qx) se define así: Q (x) = î í ì <-+ ³++- 1sixx)P(P(x) 1six1)P(x1)P(x Determinar: Q(0) + Q(1) a) 5 b) 6 c) 7 d) 8 e) 10 96. Sean los polinomios idénticos: P(x) = (m + n)x2 + (n + p) x + m + p Q(x) = 2 ÷ ÷ ø ö ç ç è æ ++ n 1 m x p 2 x mnp Calcular: M = 2p)n(m 2p2n2m ++ ++ a) 2/5 b) 3/5 c) 5/3 d) 2/3 e) 1/3 97. Si el polinomio: P(x,y) = bxa-1 - cx2n ym+c + axa+b yn - ny2n-5+a Es homogéneo y la suma de sus coeficientes es 4. calcular: m2 + n2 . a) 10 b) 20 c) 15 d) 30 e) 25 98. Dados los polinomios P(x) y Q(x), se sabe que los polinomios: P(x) . Q5 (x) y (x) 2 Q (x) 5 P , son de grado 13 y 11 respectivamente. Hallar el grado de P2 (x) . Q(x). a) 7 b) 9 c) 10 d) 11 e) 8 99. Sean los polinomios: P(x) = 2x2 - 15 Ù Q(x,y) = 2x + 3y – 2 Hallar el término independiente del polinomio H(t); H(t) = Q(P(3), 3t - 1) a) -5 b) -15 c) -2 d) 1 e) 7 100.Sean los polinomios: A(x) = 2x3 + 5x2 + 4x + 1 B(x) = (ax + b)c (cx + d)a + k K ¹ 1; donde: A(x) – B(x) º 0 Calcular: ) a .c c (a k1 a d c b ÷ ÷ ø ö ç ç è æ - a) -1 b) 2 c) 1 d) -2 e) 4 101.Se tiene un polinomio de cuarto grado cuya suma de coeficientes es 5 y el término independiente es 2. Además P (x - 1) - P(x) = P (x + 1) + x Hallar: P(0) + P(-1) + P (1) + P(2) a) 8 b) 9 c) 10 d) 11 e) 12 102.Un polinomio cuadrático mónico P(x) genera el siguiente resultado: P(x) x 3 1 7 2 Calcular el término independiente de P(x) a) 0 b) 4 c) 2 d) 1 e) 5 103.Si la expresión: 1bby26x5b255y1aax3a)y,x(P -+-= se reduce a un monomio. Hallar su coeficiente a) 1053 b)1052 c)1051 d)1050 e)1049 104.Si los polinomios definidos por 5y5x5)yx()y,x(P --+= y )3y3x(mxy2)yx(2mx)y,x(Q +++= son equivalentes, hallar “m” a)2 b)4 c)5 d)6 e)7 105.Si la expresión: 5 4 16x8a4x9a2x16a2x8)x(E = es de 2º grado, entonces el valor de a es: a) 2 b) 3 c) 4 d) 5 e) 9 106.Si el monomio: 6by7a5ax3)y,x(M --= , es de grado 23 con respecto a “x” y de grado 12 con respecto a y. Entonces el valor de b/a es a) 3 b) 5 c) 7 d) 9 e) 11 107.Si el grado absoluto de: P(x,y) = x3n-1 yn – 2x2n-2 y2n + xn-3 y3n Es 11. Calcular el valor de “n”. a) 3 b) 5 c) 7 d) 9 e) 11 108.Calcular el valor del coeficiente del monomio: ( ) nm5n2m3m yxn4y,xS -+ = si su grado absoluto es 10 y el grado relativo con respecto a “x” es 7. a) 10 b) 8 c) 6 d) 12 e) 9 109.Hallar el grado del producto: P(x) = (6x2 +1)2 (x2 +x+1)5 (x3 -8) a) 15 b) 7 c) 20 d) 17 e) 19 110.Si: x b a bax bax P =÷ ø ö ç è æ - + , calcular: )10(P)....4(P).3(P).2(P a) 5 b) 25 c) 55 d) 35 e) 45 111.Sea: P(x) = 2 + x2003 – 3x2002 Calcule: a) 2 b) 2002 c) –2 d) 0 e) 2003 112.Hallar el grado de P(x): 5 )2x)(3x(2)1x2x( )8x)(5x)(2x()83x(5)1x2x(3)12x6( )x(P +--+- ++-+-+++ = )2003()2002( )1()3( PP PP + + -
  • 7. -7- a) 3 b) 5 c) 8 d) 9 e) 10 113.Hallar )ba( + si el polinomio es homogéneo: 20208abba83aa yabxybxyax)y,x(P -+= ++ a) 2 b) 4 c) 6 d) 8 e) 10 114.Hallar "n" para que la expresión sea de segundo grado: 4 n2 3 n2 xzxcx cxbxax )x(M = , x ¹ 0 a) 40 b) 80 c) 20 d) 10 e) 160 115.Si el polinomio: ( ) ( ) ...22122)( 22122 +-+-+= -- aaa xaxaaxxP es completo y de ( )a+4 términos, hallar el valor de a. a) 6 b) 5 c) 4 d) 3 e) 2 116.En base a los polinomios idénticos: ( ) ( ) ( ) 72n 2n1n2 xm3x 4 p )x(Q x3nx5m)x(P -+= -+-= - -- Establecer el valor de verdad de las proposiciones: I. La suma de sus coeficientes es 0. II. Son de grado 7 III. El valor de: 22 pn m + es 0,125. a) VVV b) VVF c) VFV d) VFF e) FVV 117.Siendo: 1x)1x(F n -=+ , Halle “n” si: 8 7 )3(F - = a) 3 1- b) 3 1 c) 3 2 d) 3 2- e) 5 1 118. Si: 3mx)x(P 2 -= y 9x28)x3(P)x2(P)x(P 2 -=++ Hallar el valor de “m” a) 1 b) 2 c) 4 d) 5 e) 7 119.Si 12 1ka += ; calcular el valor de kaaaaaaaa -+--+++-+ )1)(1)(1)(1)(1( 222242 a) 0 b) 2 c) 3 d) -1 e) -2 120.Si a + b + c = 0 ; calcular: 222 222 cba )a2cb()b2ca()c2ba( E ++ -++-++-+ = a) 0 b) 3abc c) 3 d) 6 e) 9 121.Para a.b ≠ 0 , simplificar: [ ] 233233 222222 )()( )(4)()( baba bababa E +-- ---++ = a) ab 2 b) ab 2 - c) ab 4 - d) ab 4 e) 4 ab 122.Simplificar: 44 3333 ba )ba)(ba()ba)(ba( E - +-+-+ = a) a b) ab c) 2a d) 2 e) 2b 123.Calcular valor de: ab x bx2a )bx)(ax( E 3 - ++ ++ = Si: 2 )ba()bx2a)(bx2a( -=+-++ a) x b) ab c) 0 d) 1 e) 2 124.Si: 5abc5cba ==+++ , el valor de la expresión; 444 )ca(ac)cb(bc)ba(abE +++++= ; es: a) 15 b)25 c) 50 d) 75 e) 85 125.Si la expresión: 5cx6x3 2 -++ es un trinomio cuadrado perfecto, hallar el valor de “c”. a) 3 b) 5 c) 6 d) 8 e) 12 126.Si 27)a3b(b)b3a(a 2222 ++=+ , entonces un valor para a-b es: a) -3 b) 0 c) 2 d) 3 e) 27 127.Determine el grado del producto : factores10).....5x)(3x)(1x()x(P 963 +++= a) 30 b) 90 c) 120 d) 150 e) 165 128.Si a, b, c Î RÙ a2 +b2 +c2 = ab+bc+ca Hallar el valor de: 1n n nnn )cba( cba A - ++ ++ = a) 1 b) 2 c) ½ d) 3 e) 1/3 129.Efectuar: M =(x+a)(x – a)(x2 +ax + a2 )(x2 – ax + a2 ) a) x3 – a3 b) x6 – a6 c) x3 + a3 d) x6 + a6 e) x + a Si x + y + z = 0 . El equivalente de: ( ) ( ) ( ) ( )( )( )xz3zy3yx3 xz3zy3yx3 E 333 +++ +++++ = a) 1 b) 2 c) 3 d) 4 e) 5 130.Si x + x -1 = (0,5) -1 . Determinar n32 n321 x...xx xx...xxxE +++ ++++++= ---- a) 2 b) 2n c) 4n d) n e) n/2 131.Si a + b = 3 3 y a – b = 3 2 .Hallar )3)(3(4 2222 abbaabE ++= a) 4 b) 5 c) 10 d) 12 e)18 132.Si (x+y+2z)2 + (x+y-2z)2 = 8(x+y) z. Hallar : 333 z2 yx xz zy yz zx E ÷ ø ö ç è æ + +÷ ø ö ç è æ - - +÷÷ ø ö çç è æ - - = a) 0 b) 1 c) 3 d) 5 e) 9 133.Dado que 32x += , el valor de 22 xx - + es: a) 2 b) 5 c) 1 d) 8 e) 14 134.Si: 331 aa)aa(F -- +=+ , hallar F(3)
