SlideShare una empresa de Scribd logo

Algebra 1

Daniel Condori Balcon
Daniel Condori Balcon
Daniel Condori BalconFue a una puno

Algebra 1

1 de 23
Descargar para leer sin conexión
www.texla.pe
- 1 -
01. Reducir:
   02
155
2
12
873A 








A) 10 B) 11 C) 12
D) 8 E) 9
02. Reducir:
1
0
0
1
4
2
1
5.3
3
4
E 














A) 0 B) 1 C) 2
D) 4 E) 5
03. Reducir:
04122140
7273M 
A) 14 B) 17 C) 16
D) 12 E) 15
04. Reducir:
b a
b ba
a b
4 ba
3
3
4
4
Q


A) 3 B) -2 C) -5
D) 4 E) 7
05. Reducir:
n
n1n2n
2
222
N



A) 2 B) 4 C) 5
D) 7 E) 9
06. Indicar el exponente final de “x” en:
x.x.x 36
A) 1/2 B) 3/2 C) 1/3
D) 4/5 E) 1/6
07. Si: mm = 3
Halle el valor de “A”:
5
5m
2
2m
m
m.3
m
m
A


A) 6 B) 8 C) 9
D) 10 E) 12
Capí Leyes de exponentes: Potenciación
y Radicación
ÁLGEBRA
www.texla.pe
- 2 -
08. Reducir:
2
2
4.27
2.18.6
A) 1 B) 2 C) 3
D) 4 E) 6
09. Reducir:
ba
ba
ba
x.y
y.x



A) x y B) x C) y
D) x y E) 1/xy
10. Reducir:
n
n
nn
12
36


A) 3 B) 4 C) 6
D) 2 E) 5
11. Indique el exponente final de “a” luego de
reducir:
24
2019654321
)a(
a.a............a.a.a.a.a.a 
A) 2 B) 3 C) 4
D) 5 E) 10
12. Reducir:
n
nn
nn
32
32



A) 2 B) 3 C) 6
D) 1/2 E) 1/6
13. Si: x2n = 10, reducir:
  
  
veces"n"
veces"n2"
111
222
x..........x.x
x.............x.x

A) 20 B) 10 C) 60
D) 80 E) 100
14. Efectuar:
 
  31
21
432
101
3
3
222
222
E 







A) 2 B) 7 C) 6
D) 11 E) 12
15. Reducir:
3xx5x
1x4x2x
2.22.152
2.622.5




A) 7 B) 9 C) 10
D) 12 E) 15
TAREA DOMICILIARIA
16. Efectuar:
   
 22
1203
12
34
A




A) 0 B) -1 C) 2
D) 1 E) -2
www.texla.pe
- 3 -
17. Efectuar:
3
2
0
1
2
1
5.7
3
4
M 













A) 3 B) 4 C) 5
D) 2 E) 1
18. Indique el exponente final de:
321
32
x.x.x
x.x.x
A 

A) 8 B) 10 C) 12
D) 15 E) 6
19. Reducir:
32
210
7.7
333


A) 0 B) 1 C) -1
D) 2 E) -2
20. Reducir:
1x3x2x
2x3x1x
3.233
33.23.3




A) -3/4 B) -1/6 C) -9/2
D) 1/2 E) -3/5
21. Si: ax = 2
Reducir:
   
  1x2
13x
2x
1x2
a
a
:
a
x




A) 1 B) 2 C) 3
D) 4 E) 8
22. Reducir:
a
aa
aa
52
25
M 



A) 5 B) 6 C) 10
D) 2 E) 3
23. Indique el exponente final de “x” en:
6 5
3
x
x.x.x
A) 0 B) 3 C) 1/2
D) 3 E) 1
24. Reducir:
nM
mn
x
y
y
x













A) x y B) 1/xy C) xy/2
D) x/y E) 2
25. Indique el exponente final de “x” en:
  
  
veces120
veces60
222
333
x...........x.x
x.............x.x

A) 140 B) 260 C) 320
D) 420 E) 480
www.texla.pe
- 4 -
01. Resolver:
x(x + 3) = x (x + 1) + 8
A) {0} B) {2} C) {3}
D) {4} E) {9}
02. Indicar
5
x
2
x
 , luego de resolver:
021x
2
1
3
1







A) 3 B) 5 C) 7
D) 8 E) 11
03. Resolver:
1x7x2

e indicar el valor de:
(x2
+ 1) (x+1)
A) 12 B) 16 C) 18
D) 20 E) 40
04. Resolver en “x”:
ax + b = b(a + x)
A)
a
)1a(b 
B)
ba
ab

C)
ba
)1a(b


D)
ba
ba


E)
1a
ab

05. Indique el doble de “x”:
x(1-m) + m(x+2) + x = m(n+2)
A) m B) n C) 1
D) mn E) 2
06. Resolver en “x”:
ba;
a
x
1
b
ax


A) a B) b C) ab
D) a+b E)
b
a
07. Al resolver:
1x30
3
7x100


Indicar el valor de:
3
2
x
xx 
A) 0 B) 1 C) -2
D) 1 E) 2
Capítulo II: Ecuaciones exponenciales
www.texla.pe
- 5 -
08. Calcule:
2x
1x


, al resolver:
(x +3)2
- (x - 3)2
= 4x + 80
A) 1/4 B) 2/3 C) 3/4
D) 1/2 E) 2/5
09. Resolver en “x”:
2
m
nx
n
mx




A) {mn} B) {m+n} C) {n-m}
D) {m} E) {n}
10. Calcule el valor de x2 + x + 1, luego de resolver:
0
3
2
2
4
3x5
3
5x2




A) 9 B) 8 C) 10
D) 12 E) 13
11. Indique la mitad del triple de la solución de:
6
18x
4
2x
3
3x
2
1x 






A) 1/2 B) 2 C) 3
D) 1/4 E) 4
12. Luego de resolver:
3
7x
9
x4
7
4x
2
4x 






Indique el valor de:
1x
2x2


A) 2 B) 6 C) 8
D) 9 E) 10
13. Halle    1x1x
x1x 
 , al resolver:
15
1x3
2
5
4x
3
4x 




A) 18 B) 20 C) 21
D) 25 E) 32
14. Al resolver:
18
2
1x
x
x..........321




Calcule x :
A) 3 B) 23 C) 33
D) 2 E) 22
15. Indique el cuadrado perfecto más cercano a “x”
en:
35
35
1
3
x



A) 1 B) 4 C) 9
D) 25 E) 100
TAREA DOMICILIARIA
16. Indique
2
xx 
, luego de resolver:
3(x-1)+x=13
A) 2 B) 3 C) 5
D) 7 E) 8
www.texla.pe
- 6 -
17. Calcule x(x+1), luego de resolver:
3(x+1)+4(2x-1)=5(x+5)-2(x-3)
A) 20 B) 28 C) 30
D) 36 E) 40
18. Resolver:
6
5
x
3
x1


A) x=
2
1
B) x=
2
3
C) x=
4
3
D) x=-1 E) x=-10
19. Resolver:
7x2
6
1x
3
1x
2
1x






A) {7} B) {3} C) {9}
D) {8} E) {-3}
20. Indique el doble del triple de “x” en:
51x323 3 
A) 24 B) 36 C) 20
D) 18 E) 48
21. Resolver en “x”:
ba;1
b
bx
a
ax




A) x=
ba
a

B) x =
ba
b

C) x=ab
D) x=
ba
ab

E) x=
ab
ab

22. Resolver “x”:
x
a
)bx(b
b
)ax(a




A) ab B) a C) b
D) a+b E) a-b
23. Indique el opuesto del inverso de “x” en:
(x+2)2
= x(x+5)+7
A) 4 B) -1/6 C) 2/3
D) -4 E) 1/28
24. Resolver:
0
2
3
3
2
x
6
x
 ;
e indique x4
A) 0 B) 1 C) -1
D) 2 E) -2
25. Si x0 = 3 es solución de:
(3m - 1)x - 2(m-x)=52
- 1
Calcule “m”
A) 2 B) 3 C) 4
D) -2 E) 10

Recomendados

SEM 6_Razones trigonométricas de ángulos agudos I_S6.pdf
SEM 6_Razones  trigonométricas de ángulos agudos I_S6.pdfSEM 6_Razones  trigonométricas de ángulos agudos I_S6.pdf
SEM 6_Razones trigonométricas de ángulos agudos I_S6.pdfNILSONVILLEGASZETA1
 
