SlideShare una empresa de Scribd logo
1 de 158
Descargar para leer sin conexión
UNIVERSIDAD DE LOS ANDES
ESCUELA DE MECÁNICA
CÁTEDRA DE DISEÑO
ENGRANES
MÉRIDA 2010
ELEMENTOS DE MAQUINAS II
EVOLUCIÓN DEL ENGRANE
ELEMENTOS DE MAQUINAS II
EVOLUCIÓN DEL ENGRANE
ELEMENTOS DE MAQUINAS II
EVOLUCIÓN DEL ENGRANE
ELEMENTOS DE MAQUINAS II
EVOLUCIÓN DEL ENGRANE
ELEMENTOS DE MAQUINAS II
INTRODUCCIÓN
En este capitulo, se tratarán los engranes comúnmente utilizados
como lo son los engranes cilíndricos de dientes rectos, los engranes
cilíndricos helicoidales y los engranes cónicos de dientes rectos. Los
mismos se encuentran altamente normalizados en lo que se refiere a
la forma de sus dientes y tamaños de los mismos, a través de la
norma AGMA (American Gear Manufacturers Association), la cual
sirve de soporte a las investigaciones sobre diseño de engranes,
materiales que se utilizan y procesos de fabricación; publicando
además, normas de diseños, construcción y ensamble. Por tales
razones, se seguirán los métodos y recomendaciones definidas por
las normas de la AGMA.
EJES PARALELOS
EJES QUE SE INTERCEPTAN
EJES CRUZADOS
ELEMENTOS DE MAQUINAS II
POSICIÓN ENTRE LOS EJES
Reducción con engranajes
cilíndricos de dientes rectos
ELEMENTOS DE MAQUINAS II
POSICIÓN ENTRE LOS EJES
Ejes paralelos
Reducción con engranajes
cónicos de dientes en espiral
ELEMENTOS DE MAQUINAS II
POSICIÓN ENTRE LOS EJES
Ejes que se interceptan
Reducción con engranajes
cónicos hipoidales
ELEMENTOS DE MAQUINAS II
POSICIÓN ENTRE LOS EJES
Ejes cruzados
ENGRANES CILÍNDRICOS
Externos rectos
Internos rectos
Helicoidales
Cremalleras
ENGRANES CÓNICOS
Rectos
Espirales
Hipoidales
ENGRANE Y TORNILLO SINFIN
ELEMENTOS DE MAQUINAS II
TIPOS DE ENGRANES
Engranajes cilíndricos rectos
con contacto externo
Engranajes cilíndricos rectos
con contacto interno
ELEMENTOS DE MAQUINAS II
TIPOS DE ENGRANES
Engranajes cilíndricos helicoidales Engranaje recto y cremallera
ELEMENTOS DE MAQUINAS II
TIPOS DE ENGRANES
Engranajes cónicos rectos Engranajes cónicos en espiral
ELEMENTOS DE MAQUINAS II
TIPOS DE ENGRANES
Engranajes cónicos hipoidales Engranajes sinfín
ELEMENTOS DE MAQUINAS II
TIPOS DE ENGRANES
ELEMENTOS DE MAQUINAS II
ENGRANES DE DIENTES RECTOS
ENGRANES DE DIENTES RECTOS
Los engranes de dientes rectos, son aquellos donde todos
los elementos de sus dientes, son paralelos al eje que los
soporta. Se utilizan para transmitir potencia entre ejes
paralelos.
Reducción con engranajes
cilíndricos de dientes rectos
ELEMENTOS DE MAQUINAS II
ENGRANES DE DIENTES RECTOS
Círculo de paso
Paso circularAncho
entre
dientes
Círculo de
adendo
Tope del diente
Ancho de cara
Cara
Flanco
Círculo de base
Paso de base
Holgura
radial
Círculo de
dedendo
Dedendo
Adendo
Espesor
del diente
Fondo
entre dientes
Círculo de paso: Es una circunferencia teórica en la que se basan los principales
parámetros de los engranes. A su diámetro correspondiente se le denomina diámetro
primitivo o de paso.
Círculo de paso
Circulo de adendo: Circunferencia que limita la parte más exterior de los dientes de un engrane
Círculo de
adendo
Circulo de dedendo: Circunferencia que limita la parte interior de los dientes
Círculo de
dedendo
Paso de base: Distancia medida sobre la circunferencia de base entre puntos correspondientes
de dos dientes adyacentes.
Paso de base
Paso circular: Distancia circular entre puntos correspondientes de dos dientes adyacentes,
medida sobre la circunferencia primitiva.
Paso circular
N/Dpc 
Adendo: Es la diferencia radial entre la circunferencia de adendo y la de paso. Se denota por a
Adendo
Dedendo: Es la diferencia radial entre la circunferencia primitiva y la de dedendo. Se denota por
b
Dedendo
Holgura radial: Es la diferencia entre el dedendo de un engrane y el adendo del engrane
conectado.
Holgura
radial
Círculo de base: Circunferencia a partir de la cual se generan los perfiles del diente. Solamente
entre ella y la circunferencia de adendo se cumple la ley fundamental de engrane.
Círculo de base
Espesor
del diente
Espesor del diente: Es el grosor del diente medido sobre la circunferencia de paso.Ancho de cara: Espesor del diente medido en forma paralela al eje del engrane.
Ancho de cara
Ancho entre dientes: Longitud de arco, medida en el sobre el círculo de paso, del lado
derecho de un diente al lado izquierdo del diente adyacente.
Ancho
entre
dientes
ELEMENTOS DE MAQUINAS II
TERMINOLOGÍA
Paso circular: Se define como la distancia circular entre puntos
correspondiente de los dientes adyacentes, medida sobre la circunferencia
primitiva. Se denota por Pc y define el tamaño de los dientes de un engrane
de dientes rectos. El paso circular se determina por la expresión:
Donde:
N : número de dientes.
D : diámetro primitivo.
ELEMENTOS DE MAQUINAS II
TERMINOLOGÍA
N
πD
Pc 
Valores normalizados de Pc (pulg.)
10.0 9.5 9.0 8.5 8.0 7.5 7.0
6.5 6.0 5.5 5.0 4.5 4.0 3.5
(pulg.)
Paso diametral: Se define como el numero de dientes contenido en una
pulgada de diámetro primitivo:
Entre los dos pasos en el plano de rotación Pc y Pd existe una relación dada
por:
En el caso de un piñón y rueda conectados, entendiendo que una de las
condiciones que debe imperar es que ambos deben poseer el mismo paso
diametral, se cumple que:
ELEMENTOS DE MAQUINAS II
TERMINOLOGÍA
)
pulg
dientes
(
D
N
Pd 
πPcPd 
r
r
P
P
D
N
D
N
Pd 
Los engranes de uso común, se fabrican con valores estándar del
paso diametral. Los tamaños de dientes reales para pasos
diametrales normalizados para un ángulo de presión Φ de 20°,
correspondientes a dientes de altura completa. Se obtienen valores
de pasos diametrales bastos de 1 a 18 y para pasos finos de 20 a 120
ELEMENTOS DE MAQUINAS II
TERMINOLOGÍA
Pasos diametrales bastos (Pd<20) Pasos diametrales finos (Pd>20)
1 1.25 1.5 1.75 20 24 32
2 2.25 3 4 48 64 72
5 6 8 10 80 96 120
12 14 16 18 --- --- ---
En el sistemas SI de unidades, se utiliza en lugar del paso diametral Pd el
denominado modulo, denotado por m y expresado como la relación entre el
diámetro primitivo del piñón o rueda (expresado en mm) y sus respectivos
números de dientes. Su unidad es el milímetro y se expresa por:
La conversión entre el sistema modular y el sistema de paso diametral se
realiza por medio de la expresión:
ELEMENTOS DE MAQUINAS II
TERMINOLOGÍA
Nr
Dr
Np
Dp
m 
Pd
25.4
m 
Los valores estandarizados de modulo (m) expresados en mm. Son:
ELEMENTOS DE MAQUINAS II
TERMINOLOGÍA
Modulo métrico
(mm)
Modulo métrico
(mm)
Modulo métrico
(mm)
0.4 2.5 12
0.5 3 16
0.8 4 20
1 5 25
1.25 6 32
1.5 8 40
2 10 50
Longitud de la línea de presión
Es un segmento de la línea de acción comprendida entre los puntos inicial y
final de contacto de una pareja de dientes. Se denota por z, y se expresa por
la ecuación:
Donde:
rap , rar : radios de circunferencias de adendo de piñón y rueda, respectivamente
rbp , rbr : radios de circunferencias de básicas de piñón y rueda, respectivamente
C : distancia entre centros de piñón y rueda
ELEMENTOS DE MAQUINAS II
TERMINOLOGÍA
senθc)r(r)r(rz 1/22
br
2
ar
1/22
bp
2
ap 
Relación de contacto: Se puede definir como la relación entre el arco de
acción y el paso básico. La relación de contacto indica el promedio de los
dientes en contacto para engranes conjugados, se denota por Rc y su valor
se determina a través de:
Con objeto de mantener condiciones adecuadas de funcionamiento, para los
engranes de dientes rectos, se recomienda que los valores de Rc estén
dentro del rango:
ELEMENTOS DE MAQUINAS II
TERMINOLOGÍA
cosθπ
Pdz
cosθPc
z
Pd
z
Rc 
2Rc1 
Relación de transmisión: Se define como la relación entre las velocidades
angulares de piñón y rueda. Se denota por mt y se expresa por:
Donde:
ωr, ωp = velocidad angular de la rueda y el piñón, respectivamente (rad/seg)
nr, np = velocidad angular de la rueda y el piñón, respectivamente (rpm)
Es decir, que en el caso de una pareja de engranes de dientes rectos, la relación de
transmisión puede tomarse como una relación de diámetros primitivos o como una
relación de numero de dientes.
ELEMENTOS DE MAQUINAS II
TERMINOLOGÍA
1
N
N
D
D
n
n
ω
ω
m
p
r
P
r
r
p
r
p
t 
Es una norma la que especifica las relaciones que existen entre el ángulo de
presión, el adendo, el dedendo, la altura total del diente, la altura de trabajo
del diente, el espesor del diente, la holgura circunferencial o claro, etc.
ELEMENTOS DE MAQUINAS II
SISTEMA DE DIENTES
PARÁMETRO PASO BASTO (Pd < 20) PASO FINO (Pd ≥ 20)
Angulo de presión (Φ) 20° ó 25° 20°
Adendo (a) 1.000/Pd 1.000/Pd
Dedendo (b) 1.250/Pd 1.250/Pd
Altura total del diente (ht) 2.250/Pd 2.200/Pd + 0.002pulg
Altura de trab. del diente 2.000/Pd 2.000/Pd
Espesor del diente (td) 1.571/Pd 1.571/Pd
Claro (c) 0.350/Pd 0.350/Pd + 0.002pulg
Especificaciones de la AGMA para engranes con dientes de
altura completa.
Los valores mínimos de numero de dientes que deberá poseer un piñón para
engranar con una cremallera, ambos con dientes de profundidad completa;
para que no se produzca interferencia entre sus dientes.
ELEMENTOS DE MAQUINAS II
SISTEMA DE DIENTES
ANGULO DE PRESIÓN Φ NÚMERO MÍNIMO DE DIENTES
DEL PIÑÓN
14.5 32
20 18
25 12
NPmin Nrmáx
17 1309
16 101
15 45
14 26
13 16
Adicionalmente, se dan valores mínimos de dientes de un piñón que
engrana con una rueda, ambos con dientes se altura completa de
20°, con el objeto de evitar el fenómeno de interferencia.
ELEMENTOS DE MAQUINAS II
SISTEMA DE DIENTES
W
W
Wr
Wr
Wt
Wt