  • 8. -8- a) 18 b) 27 c) 36 d) 72 e) 81 135.Si: 3 x)x(P = , [ ] 1x3x3x)x(q(P 23 +++= . Hallar: )5(q : a) 3 b) 6 c) 9 d) 12 e) 13 136.Si: a + b + c = 0, abc = 5 , hallar 333 )c2ba()cb2a()cba2(E ++++++++= a) 5 b) 9 c) 18 d) 15 e) 45 137.Conociendo que: ax+by = 8 ay – bx = 6 a2 +b2 = 5 Calcule : x2 +y2 a) 16 b) 18 c) 20 d) 24 e) 25 138.Dados : x+y = 3 x3 +y3 = 9 Luego x.y resulta : a) 1 b) –1 c) 2 d) –2 e) 3 139.Si: babaxbax +=---++ Calcular ( )baxbaxE +++--= a) a+b b) x – a c) 2 d) a.b e) a.c 140.Si: (a+b)=3 y ab=2. Calcular 22 33 ba ba N + + = a) 5/9 b) 5/7 c) 7/5 d) 9/5 e) 2/4 141.Siendo: ab = 110100 33 +- Ù 322 101+=+ ba . Determine el valor de (a - b)4 - (a + b)4 a) 44 b) 22 c) – 88 d) 45 e) 88 142.Sabiendo que: a – b = b – c = 7 7 . Determine el valor numérico de: 70 )ba()cb()ca( 777 -+-+- a) 10 b) 13 c) 2 d) 16 e) 12 143.Si: 5abc5cba ==+++ , el valor de la expresión 444 )ca(ac)cb(bc)ba(abE +++++= ; es: a) 15 b)25 c) 50 d) 75 e)85 144.Si 12 1ka += ; calcular el valor de : m)1xx)(1x( )1xx)(1xx)(1x(E 22 2242 -+-- +++-+= a) -2 b) -1 c) 0 d) 2 e) 3 145.¿Cuál es el valor de verdad de las siguientes proposiciones? Ø El grado del polinomio producto, es igual a la suma de los grados de los polinomios factores. Ø El término independiente del polinomio producto es igual al producto de los términos independientes de los factores. Ø El coeficiente principal del polinomio producto es igual al producto de los coeficientes principales de los factores. Ø El coeficiente principal es el mayor coeficiente de los términos de un polinomio. a) VVVV b) VVVF c) VFVF d) FVVF e) FFFV 146.Si a + b + c = 3 y 9cba 333 =++ , Calcular: )ac)(cb)(ba(N +++= a) 4 b) 5 c) 6 d) 7 e) 8 147.Si 01x3x 24 =+- , hallar 86 848688 x xxx E ++ = a) 8 b) 6 c) 4 d) 2 e) 1 148.Si a ≠ 1 Simplificar: ú ú û ù ê ê ë é -+ -- - -- -+ - = 1aa 1aa 1aa 1aa 1a 1 W 2 2 2 2 2 a) 4 b) 2a c) 3a d) 4a e) 5a 149.El área de un cuadrado de lado (a+b) es 8 veces el área de un triángulo de base “a” y altura “b”. Calcular; 222222 44 )ba4()ba4( )ba()ba( E --+ --+ = a) 2 b) 3 c) 4 d) 1 e) 5 150.Si 5 5 yx xy 22 = + , Entonces el valor de: 44 x y y x E ÷ ø ö ç è æ +÷÷ ø ö çç è æ = es: a) 1 b) 2 c) 5 d) 7 e) 9 151.El valor entero de k que hace que el trinomio: 3k2x)3k5(x)1k( 2 ++-++ , sea un cuadrado perfecto es: a) 2 b) -3 c) 3 d) -2 e) 7 152.Simplificar: 8 84 4 2 2 n 1 n 1 n n 1 n n 1 nK +÷ ø ö ç è æ +÷ ø ö ç è æ +÷ ø ö ç è æ += Para ¸ Î+= Zn;1nn2 a) n b) -n c) 1/n2 d) n2 e) 1 153.Reducir: 22422 222422 )3x()3x(2)3x( )1xx()1xx(2)1xx( -+-++ +-+++-++ a) x b) 1 c) 2 x d) 2 x - e) 1 x- 154.Si 7 x y y x n n n n =+ , entonces el valor de 2 n 2 n nn yx yx + es: a) 9 b) 7 c) 5 d) 2 e) 3 155.Dado el polinomio nmz3my2nxn6z2my3nx5)y,x(P +-++--+= , donde GR(x) – GR(y)=3 y GA=13, luego el valor de (m+2n) es: a) 5 b) 7 c) 10 d) 17 e) 18 156.Si xy = 1 , x, y > 0 , Calcular 1y 1x .y 1x 1y .xE 2 2 2 2 + + + + + = a) 5 b) 4 c) 3 d) 2 e) 1
  • 9. -9- 157.Si 3cbba =-=- , hallar el valor de: 12 )ca()cb()ba( E 222 -+-+- = a) 0 b) 1/5 c) 3/2 d) 3/5 e) 4/3 158.Hallar el valor de 3 nn nn y.x yx + , Si: 62 x y y x nn =÷ ø ö ç è æ +÷ ÷ ø ö ç ç è æ a) -2 b) 2 c) 1 d) 4 e) -4 159.Si se cumple que 12112mm 12m = . Hallar: 9m9m6mE ---+= a) 2 b) 3 c) 4 d) 5 ) 6 160.Efectuar: 1 2 aa 2xx +÷ ÷ ø ö ç ç è æ - - a) 1 b) xx aa - - c) )aa(5.0 xx - - d) )aa(5.0 xx - + e) xx aa - + 161.Si: )yx(z4)zyx( 2 +=++ , determinar el valor de z6 y3x3 36P + = a) 1296 b) 6 c) 6 d) 36 e) 3 6 162.El resultado de simplificar 2222 22222 ]x9)8x)(1x[( ])22x()22x[( -++ -++ , es: a) )3x( + b) 1 )3x( - + c) 4 d) 3 e) x3 163.Si: 33 2121x -++= entonces el valor de 5x3x3 ++ es a) 7 b) 9 c) 6 d) 5 e) 4 164.Efectuar: )7x)(13x()9x)(11x( 1)7x)(17x()12x( P 2 ++-++ +++-+ = a) 13/4 b) 13/2 c) 1 d) 4/3 e) 4/13 165.Si: 8 8 23b 23a -= += , entonces hallar el valor de 23)ba)(ba)(ba)(ba(E 2244 +-+++= a) 1 b) 25 c) 2 d) 2 e) 0 166.Si: 2 m 1 m 2 2 =+ , Entonces el valor de : 6 12 m3 1m E + = a) 2 b) 1 c) 3/2 d) 2/3 e) 2/6 167.Sabiendo que: yx2 4 y 1 x2 1 + =+ , entonces el valor de 10 3 y2x y3x yx3 y2 x2 yx3 M + + + + + + + = a) 1 b) 2 c) 3 d) 4 e) 5 168.Reducir: ( )[ ] 8)3x)(3x( 13)2x)(2x()2x(2x 22 +-+ --+--++ a) x b) 1 c) -13 d) 3 e) x+2 169.Hallar: 24 1263 )12)(12)(12(71P ++++= a) 2 b) 8 c) 16 d) 64 e) 5 170. 33 3333 xyyx )yx)(yx()yx)(yx( F - +---+ = a) 3 b) 2 c) 4 d) 1 e) 6 171.Simplificar: )cb)(ba( )ac( )ba)(ac( )cb( )ac)(cb( )ba( 222 -- - + -- - + -- - a) 1 b) cba ++ c) 0 d) abc e) 3 172.Si ba;ba 33 ¹= , Hallar el valor de: 2 )ba( b.a E - = a)1/3 b) -1/3 c) 1 d)1/2 e) 3 173.Determinar “n” si el polinomio: )53()12()3()( 2 +-+= xxxxxP nnn nnnnn nnn es de grado 289 a) 3 b) 2 c) 1 d) 4 e) 5 2008 – III 174.Encontrar el valor de “x” en: x 4 4 = x a) 1/2 b) 1/4 c) 1/8 d) 2 e) 2 175.Calcular “x” de: x 22 = 2 2 a) 1 b) -1/4 c) -1/2 d) -2 e) 1/4 176.Resolver: 4 22 = xx x y dar el valor de: x2 + x4 a) 20 b) 6 c) 72 d) 40 e) 3 177.Evaluar “x” si: 22 2x 22 + + ú û ù ê ë é = 2 a) 2 b) 1/2 c) 2 d) 2 1 e) -2 2 178.Considerando: 35xx 3x = + Calcular: 5x5xx3 x x +++ a) 0 b) 1 c) 2 d) 3 e) 4
