SlideShare una empresa de Scribd logo
1 de 25
Descargar para leer sin conexión
UNIVERSIDAD DE SANTIAGO DE CHILE 
FACULTAD DE INGENIERÍA 
DAPARTAMENTYO DE INGENIERIA INDUSTRIAL 
PENSAMIENTO DE SISTEMAS 
I Lectura del Curso 
Tópicos en Gestión de la Organización 
PEDRO ANTONIO NARVARTE ARREGUI 
2014
I. EL MÉTODO CIENTÍFICO 
Las civilizaciones occidentales, en los últimos trescientos años, nos han provisto 
de una poderosa forma de observar el mundo, de pensar acerca de él, y de 
adquirir un probado conocimiento acerca de sus regularidades. Es lo que 
denominamos Método Científico, el que podríamos definirlo en base a tres 
características: reduccionismo, repitencia y refutación. Esta ha sido una ayuda 
exitosa a muchas clases de acciones, y aún es un paradigma dominante. Este 
método desarrolla la siguiente secuencia de actividades al enfrentar un fenómeno 
(problema) en estudio: 
Investigador 
Área de Interés 
A 
verifica 
resultados 
reproducibles 
Verificación de la 
Hipótesis 
rechazada 
o 
intacta 
 
hipótesis 
concerniente a A 
nueva 
hipótesis 
nuevo conocimiento 
de A 
obtiene 
produce 
Figura 1.1. Método Científico 
El "mundo real", es decir el mundo en que los fenómenos que distinguimos 
ocurren, obedece al universo de la fenomenología. La ciencia, o mejor las 
disciplinas científicas pertenecen al universo del discurso, en el cual creamos 
explicaciones de los fenómenos que distinguimos en el mundo.
Lo que se quiere enfatizar es que el denominado "mundo real" no es ni físico, ni químico, ni biológico, ni sistémico, sólo presenta condiciones que nos permiten a los seres humanos distinguir fenómenos a explicar desde un mundo de abstracciones que dan origen a un mundo explicativo de los fenómenos que observamos. A este mundo explicativo es al que llamamos "universo del discurso", y a él pertenecen todas las disciplinas de la ciencia, como también aquellas que no son denominadas científicas. 
El trabajo del método científico, que ha demostrado gran efectividad para atacar y explicar fenómenos naturales, ha mostrado su debilidad al enfrentar o explicar fenómenos que se caracterizan por su gran complejidad, o por la presencia activa de los seres humanos. El predominante paradigma científico se encuentra con tres grandes áreas problemas: la Complejidad, la Administración y las Ciencias Sociales. 
1.1. PROBLEMAS PARA LA CIENCIA 
1.1.1. La Complejidad 
Nuestro "reconocimiento" del mundo es necesariamente dividido en diferentes "materias" o disciplinas. Estas cambian así como cambia nuestro conocimiento, debido a que es el hombre quien las hace en forma arbitraria. 
Existen varios principios que subyacen a la clasificación, ellos son: 
 El orden histórico en que fueron apareciendo. 
 El hecho de que cada una de ellas descansa en la que precede y prepara el camino para la que sigue. 
 El creciente grado de complejidad de la materia en estudio, y 
 La creciente facilidad con que los hechos estudiados por una ciencia en particular pueden cambiar. 
Otra dificultad relacionada con la complejidad está en cómo funciona la explicación de la ciencia. Por ejemplo, la física puede proporcionar una descripción de los
mecanismos de algunos fenómenos químicos, pero no puede explicar la existencia de los problemas de la química como tal. 
A un nivel superior a la química, los problemas de desarrollo de embriones y problemas hereditarios son problemas de Biología. Las explicaciones en términos de química aunque son bienvenidos, no explican la biología; quedamos en un nivel de complejidad que se caracteriza por sus propios problemas autónomos. Para ilustrar lo anterior se expondrá la siguiente cita de Popper: 
“Yo planteo de que no hay proceso biológico que no pueda relacionarse o correlacionarse en detalle con un proceso físico y que no pueda ser analizado en forma progresiva en términos fisicoquímicos. Pero ningún tema fisicoquímico puede explicar la aparición de nuevos problemas..... los problemas de los organismos no son físicos; no son físicas, ni leyes físicas, ni hechos físicos. Son realidades biológicas específicas y son "reales" en el sentido de que sus existencias pueden causar efectos biológicos”. 
Por otro lado, llegando a un nivel mayor de complejidad, Pantin en el año 1986 distingue entre ciencias “restringidas” y “no restringidas”. Entre las primeras encontramos la química y la física, y se caracterizan por estudiar fenómenos para los cuales se pueden realizar experimentos reduccionistas diseñados en el laboratorio, y es probable testear mediante medidas cuantitativas hipótesis de largo alcance expresadas en forma matemática. Para las segundas, los efectos bajo estudio son tan complejos que a menudo no son posibles experimentos diseñados con controles. 
Las ciencias sociales debieran ser consideradas, al igual que la biología y la geología, como ciencia no restringida, presentando para la ciencia y su método un nuevo tipo de dificultad que está mas allá de la mera complejidad. 
1.1.2. Las Ciencias Sociales 
Las ciencias naturales no restringidas se encuentran frecuentemente con fenómenos complejos que dificultan su estudio. Los problemas que involucran
estos fenómenos generalmente se deben sólo a problemas de instrumentación, debido a que las variables son independientes de las predicciones. Distinto es el caso de las ciencias sociales, en las que se hace imposible encontrar regularidades objetivas ya que la interpretación de los fenómenos dependen de las apreciaciones de quienes las estudian. 
También se debe considerar que el componente central de estudio en las ciencias sociales es el ser humano, y aun cuando nosotros lo despersonalizemos como "un actor" cumpliendo "un rol", él será el participante activo en el fenómeno investigado, aportando significados y modificando la situación. Por lo tanto, se hace fundamental considerar las percepciones de los actores involucrados en cualquier fenómeno social estudiado. 
Otro aspecto que se debe tener en cuenta respecto a las ciencias sociales es la dificultad de afirmar predicciones, debido a que el conocimiento de éstas puede cambiar el comportamiento del fenómeno y por ende su resultado. La mezcla de efectos intencionados y no intencionados de las ciencias sociales no permite la generación de leyes ni predicciones, lo que sí se hace posible es la búsqueda de tendencias que nos entreguen la lógica de la situación. 
Lo anterior nos ilustra que el método científico, tan poderoso en las ciencias naturales, no ha sido aún y no será fácilmente aplicado a la investigación de los fenómenos sociales. 
1.1.3. La Administración 
En general las llamadas "Ciencias de la Administración" son más una disciplina práctica que una ciencia. Lo que persigue es rendimiento en vez de conocimiento. 
La única disciplina relacionada con la administración que hace uso del método científico corresponde a la Investigación de Operaciones. Esta no permite generar las decisiones irracionales que dentro del ámbito de la administración a menudo es buena, debido a que la IO entrega lo que se podría caracterizar como "recetas racionales óptimas".
II. EL PARADIGMA EMERGENTE: LA SISTÉMICA 
Existe una forma particular de pensar acerca del mundo y está representado por una parte del movimiento científico que usa algunos conceptos que complementarían aquellos utilizados por la ciencia natural clásica. Se trata de "pensar en términos de sistemas" o "primas de sistemas", teniendo como propósito entender las complejidades del mundo que percibimos. 
La sistémica no es una disciplina que pueda ser considerada dentro del conjunto de las disciplinas; más bien es una "metadisciplina", cuyas materias forman parte virtualmente, de cualquier otra disciplina. Esto último no es reconocido fácilmente. Sin embargo, se refleja en una frase que captura la idea con que mucha gente que se preocupa del asunto, lo caracteriza como: "Un enfoque de Sistemas". 
La respuesta a la pregunta: ¿Qué es un enfoque de Sistemas? tiende hoy en día a ser del tipo: Un enfoque para enfrentar problemas que consideran un punto de vista muy amplio, que toma en cuenta todos los aspectos involucrados y que se concentra en las interacciones de las diferentes partes del problema. En otras palabras, el pensamiento de sistemas no se trata de la optimización o acomodo de medios, sino de la búsqueda de sentido holístico. La búsqueda de sentido holístico es la búsqueda de un marco referencial o contexto trascendental en que un fenómeno pueda desplegarse como totalidad.
Figura 2.1. Enfoque sistémico 
La variedad de enfoques de sistemas que hoy podemos reconocer es la expresión actual del carácter transdisciplinario del resultado de "pensar en términos de sistemas". 
El prefijo "trans" nos introduce una disciplina que arremete contra la fragmentación de la ciencia, penetrando en todos sus campos -interconectándolos por isomorfismo y analogías- y los comunica a través de metodologías adaptables a los diferentes aspectos que caracterizan cada una de las disciplinas y los futuros cambios en las mismas. En este contexto, un enfoque sistémico está facilitando la comunicación entre las distintas profesiones y posibilitando el intercambio entre los especialistas.
III. EL CONCEPTO DE SISTEMA 
Para comprender de mejor forma el paradigma sistémico, es necesario definir el concepto implícito de mayor relevancia, que es "sistema". Existen en la literatura cientos de definiciones de sistema, pero en general, la gran mayoría tienen en común tres ideas centrales, las que nos permiten entender como sistemas, a todas aquellas entidades que cumplen con: 
1. Un conjunto de partes (elementos u objetos). Esta primera idea, si bien es necesaria, por sí misma, es muy pobre aún para acercarnos a la idea de un sistema. En nada diferencia a la totalidad sistémica, que queremos definir, de un conglomerado. 
2. Interrelación entre esas partes o elementos. Esta segunda idea, nos reúne a las partes, pero es pobre para dar un sentido de unidad al todo. Nos acerca a la idea de estructura, pero le falta organicidad. 
3. Un patrón coherente, que le da sentido a este todo formado por las partes en interacción. Algunos autores hablan de un propósito común, o también de comunes objetivos. Sin embargo, lo que sí está claro es que proveen la unicidad que completa la idea de totalidad con sentido. 
De acuerdo a esta definición, un sistema debe contener elementos relacionados de manera tal que definan una entidad diferente a la mera aleación de tales elementos. 
Si bien exacta, esta definición puede aparecer como generalizada. Aún cuando define y distingue lo que es de lo que no es un sistema, al mirar a nuestro alrededor vemos que casi todo se puede definir, desde un ángulo u otro, como sistema. 
Una de las mayores virtudes del enfoque de sistemas es su aplicabilidad en un amplio rango de campos justamente porque en la casi totalidad de las áreas del conocimiento y del que hacer, es posible encontrar "Sistemas".