Las magnitudes de las componentes radial y tangencial, así como, la carga
total que actúa sobre el diente se determinan a partir de las expresiones:
N
TP
D
T
W d
p
t
22
  tantr WW


cos
tW
W
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS Y ESFUERZOS
Para analizar la relación entre la componente tangencial, la velocidad de
rotación y la potencia asociada al eje, se debe tener en cuenta que la
velocidad de la línea primitiva que se llamara V (V = Vr =VP) a partir de
este instante, expresada en el sistema ingles donde V viene dada en ft/min,
es:
Donde:
nP : velocidad del piñón en min-1
nr : velocidad de la rueda en min-1
12
nDπ
12
nDπ
V rrPP

ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS Y ESFUERZOS
Por definición la potencia transmitida se obtiene entonces de,
Donde:
Pot : potencia transmitida en hp.
Wt : en lb y la velocidad en ft/min-1
T : momento de torsión, lb/pulg
N : velocidad de rotación, rpm
V : velocidad periférica, Pie/min
63000
nT
33000
VW
)(33000)(12
nT2π
Pot t

ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS Y ESFUERZOS
En el sistema internacional (SI) tenemos:
Donde la velocidad angular (n) debe estar en min-1 y la velocidad
lineal (V) en m/s.
Entonces, la potencia en Watts (W) se calcula por,
Donde la carga transmitida (Wt) esta en Newtons. Y el Torsor T en Newtons_metros
60000
nπD
60000
nπD
V rrPP

TVWPot t 
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS Y ESFUERZOS
Potenciatransmitidaenhp
Potenciatransmitidaen,KW
Velocidad del piñón, rpm
La presente grafica muestra la
capacidad de potencia de un par
de engranes de acero contra la
velocidad de giro del piñón y se
ilustran varios valores de paso
diametral y de módulos.
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS Y ESFUERZOS
La carga plena se aplica en la punta de un solo diente.
El efecto de la componente radial, Wr, es despreciable
La carga se distribuye uniformemente en el ancho de la
cara del diente.
Las fuerzas de fricción por deslizamiento son despreciables.
La concentración de esfuerzo en la raíz del diente no es
considerada.
HIPÓTESIS DE LA ECUACIÓN DE ESFUERZO DE LEWIS
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS Y ESFUERZOS
WWr
Wt
t
h
A
B
C
El momento flector sobre la
sección AC es:
hWM t
Con el ancho de cara F, el
módulo de flexión de la
sección transversal es:
2
2
1
2
12
1
2
1
6
1
Ft
t
Ft
t
I
Z 
Así, el esfuerzo máximo es:
2
6
1
Ft
hW
Z
M t

ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS Y ESFUERZOS
WWr
Wt
t
h
90º
x
A
B
C
D
Según Lewis (1893):
x
t
h
x
t
t
h
4
2
2
1
2
1

Si el esfuerzo máximo es:
2
6
1
Ft
hWt

entonces:
FY
PW
P
P
Fx
W dt
d
dt

3
2
donde dxPY 3
2
 es el factor
de forma de Lewis
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS Y ESFUERZOS
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS Y ESFUERZOS
La ecuación de flexión de la AGMA se basa es las
siguientes hipótesis:
1) La razón de contacto es entre 1 y 2.
2) No hay interferencia entre los engranes.
3) Ningún diente es puntiagudo.
4) Existe un juego distinto de cero.
5) Los filetes de las raíces son estándar, se suponen
lisos.
6) Se desprecia las fuerzas de friccion.
Las dos formas fundamentales de la AGMA para la determinación
del esfuerzo flexionante de trabajo que se induce en los dientes de
los engranes de dientes rectos son:
Sistema Ingles Sistema Internacional
Donde:
σf : esfuerzo de trabajo por flexión en los dientes
J : factor geométrico
Km : factor de forma y determinación de carga
Ka : factor de aplicación
Kv : factor dinámico
Ks : factor de tamaño
Kb : factor de espesor del “rim”
KvJF
KbKsKmPdKaW
σ t
f 
KvJmF
KbKsKmKaW
σ t
f 
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS Y ESFUERZOS
El factor J toma en consideración los aspectos siguientes: el punto
de aplicación de la carga en el diente, la forma que poseen los
dientes, el efecto de concentración de esfuerzos y la forma como
esta compartida la carga.
Para un conjunto de engranes de altura completa y carga compartida
podemos determinar el factor geométrico de la siguiente manera:
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Np=20, Nr=40 Jp=0.34, Jr=0.38
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Número de dientes, N
Factorgeométrico,J
Carga aplicada en la
punta del diente
Número de
dientes en el
engrane de
aplacamiento
El factor de carga dinámico Kv (Cv) se introdujo inicialmente para
tomar en cuenta factores como la inexactitud de la separación entre
los dientes, el hecho de los perfiles de los dientes no son involutas
perfectas, el efecto de la línea primitiva y la velocidad angular, la
deformación bajo carga del eje y sus soportes, la deformación de los
dientes bajo carga, vibraciones generadas por aplicaciones de carga
de impacto, y la carga transmitida por pulgada de ancho de cara del
engrane.
La AGMA suministra graficas para la determinación del factor
dinámico en velocidad en la línea primitiva, y de los índices de
calidad Qv, los cuales definen las tolerancias para engranes de
diferentes tamaños y fabricados de una clase de calidad especifica.
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Velocidad en pies/seg.
FactordinámicoKvyCv
Familia de curvas para la determinación de los factores dinámicos Kv y Cv
El calculo del factor dinámico se basa en los índices de calidad Qv,
y se realiza a partir de las expresiones.
Sistema Internacional Sistema Ingles
Donde A y B se obtiene de :
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
B
1/2
VA
A
CvKv 







B
1/2
V)200(A
A
CvKv 







B)56(150A  11Qv6para
4
Qv)(12
B
2/3



Los valores del índice de calidad Qv recomendada en función de la
velocidad en ft/min
Con la velocidad
encontramos el rango
recomendado del
índice de calidad
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
El factor de distribución de carga Km (Cm) se emplea para
considerar los aspectos siguientes: el desalineamineto de los ejes
geométricos de rotación, las desviaciones del avance, y las
deflexiones elásticas originadas por las cargas en los ejes, cojinetes
o en le alojamiento.
F en pulg (mm) Factor Km
<2 (50) 1.6
Hasta 6 (150) 1.7
Hasta 9 (230) 1.8
>20 (500) 2.0
Valores del factor de distribución de carga Km en función
de la achura de la cara
Para tomar en consideración el hecho de que la carga transmitida no
se distribuya uniformemente a lo largo de la anchura del diente, se
ha llegado a determinar restricciones para la anchura de la cara en
función del paso diametral y el paso circunferencial, dichas
restricciones son:
Estas restricciones no son rígidas, puesto que a medida que los
dientes son fabricados con mayor precisión, los perfiles de los
mismos se acercan mas al perfil teórico.
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Pd
16
F
Pd
8