  • 10. -10- 179.Resolver: 2 (x-2)x = (x - 1) x - 1 a) 1/4 b) 1/2 c) 12 + d) 4 2 e) 8 2 180.Si: xx + 4x-x = 4 Calcular el valor de: 1+2xx x P = 1+xx x a) 1 b) 2 c) 4 d) x2 e) xx 181.Si: xx 2= ; calcular el valor de: 1 x1 2x8 x E x ++ = a) 2 b) 4 c) 8 d) 16 e) 256 182.Reducir a su mínima expresión: (0.125)(0.5)4 2 (0.0625) M (0.25)(16)= a) 1 b) 2 c) 4 d) 8 e) 16 183.Si xy = 2 , simplifique: 1 xx x x -6 + 15 x x2E = + x .2 yx x 2 + 5 æ ö ç ÷ è ø a) 8 b) 2 c) 4 d) 10x e) 2 184.Reducir: 2008 2008 2008 x x x 2006 2004 2000 x x x a) x3/2 b) x19/81 c) x33/32 d) x2008/1999 e) x3 185.Resolver: 3 x9 3 27 3 + = a) -3 b) -4 c) 3 d) 4 e) 1/4 186.Reducir: a b b a b a b a 2b a 2 a b a b b a P a b b a + + - + = + a) a/b b) b/a c) ab d) 1/ab e) b aa b 187.Simplificar: n 4n4 n 14 4 1024 4 4 E 16 +é ù ê ú= ë û a) 8 b) 16 c) 2 d) 4 e) 64 188.Indicar el valor de “x”, Sabiendo que: x x x 9 1 x x x 81 x 3 + = + a) 3 b) 27 c) 81 d) 9 e) x 3 189.El valor más simple de: 2n 4 2n 3 2n 5 n 3 225 M 5 . 4 25 + + + + = + , es: a) 5 b) 15 c) 45 d) 25 e) 225 190.Reducir: ( ) -2 1 1 5 -1 3 2E = a a a ì ü é ùï ïï ïê úí ý ê úï ïë û ï ïî þ a) 1 b) a c) –1 d) – a e) 2 191.Simplificar: 52 3 43 4 20 2153/13 4 . . . . x y y z z x R x y z = a) x b) y c) z d) 1 e) 2 192.Efectuar: ( ) ( ) 2 2 3 2 3 93 32 3 3 1 1/2 2 2 1 a b a b a b a b - - - - æ ö ç ÷+ - è ø a) 1 b) 2a b c) a b d) 2 1 ab e) b a 193.Si: a 1 a 3 - = . Calcular el valor de: a 1 a a a 1a +æ ö ç ÷ ç ÷ -è ø a) 32 b) 3 3 c) 3 d) 4 3 e) 5 3 194.Reducir: n 2 2 n n 4 n 3 .(48) .9 P 12 + = a) 3 b) 9 c) 27 d) 1 e) 12 195.De las siguientes proposiciones, son falsas: I. 3 26 27x y- × es EAI. II. x3x – 34 . x2 no es EA. III. (-0,5)-1 x5 y es una EARF. IV. 3x 2x x x x 2x x x x + + no es EARE. a) I y II b) II, III y IV c) I, II y IV d) I, III y IV e) Todas 196.Reducir: - - - - - - - + + + + x 1 x 1 x 1 x 1 1 x 1 x 1 x 3 4 6 4 6 8 a) 36 b) 144 c) 24 d) 48 e) 12 197.clasifique la expresión siguiente: π4 3 1/5 2 25x y ex y x P(x, y, z) = - -22 -3 -5 2 z72 z x - a) EARF b) EARE c) EAI d) Trascendente e) Exponencial 198.Calcular “x” en la siguiente igualdad: 11 433 3 3 33 3. 33. 3. 33 = x a) 77 b) 33 c) 1/99 d) 9 e) 99 199.Si: ab = 2 ba =3; el valor de: 2b a+1 b+1a +2 2b 3a E = a .b es: a) 2 b) 4 c) 6 d) 8 e) 10
  • 11. -11- 200.Encontrar el valor de “x” en: x9 1 31 1 = 9327 æ ö ç ÷ è øæ ö ç ÷ è ø a) 1/2 b) 1/3 c) 2 d) 3 e) 1/4 201. 93x3x x = 3 , determine el valor de: (x + 1) (x2 – x +1) a) 3 3 b) 9 3 c) 9 3 +1 d) 6 3 +1 e) 3 3 +1 202.Si x ∈ ℝ+ talque: x ¹1. Calcular el valor de “n” que verifica: 1 3 nx 4 1 3 4=x x x æ ö ç ÷ è ø a) 9 b) 3 c) 1 d) 0 e) 2 Resolver: ( ) nn x n n nn nn nx = n a) n b) n n c) nn d) n n n e) n-n 203.Si 2)12)(3()( +-+= xxxxP , se puede escribir en la forma: )1()1( 3 +++- xxBxAx ; entonces el valor de A – 2B es: a) -2 b) -1 c) 0 d) 1 e) 2 204.Determinar 222 cbaM ++= , si xxxcxbxxaxP 45)()13()35()( 22 ----+++= ; es un polinomio identicamente nulo: a)215 b)275 c) 305 d)315 e) 300 205.En un polinomio homogéneo, ordenado y completo, se observa que la suma de los grados absolutos de todos sus términos es 156 ¿Cuál es el grado de homogeneidad del polinomio?: a) 8 b) 14 c) 11 d) 12 e) 10 206.Si la suma de los grados absolutos de los términos de: byxyabaxyxE bb aa +-= -- 7142 )(5),( es 210 )1( +a Hallar “b”: a) 13 b) 14 c) 15 d) 16 e) 17 207.Si baxxP +=)( . Además [ ]{ } 1898)( += xxPPP . Determinar P(5): a) 25 b) 37 c) 28 d) 35 e) 40 208.Si 1)1( -=+ xxF m y 875.0)3( -=F . Hallar “m”: a) 1/2 b) -1/2 c) 1/3 d) -1/3 e) 1 209.Dados lo polinomios P(x) y Q(x) de los que se sabe: 3 )().( xQxP es de cuarto grado; [ ]2 )()( xQxP ¸ es de octavo grado ¿ cuanto vale el grado de: P(x)+ )(3 xQ a) 4 b) 8 c) 12 d) 64 e) 72 210.Señale el grado del polinomio ordenado en forma decreciente: aaa xxxxP 2662212 )( --- ++= a) 5 b) 6 c) 7 d) 8 e) 9 211.Si 3)( 2 += xx P pp .Calcular P(Q(3)), si xxxQ += 2 )( : a) 8000 b) 90 c) 8100 d) 900 e) 8103 212.Hallar “n”, si la expresión es de 2do. Grado 5 4 3 462 2.3.4.5)( nnn xxxxxM = a) 4,9 b) 2,6 c) 5,7 d) 7,3 e) 1,0 213.Si el grado de P(x).Q2 (x) es 13 y el grado de P2 (x).Q3 (x) es 22. Calcular el grado de P3 (x)+Q2 (x) a) 12 b) 13 c) 14 d) 15 e) 16 214.Sea 324325 )(2),( +-+-++- -++= bababaaba yxbaybxyaxyxP Calcular “a+b” si su G.A es 18 y la suma de sus coeficientes es 5 a) 1 b) 2 c) 3 d) 4 e) 5 215.Si el grado del polinomio: )12()1100()725()( 5232 --+= - xxxxP nn es 49. Determinar: 17 50 )(Pr xPdeincipaleCoeficient E= a) 25 b) 15 c) 18 d) 4 e) 50 216.Hallar el numero de términos del polinomio completo y ordenado: ...)3()2()( 67 +-+-= -- mm xmxmxP a) 4 b) 6 c) 5 d) m-7 e) m-3 217.Si qnmmqpqpnpnm wzyxwzyxP ++++++++ +-+= 864),,,( Es homogéneo. Calcular: 2222 qpnm mn k +++ = a) 1/2 b)1/3 c) 1/5 d)1/6 e) 1/4 218.Determinar ( ) ca cbaE + ++= , si ...987...)( 332 +++++= +++--+ cbacbaca xxxxxP Es completo y ordenado descendentemente a) 1 b) 0 c) -1 d) -2 e) 2 219.Si el polinomio: 5/)20()5/(1 222 23),,( +++++ -+= mmnann zyxzyxP Es homogéneo. Hallar “a”, si n<m<9: a) 3 b) 1 c) -3 d) -1 e) 5 220.Si xxP ++++= ...321)( hallar: )1( )().1( 2 - - = xP xPxP E a) 1/2 b) 1 c) 1/3 d) 2 e) 3