En el mundo real, los elementos interactúan con otros de una manera compleja. Se establecen largas cadenas de relaciones que terminan por conectar elementos de la más variada naturaleza y ubicación con respecto a la clasificación del conocimiento que ya poseemos. Prácticamente no existen elementos aislados en la naturaleza, puesto que de algún modo éstos afectan y/o son afectados por otros elementos en algún momento. 
Siguiendo con el concepto de sistemas, incluimos en éste al universo, que contiene todo en su interior. Frente a esto, nos surge la pregunta sobre la utilidad de este concepto, puesto que al empezar a identificar los elementos de un sistema guiándonos por las relaciones que éstos mantienen con otros, tendríamos que terminar por incluir todo, o casi todo el universo. Sin embargo, el enfoque de sistemas no tiene ese objetivo... 
IV. EL ROL DEL OBSERVADOR: La Definición del Sistema 
Los sistemas no existen en la realidad, estos pertenecen al universo del discurso, lo mismo que la física, la química y la ingeniería. Los sistemas son abstracciones del mundo que nos rodea. 
Esto indica que para identificar un sistema es necesaria la presencia de un observador en cuyo universo del discurso puedan formalizarse las representaciones de los elementos y de las relaciones que se perciban entre ellos. Dos observadores con distinta capacidad de observación y/o razonamiento pueden definir dos sistemas diferentes, mientras observan el mismo conjunto de elementos. 
Esta situación es lo suficientemente familiar a todos nosotros como para que necesite mayores explicaciones. Sin embargo, existe otra posibilidad donde dos observadores pueden identificar dos sistemas diferentes, aun cuando sean igualmente perceptivos. Esto ocurre cuando los observadores asocian objetivos diferentes al sistema en estudio, situaciones de esta naturaleza son comunes en nuestro tiempo.
Dos expertos generales de bandos opuestos, haciendo el balance después de una batalla y habiendo observado prácticamente el mismo cuadro de ésta, sacaron conclusiones muy diferentes. Lo que para uno fue bueno es exactamente lo que para el otro fue malo. 
Sin embargo, la mayoría de las veces los observadores no necesitan discrepar tan marcadamente como en estos ejemplos para producir sistemas diferentes. Detengámonos por un momento en el proceso por el cual se produce la discrepancia. 
El observador, al adscribir un propósito determinado al sistema, inicia un proceso que lo obliga a seleccionar de entre las relaciones conocidas aquellas que sean relevantes al propósito establecido. En el otro extremo de una relación identificada como relevante, habrá un elemento que deberá pasar a formar parte del sistema. Probablemente, tal elemento tendrá sentido dentro del sistema sólo en cuanto a otras características que pueda poseer. De este modo y al final del ejercicio se ha seleccionado un conjunto de elementos que son un estereotipo de lo que existe en la realidad. Otro observador, o el mismo, pero con otro objetivo "inminente", parte con otro criterio de selección y, si el ejercicio es bien llevado, deberá terminar con un sistema diferente, puesto que habrá usado las reglas para escoger entre los elementos y relaciones en el mundo real. 
El observador es por tanto una característica fundamental del enfoque de sistemas. El observador, en base a su particular punto de vista (Weltanchauungen) es quien aporta el propósito del sistema y determina criterios de selección (referencias al comportamiento). Sin él, el sistema no puede definirse (ver figura 1). Un detalle interesante de explicar aquí, es aquel de la selección que toma lugar haciendo uso de la descripción del propósito del sistema en estudio. A la luz de este propósito, la complejidad real de interacciones en el mundo real se nos revela de manera diferente dentro de una perspectiva que destaca ciertos aspectos y atenúa otros.
Como resultado obtendremos una red de interacciones diferentes a la inicial donde 
un conjunto de elementos altamente relacionados entre sí destaca del resto. Este 
conjunto es, en general el sistema. 
OBSERVADOR (W,PROP.) 
LIMITES 
REFERENCIAS AL 
COMPORTAMIENTO 
DEFINICIÓN DE UN SISTEMA 
Figura 4. 1. Definición de un Sistema 
Sin embargo, el proceso de estudio no termina aquí, la definición del sistema 
requiere algo más de precisión. Por ejemplo, en este conjunto de elementos 
dependiendo del carácter del uso del sistema, será necesario distinguir entre 
aquellos elementos que establecen relaciones de mutua dependencia con el resto 
y aquellos que sólo afectan en comportamiento del resto. Los primeros deberán 
entenderse como partes del sistema, en cambio los segundos conformarán el 
medio ambiente del sistema. Es importante hacer notar que una de las tareas más 
difíciles es aquella de trazar la línea divisoria entre éstos.
El observador es por lo tanto, un elemento esencial en el enfoque de sistemas. Por observador, sin embargo, no debe entenderse un ser voluntarioso y caprichoso capaz de cobijar los más estrambóticos propósitos, sino la interfase entre el universo de la fenomenología y el entendimiento. 
El resultado del ejercicio de identificación y selección que lleva a cabo el observador es la separación de un conjunto de elementos relacionados entre sí. Sin embargo, la tarea de identificar un sistema no estaría definida con la precisión requerida si nos limitáramos a exigir que las partes del sistema estuvieran relacionadas entre sí. 
Es necesario agregar una distinción fundamental al carácter de las relaciones que se establecen entre los elementos que aparecen como relevantes al propósito que inspira al sistema. Así mismo, es necesario separar aquellos que no se ven influidos por éstos. Estos últimos elementos constituyen el medio ambiente del sistema. El sistema no afecta en forma apreciable al medio ambiente mientras persigue un propósito. El proceso por el cual la separación de estos elementos se lleva a cabo es lo que se conoce como identificación de los límites del sistema y por lo tanto concluye con la definición del sistema. 
La definición de los límites del sistema es una de las etapas metodológicamente más interesantes del enfoque de sistemas. Desde el punto de vista metodológico lo que debemos recalcar, es que la definición del sistema requiere de esta etapa. 
Con el objeto de aclarar la manera de identificar lo que "pertenece" al sistema, es de utilidad presentar otro concepto. Este es el concepto de clausura. La clausura se refiere a las relaciones que existen entre los elementos de un sistema. Más precisamente, se refiere a que las relaciones entre los elementos de un sistema deberían "cerrarse" en sí misma. En otras palabras, la manera en la cual el sistema responde a una perturbación exterior debe estar contenida en la red de relaciones que existe entre los elementos del sistema. Para encontrar la respuesta del sistema a un cambio en el medio ambiente debe bastar con conocer los mecanismos internos de interacción del sistema. Si esto no es posible, significa
que el sistema no tiene clausura y, por lo tanto, deben encontrarse las partes y/o relaciones que expliquen tal respuesta. 
El concepto de clausura es de gran utilidad y se transforma en una herramienta metodológica cuando se utiliza como criterio para establecer los límites del sistema. 
V. PROPIEDADES DE LOS SISTEMAS 
Para complementar la definición presentada, es conveniente plantear aquellas propiedades de los sistemas, las que darán mayor riqueza en el uso y definición del concepto. 
Emergencia 
La propiedad de Emergencia, fuertemente ligada con el concepto de Sinergia –el todo es más que la suma de las partes-, tiene directa relación con el patrón coherente o propósito común, mencionado en la definición de sistemas. Es decir, la interrelación entre las partes entrega como resultado –hace emerger- algo que no es verificable desde estas partes y está más allá de la simple agregación del aporte que cada parte entrega al conjunto. Por ejemplo, ¿cómo cada operación fabril, en una empresa industrial cooperativa, nos muestra que estamos en una cooperativa?. La empresa industrial cooperativa está en el todo sinérgico, dado por la interacción de sus componentes, no es deducible desde sus particularidades productivas. Ver Figura 5.1.
“EL TODO ES MAS QUE LA SUMA DE LAS PARTES” 
(emerge la bandera, como Emblema Patrio) 
EL TODO: SINERGIA 
LAS PARTES 
Figura 5.1. Sinergia: “el todo es más que la suma de las partes”. 
Recursividad 
La segunda propiedad de los sistemas, corresponde a la estructura, y dice relación 
con los componentes y relaciones entre componentes que constituyen al sistema. 
Dicha estructura debe ser recursiva, es decir, todo sistema contiene y está 
contenido en otro sistema. De esto se desprende que las partes y relaciones que 
componen un sistema, son a su vez sistemas, y el sistema pasa a ser parte 
componente de un sistema mayor. Esto permite tratar con niveles, y por tanto 
administrar la complejidad en el estudio, fragmentando en partes que son 
totalidades, sin perder el sentido global o patrón coherente del sistema enfocado. 
En organizaciones humanas, esto se da como sistemas autónomos, formando 
parte de una totalidad, también autónoma con respecto a su nivel superior. Este 
despliegue de complejidad de sistemas o niveles de resolución, es lo que algunos
autores –Checkland (1993), Checkland y Scholes (1994), Rodríguez (1994)- 
llaman jerarquía de sistemas. Ver Figura 5.2. 
RECURSIVIDAD 
“TODO SISTEMA 
CONTIENE Y ESTA 
CONTENIDO EN OTRO 
SISTEMA” 
Figura 5.2. Recursividad: “todo sistema contiene y está contenido en otro 
sistema”.
Comunicación y Control 
Estas dos últimas propiedades de los sistemas tienen directa relación con la idea 
de supervivencia. Ellas son las que permiten al sistema poder adaptarse a las 
perturbaciones del medio, y conservar de ese modo el sentido de totalidad. En una 
empresa, por ejemplo, sus sistemas de calidad, su estructura organizacional 
administrativa y productiva y sus planes estratégicos y de gestión, representan 
algunos de los mecanismos de comunicación y control de apoyo a la 
supervivencia del sistema. 
COMUNICACIÓN Y CONTROL 
(SOBREVIVENCIA) 
Figura 5.3. Comunicación y control
VI. ORIGEN Y DESARROLLO DEL MOVIMIENTO DE SISTEMAS 
Una descripción sistémica de este mundo observado y un enfoque sistémico de sus problemas se encuentra en varias diferentes disciplinas; todos estos esfuerzos en conjunto constituyen lo que se denomina "el movimiento de sistemas". Es el conjunto de intentos en todas las áreas de estudio por explorar las consecuencias del pensamiento holístico más que reduccionista. El programa del movimiento de sistemas, puede ser descrito como una prueba a la conjetura de que estas ideas nos capacitarán para tratar los problemas del método que la ciencia encuentra muy difícil, denominados problemas de complejidad organizacional. 