Álgebra Evaluación y Suma y Resta de Polinomios
Álgebra Evaluación y Suma y Resta de PolinomiosÁlgebra Evaluación y Suma y Resta de Polinomios
Álgebra Evaluación y Suma y Resta de PolinomiosComputer Learning Centers
 
Ficha 1 sistemas de medidas angulares
Ficha 1  sistemas de medidas angularesFicha 1  sistemas de medidas angulares
Ficha 1 sistemas de medidas angularesJorge Javier Dextre
 
Angulos entre rectas paralelas
Angulos entre rectas paralelasAngulos entre rectas paralelas
Angulos entre rectas paralelasYahikoLeos
 
Practica nro. 01 teoria de exponentes
Practica nro. 01   teoria de exponentesPractica nro. 01   teoria de exponentes
Practica nro. 01 teoria de exponentesLeoncito Salvaje
 
Taller de problemas sobre areas sombreadas
Taller de problemas sobre areas sombreadasTaller de problemas sobre areas sombreadas
Taller de problemas sobre areas sombreadasElden Tocto
 
Teoria y problemas de congruencia de triangulos ccesa007
Teoria y problemas de congruencia de triangulos  ccesa007Teoria y problemas de congruencia de triangulos  ccesa007
Teoria y problemas de congruencia de triangulos ccesa007Demetrio Ccesa Rayme
 
Taller potenciación y radicación para la web
Taller potenciación y radicación para la webTaller potenciación y radicación para la web
Taller potenciación y radicación para la webdiomeposada
 

Más contenido relacionado

La actualidad más candente

Banco de preguntas de Álgebra_1°.pdf
Banco de preguntas de Álgebra_1°.pdfBanco de preguntas de Álgebra_1°.pdf
Banco de preguntas de Álgebra_1°.pdfStevenHoppings1
 
Semana 1 teoria de exponentes - 4° escolar - 2015
Semana 1   teoria de exponentes - 4° escolar - 2015Semana 1   teoria de exponentes - 4° escolar - 2015
Semana 1 teoria de exponentes - 4° escolar - 2015Alexander Puicon Salazar
 
Iii bim. 4to. año geom. - guia nº 2 - proporcionalidadrr
Iii bim. 4to. año   geom. - guia nº 2 - proporcionalidadrrIii bim. 4to. año   geom. - guia nº 2 - proporcionalidadrr
Iii bim. 4to. año geom. - guia nº 2 - proporcionalidadrrfrancesca2009_10
 
Razonamiento matematico 1º2 b
Razonamiento matematico 1º2 bRazonamiento matematico 1º2 b
Razonamiento matematico 1º2 b349juan
 
IDENTIDADES TRIGONOMÉTRICAS DE LA SUMA Y DIFERENCIA DE DOS ÁNGULOS
IDENTIDADES TRIGONOMÉTRICAS DE LA SUMA Y DIFERENCIA DE DOS ÁNGULOSIDENTIDADES TRIGONOMÉTRICAS DE LA SUMA Y DIFERENCIA DE DOS ÁNGULOS
IDENTIDADES TRIGONOMÉTRICAS DE LA SUMA Y DIFERENCIA DE DOS ÁNGULOSEDWIN RONALD CRUZ RUIZ
 
17 ecuación de primer grado
17 ecuación de primer grado17 ecuación de primer grado
17 ecuación de primer gradoMarcelo Calderón
 
Sesión de aprendizaje La Ecuación Cuadrática Algebra pre u ccesa007
Sesión de aprendizaje  La Ecuación Cuadrática Algebra pre u  ccesa007Sesión de aprendizaje  La Ecuación Cuadrática Algebra pre u  ccesa007
Sesión de aprendizaje La Ecuación Cuadrática Algebra pre u ccesa007Demetrio Ccesa Rayme
 
Taller conversión de angulos nivel básico
 Taller conversión de angulos nivel básico Taller conversión de angulos nivel básico
Taller conversión de angulos nivel básicodiomeposada
 
Teoría de exponentes ec. exponenciales
Teoría de exponentes   ec. exponencialesTeoría de exponentes   ec. exponenciales
Teoría de exponentes ec. exponencialescjperu
 
Actividad 4 teorema de thales.
Actividad 4 teorema de thales.Actividad 4 teorema de thales.
Actividad 4 teorema de thales.smatiasr
 
Guía teorema de thales y division de trazos
Guía teorema de thales y division de trazos  Guía teorema de thales y division de trazos
Guía teorema de thales y division de trazos Sebastián Marín
 

La actualidad más candente (20)

Banco de preguntas de Álgebra_1°.pdf
Banco de preguntas de Álgebra_1°.pdfBanco de preguntas de Álgebra_1°.pdf
Banco de preguntas de Álgebra_1°.pdf
 
Semana 1 teoria de exponentes - 4° escolar - 2015
Semana 1   teoria de exponentes - 4° escolar - 2015Semana 1   teoria de exponentes - 4° escolar - 2015
Semana 1 teoria de exponentes - 4° escolar - 2015
 
Sb1 2016 GEOMETRIA_01
Sb1 2016 GEOMETRIA_01Sb1 2016 GEOMETRIA_01
Sb1 2016 GEOMETRIA_01
 
Metodo de Horner
Metodo de HornerMetodo de Horner
Metodo de Horner
 
Iii bim. 4to. año geom. - guia nº 2 - proporcionalidadrr
Iii bim. 4to. año   geom. - guia nº 2 - proporcionalidadrrIii bim. 4to. año   geom. - guia nº 2 - proporcionalidadrr
Iii bim. 4to. año geom. - guia nº 2 - proporcionalidadrr
 
Geometria primer mes
Geometria primer mesGeometria primer mes
Geometria primer mes
 
Razonamiento matematico 1º2 b
Razonamiento matematico 1º2 bRazonamiento matematico 1º2 b
Razonamiento matematico 1º2 b
 
IDENTIDADES TRIGONOMÉTRICAS DE LA SUMA Y DIFERENCIA DE DOS ÁNGULOS
IDENTIDADES TRIGONOMÉTRICAS DE LA SUMA Y DIFERENCIA DE DOS ÁNGULOSIDENTIDADES TRIGONOMÉTRICAS DE LA SUMA Y DIFERENCIA DE DOS ÁNGULOS
IDENTIDADES TRIGONOMÉTRICAS DE LA SUMA Y DIFERENCIA DE DOS ÁNGULOS
 
17 ecuación de primer grado
17 ecuación de primer grado17 ecuación de primer grado
17 ecuación de primer grado
 
Sesión de aprendizaje La Ecuación Cuadrática Algebra pre u ccesa007
Sesión de aprendizaje  La Ecuación Cuadrática Algebra pre u  ccesa007Sesión de aprendizaje  La Ecuación Cuadrática Algebra pre u  ccesa007
Sesión de aprendizaje La Ecuación Cuadrática Algebra pre u ccesa007
 
Afz angulos cuadrantales
Afz angulos cuadrantalesAfz angulos cuadrantales
Afz angulos cuadrantales
 
Geometría Web
Geometría WebGeometría Web
Geometría Web
 
Mcm mcd - senati
Mcm   mcd - senatiMcm   mcd - senati
Mcm mcd - senati
 
Taller conversión de angulos nivel básico
 Taller conversión de angulos nivel básico Taller conversión de angulos nivel básico
Taller conversión de angulos nivel básico
 
REDUCCION DE TERMINOS SEMEJANTES
REDUCCION DE TERMINOS SEMEJANTESREDUCCION DE TERMINOS SEMEJANTES
REDUCCION DE TERMINOS SEMEJANTES
 
2º semana cs
2º semana cs2º semana cs
2º semana cs
 
Teoría de exponentes ec. exponenciales
Teoría de exponentes   ec. exponencialesTeoría de exponentes   ec. exponenciales
Teoría de exponentes ec. exponenciales
 
Actividad 4 teorema de thales.
Actividad 4 teorema de thales.Actividad 4 teorema de thales.
Actividad 4 teorema de thales.
 