  • 12. -12- 221.Calcular el término independiente del polinomio P(x) si se cumple: P(x-1) = Q(x) + R(x-1) NmxxxxxxQ mmm Î++++++= ++ ;1...)( 212 1464)( 234 +-+-= xxxxxR a) 5 b) 9 c) m d) m–2 e) m+4 222.Si F(x) = 2 x99 – x100 + 1 G(x) = 3ax3 – a4 + 2 - 2x4 . Hallar F[G(a)] a) 0 b) –1 c) –2 d) 2 e) 1 223.Dados los polinomios P(x) y Q(x), se sabe que los polinomios : P3 (x) . Q(x) y P3 (x) ¸ Q2 (x), son de grado 17 y 2 respectivamente. Hallar el grado P(x).Q(x). a) 4 b) 6 c) 10 d) 15 e) 9 224.Dado un polinomio cuadrático mónico P(x) que genera el siguiente resultado tabulado Calcular la suma de coeficientes del polinomio b) 4 b) 2 c) 1 d) 3 e) 5 225.Determinar la suma de coeficientes, de P(x), sabiendo que su término independiente es 17, además se cumple que:P(x + 1) = (x + 1) (ax + 2) + (a – 1) (x + 2) + a a) 34 b) 27 c) 8 d) 9 e) 7 226.Determinar “m” con la condición que el término independiente del producto (m > 0) (x + 3)2 (x + 2)3 (x – m)2 (x2 + 5) sea 1440. a) 2 b) 10 c) 360 d) 1 e) 1440 Si el polinomio : 3x3 ym + 8xn y4 +mxm ym+n-6 es homogéneo; hallar el grado del polinomio: 2x2m ym+n + 3xn ym+n – 4x3m a) 15 b) 18 c) 19 d) 20 e) 27 227.Hallar el valor de P(6), sabiendo que: P(x + 3) = P(2x + 1) + x; además P(9) = 5 a) –2 b) 0 c) 2 d) 4 e) 12 228.Hallar “ab” en la siguiente identidad. 13 – 2x = a(2 – x) + b(1 + x) a) 3 b) 5 c) 9 d) 15 e) 25 229.Si el polinomio P(x) es completo y ordenado; y tiene catorce términos. Hallar (a + n); donde: P(x) = xn-3 + xn-2 + xn-1 + … + xa+4 a) 12 b) 15 c) 3 d) 7 e) 9 230.Hallar m + n + p, si el polinomio es completo y ordenado en forma descendente. P(x) = xm-10 – 3xm-n+15 + 15xp-n+16 a) 10 b) 12 c) 16 d) 48 e) 40 231.Dado el término: 2xa-1 ya z2a . Si su grado absoluto excede en 9 a su grado relativo a “x”; hallar su grado relativo a “y”. a) 0 b) 3 c) 4 d) 5 e) 6 232.Efectuar: (1 10 5 2)(1 10 5 2)+ + + + - - a) 1 b) 2 c) 3 d) 4 e) 5 233.Si se cumple: 3 3 x y 9+ = ; x y 3+ = . Calcular: 2 (x y)- a) 1 b) 2 c) 3 d) 4 e) 5 234.Después de simplificar: 32 2 2 2 (x 1) (x 2x 1) (x 1) (x 2x 1)é ù+ + - - - - - ê úë û Se obtiene: a) 0 b) 2x c) -2x d) -x e) x 235.Si a x y y x =+ ; hallar: 3 3 3 3 3 3a x y y x S ++= a) a b) 3a c) 6a d) 9a e) 12a 236.Simplificar: 44 3333 ))(())(( ba babababa R - +-+-+ = a) 8 b) 6 c) 4 d) 2 e)0 237.Efectuar: )1(12 )4)(5)(3)(2()2)(3)(4)(1( 2 -+- -++--+-+-= xx xxxxxxxxk a) 20 b)5 c)0 d)-84 e)1 238.Si: 1 ))(( 2 = -+ + - - yzyx z yz zx Hallar: 222 ÷ ø ö ç è æ - +÷ ø ö ç è æ + +÷÷ ø ö çç è æ - = x yz z yx y xz J a) 0 b) 3 c) 1 d) 5 e) 7 239.Si: a + b = 7 y ab = 2, hallar: 3232 bbbaaaE +++++= a) 200 b) 258 c) 353 d) 401 e) 101 240.Si: yx yx A - + = , xy yx B 22 + = ; hallar: E = (A – 1)(B – 2) a) 6(x + y) b) 4 c) 0 d) 1 e)8 241.Si: 4 3 30333 = =++ =++ abc cba cba Hallar: 111 --- ++= cbaE a)0 b)1 c)4-1 d)8 e)-3 242.Si: 6)( 21 =+ -xx ; hallar: x 2 1 f(x) 7 3
  • 13. -13- 3 4422 6-+++= -- xxxxE a)0 b)1 c)4 d)6 e)8 243.Considerando el trinomio cuadrado perfecto: mqxpx ++2 , determine: 2 2 qpm qpm E - + = a)-1 b)0 c)-5/3 d)1 e)6 244.Efectuar: 16 1684 1)15)(15)(15)(624( ++++=R a)51/2 b)25 c)105 d)10 e)5 245.Si: xx 612 =- ; hallar: 22 - + xx a)20 b)18 c)38 d)40 e)1 246.Si: 62=+ x y y x ; hallar: 3 xy yx E + = a)1 b)2 c)3 d)4 e)5 247.Si: 137 3572 1325 ++= +-= -+= c b a Hallar: ccbaba ccbaba E --+++ +-+++ = 22 22 )( )( a) 3 b) 32 + c) 4 d) 5 e) 7 248.Si: 2222 )( cbacba ++=++ ; hallar: a caba E ))(( ++ = a)0 b)1 c)-2 d)6 e)8 249.Si: x = 0.75; hallar: xxM --+= 11 a)0 b)1 c)2 d)3 e)4 250. Por cuanto hay que multiplicar a4 – b4 , para obtener: ))(())(( 3333 babababa +-+-+ a)a b)2 c)b d)a2 + b2 e)1 251.Simplificar: 3 22422422 ))(( 3))(( nmnm nmnnmmnm E -+ -++- = a) 22 nm - b) 2 m c) 2 n d) 22 nm + e)1 252.Si: 5 5 22 = +nm mn , hallar: 88 ÷ ø ö ç è æ +÷ ø ö ç è æ = m n n m E a)45 b)46 c)47 d)48 e)49 Si se cumple que: a b c 0+ + ¹ 3 3 3 a b c 3abc+ + = Calcular el valor numérico de: + + = + + 2008 2007 2008 2008 2008 (a b c) E a b c a) 3 b) 2 c) 1 d) 1/2 e) 1/3 253.El valor de k que hace que el trinomio: 2 (k 1)x (5k 3)x 2k 3+ + - + + Sea un cuadrado perfecto es: a) 2 b) -2 c) 3 d) -3 e) 17 254.Simplificar: )2(19)2()1()9)(5)(1( 9)6(10)2)(4)(6()3( 222 4 -+-----+ +-+----- = xxxxxxxx xxxxxxx E a)2 b)0 c)1 d)3 e)4 255.Si: 3 3 a b , a b= ¹ . Calcular el valor de: 2 ab F (a b) = - . a) 1/2 b) -1/3 c) -1/2 d) 1/3 e) -3 256.Simplificar: ab)dcba)(dcba( )dcb)(dca()dba)(cba(E +--++++- ++++-++++= a)0 b)1 c)2 d)cd e)ab 257.Si: a b b c c a 1 c a - + = Ù + > , determinar el valor de: ( ) ( ) 2 2 2 a 2b c a b 2c b c 2a c ab - - - - + -æ ö + +ç ÷ è ø a) 3 b) 1 c) 1/3 d) 2 e) 0 258.Hallar el valor de: 23 3 3 2 (x y) (y z) (z x) (x xy xz yz)(z y) é ù- + - + - ê ú ê ú- - + -ë û , si x y z¹ ¹ a) 9 b) 4 c) 25 d) 2 e) 27 259.Si: = + - 2 F(x) x 5x 2 y G(x) 2x 1= - El cociente del coeficiente del término lineal entre el término independiente de: F G(x) G F(x)´é ù é ùë û ë û, es: a) 2 b) -2 c) 3 d) -3 e) 1 260. Si: 632324 2521416 yyxynxx +-+ , es un trinomio cuadrado perfecto.¿Qué valor debe tomar “n”? a)1 b)5 c)3 d)8 e)-8 261.Un polinomio de tercer grado, cuyo primer coeficiente es la unidad, es divisible por (x - 2) ypor (x + 1) y al dividirlo por (x - 3) da de resto 20. ¿Qué resto daría al dividir dicho polinomio por x + 3? a) 10 b) 20 c) -20 d) -10 e) 4 262.Hallar un polinomio )(xP de segundo grado divisible por ( )12 +x ; sabiendo además que su