Podría haber sucedido que la exploración del sistema holístico, se desarrollara en las diferentes disciplinas usando un lenguaje apropiado a cada uno de las diferentes tomas. Lo que de hecho sucedió es que los todos en varias diferentes áreas de estudio, desde la geografía, física y sociología, han sido estudiados usando las ideas y el lenguaje apropiado a sistemas de cualquier tipo. 
El principal logro de Ludwing Von Bentalanffy es una federación libre de intereses similares, unidos por el concepto de "sistemas". La mayor contribución individual a esta revolución intelectual menor de los años cuarenta es probablemente la de Norbert Wiener. Pero fue Bertalanffly quien insistió que en la emergencia de ideas en varios campos podrían ser generalizadas en el pensamiento de sistemas, de ahí que sea él el reconocido como fundador de este movimiento. El punto de vista de Bertalanffly, que podría ser considerado como su visión, fue que debería lograrse como resultado de su trabajo, una meta-teoría de sistemas de alto nivel en los diferentes campos, expresada matemáticamente. Esta aspiración se ve clara en los documentos de la fundación de lo que hoy en día se conoce como Sociedad para la Investigación General de Sistemas. En la publicación "Filosofía de la Ciencia", en 1955, en la página 311 se anunciaba: "Una sociedad para el avance de la teoría general de sistemas está en proceso de organización". Los interesados eran el biólogo Bertalanffy, junto con un economista Boulding, un
fisiólogo Gerard, y un matemático Rapaport. El propósito era alentar el desarrollo de "sistemas teóricos que fueran aplicables a más de una de las divisiones tradicionales del conocimiento". Los objetivos de la teoría general de sistemas eran: 
1) Investigar el isomorfismo de los conceptos, leyes y modelos en diferentes campos y ayudar en las transferencias útiles desde un campo a otro. 
2) Animar o alentar el desarrollo de modelos teóricos adecuados en áreas que carecen de ellos. 
3) Eliminar la duplicación de esfuerzos teóricos en diferentes campos. 
4) Promover la unidad de las ciencias a través de un mejoramiento de las comunicaciones entre los especialistas. 
La teoría general, prevista por los fundadores, ciertamente no ha emergido, y la T.G.S. en sí recientemente ha sido objeto de fuertes ataques, por parte de Berlinski y Liliefield. Incluso Naughton lo ha considerado "una mescolanza de visiones internas, teoremas, tautologías y presentimientos...". 
El problema de la T.G.S. es que paga su generalidad por una falta de contenido. El progreso en el movimiento de sistemas parece más bien venir del uso de las ideas de sistemas dentro de áreas problemas específicas, más que por el desarrollo de una teoría englobadora. 
Aunque la T.G.S. no provee los medios de representar la totalidad del trabajo realizado en el movimiento de sistemas, la distinción hecha recientemente (entre el desarrollo del pensamiento de sistemas como tal y la aplicación del pensamiento de sistemas dentro de otras áreas, u otras disciplinas) puede ser entendida para entregar un mapeo razonable de toda la actividad del movimiento.
1. EL MOVIMIENTO 
DE SISTEMAS 
2.1. ESTUDIO 
DE LAS IDEAS 
DE SISTEMAS 
2.2. APLICACIÓN EN 
OTRAS DISCIPLINAS 
3.1. DESARROLLO 
TEORICO 
3.2. DESARROLLO 
PRACTICO 
4.1. TRABAJO EN 
SISTEMAS “DUROS” 
4.2. AUXILIO EN LA 
TOMA DE DECISIONES 
4.3. TRABAJO EN 
SISTEMAS “BLANDOS” 
EL MOVIMIENTO DE SISTEMAS 
Figura 6. 1. Mapa del Movimiento de Sistemas 
Para construir el mapa de la figura 6.1, se deben hacer algunas distinciones. En 
primer lugar hacer una distinción entre el desarrollo de las ideas de sistemas como 
tales (2.1), como por ejemplo la cibernética, y la aplicación de las ideas de 
sistemas dentro de una disciplina existente (2.2), como en el caso del reescrito de 
la geografía desde un punto de vista de sistema por parte de un geógrafo de 
Cambrige. Esto ofrece dos grandes áreas en el trabajo de sistemas. En segundo 
lugar, dentro del trabajo del pensamiento de sistemas como tal, distinguir entre el 
desarrollo de las ideas de sistemas puramente teóricas y sus interrelaciones (3.1), 
y el trabajo basado en la noción del desarrollo de las ideas en busca de la 
Ingeniería de “Sistemas” en el mundo real (3.2), usando la palabra en el más 
amplio sentido.
La T.G.S. es un ejemplo de lo primero y el desarrollo de las metodologías de la Ingeniería de sistemas, un ejemplo de lo último. Pero la Ingeniería de Sistemas "hard", es sólo un ejemplo del desarrollo del pensamiento de sistemas en intentos por resolver problemas. Existen otras, y esto nos lleva a una tercera distinción entre: 
a) La ingeniería de sistemas "hard" como tal; 
b) El uso de sistemas para ayudar a la toma de decisiones (como en el caso de la investigación operacional); y 
c) Usar el pensamiento de sistemas para abordar problemas no estructurados, "soft". 
Es importante tener ahora el estatus de este "mapa del movimiento de sistemas". Como tal, no es un cuadro del movimiento de sistemas del mundo real; cualquier proyecto de sistemas del mundo real, bien puede atravesar varias de las categorías del mapa. En sí, el mapa no es más que un conjunto de distinciones lógicas. Es un cuadro del movimiento de sistemas que mapea la actividad de sistemas en el mundo real, sus esfuerzos intelectuales y su literatura y además permite que cualquier trabajo y literatura pueda ser ubicado en el contexto como un todo. 
VII. EL ESPECTRO METODOLÓGICO: Un espectro de problemas 
En nuestra vida como personas inmersas en un ambiente social, tenemos diariamente sensaciones positivas y negativas respecto de cómo se nos presenta el devenir. A las primeras emociones las llamamos oportunidades y a las segundas, amenazas. Tampoco podemos negar que tanto oportunidades como amenazas nos involucran preocupación y esfuerzo, ya sea para alcanzar los ansiados deseos de logro de metas posibles, como también para solucionar los entuertos en que nos vemos envueltos. En resumen y a nuestro pesar, las oportunidades y las amenazas que observamos en nuestro medio terminan
presentándonos un mundo problemático que debemos solucionar para nuestra estabilidad individual y social. 
Esta condición de los seres humanos, como es la de vivir "solucionando problemas", nos transforma en constantes analistas de ellos. Esto obliga a la búsqueda de herramientas metodológicas que nos ayuden a intervenir adecuadamente en el complejo mundo que nos rodea. 
Estos problemas que enfrentamos diariamente tienen distintos orígenes y naturalezas, por tanto no podemos caracterizarlos como del mismo tipo, así como tampoco podemos encontrarles un método único de solución. Desde la perspectiva del pensamiento de sistemas, es posible caracterizar los problemas del mundo real en un espectro cuyos extremos los componen por un lado los problemas llamados "Hard" o "Duros", y en el otro los problemas "Soft" también llamados "Blandos" o "Agiles". Una explicación de este espectro de problemas se expone en la figura 1, especificando además las características que identifican un problema en hard o soft.
Figura 7.1. Espectro de Problemas 
Como ejemplo de problemas hard podemos presentar una dieta alimenticia y también la optimización de un proceso industrial no extensivo en mano de obra. En el otro extremo, como ejemplos de problemas soft podríamos referirnos al alcoholismo, la drogadicción, la prostitución, el terrorismo, la marginalidad, el daño ecológico, entre otros. 
Corresponde explicar, para evitar confusión, que en general los problemas que distinguimos en el mundo real no son absolutamente soft ni absolutamente hard. Ellos están desplazados hacia alguno de los extremos del espectro, manteniendo en cierta medida características del otro. Es decir, podemos jugar con nuestro espectro desplazándonos desde cualquier extremo hacia el centro, dependiendo solamente de la naturaleza del problema percibido.
Sin embargo, cuando de resolver estos problemas se trata, se originan dos pensamientos de sistemas bien definidos según su tradición. Ellos son el pensamiento de sistemas Hard, más relacionado con las décadas de años 50 y 60, y el pensamiento de sistemas soft con mayor relación a los años 80 en adelante. Los años 70 y los primeros de los 80 podríamos considerarlos como una etapa de transición entre ambas tradiciones. 
Dichas tradiciones del pensamiento de sistemas han dado origen, en la práctica, a metodologías que permiten intervenir para solucionar los problemas del mundo. Estas metodologías son coherentes con los pensamientos que las originan y son conocidas (según P. Checkland) como metodologías Hard y Soft. 
Metodologías "HARD" 
Las aproximaciones metodológicas asociadas a la tradición del pensamiento de sistemas hard han sido dadas por el desarrollo de la Investigación Operacional y el Análisis de Sistemas. 
Sus características principales se enmarcan en el hecho que representan sólo un punto de vista frente al fenómeno en estudio y se basan fundamentalmente en modelos simbólicos que buscan soluciones óptimas. 
El quiebre en la aplicación de estas metodologías se produjo al usarlas para la solución de problemas de orden social y administrativo, en que la presencia del ser humano da origen a diferentes y encontradas percepciones sobre los fenómenos en estudio, sus causas y sus soluciones. Estos intentos hicieron meditar en la dificultad de determinar regularidades algorítmicas en el comportamiento humano, y predicciones cuyo conocimiento no alteraran los resultados de las mismas. 
Estos desencuentros entre analistas y los fenómenos que ellos enfrentaban, generó la preocupación de muchos investigadores a postular una nueva forma de pensamiento de sistemas y, en la práctica, nuevas formas de metodologías, que dieran cuenta de estos vacíos. De este modo se dio origen al pensamiento de
sistemas "Soft" y en particular a las metodologías representativas de esta 
tradición. 
Metodologías “SOFT” 
Estas metodologías son representativas del pensamiento soft de sistemas y se 
enmarcan en la "Sistémica". Se caracterizan por considerar la participación de los 
diferentes actores involucrados en los fenómenos a estudiar. A partir de la 
interacción hecha con las personas e instituciones involucradas se definen los 
sistemas relevantes, se caracterizan y se efectúan modelos conceptuales. A partir 
de este aprendizaje, se presentan soluciones que cumplan con la condición de ser 
sistémicamente deseables y culturalmente factibles. Para ejemplificar estas 
metodologías se presenta en la figura 7.2 la aproximación general propuesta por 
P. Checkland de la Universidad de Lancaster en el Reino Unido. 
FORMA BÁSICA DE LA METODOLOGÍA DE 
SISTEMAS BLANDOS
Figura 7.2. Forma Básica de la Metodología de Sistemas Blandos 
Muy lejos de nuestro interés está el dejar una sensación de dos tradiciones de sistemas extremas y antagónicas. En la práctica, estas tradiciones son complementarias y podríamos decir que las metodologías Hard son un caso particular de las metodologías Soft en que sólo se considera una visión particular en relación al fenómeno en estudio.