46 funciones (parte b)
46 funciones (parte b)46 funciones (parte b)
46 funciones (parte b)
 
Guía teorema de thales y division de trazos
Guía teorema de thales y division de trazos  Guía teorema de thales y division de trazos
Guía teorema de thales y division de trazos
 

Similar a Algebra 1

Álgebra pre
Álgebra preÁlgebra pre
Álgebra precjperu
 
EXPONENTES Y RADICALES
EXPONENTES Y RADICALESEXPONENTES Y RADICALES
EXPONENTES Y RADICALESaldomat07
 
900-preguntas-de-algebra.pdf
900-preguntas-de-algebra.pdf900-preguntas-de-algebra.pdf
900-preguntas-de-algebra.pdf12345aquino
 
Guia Algebra, modificado por Jorge Arce.docx
Guia Algebra, modificado por Jorge Arce.docxGuia Algebra, modificado por Jorge Arce.docx
Guia Algebra, modificado por Jorge Arce.docxJhojanMartellpia
 
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)George Montenegro
 
Problemas de repaso de Álgebra ADUNI ccesa007
Problemas de repaso de Álgebra  ADUNI ccesa007Problemas de repaso de Álgebra  ADUNI ccesa007
Problemas de repaso de Álgebra ADUNI ccesa007Demetrio Ccesa Rayme
 
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOSTEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOSCliffor Jerry Herrera Castrillo
 
Alg. (02) repaso ii 02 03-18
Alg. (02) repaso ii 02 03-18Alg. (02) repaso ii 02 03-18
Alg. (02) repaso ii 02 03-18WILDERRODRIGUEZ14
 
Operadores cedeu
Operadores cedeuOperadores cedeu
Operadores cedeuaitnas
 
Aduni repaso algebra 1
Aduni repaso algebra 1Aduni repaso algebra 1
Aduni repaso algebra 1Gerson Quiroz
 
Ecuaciones de expone
Ecuaciones de exponeEcuaciones de expone
Ecuaciones de exponecadc
 
algebra2 nova
algebra2 novaalgebra2 nova
algebra2 novaScripYt
 
Preguntas-de-Examenes-de-Admision-San-Marcos.pdf
Preguntas-de-Examenes-de-Admision-San-Marcos.pdfPreguntas-de-Examenes-de-Admision-San-Marcos.pdf
Preguntas-de-Examenes-de-Admision-San-Marcos.pdfFelixBarbaMoreno
 

Similar a Algebra 1 (20)

Álgebra pre
Álgebra preÁlgebra pre
Álgebra pre
 
1 ra semana algebra
1 ra semana algebra1 ra semana algebra
1 ra semana algebra
 
EXPONENTES Y RADICALES
EXPONENTES Y RADICALESEXPONENTES Y RADICALES
EXPONENTES Y RADICALES
 
900-preguntas-de-algebra.pdf
900-preguntas-de-algebra.pdf900-preguntas-de-algebra.pdf
900-preguntas-de-algebra.pdf
 
Guia Algebra, modificado por Jorge Arce.docx
Guia Algebra, modificado por Jorge Arce.docxGuia Algebra, modificado por Jorge Arce.docx
Guia Algebra, modificado por Jorge Arce.docx
 
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
Algebra preuniversitario-600-ejercicios-resueltos (amor a sofia)
 
Problemas de repaso de Álgebra ADUNI ccesa007
Problemas de repaso de Álgebra  ADUNI ccesa007Problemas de repaso de Álgebra  ADUNI ccesa007
Problemas de repaso de Álgebra ADUNI ccesa007
 
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOSTEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
 
Operadores matematicos
Operadores matematicosOperadores matematicos
Operadores matematicos
 
Semana 8 cs
Semana 8 csSemana 8 cs
Semana 8 cs
 
Algebra banco unprg
Algebra banco unprgAlgebra banco unprg
Algebra banco unprg
 
Repaso 4
Repaso 4Repaso 4
Repaso 4
 
Alg. (02) repaso ii 02 03-18
Alg. (02) repaso ii 02 03-18Alg. (02) repaso ii 02 03-18
Alg. (02) repaso ii 02 03-18
 
Operadores cedeu
Operadores cedeuOperadores cedeu
Operadores cedeu
 
Aduni repaso algebra 1
Aduni repaso algebra 1Aduni repaso algebra 1
Aduni repaso algebra 1
 
Ecuaciones de expone
Ecuaciones de exponeEcuaciones de expone
Ecuaciones de expone
 
alegebra general
alegebra generalalegebra general
alegebra general
 
Mat i 3
Mat i 3Mat i 3
Mat i 3
 
algebra2 nova
algebra2 novaalgebra2 nova
algebra2 nova
 
Preguntas-de-Examenes-de-Admision-San-Marcos.pdf
Preguntas-de-Examenes-de-Admision-San-Marcos.pdfPreguntas-de-Examenes-de-Admision-San-Marcos.pdf
Preguntas-de-Examenes-de-Admision-San-Marcos.pdf
 

Último

Plan de busqueda_Aula invertida infopedagogia
Plan de busqueda_Aula invertida infopedagogiaPlan de busqueda_Aula invertida infopedagogia
Plan de busqueda_Aula invertida infopedagogiaferpatfut1109
 
COMUNICACIÓN, TRADICIONAL Y PARA LOS MEDIOS DIGITALES
COMUNICACIÓN, TRADICIONAL Y PARA LOS MEDIOS DIGITALESCOMUNICACIÓN, TRADICIONAL Y PARA LOS MEDIOS DIGITALES
COMUNICACIÓN, TRADICIONAL Y PARA LOS MEDIOS DIGITALESpauulaaherranz
 
Temas de FilosofÃ_a-Anexos version DGETi.pdf
Temas de FilosofÃ_a-Anexos version DGETi.pdfTemas de FilosofÃ_a-Anexos version DGETi.pdf
Temas de FilosofÃ_a-Anexos version DGETi.pdfverdeivette50
 
Plan de Clase_Aula Invertida infopedagogia
Plan de Clase_Aula Invertida infopedagogiaPlan de Clase_Aula Invertida infopedagogia
Plan de Clase_Aula Invertida infopedagogiaferpatfut1109
 
Las TICS en el ámbito educativo, escolar y laboral
Las TICS en el ámbito educativo, escolar y laboralLas TICS en el ámbito educativo, escolar y laboral
Las TICS en el ámbito educativo, escolar y laboral231415006
 
¿Cómo realizar presentaciones en Google_.pdf
¿Cómo realizar presentaciones en Google_.pdf¿Cómo realizar presentaciones en Google_.pdf
¿Cómo realizar presentaciones en Google_.pdfInesBarnola
 
La celestina Fernando de Rojas aaaaaaaaa
La celestina Fernando de Rojas aaaaaaaaaLa celestina Fernando de Rojas aaaaaaaaa
La celestina Fernando de Rojas aaaaaaaaatonamapi
 
Práctica 1. Pasaporte de identificación Info
Práctica 1. Pasaporte de identificación InfoPráctica 1. Pasaporte de identificación Info
Práctica 1. Pasaporte de identificación Infoferpatfut1109
 
Virus Informático Bruno Baameiro CDI.pdf
Virus Informático Bruno Baameiro CDI.pdfVirus Informático Bruno Baameiro CDI.pdf
Virus Informático Bruno Baameiro CDI.pdfbrunobaameiro
 
Portafolio Steffanie Rosales - Contenido
Portafolio Steffanie Rosales - ContenidoPortafolio Steffanie Rosales - Contenido
Portafolio Steffanie Rosales - Contenidomsrm9489
 
CARTA_PUBLICA_JUAN_ORLANDO_FEB_2024 (1).pdf
CARTA_PUBLICA_JUAN_ORLANDO_FEB_2024 (1).pdfCARTA_PUBLICA_JUAN_ORLANDO_FEB_2024 (1).pdf
CARTA_PUBLICA_JUAN_ORLANDO_FEB_2024 (1).pdfivanasofiatorres2
 
Carlos Silva - CHECKLIST accesibilidadUNE71362.pdf
Carlos Silva - CHECKLIST accesibilidadUNE71362.pdfCarlos Silva - CHECKLIST accesibilidadUNE71362.pdf
Carlos Silva - CHECKLIST accesibilidadUNE71362.pdfCarlosSilvaBentez1
 

Último (12)

Plan de busqueda_Aula invertida infopedagogia
Plan de busqueda_Aula invertida infopedagogiaPlan de busqueda_Aula invertida infopedagogia
Plan de busqueda_Aula invertida infopedagogia
 