  • 14. -14- primer coeficiente es 4 y que al ser dividido por 2-x el resto es 5, reconocer el menor coeficiente de )(xP . a) -4 b) -3 c) -5 d) 4 e) 2 263.Si "" A es el penúltimo término del cociente notable de: 1 1 8 40 - - x x , señale el término que sigue en el cociente notable: ....36 ++ yxA a) 44 yx b) 43 yx c) 64 yx d) 54 yx e) 24 yx 264.La suma de todos los exponentes de las variables del desarrollo de: 44 100100 yx yx - - , es: a) 2400 b) 2500 c) 2600 d) 2700 e) 2800 265.Hallar el lugar que ocupa el término de grado 101 en el desarrollo de: 49 80180 ),( zx zx zxM - - = a) 2 b) 3 c) 4 d) 5 e) 1 266.Se desea saber el número de términos del cociente adjunto: 1 1 - - x x a Si se cumple que: 236 )100().50().10( xTTT = a) 130 b) 135 c) 134 d) 132 e) 131 267.Indique cuál es el número de términos en: ......... 18561563 baba +- sabiendo que es el desarrollo notable. a) 10 b) 15 c) 12 d) 13 e) 14 268.Obtener el resto de la división siguiente: 5 3 2 7 3 10 3 x x x a b b ab a a b - - + + + - sabiendo que el dividendo es ordenado y completo. a) 20 b) 18 c) 10 d) 15 e) 16 269.Si el cociente notable de: 1 18 - - m x x tiene 4 términos; Calcule el valor de: 3...789 +++++ mmmm a) 1025 b) 1024 c) 1016 d) 1004 e) 1000 270.Calcular el residuo de la división siguiente: ( ) ( ) 23 121 2 77 +- ---- xx xx a) 1-x b) 2-x c) 1 d) 0 e) -1 271.Hallar el resto de la división: ( ) ( ) ( ) 22 313171 2 172835 ++ ++++++ xx xxx a) x2 b) 122 -x c) 52 +x d) 122 +x e) 72 +x 272.Halla el resto en la siguiente división: ( )( )21 3 ++ xx x a) 57 +x b) 276 +x c) 67 +x d) 16 -x e) 13 -x 273.Si el polinomio cbxaxxx ++++ 245 2 es divisible por 14 -x , hallar el valor de: ba ba - + a) 3/2 b) -3/2 c) 2/3 d) -2/3 e) -1 274.¿Cuánto debe valer 22 baba ++ para que al dividir 34 -+ bxax entre 12 -x se obtiene un cociente exacto? a) 3 b) 6 c) 9 d) -6 e) -2 275.Del esquema de división por Ruffini: a b c d e f -1 1 3 5 7 9 m n r s t O Determinar la suma de coeficientes del polinomio dividendo. a) 100 b) 50 c) -50 d) -100 e) -50 276.Si: 1293 23 -+- kxxx es divisible por 3-x entonces, también es divisible por: a) 43 2 +- xx b) 43 2 -x c) 43 2 +x d) 43 -x e) 43 +x 277.Al efectuar la división: 12 3 3 235 ++ ++++ xx baxxxx , deja un residuo: 23 +x . Hallar: ba - a) 2 b) 3 c) 4 d) 5 e) 1 278.El polinomio )(xP al vivirlo entre ( )2-x da resto 5, y la suma de los coeficientes del polinomio cociente es 7. Hallar )1(P a) 4 b) -2 c) -3 d) -4 e) 3 279.Al dividirlo: 272829 168)( bxxxP ++= entre bx - el residuo es cero. ¿Cuál es el valor de b? , b o¹ a) -4 b) 8 c) 1 d) 4 e) 2 280.Por cuánto hay que dividir al polinomio 224 +++ xxx , para que el cociente sea 12 +- xx y el residuo sea 1+x a) 12 +x b) 12 -x c) xx +2 d) 12 ++ xx e) 12 -+ xx 281.Dar el mayor coeficiente del dividendo en la siguiente división por Horner: 3 a b c d e f 4 -12 g 6 -18 -14 42 2 3 -7 6 8 a) 20 b) 25 c) 35 d) 38 e) 40
  • 15. -15- 282.Si el polinomio: bayy 455 +- da un cociente exacto al dividir entre ( )2 ky - . Hallar “ ab - ” en términos de k a) 25 kk - b) kk +5 c) 45 kk - d) 45 kk + e) 35 kk + 283.Si: baxx ++24 es divisible entre ( )2 1-x , calcular: “ ab - ” a) 50 b) 49 c) 48 d) 47 e) 46 284.Hallar “ nm+ ”, sabiendo que la división: 3 23 2 235 + +-++ x xnxmxx da un residuo: 105 -x a) 11 b) 5 c) 1 d) 7 e) 4 285.Hallar "m" si x3 + y3 +z3 - mxyz es divisible por : x + y + z. a) 2 b) 4 c) 3 d) 1 e) 5 286.En la división: 4 3 2 2 6 6 6 12 6 x x x x x - + + - - el coeficiente del término lineal del cociente es: a) - 6 b) 6 c) 1 d) 0 e) 6 287.Calcular “m” si el grado absoluto de t33 en el cociente notable 75 75 yx mymx - - es 209. a) 45 b) 40 c) 48 d) 30 e) 35 288.En una división de dos polinomios, el término independiente del dividendo es 4 veces más que el término independiente del resto, y el término independiente del cociente es el doble del término independiente de éste último. El valor del término independiente del divisor es: a) 1 b) 2 c) 3 d) 4 e) 5 289.Al identificar las divisiones notables que originaron los cocientes. A = x16 – x12 y8 + x8 y16 – x4 y24 + y32 B = x15 – x10 y10 + x5 y20 – y30 La suma de ambos dividendos es : a) 8x b) 6x2 c) x14 d) 2x20 e) 7x20 290.Hallar un polinomio P(x) de cuarto grado de primer coeficiente 2, divisible entre (x – 2), (x + 3) y (x – 4), además al ser dividido entre (x + 1) proporciona residuo –30. El término independiente del polinomio es : a) 24 b) 30 c) 25 d) 15 e) 18 291.Hallar “ nm+ ”, sabiendo que la división: 3 23 2 235 + +-++ x xnxmxx da un residuo: 105 -x 