Más contenido relacionado

La actualidad más candente

Diapositivas paradigmas emergentes
Diapositivas  paradigmas emergentesDiapositivas  paradigmas emergentes
Diapositivas paradigmas emergentesLyle Z G
 
Historia de la Psicología PEC 2
Historia de la Psicología PEC 2Historia de la Psicología PEC 2
Historia de la Psicología PEC 2MariaGzAmarillo
 
Paradigmas emergentes
Paradigmas emergentesParadigmas emergentes
Paradigmas emergentesyuliethenao
 
INTRODUCCION AL PENSAMIENTO SISTEMICO
INTRODUCCION AL PENSAMIENTO SISTEMICOINTRODUCCION AL PENSAMIENTO SISTEMICO
INTRODUCCION AL PENSAMIENTO SISTEMICOPuente
 
Programa desarrollo integral
Programa desarrollo integralPrograma desarrollo integral
Programa desarrollo integraljoseescobar7
 
Diapositivas paradigmas emergentes
Diapositivas paradigmas emergentesDiapositivas paradigmas emergentes
Diapositivas paradigmas emergentesprosopon
 
Paradigmas emergentes 2do_trabajo_colaborativo
Paradigmas emergentes 2do_trabajo_colaborativoParadigmas emergentes 2do_trabajo_colaborativo
Paradigmas emergentes 2do_trabajo_colaborativojackesan
 
Presentación Paradigmas Emergentes
Presentación Paradigmas EmergentesPresentación Paradigmas Emergentes
Presentación Paradigmas Emergenteshumbertodizv
 
Diapositivas paradigmas emergentes_1_ (1)
Diapositivas paradigmas emergentes_1_ (1)Diapositivas paradigmas emergentes_1_ (1)
Diapositivas paradigmas emergentes_1_ (1)valeriapintop
 
Sobre el Estatuto Epistemológico de la Psicología
Sobre el Estatuto Epistemológico de la PsicologíaSobre el Estatuto Epistemológico de la Psicología
Sobre el Estatuto Epistemológico de la PsicologíaRonaldo Hernandez
 
Historia de la psicología
Historia de la psicologíaHistoria de la psicología
Historia de la psicologíaMerllicita
 
Power point paradigmas emergentes grupo 39
Power point paradigmas emergentes  grupo 39Power point paradigmas emergentes  grupo 39
Power point paradigmas emergentes grupo 39luna maria
 
Castorina desarrollo cognitivo
Castorina  desarrollo cognitivoCastorina  desarrollo cognitivo
Castorina desarrollo cognitivoDaniel Verde
 
Paradigmas emergentes diapositivas
Paradigmas emergentes diapositivasParadigmas emergentes diapositivas
Paradigmas emergentes diapositivasheing beltran
 
Paradigmas emergentes (3)
Paradigmas emergentes (3)Paradigmas emergentes (3)
Paradigmas emergentes (3)unad-347
 

La actualidad más candente (20)

Teoría General de Sistemas
Teoría General de Sistemas  Teoría General de Sistemas
Teoría General de Sistemas
 
Diapositivas paradigmas emergentes
Diapositivas  paradigmas emergentesDiapositivas  paradigmas emergentes
Diapositivas paradigmas emergentes
 
Historia de la Psicología PEC 2
Historia de la Psicología PEC 2Historia de la Psicología PEC 2
Historia de la Psicología PEC 2
 
12
1212
12
 
Paradigmas emergentes
Paradigmas emergentesParadigmas emergentes
Paradigmas emergentes
 
INTRODUCCION AL PENSAMIENTO SISTEMICO
INTRODUCCION AL PENSAMIENTO SISTEMICOINTRODUCCION AL PENSAMIENTO SISTEMICO
INTRODUCCION AL PENSAMIENTO SISTEMICO
 
Programa desarrollo integral
Programa desarrollo integralPrograma desarrollo integral
Programa desarrollo integral
 
Paradigmas emergentes
Paradigmas  emergentesParadigmas  emergentes
Paradigmas emergentes
 
Diapositivas paradigmas emergentes
Diapositivas paradigmas emergentesDiapositivas paradigmas emergentes
Diapositivas paradigmas emergentes
 
TGS-2013
TGS-2013TGS-2013
TGS-2013
 
Paradigmas emergentes 2do_trabajo_colaborativo
Paradigmas emergentes 2do_trabajo_colaborativoParadigmas emergentes 2do_trabajo_colaborativo
Paradigmas emergentes 2do_trabajo_colaborativo
 
Presentación Paradigmas Emergentes
Presentación Paradigmas EmergentesPresentación Paradigmas Emergentes
Presentación Paradigmas Emergentes
 
Diapositivas paradigmas emergentes_1_ (1)
Diapositivas paradigmas emergentes_1_ (1)Diapositivas paradigmas emergentes_1_ (1)
Diapositivas paradigmas emergentes_1_ (1)
 
Sobre el Estatuto Epistemológico de la Psicología
Sobre el Estatuto Epistemológico de la PsicologíaSobre el Estatuto Epistemológico de la Psicología
Sobre el Estatuto Epistemológico de la Psicología
 