COMUNICACIÓN, TRADICIONAL Y PARA LOS MEDIOS DIGITALES
COMUNICACIÓN, TRADICIONAL Y PARA LOS MEDIOS DIGITALESCOMUNICACIÓN, TRADICIONAL Y PARA LOS MEDIOS DIGITALES
COMUNICACIÓN, TRADICIONAL Y PARA LOS MEDIOS DIGITALES
 
Temas de FilosofÃ_a-Anexos version DGETi.pdf
Temas de FilosofÃ_a-Anexos version DGETi.pdfTemas de FilosofÃ_a-Anexos version DGETi.pdf
Temas de FilosofÃ_a-Anexos version DGETi.pdf
 
Plan de Clase_Aula Invertida infopedagogia
Plan de Clase_Aula Invertida infopedagogiaPlan de Clase_Aula Invertida infopedagogia
Plan de Clase_Aula Invertida infopedagogia
 
Las TICS en el ámbito educativo, escolar y laboral
Las TICS en el ámbito educativo, escolar y laboralLas TICS en el ámbito educativo, escolar y laboral
Las TICS en el ámbito educativo, escolar y laboral
 
¿Cómo realizar presentaciones en Google_.pdf
¿Cómo realizar presentaciones en Google_.pdf¿Cómo realizar presentaciones en Google_.pdf
¿Cómo realizar presentaciones en Google_.pdf
 
La celestina Fernando de Rojas aaaaaaaaa
La celestina Fernando de Rojas aaaaaaaaaLa celestina Fernando de Rojas aaaaaaaaa
La celestina Fernando de Rojas aaaaaaaaa
 
Práctica 1. Pasaporte de identificación Info
Práctica 1. Pasaporte de identificación InfoPráctica 1. Pasaporte de identificación Info
Práctica 1. Pasaporte de identificación Info
 
Virus Informático Bruno Baameiro CDI.pdf
Virus Informático Bruno Baameiro CDI.pdfVirus Informático Bruno Baameiro CDI.pdf
Virus Informático Bruno Baameiro CDI.pdf
 
Portafolio Steffanie Rosales - Contenido
Portafolio Steffanie Rosales - ContenidoPortafolio Steffanie Rosales - Contenido
Portafolio Steffanie Rosales - Contenido
 
CARTA_PUBLICA_JUAN_ORLANDO_FEB_2024 (1).pdf
CARTA_PUBLICA_JUAN_ORLANDO_FEB_2024 (1).pdfCARTA_PUBLICA_JUAN_ORLANDO_FEB_2024 (1).pdf
CARTA_PUBLICA_JUAN_ORLANDO_FEB_2024 (1).pdf
 
Carlos Silva - CHECKLIST accesibilidadUNE71362.pdf
Carlos Silva - CHECKLIST accesibilidadUNE71362.pdfCarlos Silva - CHECKLIST accesibilidadUNE71362.pdf
Carlos Silva - CHECKLIST accesibilidadUNE71362.pdf
 