π
16Pc
F
π
8Pc

El factor de tamaño Ks (Cs) toma en consideración principalmente,
cualquier falta de uniformidad de las propiedades del material del
cual se fabrica el engrane. La AGMA no establece normas para este
factor, se recomienda utilizar el valor de 1 salvo que se presenten
situaciones particulares; como el caso de los dientes demasiado
largos; donde debería tomarse valores mayores. Valores
conservativos para Ks podrían establecerse en el rango,
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
1.5Ks1.25 
El factor de aplicación de carga Ka (Ca) se utiliza con el objeto de
compensar la posible existencia de valores de carga real mayores que la
carga transmitida Wt. En efecto, los momentos de flexión fluctuantes
podrían originar variaciones de carga tangencial de magnitud mayor que la
carga transmitida Wt. Y todo dependerá de cómo se realiza la transmisión
entre la maquina conductora y la conducida.
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Máquina conducida
Máquina conductora Uniforme
Choque
moderado
Choque
pesado
-Uniforme: motor eléctrico,
turbina, etc.
1.00 1.25 1.75 ó mayor
-Carga ligera: máquinas
muticilíndricas
1.25 1.50 2.00 ó mayor
-Choque medio: máquinas de
cilindro simple.
1.50 1.75 2.25 ó mayor
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
El factor del “rim” Kb (Cb) considera los casos de engranes de
gran diametro, hechos con un “rim” y rayos en lugar de un disco
solido; donde dicho “rim” posee un espesor delgado en comparacion
con la altura de los dientes. La AGMA define una relacion entre le
espesor del “rim” y la altura de los dientes, es decir:
Donde:
mb : relación detrás del pie del diente
tR : espesor del “rim” desde el diametro de dendeo a diametro
interior del “rim”
ht : altura total del diente (suma de adendo mas el dedendo)
t
R
b
h
t
m 
Los valores obtenidos en la ecuación anterior se utilizan para
determinar el factor Kb en la forma:
Para la relación mb no se recomienda valores menores de 0.5, y en
el caso de engranes de discos sólidos, se toma Kb = 1.
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
1.2m0.5para3.42mKb bb 
1.2mpara1.0Kb b 
ELEMENTOS DE MAQUINAS II
ESTADOS DE ESFUERZOS
Los engranes rectos deben tener seguridad contra una falla por
rotura debido a esfuerzos repetitivos por flexión, y además, ser
capaces de poseer para la vida deseada o estimada; efectos de
picadura de importancia insignificante. La picadura de se puede
definir como el fenómeno en el cual, pequeñas partículas se
remueven de la superficie de los dientes debido a las elevadas cargas
de contacto superficial que se presentan durante el proceso de
engrane; y se considera como falla por fatiga de la superficie de los
dientes.
La ecuación fundamental de la AGMA para la determinación del
esfuerzo por contacto en los dientes es:
Donde:
σc : esfuerzo por contacto superficial.
CP :coeficiente elástico
I : factor geométrico
Ca, Cm, Cv y Cs : son iguales a los valores Ka, Km, Kv y Ks
respectivamente, y se determinan de la misma forma.
Cf : factor de condición de superficie.
ELEMENTOS DE MAQUINAS II
ESTADOS DE ESFUERZOS
1/2
P
t
C CsCf
Cv
CaCm
IDF
W
Cpσ 






El coeficiente Cp toma en consideración las diferencias de los
materiales del piñón y la rueda. Por ejemplo:
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Si se dispone de toda la información concerniente a los materiales
utilizados para piñón y rueda, el coeficiente Cp se determina en
forma exacta de la expresión:
Donde:
νp, νr : relaciones de poisson de los materiales de piñón y rueda, respectivamente
Ep, Er : módulos de elasticidad de los materiales de piñón y rueda, respectivamente



















 



r
2
r
P
2
P
E
υ1
E
υ1
π
1
Cp
El factor geométrico I, también denominado factor geométrico de
resistencia a la picadura por la AGMA, toma en cuenta el radio de
curvatura de los dientes de los engranes y el ángulo de presión. La
AGMA define para el referido factor la expresión:
Donde:
ρp, ρr : radios de curvatura de los dientes del piñón y la rueda, respectivamente
Los signos (+) para engranes externos y el signo (–) para engranes internos
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS










rp
P
ρ
1
ρ
1
D
cosφ
I
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Las ecuaciones para la determinación de los radios de curvatura de
los dientes del piñón y rueda se obtienen de:
Donde:
C : distancia entre centros de rotación del piñón y la rueda.
Pd
πcosφ
2
cosφD
Pd
1
2
D
ρ
1/22
P
2
P
p 





















Pr ρCsenφρ 
Angulo de presion a 20°
0.060
0.080
0.100
0.120
0.140
0.160
0 1 2 3 4 5 6 7 8 9 10
Relación de Engranes
FactorgeometricoI
Np = 16
Np=50 o
más
Np = 30
Np = 24
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Angulo de presion a 25°
0.080
0.100
0.120
0.140
0.160
0.180
0 1 2 3 4 5 6 7 8 9 10
Relación de Engranes
FactorgeometricoI
Np = 16
Np=50 o
más
Np = 30
Np = 24
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
ESFUERZOS ADMISIBLES PARA LOS DIENTES DE ENGRANES DE
SIENTES RECTOS A LA FLEXIÓN Y A LA DURABILIDAD
SUPERFICIAL.
Los esfuerzos de trabajo que se originan en los dientes de los engranes
rectos, debidos a esfuerzos repetitivos de flexión y de contacto superficial,
deberán ser comparados con esfuerzos admisibles que pueden resistir los
materiales con los cuales se fabrican los engranes, para verificar si son
capaces de resistir aquellos. Obviamente, que en un proceso general de
diseño de estos elementos mecánicos, el objetivo principal que se busca es
que los mismos, no fallen ni por ruptura de los dientes (debido a esfuerzos
de flexión) ni por picadura (debido a esfuerzos por contacto superficial).
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Para el caso de los esfuerzos de flexión, el esfuerzo admisible se
obtiene de:
Donde:
(σf)adm : esfuerzo de flexión admisible
KL : factor de duración o vida
KT : factor de temperatura
KR : factor de confiabilidad
St : numero de esfuerzos admisibles de la AGMA
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
  t
RT
L
admf S
KK
K
σ 
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
El factor de duración o vida KL se determina por medio de la
grafica.
Número de ciclos
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
El factor Kt depende de la temperatura de trabajo del engrane, este
valor puede asumirse como 1 para temperaturas menores a 120°C.
para temperatura mayores y solamente para aceros, el factor se
calcula a través de :
Donde:
Ta : temperatura del aceite lubricante.
620
Ta460
KT


El factor de confiabilidad KR es un indicativo de la probabilidad de
fallo del engrane.
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Confiabilidad (%) Kr
90 0.85
99 1.00
99.9 1.25
99.99 1.50
Los valores para los números de esfuerzo admisible de la AGMA a
la flexión St y a la durabilidad superficial Sc, se encuentran tanto en
la Tabla 6.13, Pág. 207 de la guía “ANALISIS, SINTESIS Y
SELECCIÓN DE ELEMENTOS DE MAQUINAS” del profesor
Oswaldo Arteaga, o de manera grafica de las figuras que se
muestran a continuación. El grado de acero definido por la AGMA
difiere en lo que respecta al grado de control de la microestructura, a
la composición de la aleación, a los antecedentes del tratamiento
térmico utilizado, a la ejecución de los ensayos no destructivos, a los
valores de la dureza del núcleo, y a otros factores.
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Dureza BHN
NúmerodeesfuerzosadmisiblesSt
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Efecto de la dureza Brinell sobre el esfuerzo flexionante permisible (St)
NúmerodeesfuerzosadmisiblesSc
Dureza BHN
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Efecto de la dureza Brinell sobre el esfuerzo de contacto permisible (St)
Los esfuerzos admisibles a la durabilidad superficial se determina
de:
Donde:
(σC)adm : esfuerzo admisible a la durabilidad superficial
CL : factor de duración
CH : factor de relación de durezas
CT : factor de temperatura
CR : factor de confiabilidad
Sc : números de esfuerzos permisible a la durabilidad superficial
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
  C
RT
HL
admc S
CC
CC
σ 
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
El factor CL posee el mismo propósito que el factor KL, aunque se
obtiene de la siguiente figura.
Número de ciclos
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Los factores CT y CR son idénticos, respectivamente a los factores
KT y KR utilizados para esfuerzo admisible a la flexión, y se
determina de la misma forma descrita para los últimos.
El factor CH, puede decirse que es en función de la dureza de los
materiales con los cuales se fabrican el piñón y la rueda, y su valor
debe ser siempre mayor que 1, con objeto de incrementar el valor de
los números de esfuerzos admisible de los materiales usados para la
construcción de los engranes. Además, el factor CH solo se aplica
para determinar el esfuerzo admisible a la durabilidad superficial de
la rueda, y no tiene efecto sobre el piñón, con el objeto de ajustar los
números de esfuerzos admisibles a la durabilidad superficial.
Las formulas para el calculo de CH son dadas por la AGMA, dichas
formulas son:
El valor de A se obtiene de:
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
1)A(m1C tH 
0Aentonces1.2,
(BHN)
(BHN)
si
r
P