Historia de la psicología
Historia de la psicologíaHistoria de la psicología
Historia de la psicología
 
Power point paradigmas emergentes grupo 39
Power point paradigmas emergentes  grupo 39Power point paradigmas emergentes  grupo 39
Power point paradigmas emergentes grupo 39
 
Teoria general de sistemas
Teoria general de sistemasTeoria general de sistemas
Teoria general de sistemas
 
Castorina desarrollo cognitivo
Castorina  desarrollo cognitivoCastorina  desarrollo cognitivo
Castorina desarrollo cognitivo
 
Paradigmas emergentes diapositivas
Paradigmas emergentes diapositivasParadigmas emergentes diapositivas
Paradigmas emergentes diapositivas
 
Paradigmas emergentes (3)
Paradigmas emergentes (3)Paradigmas emergentes (3)
Paradigmas emergentes (3)
 

Similar a Lectura 1 pensamiento_de_sistemas

Metodologiadelascienciassociales
MetodologiadelascienciassocialesMetodologiadelascienciassociales
Metodologiadelascienciassocialesnelsonortizal
 
Paradigmas emergentes..
Paradigmas emergentes..Paradigmas emergentes..
Paradigmas emergentes..edinsonsaucedo
 
Paradigmas emergentes..
Paradigmas emergentes..Paradigmas emergentes..
Paradigmas emergentes..edinsonsaucedo
 
Yolanda abreo de angulo
Yolanda abreo de anguloYolanda abreo de angulo
Yolanda abreo de angulodcpe2014
 
Filosofia de las ciencias naturales- sociales
Filosofia de las ciencias naturales- socialesFilosofia de las ciencias naturales- sociales
Filosofia de las ciencias naturales- socialesJoystickero Otaku
 
Metodologia De Las Ciencias Sociales
Metodologia De Las Ciencias SocialesMetodologia De Las Ciencias Sociales
Metodologia De Las Ciencias Socialesyair88
 
Texto I. francisco ledesma.pdf
Texto I. francisco ledesma.pdfTexto I. francisco ledesma.pdf
Texto I. francisco ledesma.pdfPLINIOCASTELLANOS1
 
Que es la_ciencia
Que es la_cienciaQue es la_ciencia
Que es la_cienciajocxmore
 
Pontificia universidad católica del ecuador dos enfoques
Pontificia universidad católica del ecuador dos enfoquesPontificia universidad católica del ecuador dos enfoques
Pontificia universidad católica del ecuador dos enfoquesGabriel Solano
 
Pontificia universidad católica del ecuador dos enfoques
Pontificia universidad católica del ecuador dos enfoquesPontificia universidad católica del ecuador dos enfoques
Pontificia universidad católica del ecuador dos enfoquesGabriel Solano
 

Similar a Lectura 1 pensamiento_de_sistemas (20)

Metodologiadelascienciassociales
MetodologiadelascienciassocialesMetodologiadelascienciassociales
Metodologiadelascienciassociales
 
itsxtgs
itsxtgsitsxtgs
itsxtgs
 
Tgs
TgsTgs
Tgs
 
Paradigmas emergentes..
Paradigmas emergentes..Paradigmas emergentes..
Paradigmas emergentes..
 
Paradigmas emergentes..
Paradigmas emergentes..Paradigmas emergentes..
Paradigmas emergentes..
 
Yolanda abreo de angulo
Yolanda abreo de anguloYolanda abreo de angulo
Yolanda abreo de angulo
 
Filosofia de las ciencias naturales- sociales
Filosofia de las ciencias naturales- socialesFilosofia de las ciencias naturales- sociales
Filosofia de las ciencias naturales- sociales
 
Metodologia De Las Ciencias Sociales
Metodologia De Las Ciencias SocialesMetodologia De Las Ciencias Sociales
Metodologia De Las Ciencias Sociales
 
epistemologia en la educacion.pptx
epistemologia en la educacion.pptxepistemologia en la educacion.pptx
epistemologia en la educacion.pptx
 
Teoria general de sistemas
Teoria general de sistemasTeoria general de sistemas
Teoria general de sistemas
 
Texto I. francisco ledesma.pdf
Texto I. francisco ledesma.pdfTexto I. francisco ledesma.pdf
Texto I. francisco ledesma.pdf
 
1.2.mariana alor.
1.2.mariana alor.1.2.mariana alor.
1.2.mariana alor.
 
Que es la_ciencia
Que es la_cienciaQue es la_ciencia
Que es la_ciencia
 
Pontificia universidad católica del ecuador dos enfoques
Pontificia universidad católica del ecuador dos enfoquesPontificia universidad católica del ecuador dos enfoques
Pontificia universidad católica del ecuador dos enfoques
 
La Ciencia
La CienciaLa Ciencia
La Ciencia
 
Que es la_ciencia
Que es la_cienciaQue es la_ciencia
Que es la_ciencia
 
Que es la_ciencia
Que es la_cienciaQue es la_ciencia
Que es la_ciencia
 
Pontificia universidad católica del ecuador dos enfoques
Pontificia universidad católica del ecuador dos enfoquesPontificia universidad católica del ecuador dos enfoques
Pontificia universidad católica del ecuador dos enfoques
 
TGS-2013
TGS-2013TGS-2013
TGS-2013
 
Barradas
BarradasBarradas
Barradas
 

Último

FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfromanmillans
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxdanalikcruz2000
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docxAgustinaNuez21
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxJUANSIMONPACHIN
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024IES Vicent Andres Estelles
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...JAVIER SOLIS NOYOLA
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxc3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxMartín Ramírez
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Baker Publishing Company
 

Último (20)

PPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptxPPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptx
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdf
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docx
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
TL/CNL – 2.ª FASE .
TL/CNL – 2.ª FASE                       .TL/CNL – 2.ª FASE                       .
TL/CNL – 2.ª FASE .
 
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxc3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
 