Algebra 1

  • 1. www.texla.pe - 1 - 01. Reducir:    02 155 2 12 873A          A) 10 B) 11 C) 12 D) 8 E) 9 02. Reducir: 1 0 0 1 4 2 1 5.3 3 4 E                A) 0 B) 1 C) 2 D) 4 E) 5 03. Reducir: 04122140 7273M  A) 14 B) 17 C) 16 D) 12 E) 15 04. Reducir: b a b ba a b 4 ba 3 3 4 4 Q   A) 3 B) -2 C) -5 D) 4 E) 7 05. Reducir: n n1n2n 2 222 N    A) 2 B) 4 C) 5 D) 7 E) 9 06. Indicar el exponente final de “x” en: x.x.x 36 A) 1/2 B) 3/2 C) 1/3 D) 4/5 E) 1/6 07. Si: mm = 3 Halle el valor de “A”: 5 5m 2 2m m m.3 m m A   A) 6 B) 8 C) 9 D) 10 E) 12 Capí Leyes de exponentes: Potenciación y Radicación ÁLGEBRA
  • 2. www.texla.pe - 2 - 08. Reducir: 2 2 4.27 2.18.6 A) 1 B) 2 C) 3 D) 4 E) 6 09. Reducir: ba ba ba x.y y.x    A) x y B) x C) y D) x y E) 1/xy 10. Reducir: n n nn 12 36   A) 3 B) 4 C) 6 D) 2 E) 5 11. Indique el exponente final de “a” luego de reducir: 24 2019654321 )a( a.a............a.a.a.a.a.a  A) 2 B) 3 C) 4 D) 5 E) 10 12. Reducir: n nn nn 32 32    A) 2 B) 3 C) 6 D) 1/2 E) 1/6 13. Si: x2n = 10, reducir:       veces"n" veces"n2" 111 222 x..........x.x x.............x.x  A) 20 B) 10 C) 60 D) 80 E) 100 14. Efectuar:     31 21 432 101 3 3 222 222 E         A) 2 B) 7 C) 6 D) 11 E) 12 15. Reducir: 3xx5x 1x4x2x 2.22.152 2.622.5     A) 7 B) 9 C) 10 D) 12 E) 15 TAREA DOMICILIARIA 16. Efectuar:      22 1203 12 34 A     A) 0 B) -1 C) 2 D) 1 E) -2
  • 3. www.texla.pe - 3 - 17. Efectuar: 3 2 0 1 2 1 5.7 3 4 M               A) 3 B) 4 C) 5 D) 2 E) 1 18. Indique el exponente final de: 321 32 x.x.x x.x.x A   A) 8 B) 10 C) 12 D) 15 E) 6 19. Reducir: 32 210 7.7 333   A) 0 B) 1 C) -1 D) 2 E) -2 20. Reducir: 1x3x2x 2x3x1x 3.233 33.23.3     A) -3/4 B) -1/6 C) -9/2 D) 1/2 E) -3/5 21. Si: ax = 2 Reducir:       1x2 13x 2x 1x2 a a : a x     A) 1 B) 2 C) 3 D) 4 E) 8 22. Reducir: a aa aa 52 25 M     A) 5 B) 6 C) 10 D) 2 E) 3 23. Indique el exponente final de “x” en: 6 5 3 x x.x.x A) 0 B) 3 C) 1/2 D) 3 E) 1 24. Reducir: nM mn x y y x              A) x y B) 1/xy C) xy/2 D) x/y E) 2 25. Indique el exponente final de “x” en:       veces120 veces60 222 333 x...........x.x x.............x.x  A) 140 B) 260 C) 320 D) 420 E) 480
  • 4. www.texla.pe - 4 - 01. Resolver: x(x + 3) = x (x + 1) + 8 A) {0} B) {2} C) {3} D) {4} E) {9} 02. Indicar 5 x 2 x  , luego de resolver: 021x 2 1 3 1        A) 3 B) 5 C) 7 D) 8 E) 11 03. Resolver: 1x7x2  e indicar el valor de: (x2 + 1) (x+1) A) 12 B) 16 C) 18 D) 20 E) 40 04. Resolver en “x”: ax + b = b(a + x) A) a )1a(b  B) ba ab  C) ba )1a(b   D) ba ba   E) 1a ab  05. Indique el doble de “x”: x(1-m) + m(x+2) + x = m(n+2) A) m B) n C) 1 D) mn E) 2 06. Resolver en “x”: ba; a x 1 b ax   A) a B) b C) ab D) a+b E) b a 07. Al resolver: 1x30 3 7x100   Indicar el valor de: 3 2 x xx  A) 0 B) 1 C) -2 D) 1 E) 2 Capítulo II: Ecuaciones exponenciales
  • 5. www.texla.pe - 5 - 08. Calcule: 2x 1x   , al resolver: (x +3)2 - (x - 3)2 = 4x + 80 A) 1/4 B) 2/3 C) 3/4 D) 1/2 E) 2/5 09. Resolver en “x”: 2 m nx n mx     A) {mn} B) {m+n} C) {n-m} D) {m} E) {n} 10. Calcule el valor de x2 + x + 1, luego de resolver: 0 3 2 2 4 3x5 3 5x2     A) 9 B) 8 C) 10 D) 12 E) 13 11. Indique la mitad del triple de la solución de: 6 18x 4 2x 3 3x 2 1x        A) 1/2 B) 2 C) 3 D) 1/4 E) 4 12. Luego de resolver: 3 7x 9 x4 7 4x 2 4x        Indique el valor de: 1x 2x2   A) 2 B) 6 C) 8 D) 9 E) 10 13. Halle    1x1x x1x   , al resolver: 15 1x3 2 5 4x 3 4x      A) 18 B) 20 C) 21 D) 25 E) 32 14. Al resolver: 18 2 1x x x..........321     Calcule x : A) 3 B) 23 C) 33 D) 2 E) 22 15. Indique el cuadrado perfecto más cercano a “x” en: 35 35 1 3 x    A) 1 B) 4 C) 9 D) 25 E) 100 TAREA DOMICILIARIA 16. Indique 2 xx  , luego de resolver: 3(x-1)+x=13 A) 2 B) 3 C) 5 D) 7 E) 8
  • 6. www.texla.pe - 6 - 17. Calcule x(x+1), luego de resolver: 3(x+1)+4(2x-1)=5(x+5)-2(x-3) A) 20 B) 28 C) 30 D) 36 E) 40 18. Resolver: 6 5 x 3 x1   A) x= 2 1 B) x= 2 3 C) x= 4 3 D) x=-1 E) x=-10 19. Resolver: 7x2 6 1x 3 1x 2 1x       A) {7} B) {3} C) {9} D) {8} E) {-3} 20. Indique el doble del triple de “x” en: 51x323 3  A) 24 B) 36 C) 20 D) 18 E) 48 21. Resolver en “x”: ba;1 b bx a ax     A) x= ba a  B) x = ba b  C) x=ab D) x= ba ab  E) x= ab ab  22. Resolver “x”: x a )bx(b b )ax(a     A) ab B) a C) b D) a+b E) a-b 23. Indique el opuesto del inverso de “x” en: (x+2)2 = x(x+5)+7 A) 4 B) -1/6 C) 2/3 D) -4 E) 1/28 24. Resolver: 0 2 3 3 2 x 6 x  ; e indique x4 A) 0 B) 1 C) -1 D) 2 E) -2 25. Si x0 = 3 es solución de: (3m - 1)x - 2(m-x)=52 - 1 Calcule “m” A) 2 B) 3 C) 4 D) -2 E) 10
  • 7. www.texla.pe - 7 - 01. Sea: P(x) = 2 + x2003 – 3x2002 Calcule: )2003()2002( )1()3( PP PP    A) 2 B) 2002 C) –2 D) 0 E) 2003 02. Si: P(x + 4) = 2x + 3 además: 5x6P 2 )1)x(F(  Calcule: F(2) A) 7 B) 8 C) 12 D) 16 E) 10 03. Si:          3x2 2x 2P )3x2( Calcule: P(1) P(2) P(3) P(4) ........ P(79) A) 79 B) 81 C) 80 D) 82 E) 78 04. Si: F(x + 3) = x + F(x)  F(2) = 1 Hallar: F(–1) + F(5) A) –2 B) 5 C) –1 D) –3 E) 1 05. Si: P(2x + 3y; x + 2y) = x3 + y3 Halle: P(13; 7) A) 124 B) 126 C) 120 D) 128 E) 130 06. Sabiendo que el polinomio se reduce a un monomio: 4b32a6 )x( x3x2x5P   Calcule el coeficiente principal de P(x). A) 5 B) 10 C) 3 D) 2 E) 7 07. Si el polinomio cuadrático y mónico. P(x) = (a + 5)x4 + (b – 2)x2 + (c – 1)x + m Si la suma de sus coeficientes es 3 además P(0) = 1 Calcule: [P(3) – P(2)]a + b A) 36 1 B) 4 C) 4 1 D) 1 E) 2 08. Dado el polinomio: P(x – 1) = x3 – 5mx2 + 10 si el término independiente es 1. La suma de sus coeficientes será: A) –22 B) –12 C) 38 D) 18 E) –1 09. Si en el monomio:   Z}p,n,m{;zyxM 1pn2np2n )z,y,x( GRy (M) = 12 , GRz (M) = 3 Calcule: GA (M) A) 25 B) 12 C) 31 D) 22 E) 24 o III: Polinomios, Grados, Polinomios e s p e c i a l e s