292. a) 11 b) 5 c) 1 d) 7 e) 4 99-I 293.Calcular el valor de “x” en: 2 1 64 16 = + +X xx xx x x , si + ZÎx a) 2 b) 4 c) 8 d) 6 e) 32 294.Si 16bab b == ; Hallar a bE = a) 2 b) 2/2 c) 4 2 d) 2 e) 4 295.Simplificar: 1 11 11 222 1 35 35 24 20 - -- -- ++ + + + + + a aa aa a aa a , si 0>a a) 10 b) 20 c) 30 d) 1 e) a 296.Si x=3 ; Calcular el valor numérico de E = ( ) 1 82 -- - X X a) 1 b) 9 c) 3 d) 1/9 e) 1/3 297.Simplificar la Expresión E = 1327 2 - - a) 4/2 b) 2 c) 2 d) 1 e) 4 298.Calcular “x” en: 1x24x 273 -+ = a) 1/5 b) 4/5 c) 3/5 d) 6/5 e) 7/5 299.Reducir la expresió: 5 5 5 5 5 5 5 5 55 5 5 - - ú û ù ê ë é ú ú û ù ê ê ë é =E a) 36 b) 25 c) 49 d) 16 e) 9 300.Si la expresión: ( )[ ] 2 20 3 52432172 zzyxxyx þ ý ü î í ì - - es semejante con: cba zyx , hallar: cbaM ++= a) 10 b) 11 c) 12 d) 13 e) 14 301.Clasificar la siguiente expresión: 0, . )( 24 4 33 233 > ïþ ï ý ü ïî ï í ì = x xx xxxx xE a) EARE b) EARF c) EAI d) Exponencial e) Expresión trascendente 302.Si ,3xx = hallar el valor numérico de: 1x x x + a) 9 b) 343 c) 81 d) 27 e) 25 303.Calcular el valor : E= 023 321 2 1 3 1 10 1 - --- ú ú û ù ê ê ë é ÷ ø ö ç è æ +÷ ø ö ç è æ +÷ ø ö ç è æ a) 39 b) 3 c) 1 d) 33 e) 3
  • 16. -16- 304.Simplificar la expresión: n n n n n n n n n 32 81 18 41 14 31 13 --- - - + - - + - - , 0>n a) 3 b) 2 c) 4 d) 5 e) 7 305.Reducir a su mínima expresión: x.xxx a) x b) x c) 4 x d) 8 x e) 1/x 306.Al simplificar: , 4 8 2n3 3/5n2 + + resulta: a) 1 b) 8 c) 4 d) 2 e) 16 307.Calcular aproximadamente: ...4242A = a) 2 b) 3 22 c) 2 d) 16 e) 4 5 2 308.Simplificar la expresión: 2 2 aaa aa aaaE - ú ú ú û ù ê ê ê ë é = a) a2 b) a c) a3 d) 1 e) a4 309. Simplificar " X ZÎ + x x x xxx xx 16 3232 E + +++ = -- a) 5/6 b) 1/5 c) 2 d) 3 e) 5 310.Reducir: 3 1245 124 27.243 --- --- =E a) 1/2 b) 1/3 c) 1/6 d) 1 e) 0 311.Señale el equivalente a la expresión: ÷÷ ø ö çç è æ ÷÷ ø ö çç è æ ÷÷ ø ö çç è æ ú ú ú ú û ù ê ê ê ê ë é ÷÷ ø ö çç è æ 2 1 2 1 2 1 2 1 a) 2 2 b) 2 4 c) 22 2 d) 2 2 e) 1 2 2 - ÷ ÷ ø ö ç ç è æ 312.Hallar el valor numérico de: xxxxxx xW ++ = 2 ; para 2= xxx a) 32 b) 24 c) 48 d) 128 e) 64 313.Si: 4x 1x x = + ; El valor numérico de E= 12x2 x x x + a) 12 b) 14 c) 18 d) 1/4 e) 1/2 314.Determinar el valor de “x” en la ecuación: 7123 )125.0()5.0( -- - - = x a) 5 b) 72 c) 7 3 d) 14 3 e) 14 7 315.Calcular el valor numérico de: E= ¥-- ......303030 a) 6 b) 9 c) -5 d) 8 e) 5 316.Reducir la expresión: ú ú û ù ê ê ë é ¸ ú ú û ù ê ê ë é + + b a b a 2 2 2 2 2 2 a) 8 b) 128 c) 4 d) 64 e) 16 317.Simplificar la expresión ( ) ( )( ) ( ) 391 5 1 351 4 1 331 3 1 5 1 4 1 3 1 -- ÷÷ ø ö çç è æ - -- ÷÷ ø ö çç è æ - -- ÷÷ ø ö çç è æ - ÷÷ ø ö çç è æ --÷÷ ø ö çç è æ -÷÷ ø ö çç è æ --=A a) 2896 b) 2504 c) 3202 d) 2500 e) 3300 318.Si: 99)4(54 x2x =-+ ; Calcular 14332A x -= a) 10 b) 8 c) 6 d) 4 e) 2 319.Resolver: 2x 2x 2 = a) 2 2 b) 21 + c) 3 2 d) 2/1 e) 2 Calcular el valor de: ¥-- ¥++ = ...... 16 5 16 5 16 5 ....606060 3 3 3 K a) 18 b) 16 c) 15 d) 12 e) 20 320.Resolver: 2x 1x2 =- a) 4 b) 1/4 c) 3/4 d) 2/3 e) 1/2 321.Resolver: 2xx )1x( 1x 2 + += + a) 2 b) 22 c) 12 + d) 12 - e) 122 - 322.Se tiene ( ) 1x1xF n -=+ ; además: ( ) 8/73F -= . Hallar el valor de “n” a) -1 b) -1/2 c) -1/3 d) ¼ e) 1/2 323.Si ( )XF es un polinomio definido por: )1(F)x2(F)1x2(F +=- ; Además 2)0(F = , Calcular )3(F a) 1 b) 0 c) -1 d) 2 e) -2 324.Se tiene un polinomio homogéneo: A(x,y)= nmnm m662m2 yxmyxnxm +- ++
  • 17. -17- Hallar la suma de los coeficientes de: A(x, y) a) 2 b) 3 c) 4 d) 5 e) 6 325.Sea el polinomio: 2c1b1a x5x)5d(x2)x(P +-- +++= , Si 576)2(P,14)1(P == y los grados de sus términos son consecutivos en forma creciente Hallar: a + b + c + d a) 17 b) 14 c) 21 d) 35 e) 49 326.Dados los polinomios P(x) y Q(x) tales que; los grados de los polinomios: P2 (x) . Q(x) y )x(Q )x(P3 , son 27 y 23 respectivamente. Hallar el grado de: )x(P )x(Q2 a) 3 b) 5 c) 7 d) 4 e) 9 327.Determinar “m” con la condición que el término independiente del producto: ( ) ( ) ( ) ( )5xmx2x3x 2232 +-++ sea 1440 a) 1 b) 2 c) 3 d) -1 e) -12 328.El polinomio: )1n(x3....xx 2n21n2 +++++ -- ; Posee 18 términos, hallar el término independiente, si es un polinomio completo y ordenado a) 6 b) 7 c) 8 d) 9 e) 10 329.Hallar la suma de coeficientes de la expresión: [ ] ( )2532 2x1x3x2 ++- a) -2 b) -1 c) 0 d) 1 e) 2 330.El grado del polinomio: ( ) ( ) ( ) ( )3x1x1001x1x10)x(P 253326 +--++= es: a) 17 b) 16 c) 15 d) 10 e) 20 331.El polinomio: 4n1mm bbaa)b,a(P ++= - , es homogéneo hallar: m + n a) 5 b) 3 c) 1 d) 0 e) 4 332.El polinomio: 1....xx 2n31n3 +++ -- , es ordenado y completo ¿Cuántos términos tiene? a) 3n-2 b) 3n-1 c) 3n d) n3 e) n3n 333.Hallar la suma de valores de “n” para los cuales la expresión: n n 2 128 2 210 y3x4)y,x(P -= - es un polinomio a) 2 b) 4 c) 6 d) 8 e) 3 334.Sea ( ) 1aaxx7a)x(P 2253 +++-= , un polinomio mónico; ( ÂÎa ) Hallar el término que no depende de la variable a) 2 b) 5 c) 10 d) 17 e) 26 335.La suma de los grados absolutos de todos los términos de un polinomio entero, homogéneo, ordenado y completo de dos variables es 600 ¿Cuál es su grado absoluto? a) 12 b) 30 c) 24 d) 36 e) 25 336.Con: n 