Lectura 1 pensamiento_de_sistemas

  • 1. UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA DAPARTAMENTYO DE INGENIERIA INDUSTRIAL PENSAMIENTO DE SISTEMAS I Lectura del Curso Tópicos en Gestión de la Organización PEDRO ANTONIO NARVARTE ARREGUI 2014
  • 2. I. EL MÉTODO CIENTÍFICO Las civilizaciones occidentales, en los últimos trescientos años, nos han provisto de una poderosa forma de observar el mundo, de pensar acerca de él, y de adquirir un probado conocimiento acerca de sus regularidades. Es lo que denominamos Método Científico, el que podríamos definirlo en base a tres características: reduccionismo, repitencia y refutación. Esta ha sido una ayuda exitosa a muchas clases de acciones, y aún es un paradigma dominante. Este método desarrolla la siguiente secuencia de actividades al enfrentar un fenómeno (problema) en estudio: Investigador Área de Interés A verifica resultados reproducibles Verificación de la Hipótesis rechazada o intacta  hipótesis concerniente a A nueva hipótesis nuevo conocimiento de A obtiene produce Figura 1.1. Método Científico El "mundo real", es decir el mundo en que los fenómenos que distinguimos ocurren, obedece al universo de la fenomenología. La ciencia, o mejor las disciplinas científicas pertenecen al universo del discurso, en el cual creamos explicaciones de los fenómenos que distinguimos en el mundo.
  • 3. Lo que se quiere enfatizar es que el denominado "mundo real" no es ni físico, ni químico, ni biológico, ni sistémico, sólo presenta condiciones que nos permiten a los seres humanos distinguir fenómenos a explicar desde un mundo de abstracciones que dan origen a un mundo explicativo de los fenómenos que observamos. A este mundo explicativo es al que llamamos "universo del discurso", y a él pertenecen todas las disciplinas de la ciencia, como también aquellas que no son denominadas científicas. El trabajo del método científico, que ha demostrado gran efectividad para atacar y explicar fenómenos naturales, ha mostrado su debilidad al enfrentar o explicar fenómenos que se caracterizan por su gran complejidad, o por la presencia activa de los seres humanos. El predominante paradigma científico se encuentra con tres grandes áreas problemas: la Complejidad, la Administración y las Ciencias Sociales. 1.1. PROBLEMAS PARA LA CIENCIA 1.1.1. La Complejidad Nuestro "reconocimiento" del mundo es necesariamente dividido en diferentes "materias" o disciplinas. Estas cambian así como cambia nuestro conocimiento, debido a que es el hombre quien las hace en forma arbitraria. Existen varios principios que subyacen a la clasificación, ellos son:  El orden histórico en que fueron apareciendo.  El hecho de que cada una de ellas descansa en la que precede y prepara el camino para la que sigue.  El creciente grado de complejidad de la materia en estudio, y  La creciente facilidad con que los hechos estudiados por una ciencia en particular pueden cambiar. Otra dificultad relacionada con la complejidad está en cómo funciona la explicación de la ciencia. Por ejemplo, la física puede proporcionar una descripción de los
  • 4. mecanismos de algunos fenómenos químicos, pero no puede explicar la existencia de los problemas de la química como tal. A un nivel superior a la química, los problemas de desarrollo de embriones y problemas hereditarios son problemas de Biología. Las explicaciones en términos de química aunque son bienvenidos, no explican la biología; quedamos en un nivel de complejidad que se caracteriza por sus propios problemas autónomos. Para ilustrar lo anterior se expondrá la siguiente cita de Popper: “Yo planteo de que no hay proceso biológico que no pueda relacionarse o correlacionarse en detalle con un proceso físico y que no pueda ser analizado en forma progresiva en términos fisicoquímicos. Pero ningún tema fisicoquímico puede explicar la aparición de nuevos problemas..... los problemas de los organismos no son físicos; no son físicas, ni leyes físicas, ni hechos físicos. Son realidades biológicas específicas y son "reales" en el sentido de que sus existencias pueden causar efectos biológicos”. Por otro lado, llegando a un nivel mayor de complejidad, Pantin en el año 1986 distingue entre ciencias “restringidas” y “no restringidas”. Entre las primeras encontramos la química y la física, y se caracterizan por estudiar fenómenos para los cuales se pueden realizar experimentos reduccionistas diseñados en el laboratorio, y es probable testear mediante medidas cuantitativas hipótesis de largo alcance expresadas en forma matemática. Para las segundas, los efectos bajo estudio son tan complejos que a menudo no son posibles experimentos diseñados con controles. Las ciencias sociales debieran ser consideradas, al igual que la biología y la geología, como ciencia no restringida, presentando para la ciencia y su método un nuevo tipo de dificultad que está mas allá de la mera complejidad. 1.1.2. Las Ciencias Sociales Las ciencias naturales no restringidas se encuentran frecuentemente con fenómenos complejos que dificultan su estudio. Los problemas que involucran
  • 5. estos fenómenos generalmente se deben sólo a problemas de instrumentación, debido a que las variables son independientes de las predicciones. Distinto es el caso de las ciencias sociales, en las que se hace imposible encontrar regularidades objetivas ya que la interpretación de los fenómenos dependen de las apreciaciones de quienes las estudian. También se debe considerar que el componente central de estudio en las ciencias sociales es el ser humano, y aun cuando nosotros lo despersonalizemos como "un actor" cumpliendo "un rol", él será el participante activo en el fenómeno investigado, aportando significados y modificando la situación. Por lo tanto, se hace fundamental considerar las percepciones de los actores involucrados en cualquier fenómeno social estudiado. Otro aspecto que se debe tener en cuenta respecto a las ciencias sociales es la dificultad de afirmar predicciones, debido a que el conocimiento de éstas puede cambiar el comportamiento del fenómeno y por ende su resultado. La mezcla de efectos intencionados y no intencionados de las ciencias sociales no permite la generación de leyes ni predicciones, lo que sí se hace posible es la búsqueda de tendencias que nos entreguen la lógica de la situación. Lo anterior nos ilustra que el método científico, tan poderoso en las ciencias naturales, no ha sido aún y no será fácilmente aplicado a la investigación de los fenómenos sociales. 1.1.3. La Administración En general las llamadas "Ciencias de la Administración" son más una disciplina práctica que una ciencia. Lo que persigue es rendimiento en vez de conocimiento. La única disciplina relacionada con la administración que hace uso del método científico corresponde a la Investigación de Operaciones. Esta no permite generar las decisiones irracionales que dentro del ámbito de la administración a menudo es buena, debido a que la IO entrega lo que se podría caracterizar como "recetas racionales óptimas".
  • 6. II. EL PARADIGMA EMERGENTE: LA SISTÉMICA Existe una forma particular de pensar acerca del mundo y está representado por una parte del movimiento científico que usa algunos conceptos que complementarían aquellos utilizados por la ciencia natural clásica. Se trata de "pensar en términos de sistemas" o "primas de sistemas", teniendo como propósito entender las complejidades del mundo que percibimos. La sistémica no es una disciplina que pueda ser considerada dentro del conjunto de las disciplinas; más bien es una "metadisciplina", cuyas materias forman parte virtualmente, de cualquier otra disciplina. Esto último no es reconocido fácilmente. Sin embargo, se refleja en una frase que captura la idea con que mucha gente que se preocupa del asunto, lo caracteriza como: "Un enfoque de Sistemas". La respuesta a la pregunta: ¿Qué es un enfoque de Sistemas? tiende hoy en día a ser del tipo: Un enfoque para enfrentar problemas que consideran un punto de vista muy amplio, que toma en cuenta todos los aspectos involucrados y que se concentra en las interacciones de las diferentes partes del problema. En otras palabras, el pensamiento de sistemas no se trata de la optimización o acomodo de medios, sino de la búsqueda de sentido holístico. La búsqueda de sentido holístico es la búsqueda de un marco referencial o contexto trascendental en que un fenómeno pueda desplegarse como totalidad.
  • 7. Figura 2.1. Enfoque sistémico La variedad de enfoques de sistemas que hoy podemos reconocer es la expresión actual del carácter transdisciplinario del resultado de "pensar en términos de sistemas". El prefijo "trans" nos introduce una disciplina que arremete contra la fragmentación de la ciencia, penetrando en todos sus campos -interconectándolos por isomorfismo y analogías- y los comunica a través de metodologías adaptables a los diferentes aspectos que caracterizan cada una de las disciplinas y los futuros cambios en las mismas. En este contexto, un enfoque sistémico está facilitando la comunicación entre las distintas profesiones y posibilitando el intercambio entre los especialistas.
  • 8. III. EL CONCEPTO DE SISTEMA Para comprender de mejor forma el paradigma sistémico, es necesario definir el concepto implícito de mayor relevancia, que es "sistema". Existen en la literatura cientos de definiciones de sistema, pero en general, la gran mayoría tienen en común tres ideas centrales, las que nos permiten entender como sistemas, a todas aquellas entidades que cumplen con: 1. Un conjunto de partes (elementos u objetos). Esta primera idea, si bien es necesaria, por sí misma, es muy pobre aún para acercarnos a la idea de un sistema. En nada diferencia a la totalidad sistémica, que queremos definir, de un conglomerado. 2. Interrelación entre esas partes o elementos. Esta segunda idea, nos reúne a las partes, pero es pobre para dar un sentido de unidad al todo. Nos acerca a la idea de estructura, pero le falta organicidad. 3. Un patrón coherente, que le da sentido a este todo formado por las partes en interacción. Algunos autores hablan de un propósito común, o también de comunes objetivos. Sin embargo, lo que sí está claro es que proveen la unicidad que completa la idea de totalidad con sentido. De acuerdo a esta definición, un sistema debe contener elementos relacionados de manera tal que definan una entidad diferente a la mera aleación de tales elementos. Si bien exacta, esta definición puede aparecer como generalizada. Aún cuando define y distingue lo que es de lo que no es un sistema, al mirar a nuestro alrededor vemos que casi todo se puede definir, desde un ángulo u otro, como sistema. Una de las mayores virtudes del enfoque de sistemas es su aplicabilidad en un amplio rango de campos justamente porque en la casi totalidad de las áreas del conocimiento y del que hacer, es posible encontrar "Sistemas".