  • 8. www.texla.pe - 8 - 10. Si el grado del monomio es 13.       Zn;x)x(xabS n1nn )x( Halle: n(n – 1) (n – 2) A) 3 B) 2 C) 6 D) 0 E) 1 11. Hallar la suma de coeficientes del polinomio. P(x)=(n–2)xm–3+(m–1)xn–2+(2p+1)xq–3+(q+1)xp+1–4 si es completo y ordenado. A) 12 B) 10 C) 11 D) 8 E) 9 12. Halle “p”, si el polinomio: P(x) = x2n + 1 + 5xp + 3 – 8xm + 2 + ... + b es completo y ordenado; además posee “2m” tér- minos. A) 8 B) 5 C) 6 D) 10 E) 7 13. Hallar el número de términos del siguiente polinomio. P(x) = (m – 1)xm–6 + (m – 2)xm–5 + (m – 3)xm–4 +... si es completo. A) 6 B) 7 C) 8 D) 5 E) 4 14. Hallar la suma de coeficientes del siguiente polinomio homogéneo. 1ab23a45aa2 )z,y,x( zabybxaP   A) 48 B) 50 C) 64 D) 56 E) 58 15. Sean los polinomios: P(x, y) = (a2 – 3)x6 + (a + b)x3y + 5y6 Q(x, y) = (2a + 32)x6 + (2a – b +1)x3y + 5y6 ; {a, b} R+ si: P(x)  Q(x) Calcule: “ab” A) 11 B) 14 C) 22 D) 28 E) 21 16. Hallar el valor de “k” si se cumple:  222777 yxyx)yx(kxyyx)yx(  A) 2 B) 4 C) 7 D) 5 E) 6 17. Hallar “m + n” si el polinomio: P(x, y) = 5xm + 3 y2n + 1 – 4xm – 1y3n + 1 es homogéneo y el GRx (P) es al GRy (P) como 2 es a 1. A) 23 B) 17 C) 24 D) 26 E) 27 18. Si el polinomio: P(x, y) = xny + ... + 3xayb + 5xa–1y4 + 7x3yc + ... + yn+1 es homogéneo. Además con respecto a “x” es completo y ordenado en forma descendente. Según ello calcule el valor de: “a + b + c + n” A) 17 B) 20 C) 19 D) 18 E) 22 19. Sea: P(x – 2) = 64(x – 2)8 – a(x – 2)14 + x2 – 4x – 50 si la suma de coeficientes de P(x) es igual al tér- mino independiente de P(x) aumentado en 64. Determine P(2) A) –48 B) –60 C) –56 D) –50 E) –58 20. Si el polinomio: P(x) = a(x – 3)2 + 2(3bx – x2) + c es identicamente nulo. Halle: a cb  A) –8 B) –9 C) –18 D) –10 E) –20
  • 9. www.texla.pe - 9 - 01. Si: a2 + 2a 1 = 222  Indique el valor de: E = a32 + 32a 1 A) 16 B) 8 C) 4 D) 0 E) –2 02. Si: (x + y)2 + 3y2 = 4y + 2xy Determinar: R = x y4y1024x 1010  A) 4 B) 1 C) 2 D) 8 E) 10 03. Si: x2 + 1 = 3x Halle: 2x 1 (x4 + x3 + x2 + x + 1) A) 36 B) 11 C) 10 D) 9 E) 8 04. Si: yx 4 y 1 x 1   Indique el valor de: 1173 1173 yxy xyx   A) 1 B) 2 C) –4 D) –1 E) 0 05. Sea x  N /              xxxx 5757 = 2x Indique el valor de: x x 1 4 7       A) 4 3 B) 2 5 C) 4 5 D) 2 1 E) 2 06. Si: x1yyx1yy 22  = 6x Calcular: x1yyx1yy 22  ; x  0 A) 2 B) 1 C) 3 D) 6 E) 3 1 07. Si: [3 (a2 + b2 + c2) = (a + b + c)2]; {a, b, c,}R Calcule:                     444 555 333 222 cba cba cba cba A) 2 B) 5 C) 3 D) 4 1 E) 1 08. Si: a2 + b2 + c2 + 10 = 2(2a + 5c – 5) + 6(b – 3) Indique el valor de: cba cba 222   A) 2,8 B) 18 C) 36 D) 1,3 E) 3,8 Capítulo IV: Productos Notables
  • 10. www.texla.pe - 10 - 09. Si: 222 )ac( 1 )cb( 1 )ba( 1      = 900 Calcule un valor de: ac 1 cb 1 ba 1      A) 900 B) 300 C) 100 D) 30 E) 90 10. Si: a + b = ab Calcular: 33 a b b a             A) 3 B) 2 C) 1 D) 2 1 E) 8 11. Si: x2 + 1 = –x Calcular: 2 2003 100001000100 x1 xxx 1            A) 9 B) 16 C) 25 D) 4 E) 36 12. Si: x = 3 3 3210  y = 3 3 328  Encuentre el valor de: x9 – y9 – 6x3y3 A) 0 B) 2 C) 8 D) 6 E) 14 13. Siendo: xy = 33 525  + 1 x2 + y2 = 1 + 3 5 Determine el valor de: (x + y)4 – (x – y)4 A) 48 B) 36 C) 56 D) 24 E) 14 14. Si: x = 1 – 33 93  Determine el valor de: x3 – 3x2 + 12x – 6 A) 12 B) 14 C) 10 D) 6 E) 16 15. Si: x + y = xy7 Calcule: 77 7 x y 2 y x                A) 7 B) 0 C) 1 D) –7 E) 5 16. Si: a2 + b2 + c2 = ab + bc + ac = 3/ {a, b, c}  R– Indique el valor de: “a + b + c” A) 3 B) 9 C) –3 D) 2 E) 3 17. Si: x3 = 4; x  3 4 Calcule el valor de: 3 3 x 16 x          A) –3 B) –8 C) –1 D) 1 E) –4 18. Simplificar la expresión: (x – 1) (x + 4) (x + 2) (x – 3) – (x – 2) (x + 5) (x + 3) (x – 4) – 22x2 – 22x + 86 A) –10 B) –16 C) –20 D) –90 E) –46 19. Encontrar el equivalente de H(x) H(x) = 14)(x3)(x)2x()1x(  A) x2 + 5x + 1 B) x2 + 5x + 10 C) x2 + 5x + 5 D) x2 + 5x + 15 E) x2 + 3x + 5 20. Si: 333 cba  = 0 Calcular el valor de: )ca()cb()ba( abc27cba 333   A) 1 B) 3 C) 0 D) –3 E) –1
  • 11. www.texla.pe - 11 - Capítulo V: División Algebraica 01. Indique el cociente de la siguiente división. 4x2x9 18x4x17x36 2 345   A) 4x2 + x + 2 B) 4x3 – x2 + 1 C) 4x3 + x2 + 2 D) 4x3 + x2 + 2x E) 4x3 + x + 2 02. Hallar “b – a”, si la división: 4x5x8 baxx31–x41–x24 2 234   ; es exacta A) 44 B) 46 C) 40 D) 43 E) 41 03. Calcular “m + n + p”, si la división: 1x2x3 pnxmxx3x2x3 23 2345   deja como resto: 2x2 + x – 5 A) 0 B) 1 C) 2 D) 3 E) –5 04. En la división: 3xx 12x7Axx2x3 23 234   el cociente es: 3x + B y el resto: –4x2 + Cx – 15 Calcule el valor de: “ABC” A) 46 B) 16 C) 180 D) 80 E) 100 05. Calcule el valor de “A + B + C” si la división: CBxAx )BA(x)CB(x)CBA(x)BA(Ax 2 234   es exacta A) 1 B) –1 C) 0 D) 2 E) 8 06. Hallar b a si la división: 2xx3 8x14bxx8ax 2 234   tiene como resto R(x)/R(x)  0 A) 9 B) 1 C) –2 D) 6 E) 3 07. Indique el valor de “a + b”, si el polinomio P(x) = 55x3 + 166x – 8 – bx2 es divisible por S(x) = ax2 – 39x + 2 A) 240 B) 239 C) 250 D) 211 E) 228 08. Si el polinomio h(x) = x3(x – 1) – x(3x + 1) + 2(x + 3) es divisible por el polinomio P(x) = x3 + kx2 – x – k el valor de “k” es: A) –1 B) 2 C) –3 D) 4 E) 0 09. En la división: 3xx3 cxbx5ax2x6 2 245   Se tiene un cociente cuyos coeficientes dismi- nuyen de 2 en 2 y un resto de grado cero. Indique el valor de: a5 + b5 – c5 A) 15 B) –5 C) 2 D) –15 E) 1 10. Calcule “a2 – b2” si la división: 1x2x baxx 2 7   ; es exacta A) –13 B) 43 C) 49 D) 36 E) 13
  • 12. www.texla.pe - 12 - 11. Indique el cociente de la siguiente división: 2x 7x13x3x10x6 234   A) 6x3 + 7x2 + 1 B) 6x3 + 2x + 1 C) 6x3 + 2x2 + 7x + 1 D) 6x3 + 7x + 1 E) 6x3 + x2 + x + 1 12. Obtenga el resto de la siguiente división: 3x2 8xx13x8x9x10 3245   A) –2 B) –3 C) –4 D) –1 E) 0 13. Calcule “m” si la división: 5x3 16mxx41x23x21 324   deja como resto 4 A) 77 B) 57 C) 66 D) 67 E) 64 14. Hallar el residuo en:   23x 3x32x32x23 35   A) 3 B) 2 C) 5 D) 6 E) 4 15. Calcular el término independiente del cociente de dividir 2x 1xx3xx 2546   A) 70 B) 68 C) 72 D) 71 E) 69 16. En el siguiente esquema de Ruffini: 4 –3 –b a 2a2 8a c m 4 b d n Determine el resto si a  0 A) 1 B) –1 C) 2 D) 0 E) 3 17. Calcule “m” si la división 3x2 6mxx3x6 23   es exacta A) 1 B) 6 C) 9 D) 12 E) 5 18. Determine “61a + b” Si en la división 1x ab2bx2ax61   la suma de coeficientes del cociente es 256 y el resto igual a 12 A) 253 B) 256 C) 260 D) 250 E) 251 19. En la división: 7x2 13x6x59x18 5 51615   Halle la suma de coeficientes del cociente A) 10 B) 12 C) 11 D) 13 E) 14 20. Si la división 2nx )1n(nx)6n(nx7xn 22353   es exacta. Halle la suma de coeficientes del cociente A) –8 B) –9 C) –6 D) –7 E) –10