00829.0
(BHN)
(BHN)
00898.0Aentonces1.7,
(BHN)
(BHN)
2.1si
r
P
r
P

00698.0Aentonces1.7,
(BHN)
(BHN)
si
r
P

SEGURIDAD CONTRA FALLO POR FLEXIÓN EN LOS
DIENTES
En los engranes de dientes rectos, se tendrá seguridad contra fallo
por ruptura de los dientes debido a esfuerzos repetitivos de flexión,
si se cumple que,
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
admff )(σσ 
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
SEGURIDAD CONTRA FALLO POR PICADURA
Con el objeto de asegurar que un sistema de transmisión a través de
engranes de dientes rectos posea seguridad contra fallo por picadura,
debido a esfuerzos por contacto superficial tipo Hertziano, debe
cumplirse que :
admfC )(σσ 
FRACTURA DEL DIENTE
PICADURA
ABRASIÓN
RAYADURA
ARRASTRE O DESPLAZAMIENTO DE METAL
ELEMENTOS DE MAQUINAS II
MODOS DE FALLA
Fractura del diente
Formación de una grieta en la
raíz del diente, debido a fatiga
por repetición de carga
ELEMENTOS DE MAQUINAS II
MODOS DE FALLA
Picadura
Inicio del proceso de picadura Etapa de picadura severa
ELEMENTOS DE MAQUINAS II
MODOS DE FALLA
Abrasión
Proceso abrasivo debido a la
presencia de materias extrañas o
a la acción resultante del esmerilado
ELEMENTOS DE MAQUINAS II
MODOS DE FALLA
Rayadura
Marcas y rayaduras superficiales
debido a prolongaciones filosas,
acabado áspero o desalineamiento.
ELEMENTOS DE MAQUINAS II
MODOS DE FALLA
Arrastre o
desplazamiento de metal
Ablandamiento y deslizamiento del
metal debido a la falla de la película de
aceite lubricante.
ELEMENTOS DE MAQUINAS II
MODOS DE FALLA
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
PROCEDIMIENTOS DE ANÁLISIS Y SÍNTESIS DE LOS
ENGRANES DE DIENTES RECTOS
En los procedimientos de Análisis y Síntesis de los engranes
tratados en este capítulo, en general son prácticamente idénticos,
diferenciándose únicamente en la forma de obtener algunas
variables y parámetros que; aunque poseen el mismo significado, se
determinan de manera diferente.
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
PROCEDIMIENTO DE ANÁLISIS PARA LOS ENGRANES DE DIENTES
RECTOS
El procedimiento de análisis a seguir para los engranes de dientes rectos, no
difiere de la concepción básica de la fase de análisis dentro del proceso de
diseño de cualquier elemento de máquina, Para la fase de análisis se tendrá
siempre una transmisión de un piñón y una rueda, cuyas características
geométricas y requerimientos funcionales son totalmente conocidas, de tal
manera que se pueden determinar los esfuerzos de trabajo debido a flexión y a
contacto superficial en los dientes del elemento más débil, y posteriormente
verificar si el engrane en estudio es seguro ó no. En el caso de que con los
valores obtenidos no se suceda alguna falla (ni por flexión ni por picadura), el
engrane en estudio corresponde a una solución factible que posteriormente
podría mejorarse. Si por el contrario, ocurre alguna falla (por flexión, por
picadura, Ó por ambas) deberán cambiarse algunas condiciones geométricas y/o
algunos requerimientos funcionales, tratando de obtener una solución factible
dentro de la infinitas soluciones posibles.
PROCEDIMIENTO DE SÍNTESIS PARA LOS ENGRANES DE
DIENTES RECTOS
En la fase de síntesis de estos elementos de máquinas, se tiene por lo
general un problema complejo derivado de la gran cantidad de
variables independientes (variables desconocidas) interactuando
simultáneamente, pueden estar presentes comúnmente en los
problemas de cualquier tipo de engrane. La aseveración anterior se
puede visualizar muy fácilmente, a través de las ecuaciones que
gobiernan el comportamiento de los engranes; pues de la simple
expresión que relaciona al paso diametral (Pd), al número de dientes
(N) y al diámetro primitivo (D), puede notarse que por lo general
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
dos de las tres serán variables independientes en un problema
específico y La tercera quedará como variable dependiente. Además,
la anchura de cara del engrane (F) es de por sí casi siempre variable
independiente, al igual que las durezas (en BHN) de los materiales a
utilizar para piñón y rueda y por otro lado se podría tener una
distancia entre centros (C) no totalmente definida o dada dentro de
un rango determinado, lo que transformaría a esta variable en
independiente. Es de hacer notar, que todavía podrían aparecer
variables nuevas cuando se consideren factores relacionados con
procesos de fabricación, rangos de temperaturas de operación,
lubricación, número de ciclos de aplicación de carga, etc.
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
En conclusión, de lo anteriormente referido en el proceso de síntesis
de los engranes de dientes rectos, se puede tener un problema
iterativo donde pueden intervenir muchas variables independientes;
lo cual no resulta ser un problema sencillo, puesto que se tendrán
que seleccionar valores para una de las variables independientes, y
lograr que las mismas conduzcan a una solución factible dentro de la
infinitas soluciones posibles. Es decir, los valores supuestos para las
variables independientes deberán cumplir con la condición de que el
engrane no falle ni por flexión ni por picadura. De no ser así
deberán tomarse un nuevo juego de valores para las variables
independientes, hasta encontrar una solución factible, proceso que
por lo general no se logra fácilmente.
En un problema de síntesis de engranes de dientes rectos, el objetivo
principal es el tratar de transformarlo en un problema de análisis por medio
de asignar valores justificados, la mayoría de las veces (no al azar), a
algunas de las variables independientes; para posteriormente realizar
procesos iterativos de análisis hasta lograr una solución factible.
En la fase de síntesis de los engranes, la experiencia en determinadas
aplicaciones y buen manejo de la información disponible, juegan un papel
fundamental para encontrar una solución adecuada que cumpla con todos
los objetivos de esos elementos mecánicos; y que son principalmente:
-Ser compactos a objeto de ocupar el menor espacio posible
-Operar uniformemente entre la máquina conductora y conducida
-Poseer una larga vida
-Tener un costo bajo
-Ser de fácil construcción
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
ENGRANES HELICOIDALES
Los engranes helicoidales se usan para transmitir potencia ó
movimiento entre ejes paralelos. Cuando se emplean para ejes no
paralelos reciben el nombre de engranes helicoidales cruzados,
haciendo la salvedad de que éste tipo de engranes se recomienda para
transmitir bajas potencias puesto su fallo por durabilidad superficial es
prematuro.
Durante la transmisión con una pareja de engranes helicoidales
(simples), los ejes que soportan a ambos, quedan sujetos a la acción de
una carga de empuje, la cual puede eliminarse a través del uso de los
denominados engranes bihelicoidales; pero ello repercute en el costo de
fabricación y montaje, resultando una solución en la mayoría de las
veces no la más adecuada.
A medida que los engranes helicoidales giran, cada diente engrana
primero en un lado, y posteriormente el contacto va aumentando
hasta recorrer toda la anchura del diente conforme continúa la
rotación, Por lo tanto, el proceso de engranado gradual en estos tipos
de engrane, los hace más silenciosos y suaves que la de los engranes
de dientes rectos, lo cual repercute en que pueden utilizarse para
velocidades de rotación más altas.
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Wr = W sen Φn
Wt = W cos Φn cos Ψ
Wa = W cos Φn sen Ψ
Donde:
W : fuerza total
Wr : componente radial
Wt : componente tangencial
Wa : componente axial
Ψ : ángulo de hélice
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Carga transmitida, Wt
La fuerza que actúa tangencial a la superficie de paso del engrane se
denomina la carga transmitida y es la fuerza que en realidad transmite
torque y potencia desde el engrane impulsor hacia el engrane que es
impulsado. Actúa en sentido perpendicular al eje de la flecha que soporta el
engrane. Se calcula a través de la ecuación:
Donde:
T : torque que se transmite.
D : diámetro de pase del engrane
D/2
T
Wt 
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
La carga transmitida Wt se puede determinar también mediante la
ecuación:
En las transmisiones con engrane helicoidales se recomienda, con el
objeto de evitar los problemas que se originan sobre los apoyos del
eje que los sustentan como consecuencia de Wa, el utilizar
rodamientos que puedan absorber dicha carga de empuje sobre el
eje.
P
Pd
r
rd
t
N
T2P
N
T2P
W 
Carga axial, Wa
Es aquella que se dirige en forma paralela al eje de la flecha que soporta el
engrane. Esta, que también se denomina carga de empuje es la fuerza, por
general indeseable, a la que deben resistir los cojinetes de ejes o flechas que
tienen capacidad de empuje. Se determina a través de la expresión:
Donde:
Φ : torque que se transmite.
Ψ : diámetro de pase del engrane
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Wa = Wt cos Φ sen Ψ
Carga radial, Wr
La fuerza que actúa hacia el centro del engrane, esto es, en sentido radial. El
sentido de la fuerza es siempre tal que tiende a separar los engranes. Puede
determinarse a través de la ecuación:
Donde:
Φn : ángulo de presión normal.
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Wr = Wt sen Φn
Relación de contacto con la cara:
Es definida como la relación entre la anchura de la cara F y el paso
axial; es decir:
Donde:
Rcc : razón de contacto con la cara
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
π
tanΨpF
Px
F
Rcc dt