  • 9. En el mundo real, los elementos interactúan con otros de una manera compleja. Se establecen largas cadenas de relaciones que terminan por conectar elementos de la más variada naturaleza y ubicación con respecto a la clasificación del conocimiento que ya poseemos. Prácticamente no existen elementos aislados en la naturaleza, puesto que de algún modo éstos afectan y/o son afectados por otros elementos en algún momento. Siguiendo con el concepto de sistemas, incluimos en éste al universo, que contiene todo en su interior. Frente a esto, nos surge la pregunta sobre la utilidad de este concepto, puesto que al empezar a identificar los elementos de un sistema guiándonos por las relaciones que éstos mantienen con otros, tendríamos que terminar por incluir todo, o casi todo el universo. Sin embargo, el enfoque de sistemas no tiene ese objetivo... IV. EL ROL DEL OBSERVADOR: La Definición del Sistema Los sistemas no existen en la realidad, estos pertenecen al universo del discurso, lo mismo que la física, la química y la ingeniería. Los sistemas son abstracciones del mundo que nos rodea. Esto indica que para identificar un sistema es necesaria la presencia de un observador en cuyo universo del discurso puedan formalizarse las representaciones de los elementos y de las relaciones que se perciban entre ellos. Dos observadores con distinta capacidad de observación y/o razonamiento pueden definir dos sistemas diferentes, mientras observan el mismo conjunto de elementos. Esta situación es lo suficientemente familiar a todos nosotros como para que necesite mayores explicaciones. Sin embargo, existe otra posibilidad donde dos observadores pueden identificar dos sistemas diferentes, aun cuando sean igualmente perceptivos. Esto ocurre cuando los observadores asocian objetivos diferentes al sistema en estudio, situaciones de esta naturaleza son comunes en nuestro tiempo.
  • 10. Dos expertos generales de bandos opuestos, haciendo el balance después de una batalla y habiendo observado prácticamente el mismo cuadro de ésta, sacaron conclusiones muy diferentes. Lo que para uno fue bueno es exactamente lo que para el otro fue malo. Sin embargo, la mayoría de las veces los observadores no necesitan discrepar tan marcadamente como en estos ejemplos para producir sistemas diferentes. Detengámonos por un momento en el proceso por el cual se produce la discrepancia. El observador, al adscribir un propósito determinado al sistema, inicia un proceso que lo obliga a seleccionar de entre las relaciones conocidas aquellas que sean relevantes al propósito establecido. En el otro extremo de una relación identificada como relevante, habrá un elemento que deberá pasar a formar parte del sistema. Probablemente, tal elemento tendrá sentido dentro del sistema sólo en cuanto a otras características que pueda poseer. De este modo y al final del ejercicio se ha seleccionado un conjunto de elementos que son un estereotipo de lo que existe en la realidad. Otro observador, o el mismo, pero con otro objetivo "inminente", parte con otro criterio de selección y, si el ejercicio es bien llevado, deberá terminar con un sistema diferente, puesto que habrá usado las reglas para escoger entre los elementos y relaciones en el mundo real. El observador es por tanto una característica fundamental del enfoque de sistemas. El observador, en base a su particular punto de vista (Weltanchauungen) es quien aporta el propósito del sistema y determina criterios de selección (referencias al comportamiento). Sin él, el sistema no puede definirse (ver figura 1). Un detalle interesante de explicar aquí, es aquel de la selección que toma lugar haciendo uso de la descripción del propósito del sistema en estudio. A la luz de este propósito, la complejidad real de interacciones en el mundo real se nos revela de manera diferente dentro de una perspectiva que destaca ciertos aspectos y atenúa otros.
  • 11. Como resultado obtendremos una red de interacciones diferentes a la inicial donde un conjunto de elementos altamente relacionados entre sí destaca del resto. Este conjunto es, en general el sistema. OBSERVADOR (W,PROP.) LIMITES REFERENCIAS AL COMPORTAMIENTO DEFINICIÓN DE UN SISTEMA Figura 4. 1. Definición de un Sistema Sin embargo, el proceso de estudio no termina aquí, la definición del sistema requiere algo más de precisión. Por ejemplo, en este conjunto de elementos dependiendo del carácter del uso del sistema, será necesario distinguir entre aquellos elementos que establecen relaciones de mutua dependencia con el resto y aquellos que sólo afectan en comportamiento del resto. Los primeros deberán entenderse como partes del sistema, en cambio los segundos conformarán el medio ambiente del sistema. Es importante hacer notar que una de las tareas más difíciles es aquella de trazar la línea divisoria entre éstos.
  • 12. El observador es por lo tanto, un elemento esencial en el enfoque de sistemas. Por observador, sin embargo, no debe entenderse un ser voluntarioso y caprichoso capaz de cobijar los más estrambóticos propósitos, sino la interfase entre el universo de la fenomenología y el entendimiento. El resultado del ejercicio de identificación y selección que lleva a cabo el observador es la separación de un conjunto de elementos relacionados entre sí. Sin embargo, la tarea de identificar un sistema no estaría definida con la precisión requerida si nos limitáramos a exigir que las partes del sistema estuvieran relacionadas entre sí. Es necesario agregar una distinción fundamental al carácter de las relaciones que se establecen entre los elementos que aparecen como relevantes al propósito que inspira al sistema. Así mismo, es necesario separar aquellos que no se ven influidos por éstos. Estos últimos elementos constituyen el medio ambiente del sistema. El sistema no afecta en forma apreciable al medio ambiente mientras persigue un propósito. El proceso por el cual la separación de estos elementos se lleva a cabo es lo que se conoce como identificación de los límites del sistema y por lo tanto concluye con la definición del sistema. La definición de los límites del sistema es una de las etapas metodológicamente más interesantes del enfoque de sistemas. Desde el punto de vista metodológico lo que debemos recalcar, es que la definición del sistema requiere de esta etapa. Con el objeto de aclarar la manera de identificar lo que "pertenece" al sistema, es de utilidad presentar otro concepto. Este es el concepto de clausura. La clausura se refiere a las relaciones que existen entre los elementos de un sistema. Más precisamente, se refiere a que las relaciones entre los elementos de un sistema deberían "cerrarse" en sí misma. En otras palabras, la manera en la cual el sistema responde a una perturbación exterior debe estar contenida en la red de relaciones que existe entre los elementos del sistema. Para encontrar la respuesta del sistema a un cambio en el medio ambiente debe bastar con conocer los mecanismos internos de interacción del sistema. Si esto no es posible, significa
  • 13. que el sistema no tiene clausura y, por lo tanto, deben encontrarse las partes y/o relaciones que expliquen tal respuesta. El concepto de clausura es de gran utilidad y se transforma en una herramienta metodológica cuando se utiliza como criterio para establecer los límites del sistema. V. PROPIEDADES DE LOS SISTEMAS Para complementar la definición presentada, es conveniente plantear aquellas propiedades de los sistemas, las que darán mayor riqueza en el uso y definición del concepto. Emergencia La propiedad de Emergencia, fuertemente ligada con el concepto de Sinergia –el todo es más que la suma de las partes-, tiene directa relación con el patrón coherente o propósito común, mencionado en la definición de sistemas. Es decir, la interrelación entre las partes entrega como resultado –hace emerger- algo que no es verificable desde estas partes y está más allá de la simple agregación del aporte que cada parte entrega al conjunto. Por ejemplo, ¿cómo cada operación fabril, en una empresa industrial cooperativa, nos muestra que estamos en una cooperativa?. La empresa industrial cooperativa está en el todo sinérgico, dado por la interacción de sus componentes, no es deducible desde sus particularidades productivas. Ver Figura 5.1.
  • 14. “EL TODO ES MAS QUE LA SUMA DE LAS PARTES” (emerge la bandera, como Emblema Patrio) EL TODO: SINERGIA LAS PARTES Figura 5.1. Sinergia: “el todo es más que la suma de las partes”. Recursividad La segunda propiedad de los sistemas, corresponde a la estructura, y dice relación con los componentes y relaciones entre componentes que constituyen al sistema. Dicha estructura debe ser recursiva, es decir, todo sistema contiene y está contenido en otro sistema. De esto se desprende que las partes y relaciones que componen un sistema, son a su vez sistemas, y el sistema pasa a ser parte componente de un sistema mayor. Esto permite tratar con niveles, y por tanto administrar la complejidad en el estudio, fragmentando en partes que son totalidades, sin perder el sentido global o patrón coherente del sistema enfocado. En organizaciones humanas, esto se da como sistemas autónomos, formando parte de una totalidad, también autónoma con respecto a su nivel superior. Este despliegue de complejidad de sistemas o niveles de resolución, es lo que algunos
  • 15. autores –Checkland (1993), Checkland y Scholes (1994), Rodríguez (1994)- llaman jerarquía de sistemas. Ver Figura 5.2. RECURSIVIDAD “TODO SISTEMA CONTIENE Y ESTA CONTENIDO EN OTRO SISTEMA” Figura 5.2. Recursividad: “todo sistema contiene y está contenido en otro sistema”.
  • 16. Comunicación y Control Estas dos últimas propiedades de los sistemas tienen directa relación con la idea de supervivencia. Ellas son las que permiten al sistema poder adaptarse a las perturbaciones del medio, y conservar de ese modo el sentido de totalidad. En una empresa, por ejemplo, sus sistemas de calidad, su estructura organizacional administrativa y productiva y sus planes estratégicos y de gestión, representan algunos de los mecanismos de comunicación y control de apoyo a la supervivencia del sistema. COMUNICACIÓN Y CONTROL (SOBREVIVENCIA) Figura 5.3. Comunicación y control