  • 13. www.texla.pe - 13 - Factorización: Agrupación, Identidades, Aspas 01. Señalar un factor primo en: P(x) = 4x4 + 1 A) 2x2 + x + 1 B) 2x2 + 2x + 1 C) 3x2 – x + 1 D) x2 + x + 1 E) 2x2 – x – 1 02. Indicar el factor primo de mayor grado absoluto: P(x, y) = x12 – y12 A) x2 + y2 B) x2 + xy + y2 C) x8 – x4y4 + y8 D) x2 – xy + y2 E) x4 – x2y2 + y4 03. Señalar un divisor de: (x2 + 2x – 10)(1 – a) + (2a + 6)(x – 1) A) x – a + 2 B) x – a + 21 C) x + a – 21 D) x + a E) x + 3a + 4 04. Factorizar: P(x) = (2x2 + 1) (2x2 – 1) – x(x + 1)(x + 2) (x + 3) Hallar un factor primo. A) 3x2 + 1 B) x2 – 3x + 1 C) x + 2 D) x2 + x + 1 E) x2 + 3x + 2 05. Hallar un factor de: P(x, y, z) = –x2 – y2 + z2 + 2x – 2y + 2z + 2xy A) x + y + z B) x – y + z C) x2 + y2 D) x + y – z E) x + y – z2 06. Hallar un factor primo lineal de: P(x, y)=(a4+b4)x3+a4y3+b4y3+(ab)2(x+y)(x2–xy+y2) A) x – y B) x + y C) a + b D) a – b E) a2 + b2 07. Factorizar el polinomio cuadrático: A(x) = a2(a2 + 1)x2 + 2x + a + (x + 2)(x – a) Dar la suma de coeficientes de los términos li- neales de sus factores primos. A) a2 + 2 B) 2(a2 + 1) C) 12 D) –2 E) 2(a2 – 1) 08. Calcular la suma de los términos lineales de los factores primos del polinomio cuadrático: P(x, y) = ax2 + a3x + x2 – (a2 + 1 – a) (–1) A) a + 2 B) a2 + a + 1 C) 0 D) a2 – a E) 2 09. Factorizar el polinomio: P(x) = x4 + x3 + 2x2 – 15 – 3x E indicar un factor. A) x + 3 B) x – 3 C) x2 + 3 D) x2 + x + 8 E) x2 – 3 10. Indicar un factor primo del polinomio: P(x) = (a2 – b2) (x2 – 1) + 4abx A) ax – b B) ax + bx + 2 C) ax + bx + 2 – b D) x + a – b E) ax + bx – a + b
  • 14. www.texla.pe - 14 - 11. Hallar el número de factores primos del polinomio: P(x, y) = x16 + x8y8 + y16 A) 2 B) 4 C) 6 D) 8 E) 10 12. Hallar la suma de los términos lineales de los factores primos de: P(x) = x8 + x4 – 20 A) x B) 2x C) 3x D) 0 E) 4x 13. Indicar el factor primo de menor grado de multi- plicidad del polinomio: J(x, y) = x5 + 2x4y – 8x3y2 – 16x2y3 + 16xy4 + 32xy5 A) x + 2y B) x – 2y2 C) x2 + 1 D) xy + 1 E) xy + 2x + 1 14. Indicar el factor primo de mayor grado de multi- plicidad, del polinomio: P(x) = x5 + 3x4 – 18x3 – 72x2 + 81x + 243 A) x + 3 B) x – 3 C) x2 + x + 3 D) x – 1 E) x + 2 15. Indicar el factor primo de mayor suma de coefi- cientes del polinomio: P(x) = x4 – 4x2 + 8x – 16 A) x2 + 2x – 4 B) x2 – 2x + 4 C) x + 2 D) x – 2 E) x2 + x + 2 16. Indique un factor primo de menor suma de co- eficientes de: P(x) = x4 – x2 + 2x – 1 A) x + 1 B) x – 1 C) x2 + x + 1 D) x2 + x + 2 E) x2 – x + 1 17. Indicar un factor primo lineal del polinomio: P(x) = x5 + x4 – 2x3 – 2x2 + x + 1 A) x + 2 B) x – 2 C) x – 1 D) 2x – 1 E) 2x + 1 18. Hallar el número de factores primos del polinomio: P(x, y) = x4 + 2x3 – x2y2 – 2xy2 + (x + y)(x–y) A) 0 B) 1 C) 3 D) 4 E) 5 19. Determinar el número de factores primos de: A(x) = x4 + 6x3 + 9x2 A) 1 B) 2 C) 3 D) 4 E) 5 20. Hallar el número de factores primos lineales de: P(x, y) = 5x4y2 + 10x3y3 + 5x2y4 A) 1 B) 2 C) 3 D) 0 E) 4
  • 15. www.texla.pe - 15 - 01. Si el conjunto solución de la ecuación: x3 – x + 1 = 0 es {a, b, c} Calcule el valor de: c 1 b 1 a 1 cba 222  A) 1 B) 3 C) 2 D) –2 E) –1 02. Si: {x1, x2, x3, x4} es el conjunto solución de la ecuación: 2x4 + 12x3 + 7x2 + 5x + 10 = 0 Calcular:  4321 4321 xxxx x 1 x 1 x 1 x 1        A) 6 B) –5 C) 3 D) 2 5  E) 6 03. Sea la ecuación: 5x4 + 4x3 + 3x2 + 2x +1 = 0 de raíces {x1, x2, x3, x4} Calcular: 4321 4321 xxxx x 1 x 1 x 1 x 1  A) 9 B) 5 9  C) 3 D) –5 E) 6 C I I : Ecuación Polinomial - Sistema de Ecuaciones 04. Si dos raíces de la ecuación: 2x3 – 4x2 + (m2 + 1)x – m + 2 = 0 suman 3 Indique el valor de: m 1 m  A) 2 B) –2 C) –1 D) 1 E) 0 05. Hallar “a + b” si una de las raíces de la ecuación: x3 – ax2 + bx + 8 ; {a, b}  Q es: 51 A) 4 B) 3 C) 6 D) –5 E) 2 06. Acerca de la ecuación en “x”: (x + 3) (x4 – 1)2 (x2 + 4x + 3) = 0 Dar el valor de verdad de las siguientes proposi- ciones: I. Posee 4 raíces II. Posee 4 soluciones III. Posee una raíz compleja múltiplo IV. Todas sus raíces son múltiples V. Existe una raíz de multiplicidad 3 Cuántos son verdaderos: A) 1 B) 2 C) 3 D) 4 E) 5
  • 16. www.texla.pe - 16 - 07. Si una de las raíces de la ecuación: x3 – 5x2 + x + k = 0 ; k  R es: 1i;i32  Respecto a las raíces de la ecuación: x2 + (3 + k)x + 3x = 0, se puede afirmar: A) Son reales y diferentes B) Son complejos C) Son simétricos D) Son recíprocos E) Son iguales 08. Si la ecuación: ax3 + bx2 + cx + d = 0 / a > 0  b < 0 tiene como conjunto solución {, , } además:  –  –  = 9 Entonces podemos afirmar que: A)  < 0 B)  = 0 C)  < 1 D)  > 0 E)  > 1 09. Si “” es la mayor raíz entera de la ecuación: x6 – x5 – 16x4 + 14x3 + 37x2 – 9x – 18 = 0 Calcule el valor de: 7 1 2 A) 2 B) 7 1 C) 7 13 D) 7 3 E) 1 10. Si la ecuación polinomial: a0x2n + a1x2n–1 + a2x2n–2 + ... + a2n–1x+a2n = 0 a0  0; n  Z+; {a0, a1, a2, ... , a2n}  R tiene como raíces a: (1 + i); (2 + 3i); (3 + 4i); ... ; (n + ni) siento: i2 = –1 Calcule el valor de: “a . n2 + a . n + a1” A) –a1 B) a1 C) –2a1 D) 0 E) n2 + 1 11. Si las raíces de la ecuación: 2x5 – 10x4 – x3 + 3x2 + 2x + k = 0 están en progresión aritmética. Halle el producto de todo sus raíces. A) 2 B) 4 C) –4 D) –2 E) 5 12. Si una de las raíces de la ecuación: 3x3 + ax2 + bx + 14 = 0; {a, b}  R si: 1i;i61 2  entonces “a + b” será: A) 9 B) 3 C) 6 D) 0 E) 7 13. Indique la mayor raíz de la ecuación: 32x3 – 48x2 + 22x – 3 = 0 si sus raíces se encuentran en progresión aritmé- tica creciente. A) 4 1 B) 4 3 C) 2 1 D) 2 E) 3