Para darse una idea clara de la geometría de los engranes helicoidales, es
necesario comprender los cinco diferentes pasos.
Paso circular, p: Es la distancia desde un punto en el diente hasta el punto
correspondiente en el diente siguiente adyacente, medida en la línea de paso
en el plano transverso. Y es igual a:
Paso circular normal, pn: es la distancia entre dos puntos correspondientes
adyacentes medida en la superficie en el sentido normal. Se obtiene de la
ecuación:
pn = p cos Ψ
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
N
Dπ
p 
Paso diametral, pd : Es la relación del numero de dientes en el
engrane con el diámetro de paso.
Paso diametral normal, pnd : Es el paso diametral equivalente en el
plano normal respecto a los dientes
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
D
N
Pd 
cosΨ
p
P d
dn 
Paso axial, px : Es la distancia entre puntos correspondientes en
dientes adyacentes, medida en la superficie de paso en sentido axial.
Es necesario tener cuando menos dos pasos axiales en el ancho de la
cara para obtener acción helicoidal total y la transferencia suave de
la carga de un diente a otro.
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
tanΨ
p
px 
Existen dos ángulos de presión, uno en la dirección normal y otro en
el plano de rotación, lo cual es debido a la angularidad de los
dientes. Dichos ángulos se relacionan por:
Donde:
Φn, Φt : ángulos de presión en los planos normal y transversal,
respectivamente.
t
n
tanΦ
tanΦ
cosΨ 
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Pasos de engranes helicoidales. (a) Circular; (b) axial
En los engranes helicoidales aparece lo que se denomina Número
Virtual de Dientes, los cual es consecuencia de que el cilindro es
cortado por un plano oblicuo con un ángulo igual al ángulo de hélice
Ψ. Podemos determinar el numero de dientes virtual de dientes en
un engrane helicoidal a través de:
Donde:
NV : numero virtual de dientes
N : numero real de dientes.
Ψcos
N
N 3V 
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
a
Cilindro primitivo cortado por un plano a-b
El enfoque de la AGMA para definir los esfuerzos de trabajo sobre
los dientes de los engranes helicoidales, es idéntico al descrito para
los engranes de dientes rectos; para los esfuerzos por flexión y por
contacto superficial. Dichas ecuaciones se repiten nuevamente, y en
ellas todos los términos continúan bajo el mismo significado, y
solamente se ha cambiado la notación correspondiente al paso
diametral; con el objeto de hacer la adaptación a la nomenclatura
usada para los engranes helicoidales.
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Para los esfuerzos de flexión en los dientes:
Kv
KaKmKsKb
FJ
PW
σ dt
f 
Kv
KaKmKsKb
FmJ
W
σ t
f 
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Sistema Ingles
Sistema Internacional
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Factor de geometría J para un ángulo de presión normal de 22°, cabeza estándar y
fresa para acabado
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Multiplicador del factor J para un ángulo de presión de 22°
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Factor de geometría J para un ángulo de presión normal de 20°, cabeza estándar y
fresa para acabado
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Multiplicador del factor J para un ángulo de presión de 20°
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Factor de geometría J para un ángulo de presión normal de 15°, cabeza estándar y
fresa para acabado
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Multiplicador del factor J para un ángulo de presión de 15°
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Para los esfuerzos de contacto:
Los factores geométrico I y J, los cuales se modifica en estos tipos
de engranes por efecto adicional que se induce por el ángulo de
hélice Ψ
1/2
P
t
PC CsCf
Cv
CaCm
IFD
W
Cσ 






ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Para la obtención del factor geométrico I, se utiliza la expresión:
Donde:
RN : razón o relación de repartición de carga
Lmin : longitud mínima de las líneas de contacto
Nd
rp
t
RP
ρ
1
ρ
1
cosΦ
I










min
N
L
F
R 
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Definiendo a (PF)C y a (PF)CC, como las partes fraccionales de Rc y
Rcc, respectivamente, obtenemos:
Donde Ψb recibe el nombre de ángulo de hélice base y se determina
a partir de la ecuación:
b
CCC
minCCC
cosΨ
px(PF)(PF)RcF
Lentonces,(PF)1(PF)si


b
CCC
minCCC
cosΨ
]px(PF)-][1(PF)1[RcF
Lentonces,(PF)1(PF)si








 
t
n1
b
cosΨ
cosΨ
cosΨcosΨ
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Los radios de curvatura de las hélices del piñón y de la rueda, se
obtiene de:
2
t
p
2
r
p
p
p
p cosφ
2
D
a
2
D
Ca
2
D
0.5ρ 

































ptr ρCsenφρ 
ρp, ρr : radios de curvatura del piñón y la rueda, respectivamente
ap, ar : adendo del piñón y la rueda, respectivamente
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Factor de geometría I, para engranes helicoidales con ángulo de presión de 20° y
cabeza estándar
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Factor de geometría I, para engranes helicoidales con ángulo de presión de 25° y
cabeza estándar
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
ESFUERZOS ADMISIBLES A LA FLEXIÓN Y A LA PICADURA
Los esfuerzos admisibles que pueden resistir los dientes de los
engranes helicoidales, se determinan de idéntica forma a la referida
para los engranes de dientes rectos. Posteriormente se deberán
comparar con los esfuerzos de trabajo para determinar si cumplen
las especificaciones de seguridad.
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
ENGRANES CÓNICOS DE
DIENTES RECTOS
Cuando se desea transmitir
potencia (y movimiento) entre
ejes que se cortan, se utilizan
comúnmente los engranes
cónicos de dientes rectos. En la
figura, se muestra un engrane
cónico de dientes rectos, donde
se describe parte de la
nomenclatura utilizada.
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Existen dos ángulos primitivos, uno para el piñón y otro para la
corona que se designara con la letra c; donde el termino corona
sustituirá al de la rueda, utilizado para los engranes tratados
anteriormente, dichos ángulos se determinan por:
γ : ángulo primitivo del piñón
Γ : ángulo primitivo de la corona
Np, Nc : números de dientes del piñón y la corona, respectivamente






 
Nc
Np
tanγ 1






 
Np
Nc
tanΓ 1
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Para la determinación del numero virtual de dientes que aparecen en
estos engranes aunque en forma distinta a lo indicado para los
engranes helicoidales. Por medio de la geometría de la referida
figura, el numero de dientes se obtiene por medio de la expresión:
Donde:
Nv : numero virtual de dientes
rcp : radio del cono posterior
pc : paso circunferencial medio en el extremo mayor de los dientes
C
CP
P
r2π
Nv 
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
m
P
t
r
T
W 
 tancosWtWa 
tanφcosγWtWr 
ELEMENTOS DE MAQUINAS II
ESTADOS DE ESFUERZOS
El enfoque de la AGMA para los engranes de dientes rectos y
helicoidales, continua siendo valido para los cónicos de dientes
rectos con muy pequeñas diferencias; tanto en la forma de obtener
los esfuerzos por flexión como los de contacto superficial.
Para los engranes cónicos de dientes rectos, los factores geométricos
J e I, Km y el coeficiente elástico Cp; se obtiene de forma diferente
a los dientes rectos y a los helicoidales. Las normas AGMA ofrecen
diagramas para los coeficiente geométricos de los engranes cónicos
de dientes rectos.
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
Las ecuaciones para determinar los esfuerzos de trabajo por flexión
para los engranes cónicos de dientes rectos para el piñón y rueda
respectivamente a través de las expresiones:
Kv
KaKmKsKb
FJD
PT2
σ
p
dp
f 
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Kv
KaKmKsKb
FJD
PT2
σ
r
dr
f 
El factor de distribución de carga se determina de forma Km (Cm)
diferente a los engranes cilíndricos de dientes rectos. Se toman los
valores de la tabla.
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
TIPO DE ENGRANE
PIÑÓN Y CORONA
MONTADOS
INTERIORMENTE
UN ENGRANE
MONTADO
EXTERIORMENTE
PIÑÓN Y CORONA
MONTADOS
EXTERIORMENTE
Engranes de calidad
comercial general
1.44 1.58 1.80
Engranes comerciales de
alta calidad
1.20 1.32 1.50
El interiormente y exteriormente se refiere a los apoyos
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
Ejemplo de distribución de los engrane cónicos montados interiormente
Para los esfuerzos por contacto superficial en los dientes:
ELEMENTOS DE MAQUINAS II
ENGRANES HELICOIDALES
1/2
2
p
p
PC CsCf
Cv
CaCm
IFD
T2
Cσ