0¹ , la siguiente expresión se puede reducir a monomio: 2 2 2 2 3 a a 1 n(n 1)a a 2 a a 1 n(n 1) x 2 x (n 2) x- + + - + + - - - + - El coeficiente del monomio reducido es: a) -4 b) -5 c) 2 d) 3 e) 4 337.El valor de “n” ( Nn Î ) si el producto de los grados relativos de “x” e “y” es 24. n n n 2 n 2 n n P(x, y) x y (xy) y x- = + - a) 3 b) 2 c) 1 d) 5 e) 6 338.Si el polinomio Q(x) es idénticamente nulo 3a 2 2 2b 3 3 c Q(x) (ab 1)x (a c 4)x (b c 8)x= - + - + - Hallar abc; si a >0, b> 0 y c >0 a) 2 b) 3 c) 4 d) 6 e) 5 339.Hallar el grado absoluto del monomio: 1(2) 2(3) 3(4) 15(16) M x .y .z ....w= a) 1260 b) 1600 c) 1770 d) 2000 e) 1360 340.Calcular: f(2) si: 1 2m 1 m m m m m m m m m f(m ) m 1 + + - = + a) 1 b) 0 c) 1/2 d) 1/4 e) 2 341.Hallar “n” para que la expresión: 42n n3 M(x) x x= , sea de grado 6 a) 8 b) 6 c) 4 d) 2 e) 1 342.En el polinomio completo y ordenado: n a b c P(x) x ........ x x x ..... abc= + + + + + + Calcular a c 3b + a) 1/2 b) 1/3 c) 2/3 d) 3/2 e) 5/3 343.Dar la suma de coeficientes del siguiente polinomio entero completo y ordenado ( ) ( ) ( ) ( ) 6 3 2 6 a a b 3 a b a P x a b x b a x b a- = + + - - - a) 2 b) 2 2 c) 4 d)3 2 e) 2 3 344.Si m, n Î N y además el polinomio: 4 m(m 1) 3 m 1 m n 4 P(x, y) x y (x ) y x y- - - = - + , es homogéneo, Hallar: m + n a) 2 b) 4 c) 6 d) 8 e) 10 345.Si el grado de. 2 P(x).Q es 13 y el grado de: 2 3 P (x).Q (x) es 22. Calcular el grado de. 3 2 P (x) Q (x)+ a) 12 b) 13 c) 14 d) 15 e) 16 346.Calcular la suma de los coeficientes del polinomio homogéneo: b a a b 2 a 3 b a P(x,y,z) a x b y abz - = - + a) 12 b) 14 c) 16 d) 15 e) 17 347.Determine: (a+b) si el polinomio
  • 18. -18- a 3 b a a 8 a b 8 20 20 P(x,y) a x y b x y abx y + + = + - es homogéneo a) 2 b) 4 c) 6 d) 8 e) 10 348.Determinar el valor de “n” en el polinomio. 2 3 n P(x)=nx+(n-1)x +(n-2)x +....+x sabiendo que la suma de sus coeficientes es 153 a) 1 b) 9 c) 17 d) 8 e) 10 349.En un polinomio P(x, y) homogéneo y completo en “x” e “y”, la suma de los grados absolutos de todos sus términos es 156, Calcular el número de términos del polinomio a) 10 b) 11 c) 12 d) 13 e) 14 350.Cuántos términos posee el polinomio homogéneo: m m 2 2 m 4 4 P(x,y) x x y x y ......- - = + + + , Para que sea de grado 40 , respecto a “y” a) 41 b) 40 c) 30 d) 20 e) 21 351.Sea un polinomio: 2 3 4 4 Q(x) x 2x 3x 4x .... 100x= + + + + + Hallar: Q(-1) a) 100 b) 99 c) 50 d) 25 e) 199 352.Si 2 n =n +1, ( )n + Î , Simplificar: 2 4 8 2 4 8 1 1 1 1 k n n n n n n n æ öæ öæ ö = + + + +ç ÷ç ÷ç ÷ è øè øè ø a) n b) -n c) 1/n d) n2 e) 1 353.Para ab 0¹ , Simplificar: ( ) ( ) ( ) ( ) ( ) 2 22 2 2 2 2 23 3 3 3 a b a b 4 a b a b a b é ù+ + - - - ë û + - - a) ab b) 4 ab c) 4(ab)-1 d) 2 ab e) 2 (ab)-1 354.Si: , ,x y zÙ Î 3 3 3 x y z 3xyz;x y z 0+ + = + + ¹ Hallar el valor de: ( ) 3 3 3 3 x y z E x y z + + = + + a) 1 b) 1/3 c) 2/3 d) 4/3 e) 3 355.Si 3 3 3 a b c 10+ + = 2 2 2 a b c 6+ + = a b c 4+ + = Hallar: 4 4 4 E a b c= + + a) 8 b) 16 c) 10 d) 18 e) 12 356.Si: a b 10+ = 19 ab 4 = Hallar: E a b= - . (a > b) a) -1 b) 2 c) 3 d) 4 e) 1 357.Hallar: E (x 1)(x 2)(x 3)(x 4)= + + + + , para: 5 5 x 2 - = a) -1 b) 1 c) 2 d) 6 e) 20 358.Simplificar: ( ) ( ) ( ) ( ) 1/32 22 2 E x 1 x 2x 1 x 1 x 2x 1é ù= + + - - - - - ë û a) 2x b) -2x c) x d) –x e) 0 359.Sabiendo que a > b Además: 3 3 a b 3 b a + = . Calcular : a b E b a = - a) 18 b) 16 c) 9 d) 4 e) 3 360.Si n n n n a b 7 b a + = Hallar: n n n n 2 2 a b E a .b - = a) 5 b) 5 c) 7 d) 7 e) 3 361.Si: 4 2 x 3x 1 0- + = Hallar: 88 86 84 86 x x x E x + + = a) 5 b) 4 c) 3 d) 2 e) 1 362.Si: a + b = 6; además: 2 2 a b 30+ = Hallar: 2 2 a b b a + a) 54 b) 27 c) 18 d) 9 e) -27 363.Siendo: 3 3 3 a b c 30+ + = a b c 3+ + = abc 4= El valor de: 1 1 1 a b c- - - + + es: a) 1/4 b) 5/8 c) 3/2 d) 1/2 e) 7/3 364.Calcular: 3 33 E a 3ab b= - + , Sabiendo que: ( )( )a b a 1 b a 0+ + = ¹ a) -2 b) 0 c) 1 d) -1 e) 2 365.Si: 1 1 4 x y x y + = + Calcular: 3 x 2 y x y - + a) 0 b) -1 c) 1 d) 2 e) 1/y
  • 19. -19- 366.¿Cuál es el valor de: 2 r 2r 2- - , Si: r 2 1= + ? a) -1 b) 1 c) 2 d) -2 e) 3 367.Al efectuar: ( )( )( )4 2 2 a b a a b b a b+ + + - , resulta: a) 3 3 a b- b) 6 3 a b- c) 6 2 a b- d) 6 6 a b- e) 6 4 a b- 368.Si: ( ) 2 2 2 x x 3- + = Hallar: 6 6 x x- + a) 0 b) 3 c) 3 d) -1 e)3 3 369.Si 1 n 1 n + = Calcular ( ) 3 3 3 n n- - a) -1 b) 3 c) 0 d) -2 e) 2 370.Calcular el valor numérico: ( )( )( )8 4 28 1 2 1 2 1 2 1 3+ + + + a) 1 b) 2 c) 3 d) 4 e) 5 371.Si 1 x 7; x + = Calcular el valor de: 3 3 1 A x x = + a) 116 b) 110 c) 113 d) 120 e) 115 372.Si xy + xz + yz = 0 Calcular ( )( ) ( )( ) ( )( )1 1 1 E x x z x y y z y z x z z x z y- - - = + + + + + + + + a) 1 b) 2 c) 3 d) 4 e) 5 373.Simplificar: ( )( )( )( )2 2 4 4 88E x a x a x a x a a ;x 0= + - + + + > a) x b) x4 c) x2 – a2 d) x4 + a4 e) 0 374.Al efectuar: 5 2 6 5 2 6+ - a) 4 b) 2 c) 1 d) 3 e) 5 375.Si ( )ab a b 420+ = y 3 3 a b 468+ = . Halle el valor de. M a b 5= + + a) 14 b) 15 c) 16 d) 17 e) 18 376.Calcular: 2 (x y)- , si x y 7+ = , además: xy 4= a) -7 b) -8 c) -9 d) -10 e) -11 377.Si: 3 1 a 27 a æ ö + =ç ÷ è ø Hallar: 3 3 1 a a + a) 16 b) 17 c) 18 d) 19 e) 20 378.Si ( ) ( ) 2 x y z 3 xy xz yz+ + = + + , entonces al simplificar la expresión: ( ) ( ) ( ) x x y y y z z z x + + + + , se obtiene: a) 0 b) 1 c) -1 d) 2 e) -2 379.Si a + b + c = 0 Hallar el valor de: 2 2 2 a b c bc ac ab + + a) 2 b) 1 c) 0 d) 3 e) 4 380.Al efectuar: ( )( ) ( )2 2 8 4 x 1 x 1 x x 1- + ¸ + + , el producto es: a) 12 x 12+ b) 12 x 1+ c) 12 x 1- d) 12 x 2- e) 12 x 381.Si a + b =5 y además: ab = 3 Hallar: 2 2 a b+ a) 19 b) -19 c) 20 d) -20 e) 10