  • 17. www.texla.pe - 17 - 14. Sea la ecuación: x2 – 3x + 4 = 0; de raíces x1, x2, x3 Indique el valor de: 4x3 x 4x3 x 4x3 x E 3 3 3 2 3 2 1 3 1       A) –1 B) 1 C) 3 1 D) 3 E) 2 15. Si las raíces de la ecuación: x5 – 2x3 + 1 = 0 son “xi”; 5,1i  Calcular: 3 5 1i 3 i 3 i 5 i 5x 6xx             A) 5 B) 1 C) –1 D) 4 E) 3 16. Si a y b son raíces imaginarias de la ecuación: 2x3 – 3x2 + 3x – 10 = 0 Calcular: a2b + ab2 A) 4 5 B) 2 5 C) 4 5  D) 2 5  E) 4 1 17. Sea la ecuación: 3x3 – 9x2 + 6 = 0 de raíces: a, b, c Calcule: (ab)2 + (bc)2 + (ac)2 A) 10 B) 12 C) 11 D) –12 E) 6 18. Si la ecuación: x3 – 7x2 + mx + n = 0; {m, n}  R  n  0 tiene una raíz: 1i);i23(  Calcular: n 6m  A) –1 B) 1 C) 6 D) –3 E) 3 19. Si en la ecuación: x4 – 8x3 + 6x2 + kx + 6 = 0 una de las raíces es la medida aritmética de los otros tres. Hallar: “k” A) 0 B) 22 C) 4 D) 8 E) 6 20. Si las ecuaciones: x3 – 1 = 0 ax2 + bx + 1 = 0 ; {a, b}  Q presenta dos raíces comunes calcular: 5(a5 + b5) A) 10 B) 5 C) –5 D) 15 E) 3
  • 18. www.texla.pe - 18 - 01. En un gallinero había cierto número de gallinas, se triplicó este número y se vendieron 95, que- dando menos de 87. Después se duplico el nú- mero de gallinas que había al principio y se ven- dieron 40 quedando más de 79. ¿Cuántas galli- nas había inicialmente? A) 50 B) 55 C) 58 D) 60 E) 62 02. Dada la inecuación: 5 3x 5x7    ¿Cuántos valores enteros pertenecen al comple- mento del conjunto solución? A) 6 B) 8 C) 12 D) 14 E) 16 03. Hallar el complemento de C.S. de: 3x 5x 5x 3x      A) –3; 5 B) [–3; 5] C) –5; 3 D) –4; 5 E) [–5; 3] 04. Hallar “B”, de modo que la solución de la inecuación: 2x 1 B B x 2      sea: x  –; –2 3; + A) 40 B) 20 C) 3 D) 4 E) 1 05. Hallar los valores de “x” que satisfacen la inecuación: 2x – 5 < x + 3 < 3x – 7 A) 5 < x < 8 B) 5 < x < 10 C) 4 < x < 11 D) 3 < x < 5 E) 2 < x < 9 06. Si: m > n > 0 Resolver: 2 2 x m x n m n; en n m       A) (m + n)2;  B) n; m C) n;  D) m;  E) –; n Capítulo VIII: Inecuaciones
  • 19. www.texla.pe - 19 - 07. Hallar el intervalo de variación de: x 1 x 3   Si: x –5; 7  x  3 A)  ;2 2 1 ; B) 3; + C) 2 1 ; 2 1  D) –3; 3 E) –4; 4 08. Siendo: a  R+ Determine la mayor solución de la ecuación en “x”. 3x4 a 1 a        A) 2 B) –2 C) 2 1 D) 1 E) 2 1  09. Si: a, b, c  R+ Indique el mínimo valor de: 6bc 3ac 2ab (a 2b 3c) 6abc          A) 9 B) 7 C) 6 D) 5 E) 4 10. Resolver en x: 222 22 22 22 22 22 22 cba ba bax ca cax cb cbx          Si: abc  0 A) –; a2b2 + a2c2 B) –; a2b2 + b2c2 + a2c2 C) –; a2 + b2 + c2 D) –; a2 + b E) –; a2 + b2c2 11. Resolver en x: (x + 1)(x + 2) > (x + 3)(x + 4) > (x + 5)(x + 6) A)    2 9 ; B)    2 9 ; C) 3; 5 D)    2 9 ;3 E)  ; 2 9 12. Resolver: 33x – 5 > 92x – 4 A) x –; 3] B) x  [–; 3] C) x  –; –3 D) x  1; 3 E) x  –; 3 13. Resolver: 0 9x )4x)(1x( 2 22    A) –; –3 [–2; –1]  [1; 2]  3; + B) –3; –2 [–1; 1]  [2; 3 C) –3; –2]  [–1; 1 2; 3 D) –; –3]  [–2; –1]  [1; 2]  [3; + E) [–3; –2]  [–1; 1]  [2; 3]
  • 20. www.texla.pe - 20 - 14. Dada la inecuación: 05x32x2 2  donde: n qp ; n qp .S.C   Halle: n qp  A) 5 B) 6 C) 7 D) 8 E) 9 15. Resolver en x: abx2 – (a2 + b2)x + ab < 0 para: 0 < a < b A) b a ; a b B) a b ; b a C) a; b D) 2 b ; 2 a E) 2b; 3a 16. Se sabe que al resolver: 3x2 + 7x + m < 0, se obtiene 2; 3 1    y al resolver: x2 + nx – 6 < 0, se obtiene –2; 3 Calcular: m2 + n2 A) 3 B) 4 C) 5 D) 6 E) 7 17. Si se cumple: x2 + mx > – 9 Rx Hallar el intervalo para “m” A) –6; 6 B) –5; 5 C) –3; 3 D) –2; 2 E) –7; 7 18. El menor número “k” que cumple: 3 + 4x – x2 < k para todo valor real de “x” es: A) 6 B) 7 C) 8 D) 4 E) 5 19. En la inecuación en x: –x2 + 2ax + a – 2 > 0 ; C.S. = {r} ; si: a < 0 Halle: “a” A) –2 B) –1 C) 0 D) –3 E) 2 20. Si se cumple: A 3x 28x 2 2    Hallar el máximo valor de A. A) 5 B) 10 C) 15 D) 12 E) 16
  • 21. www.texla.pe - 21 - 01. Calcular: 3 8 42 2 1 E 6 Log 8 9 Log Log 2 3         A) 9 B) 12 C) 15 D) 18 E) 20 02. Calcular: 45 3 Log 643 Log 3 Log 2 3 E 25 81 2   A) 2 B) 3 C) 5 D) 9 E) 3 3 03. Si: Lognm = 2  Logmp = 3 Calcular: 3 2 4 n Log (m p ) A) 1 3 B) 7 3 C) 28 3 D) 16 9 E) 3 7 04. Si: Log25 = a Hallar: Los20250 A) 2a 1 a 2   B) 3a 1 a 1   C) 3a 1 a 2   D) 2a 1 a 2   E) 2a 2 a 1   05. Calcular: Log2.Log4.Log8....... «n» factores A) 1 B) 2 C) (n – 1) D) (n + 1) E) 1 (n 1) 06. Si: 1 1 m na x y  Hallar: Logaxy A) mn B) m + n C) m n 2  D) mn m n E) m n mn  07. Si: Logaritmos
  • 22. www.texla.pe - 22 - 4 b 2 1  Calcular: b bP Log (3 2 2) 2Log ( 2 1) 2     A) 15 B) 16 C) 17 D) 18 E) 19 08. Si: y x Log x 1 2 xy 1 Log y 1      entonces se cumple: A) x = y B) x2 = y C) x = y2 D) x3 = y E) xy = 2 09. Calcular: 32 4 n 2 3 4 n Log xLog x Log x Log x E ... Log y Log y Log y Log y      para: y = 8; n = 21 y 10x 2 A) 2 3 B) 1 3 C) 2 D) 6 E) 3 2 10. Si: a > 0  b > 0 Calcular “x” que satisface la ecuación: b a a b(Log Log x)(Log b) (Log Log x)(Log a) a b 1  A) 10 B) 10 C) 100 D) ab E) a + b 11. Si: a b c Reducir: (c a) (c a) (c a) (c a) Log b Log b E Log b . Log b       A) 1 B) 2 C) 3 D) 4 E) 5 12. Sabiendo que: a = Logx7 ; b = Logx3 ; c = Logx21 Reducir: x x x a b c Log (b a) Log (2c b) Log a (a b c)(x x x ) P x x x         A) 3 B) 7 C) 21 D) 31 E) 41 13. Si: abc = 1 ; {a, b, c}   + – {1}
  • 23. www.texla.pe - 23 - Calcular: 3 3 3 3 3 3 3 Log a Log b Log c R Log(ab) . Log(ac) . Log (bc)    A) 3 9 B) 3 3 C) 3 2 3 D) 3 3 3 E) 1 14. El valor de: 3 3 5 5 Log x Log a y Log x Log a    cuando: x  a; es: A) Log 3 B) Log 5 C) Log52 D) Log35 E) 1 15. Reducir: 2 Log x 1 Log x (0,4) (6,25)  A) 0,01 B) 0,1 C) 1 D) 10 E) 100 16. La solución de la ecuación: AA x ALog A Log x 2  es: A) 1 B) A C) A – 1 D) AA E) A A 17. Hallar “x” de: 5 2 3 3Log x Log x 28  A) 27 B) 81 C) 243 D) 729 E) 91 18. Resolver: 43 Log x 10 x 0 x         Dar una solución: A) 100 B) 200 C) 300 D) 400 E) 500 19. Dar el valor 1 x al resolver: 4 x5 b 5 5 5 Log (Log 5) Colog x Colog (Antilog x)  A) 2 B) 4 C) 5 D) 0,2 E) 0,4 20. Hallar el equivalente de: n n n n n n n n n Log 2 Log 3 Log 4 ... Log x S Ln 2 Ln 3 Ln 4 ... Ln x)              A) Log e B) Ln x C) Log n D) Lognx E) Log nn