ELEMENTOS DE MAQUINAS II
ESTADOS DE ESFUERZOS
Material de la corona
Material
del
Piñón
Modulo
de
Elasticidad
Acero
Hierro
Fundido
Bronce
de
Aluminio
Bronce
de
Estaño
Acero
30 Mpsi 2800 2450 2400 2350
(207 Gpa) 232 203 199 195
Hierro
fundido
19 Mpsi 2450 2250 2200 2150
(131Gpa) 203 187 183 178
Bronce de
Aluminio
17.5Mpsi 2400 2200 2150 2100
(121Gpa) 199 183 178 174
Bronce de
estaño
16 Mpsi 2350 2150 2100 2050
(110 Gpa) 195 178 174 170
El factor elástico Cp para engranes cónicos de dientes rectos puede
determinarse de la siguiente tabla.
ELEMENTOS DE MAQUINAS II
ESTADOS DE CARGAS
ESFUERZOS ADMISIBLES PARA LOS DIENTES DE
ENGRANES CÓNICOS DE DIENTES RECTOS
Para este tipo de engranes continua siendo validas las ecuaciones
que se utilizan para la obtención de los valores de los esfuerzos
admisibles a la flexión y a la durabilidad superficial. Dichos valores
deberán compararse con los valores de seguridad contra fallo.
ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
Un engranaje de sinfín esta formado por un
tornillo sinfín y una rueda helicoidal, como
se observa en la figura. Este engrane une
flechas que no son paralelas y que no se
cruzan, por lo común en ángulo recto una
con la otra. El tornillo sinfín es un engrane
helicoidal, con un ángulo de hélice tan
grande que un solo diente se enrolla de
manera continua alrededor de su
circunferencia. Se usan frecuentemente para
casos donde se necesiten caídas bruscas de
velocidad.
Análisis esquemático de un tornillos sinfín y su distribución de fuerzas ejercidas sobre el.
ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
De la figura anterior determinamos el estado de carga actuante sobre
el tornillo sinfín sin fricción obtenemos:
Donde:
Wt : fuerza tangencial.
Wr : fuerza radial.
Wa : fuerza axial
cosλcosWW
WsenW
senλcosWW
n
Z
n
Y
n
X






ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
Como las fuerzas que actúan en el engrane son contrarias a las que
actúan en el tornillo sinfín, podemos resumir estas relaciones
escribiendo:
Debe tenerse en cuenta que el eje geométrico del engrane es paralelo
a la dirección x y que el eje geométrico del tornillo es paralelo a la
dirección z
Z
GtWa
Y
GrWr
X
GaWt
WWW
WWW
WWW



ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
Tomando en cuenta el efecto del roce sobre las componentes
tangencial, radia y axial, obtenemos:
 
 senλμcosλcosWW
WsenW
cosλμsenλcosWW
n
Z
n
Y
n
X






ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
La fuerza consumida por la fricción la obtenemos de la ecuación:
Donde:
μ :coeficiente de roce.
cosλcossenλμ
Wμ
μWW
n
Gt
f


ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
La relación entre la dos fuerzas tangenciales puede establecerse
como:
La eficiencia η se puede definir utilizando la ecuación:
cosλcossenλμ
cosλμsenλcos
WW
n
n
GtWt





cotλμcos
μtanλcos
fricción)(conW
fricción)(sinW
η
n
n
Wt
Wt





ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
Muchos experimentos han demostrado que el coeficiente de fricción
depende de la velocidad relativa o desplazamiento (VS), de la
velocidad en la línea de paso (VG) del engrane y de la velocidad de
la línea de paso del sinfín.
En forma vectorial, VW = VG +VS;
en consecuencia:
cosλ
V
V W
S 
ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
De manera grafica el coeficiente de roce puede determinarse de:
ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
Los diámetros de paso y el numero de dientes de engranajes que son de
sinfín tienen una relación única, pero esto no es cierto en los engranes de
sinfín. Una vez tomada la decisión en relación con el numero de inicios en
los dientes Ntor deseados del tornillos sinfín, el numero de dientes de la
rueda Neng queda definido por la razón requerida de engranaje meng :
Sin embargo, el diámetro de paso del tornillo sinfín no esta ligado a estos
números de dientes, como ocurre en otros engranes. En teoría, el tornillo
sinfín puede tener cualquier diámetro, siempre y cuando la sección
transversal de sus dientes (paso axial) coincida con el paso circular de la
rueda.
torengeng NmN 
ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
El diámetro de paso del tornillo sinfín d puede ser seleccionado
aparte del diámetro deng de la rueda y, para un deng dado, cualquier
modificación en d variará la distancia entre centros C entre el
tornillo sinfín y la rueda, pero sin afectar la razón de engranes.
AGMA recomienda valores mínimos y máximos para el diámetro de
paso del tornillo sinfín, como:
Y Dudley recomienda que se use
6.13
875.0875.0
C
d
C

2.2
875.0
C
d 
ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
El diámetro de paso de la rueda deng se puede relacionar con el
correspondiente al tornillo sinfín, a través de la distancia C.
Se determina la altura de la cabeza a y la profundidad de la raíz b de los
dientes, a partir de:
El ancho de la cara de la rueda helicoidal esta limitado por el diámetro del
tornillo sinfín. AGMA recomienda un valor máximo para el ancho de cara F
como
dCdeng  2
x0.3183pa  x0.3683pb 
d67.0Fmax 
ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
Métodos de clasificación: A diferencia de los engranes helicoidales
y cónicos, en los cuales se hacen los cálculos en formas separada
para los esfuerzos sobre los dientes a flexión y superficiales, y
después se comparan con las propiedades de los materiales, los
engranes de sinfín se clasifican en función a su capacidad de
manejar un nivel de potencia de entrada. La potencia nominal
AGMA se basa en su resistencia a picado y desgaste, dado la
experiencia ha demostrado que este es el modo usual de falla. En
vista de las altas velocidades de desplazamiento existentes en los
engranes sinfín.
ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
La clasificación nominal de un engrane se sinfín se puede expresar
como la potencia de entrada permisible Φ, la potencia de salidaΦo,
o como el par de torsión permisible T a una velocidad dada de la
flecha de entrada o de salida, quedando estas interrelacionadas por
la razón general de potencia, par de torsión y velocidad. AGMA
define una forma de clasificación de potencia de entrada como:
lo 
ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
Donde Φl es la potencia perdida por fricción en el acoplamiento. La
potencia de salida Φo se define de la forma para el sistema ingles:
eng
engGt
o
m
dWn
126000

33000
ft
l
WV

Esta son ecuaciones con unidades mixtas. La velocidad de rotación n esta en rpm.
La velocidad de deslizamiento tangencial Vt esta en pies/min.. Y se toma el
diámetro del tornillo sinfín d en pulgadas. Las carga WGt y Wf estan el lb. La
potencia aparece en hp
ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
Y para el sistema internacional,
1000
ft
l
WV

Esta son ecuaciones con unidades mixtas. La velocidad de rotación n esta en rpm.
La velocidad de deslizamiento tangencial Vt esta en m/seg. Y se toma el diámetro
del tornillo sinfín d en mm. Las carga WGt y Wf estan el newtons. La potencia
aparece en kW.
eng
engGt
o
mE
dWn
791.1

ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
La carga tangencia WGt sobre la rueda helicoidal se determina de:
Donde:
Cs : factor del material
Cm : factor de corrección de razón
Cv : factor de velocidad
alintenacionsistema
948.75
inglessistema
8.0
8.0
FdCvCmCs
W
FCmCvdCsW
eng
Gt
engGt


ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
Factor del materia Cs : La AGMA define para el bronce fundido
enfriado al aire como:
engdCsinCsi
CsinCsi
10log825.4556517.14118
10008


ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
Factor de corrección de razón Cm : definido por la AGMA por,
engeng
engengeng
engengeng
mCmmsi
mmCmmsi
mmCmmsi
00658.01483.176
5145560107.07620
46.0764002.0203
2
2



ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
La velocidad tangencial en el diámetro de paso del tornillo sinfín es:
La fuerza de fricción Wf sobre la rueda es:
pies/minen
cos12 
 dn
Vt 
coscosλ
Wμ Gt
fW
ELEMENTOS DE MAQUINAS II
TORNILLO SINFIN
ELEMENTOS DE MAQUINAS II
LUBRICACION
A exención de los engranes plásticos con carga muy ligera, todos los
engranes deben lubricarse, a fin de evitar la falla prematura debido
a alguno de los modos de falla superficial. Como el desgaste
adhesivo o abrasivo. Es importante controlar la temperatura de la
interfaz de acoplamiento, para reducir rayaduras o raspaduras en los
dientes. Los lubricantes también eliminan calor, además de separar
las superficies de metal, reduciendo fricción y desgaste. Debe
suministrarse suficiente lubricante para transferir el calor de fricción
hacia el entorno, y no permitir temperaturas excesivas en el
acoplamiento
ELEMENTOS DE MAQUINAS II
LUBRICACION
El procedimiento usual y preferido es proveer un baño de aceite al
encerrar los engranes en una caja a prueba de aceite, conocida como
caja de engranes. La caja de engranaje esta parcialmente llena con
lubricante apropiado, de manera que por lo menos uno de los
miembros de cada engranaje quede parcialmente sumergido. (la caja
jamás se llena completamente de aceite). La rotación de los
engranes transportara el lubricante hacia los acoplamientos,
manteniendo aceitados los engranes no sumergidos.
El aceite se debe mantener limpio y libre de contaminantes, y debe
ser cambiado periódicamente.
ELEMENTOS DE MAQUINAS II
LUBRICACION
Los lubricantes para engranes típicamente con aceites con bases en
petróleo de varias viscosidades, dependiendo de la aplicación. Los
aceites ligeros (10-30W) se aplican a veces a engranes con
velocidades lo suficientemente elevadas y/o cargas los
suficientemente baja para promover una lubricación
elastohidrodinámica.
En engranes de elevada carga y/o baja velocidad, o aquellos con
componentes de deslizamientos importantes, a menudo requieren
lubricantes de presión extrema (EP). Típicamente se trata de aceites
para engranes de 80-90W, con aditivos del tipo ácidos grasos, que
aportan alguna protección contra raspaduras bajo situaciones de
lubricación marginal.
ELEMENTOS DE MAQUINAS II
LUBRICACION
Lubricantes típicos para engranes
Engranes rectos
ELEMENTOS DE MAQUINAS II
TIPOS DE ENGRANES
Engranes Helicoidales
ELEMENTOS DE MAQUINAS II
TIPOS DE ENGRANES
Engranes cónicos de dientes rectos
ELEMENTOS DE MAQUINAS II
TIPOS DE ENGRANES
Engrane de tonillo sin fin. (a) Dientes cilíndricos; (b) Doble envolvente.
ELEMENTOS DE MAQUINAS II
TIPOS DE ENGRANES

Más contenido relacionado

La actualidad más candente

problemas-resueltos engranajes rectos helicoidales
problemas-resueltos engranajes rectos helicoidalesproblemas-resueltos engranajes rectos helicoidales
problemas-resueltos engranajes rectos helicoidalesBerthing Gutierrez Brenis
 
Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...
Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...
Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...Angel Villalpando
 
Engranajes de dientes rectos
Engranajes de dientes rectosEngranajes de dientes rectos
Engranajes de dientes rectosluisvera95
 
Manual simbolos-hidraulicos-simbologia-150611045116-lva1-app6892
Manual simbolos-hidraulicos-simbologia-150611045116-lva1-app6892Manual simbolos-hidraulicos-simbologia-150611045116-lva1-app6892
Manual simbolos-hidraulicos-simbologia-150611045116-lva1-app6892Antonio J. Falótico C.
 
Transmisión de potencia con cadenas
Transmisión de potencia con cadenasTransmisión de potencia con cadenas
Transmisión de potencia con cadenasDaniel Nobrega O.
 
Analisis cinematico de mecanismos unidad 2 b
Analisis cinematico de mecanismos unidad 2 bAnalisis cinematico de mecanismos unidad 2 b
Analisis cinematico de mecanismos unidad 2 bAngel Villalpando
 
Analisis de Trenes de engranes planetarios (Metodo de la Formula)
Analisis de Trenes de engranes planetarios (Metodo de la Formula)Analisis de Trenes de engranes planetarios (Metodo de la Formula)
Analisis de Trenes de engranes planetarios (Metodo de la Formula)Marc Wily Narciso Vera
 
Sistemas de 4 barras articuladas
Sistemas de 4 barras articuladasSistemas de 4 barras articuladas
Sistemas de 4 barras articuladasJoseToro48
 
Presentacion rodamientos
Presentacion rodamientosPresentacion rodamientos
Presentacion rodamientosHector Rivera
 
Calculo de engranajes dientes rectos
Calculo de engranajes dientes rectosCalculo de engranajes dientes rectos
Calculo de engranajes dientes rectosJose Mecanico
 
Capítulo 3-mecanismo-de-cuatro-eslabones
Capítulo 3-mecanismo-de-cuatro-eslabonesCapítulo 3-mecanismo-de-cuatro-eslabones
Capítulo 3-mecanismo-de-cuatro-eslabonesJorge Puga Martinez
 
Velicidad de corte, avance y t. torno 2 (red.)
Velicidad de corte, avance y t. torno 2 (red.)Velicidad de corte, avance y t. torno 2 (red.)
Velicidad de corte, avance y t. torno 2 (red.)carloslosa
 
Diseño de flechas o ejes (factores de resistencia a la fatiga)
Diseño de flechas o ejes (factores de resistencia a la fatiga)Diseño de flechas o ejes (factores de resistencia a la fatiga)
Diseño de flechas o ejes (factores de resistencia a la fatiga)Angel Villalpando
 
Diseño 4 clase engranajes rectos1
Diseño 4 clase engranajes rectos1Diseño 4 clase engranajes rectos1
Diseño 4 clase engranajes rectos1Marc Llanos
 

La actualidad más candente (20)

Engranes de talla recta
Engranes de talla rectaEngranes de talla recta
Engranes de talla recta
 
problemas-resueltos engranajes rectos helicoidales
problemas-resueltos engranajes rectos helicoidalesproblemas-resueltos engranajes rectos helicoidales
problemas-resueltos engranajes rectos helicoidales
 
Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...
Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...
Analisis cinematico de mecanismos analisis de velocidad (metodo Analitico y C...
 
Tema 4 diseño de levas Unefm
Tema 4 diseño de levas UnefmTema 4 diseño de levas Unefm
Tema 4 diseño de levas Unefm
 
Engranajes de dientes rectos
Engranajes de dientes rectosEngranajes de dientes rectos
Engranajes de dientes rectos
 
Manual simbolos-hidraulicos-simbologia-150611045116-lva1-app6892
Manual simbolos-hidraulicos-simbologia-150611045116-lva1-app6892Manual simbolos-hidraulicos-simbologia-150611045116-lva1-app6892
Manual simbolos-hidraulicos-simbologia-150611045116-lva1-app6892
 
Transmisión de potencia con cadenas
Transmisión de potencia con cadenasTransmisión de potencia con cadenas
Transmisión de potencia con cadenas
 
Analisis cinematico de mecanismos unidad 2 b
Analisis cinematico de mecanismos unidad 2 bAnalisis cinematico de mecanismos unidad 2 b
Analisis cinematico de mecanismos unidad 2 b
 
Analisis de Trenes de engranes planetarios (Metodo de la Formula)
Analisis de Trenes de engranes planetarios (Metodo de la Formula)Analisis de Trenes de engranes planetarios (Metodo de la Formula)
Analisis de Trenes de engranes planetarios (Metodo de la Formula)
 
Sistemas de 4 barras articuladas
Sistemas de 4 barras articuladasSistemas de 4 barras articuladas
Sistemas de 4 barras articuladas
 
Presentacion rodamientos
Presentacion rodamientosPresentacion rodamientos
Presentacion rodamientos
 
Transmision por correas
Transmision por correasTransmision por correas
Transmision por correas
 
Calculo de engranajes dientes rectos
Calculo de engranajes dientes rectosCalculo de engranajes dientes rectos
Calculo de engranajes dientes rectos
 
Velocidades de-corte3
Velocidades de-corte3Velocidades de-corte3
Velocidades de-corte3
 
Tipos de procesos de manufactura de engranes
Tipos de procesos de manufactura de engranesTipos de procesos de manufactura de engranes
Tipos de procesos de manufactura de engranes
 
Capítulo 3-mecanismo-de-cuatro-eslabones
Capítulo 3-mecanismo-de-cuatro-eslabonesCapítulo 3-mecanismo-de-cuatro-eslabones
Capítulo 3-mecanismo-de-cuatro-eslabones
 
Velicidad de corte, avance y t. torno 2 (red.)
Velicidad de corte, avance y t. torno 2 (red.)Velicidad de corte, avance y t. torno 2 (red.)
Velicidad de corte, avance y t. torno 2 (red.)
 
Engranajes
EngranajesEngranajes
Engranajes
 
Diseño de flechas o ejes (factores de resistencia a la fatiga)
Diseño de flechas o ejes (factores de resistencia a la fatiga)Diseño de flechas o ejes (factores de resistencia a la fatiga)
Diseño de flechas o ejes (factores de resistencia a la fatiga)
 
Diseño 4 clase engranajes rectos1
Diseño 4 clase engranajes rectos1Diseño 4 clase engranajes rectos1
Diseño 4 clase engranajes rectos1
 

Similar a Engranes

Guia 3 de diseño mecanico 2 diego jaramillo
Guia 3 de diseño mecanico 2 diego jaramilloGuia 3 de diseño mecanico 2 diego jaramillo
Guia 3 de diseño mecanico 2 diego jaramillobiker1689
 
Guia 3 de diseño mecanico 2 diego jaramillo
Guia 3 de diseño mecanico 2 diego jaramilloGuia 3 de diseño mecanico 2 diego jaramillo
Guia 3 de diseño mecanico 2 diego jaramillobiker1689
 
Diseño de Engranajes de Dientes Rectos - Juan Boscán
Diseño de Engranajes de Dientes Rectos - Juan BoscánDiseño de Engranajes de Dientes Rectos - Juan Boscán
Diseño de Engranajes de Dientes Rectos - Juan BoscánJuan Boscán
 
Presentacion de engranajes y cremallera
Presentacion  de  engranajes y cremalleraPresentacion  de  engranajes y cremallera
Presentacion de engranajes y cremalleraBRUNOOLDANI
 
Engranajes (5) sobre fresadora
Engranajes (5) sobre fresadoraEngranajes (5) sobre fresadora
Engranajes (5) sobre fresadoracarloslosa
 
unidad 4 (1).pptx
unidad 4 (1).pptxunidad 4 (1).pptx
unidad 4 (1).pptxRico584657
 
9401-18 TALLERES Construcción de Engranajes.pdf
9401-18 TALLERES Construcción de Engranajes.pdf9401-18 TALLERES Construcción de Engranajes.pdf
9401-18 TALLERES Construcción de Engranajes.pdfHeraldo Garcia
 
Engranajes helicoidales ing.jose-bustamante-__16094__elementos de mauinas
Engranajes helicoidales ing.jose-bustamante-__16094__elementos de mauinasEngranajes helicoidales ing.jose-bustamante-__16094__elementos de mauinas
Engranajes helicoidales ing.jose-bustamante-__16094__elementos de mauinasGeorge Garriazo Quispe
 
Em
EmEm
Emaihz
 

Similar a Engranes (20)

Engranajes...
Engranajes...Engranajes...
Engranajes...
 