  • 20. -20- 382.Hallar el cociente de dividir: 3 5 2 4 x 2x x 2x x 2+ + + + + , entre: 4 x 2+ a) x – 1 b) x c) x + 1 d) x + 2 e) x + 4 383.Hallar el resto de dividir: 2 (x y) (x y)(2w 1) w(w 1) x y w 3 + + + - + - + + - , donde “w” es una constante: a) 6 b) 5 c) 4 d) 3 e) 2 384.Si la división: 4 3 2 2 A x Bx 2x 3x 2 4x x 1 + - - - + + es exacta; calcular: AB a) 84 b) -84 c) 64 d) 48 e) 74 385.Calcular el residuo de dividir: ( ) ( )4 3 2 16x 24x 28x 5 2x 1- + - ¸ - a) -1/2 b) 1/2 c) 2 d) 1 e) 0 386.En el desarrollo del cociente notable: 148m 296p 2m 4p x y x y - - el término de lugar 60 es: 56 708 x .y , entonces el grado del término de lugar 21 es: a) 234 b) 432 c) 214 d) 532 e) 452 387.El tercer término en el cociente notable: n 5n 18 2 9 a b M a b - - = - es: a) 10 16 a b b) 10 16 a b- c) 15 6 a b d) 32 20 a b e) 30 18 a b 388.A continuación se muestra parte de un cociente notable exacto 16 6 12 8 .... x y x y ....+ + + Indicar la división notable de la cual proviene: a) 20 10 10 5 x y x y - + b) 30 10 6 2 x y x y + - c) 32 16 4 2 x y x y - - d) 26 13 2 x y x y - - e) 28 7 4 x y x y - + 389.Hallar “p” si la división: 4 2 6x (p 1)x 6 x 1 + + + + ; deja como resto 19 a) 2 b) 4 c) 10 d) 8 e) 6 390.Hallar el resto de la división: 35 28 17 2 (x 1) 7(x 1) 3(x 1) 3 x 2x 2 + + + + + + + + a) 2x b) 2x + 12 c) 2x + 5 d) 2x + 7 e) 2x – 12 391.Calcular el resto de dividir: 2 3 (x 2) (x 3)- + - entre 2 x 5x 6- + a) 2x + 1 b) 2x – 5 c) 2x d) 2x – 1 e) 3x – 1 392.Calcular el valor de: ( ) ( )21 19 20 18 2 P 2 2 ... 2 2 2 ... 2 1= + + + - + + + + asumiendo que 11 2 a= a) ( )( ) 1 a 1 a 1 3 - + b) ( )21 a 1 2 - c) ( ) 1 a 1 4 + d) ( ) 1 a 1 3 - e) ( )a 1- 393.Calcular “m+n” Si: 3 2 x mx nx 1+ + + es divisible entre: x – 1 a) -1 b) -2 c) 0 d) 1 e) 3 394.Si “m” es el residuo de dividir: 3 2 3x 2x 5x 4+ - + entre x +2, hallar el residuo de dividir: 4 3 mx 2x (m 1)x 2m+ - + + entre: x – 2 a) 140 b) 141 c) 142 d) 143 e) 144 395.Hallar el término independiente del cociente de: ( ) ( )3 2 x 2 m x 15 m 2 m 15 x x m + - - + + - - a) 10b) - 15 c) -5 d) 5 e) 10 396.Calcular el resto de dividir: P(x) ¸ (x–6) , Sabiendo que el término independiente del cociente es 4 y además el término independiente del polinomio P(x) es 6
  • 21. -21- a) 30 b) 25 c) 20 d) 15 e) 10 397.Sean los términos consecutivos de un cociente notable: 300 290 20 280 40 x x y x y ....+ + , y dar como respuesta el número de términos a) 30 b) 31 c) 28 d) 27 e) 26 398.Al dividir un polinomio P(x) entre (x+3) se obtuvo por residuo – 5 y un cociente cuya suma de coeficiente es igual a 3 .Hallar el residuo de dividir P(x) entre (x – 1) a) 5 b) 6 c) 7 d) 8 e) 9 399.Calcular el número de términos del siguiente producto ( )( )20m 19m 18m m 20m 19m 18m m E x x x ... x 1 x x x ...... x 1= + + + + + - + - - + a) 31 b) 22 400.Hallar el resto de dividir: 2n 2n 1 3 (x 3) 3(x 3) 5(x 3) 1 (x 2)(x 4) + + + + - + + + + a) 2x b) 2x + 4 c) 2x – 4 d) – 2x – 4 e) – 2x+4 401.Hallar el resto en: 425 424 27x 81x 5x 19 x 3 + - - + a) -1 b) -2 c) -3 d) -4 e) -5 402.Sean los polinomios 2 q(x) ax bx c ; r(x) mx n,= + + = + el cociente y el residuo respectivamente de la división de: 4 3 2 2 2x 3x 8x 1 4x x (x 1) + - + - - + .Calcular 2 (a b c m n)- - - - a) 1 b) 2 c) 3 d) 4 e) 5 403.Si se tiene que: 4n 2n 2n 4n a Aa b Bb+ + , es divisible entre: 2n n n 2n a 2a b 2b- + . Hallar: A – B a) 6 b) -4 c) 5 d) 8 e) 4 404.Si el resto de dividir P(x) entre (x–2) es el mismo que el dividir P(x) entre (x – 1) e igual a 8 ¿Cuál es el resto de dividir P(x) entre (x – 1) (x – 2)? a) 16 b) 11 c) 3 d) 8 e) 64 405.¿Que relación cumplen “p” y “q” tal que: 3 x pq x q- + sea divisible por: 2 x mx 1+ - ( )m + Î ? a) p q 0+ = b) 2 pq q 1= + c) 2 q 1 pq- = d) p q 1- = e) 2 p 1 pq- = 406.Hallar el residuo de dividir p(x) entre 2 x x 1+ + si al dividir p(x) entre 3 x 1- se obtiene como residuo 2 x 3x 2+ + a) x + 1 b) x – 1 c) x + 2 d) 2x + 1 e) 2x – 1 407.Al multiplicar ( )( )2 2x x 4 2x 1- - + y dividir el resultado entre: ( )2 2x x 2- - , se obtiene como residuo: a) -4x – 2 b) 4x + 2 c) 2x + 4 d) x + 2 e) 4x – 2 408.Hallar “m + n” , sabiendo que la división ( ) ( )5 3 2 2 3x mx nx x 2 x 3+ + - + ¸ + da un residuo: 5x – 10 a) 11 b) 5 c) 1 d) 7 e) 4 409.Si la división: ( )4 3 2 ax bx 16x 25 2x x 4+ + - ¸ - + deja como residuo: 3x – 5. Según esa información, hallar: el valor de a + b a) 2 b) 11 c) 33 d) 36 e) 7 410.En la siguiente división: ( )4 3 2 2 2 2 x (2a 1)x (a a 2b 1) x 2(a b ab)x a b x ax bé ù+ + + + + + + + + + + ¸ + +ë û Tiene como residuo: 3x + 1. Hallar “a” y “b” (en ese orden) a) -1, 1 b) -1, 2 c) 2 , -1 d) 2 , 2 e) 2 , 1