  • 17. VI. ORIGEN Y DESARROLLO DEL MOVIMIENTO DE SISTEMAS Una descripción sistémica de este mundo observado y un enfoque sistémico de sus problemas se encuentra en varias diferentes disciplinas; todos estos esfuerzos en conjunto constituyen lo que se denomina "el movimiento de sistemas". Es el conjunto de intentos en todas las áreas de estudio por explorar las consecuencias del pensamiento holístico más que reduccionista. El programa del movimiento de sistemas, puede ser descrito como una prueba a la conjetura de que estas ideas nos capacitarán para tratar los problemas del método que la ciencia encuentra muy difícil, denominados problemas de complejidad organizacional. Podría haber sucedido que la exploración del sistema holístico, se desarrollara en las diferentes disciplinas usando un lenguaje apropiado a cada uno de las diferentes tomas. Lo que de hecho sucedió es que los todos en varias diferentes áreas de estudio, desde la geografía, física y sociología, han sido estudiados usando las ideas y el lenguaje apropiado a sistemas de cualquier tipo. El principal logro de Ludwing Von Bentalanffy es una federación libre de intereses similares, unidos por el concepto de "sistemas". La mayor contribución individual a esta revolución intelectual menor de los años cuarenta es probablemente la de Norbert Wiener. Pero fue Bertalanffly quien insistió que en la emergencia de ideas en varios campos podrían ser generalizadas en el pensamiento de sistemas, de ahí que sea él el reconocido como fundador de este movimiento. El punto de vista de Bertalanffly, que podría ser considerado como su visión, fue que debería lograrse como resultado de su trabajo, una meta-teoría de sistemas de alto nivel en los diferentes campos, expresada matemáticamente. Esta aspiración se ve clara en los documentos de la fundación de lo que hoy en día se conoce como Sociedad para la Investigación General de Sistemas. En la publicación "Filosofía de la Ciencia", en 1955, en la página 311 se anunciaba: "Una sociedad para el avance de la teoría general de sistemas está en proceso de organización". Los interesados eran el biólogo Bertalanffy, junto con un economista Boulding, un
  • 18. fisiólogo Gerard, y un matemático Rapaport. El propósito era alentar el desarrollo de "sistemas teóricos que fueran aplicables a más de una de las divisiones tradicionales del conocimiento". Los objetivos de la teoría general de sistemas eran: 1) Investigar el isomorfismo de los conceptos, leyes y modelos en diferentes campos y ayudar en las transferencias útiles desde un campo a otro. 2) Animar o alentar el desarrollo de modelos teóricos adecuados en áreas que carecen de ellos. 3) Eliminar la duplicación de esfuerzos teóricos en diferentes campos. 4) Promover la unidad de las ciencias a través de un mejoramiento de las comunicaciones entre los especialistas. La teoría general, prevista por los fundadores, ciertamente no ha emergido, y la T.G.S. en sí recientemente ha sido objeto de fuertes ataques, por parte de Berlinski y Liliefield. Incluso Naughton lo ha considerado "una mescolanza de visiones internas, teoremas, tautologías y presentimientos...". El problema de la T.G.S. es que paga su generalidad por una falta de contenido. El progreso en el movimiento de sistemas parece más bien venir del uso de las ideas de sistemas dentro de áreas problemas específicas, más que por el desarrollo de una teoría englobadora. Aunque la T.G.S. no provee los medios de representar la totalidad del trabajo realizado en el movimiento de sistemas, la distinción hecha recientemente (entre el desarrollo del pensamiento de sistemas como tal y la aplicación del pensamiento de sistemas dentro de otras áreas, u otras disciplinas) puede ser entendida para entregar un mapeo razonable de toda la actividad del movimiento.
  • 19. 1. EL MOVIMIENTO DE SISTEMAS 2.1. ESTUDIO DE LAS IDEAS DE SISTEMAS 2.2. APLICACIÓN EN OTRAS DISCIPLINAS 3.1. DESARROLLO TEORICO 3.2. DESARROLLO PRACTICO 4.1. TRABAJO EN SISTEMAS “DUROS” 4.2. AUXILIO EN LA TOMA DE DECISIONES 4.3. TRABAJO EN SISTEMAS “BLANDOS” EL MOVIMIENTO DE SISTEMAS Figura 6. 1. Mapa del Movimiento de Sistemas Para construir el mapa de la figura 6.1, se deben hacer algunas distinciones. En primer lugar hacer una distinción entre el desarrollo de las ideas de sistemas como tales (2.1), como por ejemplo la cibernética, y la aplicación de las ideas de sistemas dentro de una disciplina existente (2.2), como en el caso del reescrito de la geografía desde un punto de vista de sistema por parte de un geógrafo de Cambrige. Esto ofrece dos grandes áreas en el trabajo de sistemas. En segundo lugar, dentro del trabajo del pensamiento de sistemas como tal, distinguir entre el desarrollo de las ideas de sistemas puramente teóricas y sus interrelaciones (3.1), y el trabajo basado en la noción del desarrollo de las ideas en busca de la Ingeniería de “Sistemas” en el mundo real (3.2), usando la palabra en el más amplio sentido.
  • 20. La T.G.S. es un ejemplo de lo primero y el desarrollo de las metodologías de la Ingeniería de sistemas, un ejemplo de lo último. Pero la Ingeniería de Sistemas "hard", es sólo un ejemplo del desarrollo del pensamiento de sistemas en intentos por resolver problemas. Existen otras, y esto nos lleva a una tercera distinción entre: a) La ingeniería de sistemas "hard" como tal; b) El uso de sistemas para ayudar a la toma de decisiones (como en el caso de la investigación operacional); y c) Usar el pensamiento de sistemas para abordar problemas no estructurados, "soft". Es importante tener ahora el estatus de este "mapa del movimiento de sistemas". Como tal, no es un cuadro del movimiento de sistemas del mundo real; cualquier proyecto de sistemas del mundo real, bien puede atravesar varias de las categorías del mapa. En sí, el mapa no es más que un conjunto de distinciones lógicas. Es un cuadro del movimiento de sistemas que mapea la actividad de sistemas en el mundo real, sus esfuerzos intelectuales y su literatura y además permite que cualquier trabajo y literatura pueda ser ubicado en el contexto como un todo. VII. EL ESPECTRO METODOLÓGICO: Un espectro de problemas En nuestra vida como personas inmersas en un ambiente social, tenemos diariamente sensaciones positivas y negativas respecto de cómo se nos presenta el devenir. A las primeras emociones las llamamos oportunidades y a las segundas, amenazas. Tampoco podemos negar que tanto oportunidades como amenazas nos involucran preocupación y esfuerzo, ya sea para alcanzar los ansiados deseos de logro de metas posibles, como también para solucionar los entuertos en que nos vemos envueltos. En resumen y a nuestro pesar, las oportunidades y las amenazas que observamos en nuestro medio terminan
  • 21. presentándonos un mundo problemático que debemos solucionar para nuestra estabilidad individual y social. Esta condición de los seres humanos, como es la de vivir "solucionando problemas", nos transforma en constantes analistas de ellos. Esto obliga a la búsqueda de herramientas metodológicas que nos ayuden a intervenir adecuadamente en el complejo mundo que nos rodea. Estos problemas que enfrentamos diariamente tienen distintos orígenes y naturalezas, por tanto no podemos caracterizarlos como del mismo tipo, así como tampoco podemos encontrarles un método único de solución. Desde la perspectiva del pensamiento de sistemas, es posible caracterizar los problemas del mundo real en un espectro cuyos extremos los componen por un lado los problemas llamados "Hard" o "Duros", y en el otro los problemas "Soft" también llamados "Blandos" o "Agiles". Una explicación de este espectro de problemas se expone en la figura 1, especificando además las características que identifican un problema en hard o soft.
  • 22. Figura 7.1. Espectro de Problemas Como ejemplo de problemas hard podemos presentar una dieta alimenticia y también la optimización de un proceso industrial no extensivo en mano de obra. En el otro extremo, como ejemplos de problemas soft podríamos referirnos al alcoholismo, la drogadicción, la prostitución, el terrorismo, la marginalidad, el daño ecológico, entre otros. Corresponde explicar, para evitar confusión, que en general los problemas que distinguimos en el mundo real no son absolutamente soft ni absolutamente hard. Ellos están desplazados hacia alguno de los extremos del espectro, manteniendo en cierta medida características del otro. Es decir, podemos jugar con nuestro espectro desplazándonos desde cualquier extremo hacia el centro, dependiendo solamente de la naturaleza del problema percibido.
  • 23. Sin embargo, cuando de resolver estos problemas se trata, se originan dos pensamientos de sistemas bien definidos según su tradición. Ellos son el pensamiento de sistemas Hard, más relacionado con las décadas de años 50 y 60, y el pensamiento de sistemas soft con mayor relación a los años 80 en adelante. Los años 70 y los primeros de los 80 podríamos considerarlos como una etapa de transición entre ambas tradiciones. Dichas tradiciones del pensamiento de sistemas han dado origen, en la práctica, a metodologías que permiten intervenir para solucionar los problemas del mundo. Estas metodologías son coherentes con los pensamientos que las originan y son conocidas (según P. Checkland) como metodologías Hard y Soft. Metodologías "HARD" Las aproximaciones metodológicas asociadas a la tradición del pensamiento de sistemas hard han sido dadas por el desarrollo de la Investigación Operacional y el Análisis de Sistemas. Sus características principales se enmarcan en el hecho que representan sólo un punto de vista frente al fenómeno en estudio y se basan fundamentalmente en modelos simbólicos que buscan soluciones óptimas. El quiebre en la aplicación de estas metodologías se produjo al usarlas para la solución de problemas de orden social y administrativo, en que la presencia del ser humano da origen a diferentes y encontradas percepciones sobre los fenómenos en estudio, sus causas y sus soluciones. Estos intentos hicieron meditar en la dificultad de determinar regularidades algorítmicas en el comportamiento humano, y predicciones cuyo conocimiento no alteraran los resultados de las mismas. Estos desencuentros entre analistas y los fenómenos que ellos enfrentaban, generó la preocupación de muchos investigadores a postular una nueva forma de pensamiento de sistemas y, en la práctica, nuevas formas de metodologías, que dieran cuenta de estos vacíos. De este modo se dio origen al pensamiento de
  • 24. sistemas "Soft" y en particular a las metodologías representativas de esta tradición. Metodologías “SOFT” Estas metodologías son representativas del pensamiento soft de sistemas y se enmarcan en la "Sistémica". Se caracterizan por considerar la participación de los diferentes actores involucrados en los fenómenos a estudiar. A partir de la interacción hecha con las personas e instituciones involucradas se definen los sistemas relevantes, se caracterizan y se efectúan modelos conceptuales. A partir de este aprendizaje, se presentan soluciones que cumplan con la condición de ser sistémicamente deseables y culturalmente factibles. Para ejemplificar estas metodologías se presenta en la figura 7.2 la aproximación general propuesta por P. Checkland de la Universidad de Lancaster en el Reino Unido. FORMA BÁSICA DE LA METODOLOGÍA DE SISTEMAS BLANDOS
  • 25. Figura 7.2. Forma Básica de la Metodología de Sistemas Blandos Muy lejos de nuestro interés está el dejar una sensación de dos tradiciones de sistemas extremas y antagónicas. En la práctica, estas tradiciones son complementarias y podríamos decir que las metodologías Hard son un caso particular de las metodologías Soft en que sólo se considera una visión particular en relación al fenómeno en estudio.