Engranes
EngranesEngranes
Engranes
 
Guia 3 de diseño mecanico 2 diego jaramillo
Guia 3 de diseño mecanico 2 diego jaramilloGuia 3 de diseño mecanico 2 diego jaramillo
Guia 3 de diseño mecanico 2 diego jaramillo
 
Guia 3 de diseño mecanico 2 diego jaramillo
Guia 3 de diseño mecanico 2 diego jaramilloGuia 3 de diseño mecanico 2 diego jaramillo
Guia 3 de diseño mecanico 2 diego jaramillo
 
Diseño de Engranajes de Dientes Rectos - Juan Boscán
Diseño de Engranajes de Dientes Rectos - Juan BoscánDiseño de Engranajes de Dientes Rectos - Juan Boscán
Diseño de Engranajes de Dientes Rectos - Juan Boscán
 
Presentacion de engranajes y cremallera
Presentacion  de  engranajes y cremalleraPresentacion  de  engranajes y cremallera
Presentacion de engranajes y cremallera
 
engranes (1).PPT
engranes (1).PPTengranes (1).PPT
engranes (1).PPT
 
Engranajes (5) sobre fresadora
Engranajes (5) sobre fresadoraEngranajes (5) sobre fresadora
Engranajes (5) sobre fresadora
 
unidad 4 (1).pptx
unidad 4 (1).pptxunidad 4 (1).pptx
unidad 4 (1).pptx
 
Tema 5 diseño de engranes Unefm
Tema 5 diseño de engranes UnefmTema 5 diseño de engranes Unefm
Tema 5 diseño de engranes Unefm
 
Tema08: engranejes
Tema08: engranejesTema08: engranejes
Tema08: engranejes
 
Engranajes
EngranajesEngranajes
Engranajes
 
5 1. engranajes1
5 1. engranajes15 1. engranajes1
5 1. engranajes1
 
Enjranajes
EnjranajesEnjranajes
Enjranajes
 
Engranes
EngranesEngranes
Engranes
 
afsolper_Engranajes.pptx
afsolper_Engranajes.pptxafsolper_Engranajes.pptx
afsolper_Engranajes.pptx
 
Mecanismos unidad 4
Mecanismos unidad 4Mecanismos unidad 4
Mecanismos unidad 4
 
9401-18 TALLERES Construcción de Engranajes.pdf
9401-18 TALLERES Construcción de Engranajes.pdf9401-18 TALLERES Construcción de Engranajes.pdf
9401-18 TALLERES Construcción de Engranajes.pdf
 
Engranajes helicoidales ing.jose-bustamante-__16094__elementos de mauinas
Engranajes helicoidales ing.jose-bustamante-__16094__elementos de mauinasEngranajes helicoidales ing.jose-bustamante-__16094__elementos de mauinas
Engranajes helicoidales ing.jose-bustamante-__16094__elementos de mauinas
 
Em
EmEm
Em
 

Último

periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas123yudy
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfromanmillans
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxMartín Ramírez
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...JAVIER SOLIS NOYOLA
 
TEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfTEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfDannyTola1
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...fcastellanos3
 

Último (20)

periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdf
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
PPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptxPPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptx
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
 
TEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfTEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdf
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
 

Engranes

  • 1. UNIVERSIDAD DE LOS ANDES ESCUELA DE MECÁNICA CÁTEDRA DE DISEÑO ENGRANES MÉRIDA 2010
  • 2. ELEMENTOS DE MAQUINAS II EVOLUCIÓN DEL ENGRANE
  • 3. ELEMENTOS DE MAQUINAS II EVOLUCIÓN DEL ENGRANE
  • 4. ELEMENTOS DE MAQUINAS II EVOLUCIÓN DEL ENGRANE
  • 5. ELEMENTOS DE MAQUINAS II EVOLUCIÓN DEL ENGRANE
  • 6. ELEMENTOS DE MAQUINAS II INTRODUCCIÓN En este capitulo, se tratarán los engranes comúnmente utilizados como lo son los engranes cilíndricos de dientes rectos, los engranes cilíndricos helicoidales y los engranes cónicos de dientes rectos. Los mismos se encuentran altamente normalizados en lo que se refiere a la forma de sus dientes y tamaños de los mismos, a través de la norma AGMA (American Gear Manufacturers Association), la cual sirve de soporte a las investigaciones sobre diseño de engranes, materiales que se utilizan y procesos de fabricación; publicando además, normas de diseños, construcción y ensamble. Por tales razones, se seguirán los métodos y recomendaciones definidas por las normas de la AGMA.
  • 7. EJES PARALELOS EJES QUE SE INTERCEPTAN EJES CRUZADOS ELEMENTOS DE MAQUINAS II POSICIÓN ENTRE LOS EJES
  • 8. Reducción con engranajes cilíndricos de dientes rectos ELEMENTOS DE MAQUINAS II POSICIÓN ENTRE LOS EJES Ejes paralelos
  • 9. Reducción con engranajes cónicos de dientes en espiral ELEMENTOS DE MAQUINAS II POSICIÓN ENTRE LOS EJES Ejes que se interceptan
  • 10. Reducción con engranajes cónicos hipoidales ELEMENTOS DE MAQUINAS II POSICIÓN ENTRE LOS EJES Ejes cruzados
  • 11. ENGRANES CILÍNDRICOS Externos rectos Internos rectos Helicoidales Cremalleras ENGRANES CÓNICOS Rectos Espirales Hipoidales ENGRANE Y TORNILLO SINFIN ELEMENTOS DE MAQUINAS II TIPOS DE ENGRANES
  • 12. Engranajes cilíndricos rectos con contacto externo Engranajes cilíndricos rectos con contacto interno ELEMENTOS DE MAQUINAS II TIPOS DE ENGRANES
  • 13. Engranajes cilíndricos helicoidales Engranaje recto y cremallera ELEMENTOS DE MAQUINAS II TIPOS DE ENGRANES
  • 14. Engranajes cónicos rectos Engranajes cónicos en espiral ELEMENTOS DE MAQUINAS II TIPOS DE ENGRANES
  • 15. Engranajes cónicos hipoidales Engranajes sinfín ELEMENTOS DE MAQUINAS II TIPOS DE ENGRANES
  • 16. ELEMENTOS DE MAQUINAS II ENGRANES DE DIENTES RECTOS ENGRANES DE DIENTES RECTOS Los engranes de dientes rectos, son aquellos donde todos los elementos de sus dientes, son paralelos al eje que los soporta. Se utilizan para transmitir potencia entre ejes paralelos.
  • 17. Reducción con engranajes cilíndricos de dientes rectos ELEMENTOS DE MAQUINAS II ENGRANES DE DIENTES RECTOS
  • 18. Círculo de paso Paso circularAncho entre dientes Círculo de adendo Tope del diente Ancho de cara Cara Flanco Círculo de base Paso de base Holgura radial Círculo de dedendo Dedendo Adendo Espesor del diente Fondo entre dientes Círculo de paso: Es una circunferencia teórica en la que se basan los principales parámetros de los engranes. A su diámetro correspondiente se le denomina diámetro primitivo o de paso. Círculo de paso Circulo de adendo: Circunferencia que limita la parte más exterior de los dientes de un engrane Círculo de adendo Circulo de dedendo: Circunferencia que limita la parte interior de los dientes Círculo de dedendo Paso de base: Distancia medida sobre la circunferencia de base entre puntos correspondientes de dos dientes adyacentes. Paso de base Paso circular: Distancia circular entre puntos correspondientes de dos dientes adyacentes, medida sobre la circunferencia primitiva. Paso circular N/Dpc  Adendo: Es la diferencia radial entre la circunferencia de adendo y la de paso. Se denota por a Adendo Dedendo: Es la diferencia radial entre la circunferencia primitiva y la de dedendo. Se denota por b Dedendo Holgura radial: Es la diferencia entre el dedendo de un engrane y el adendo del engrane conectado. Holgura radial Círculo de base: Circunferencia a partir de la cual se generan los perfiles del diente. Solamente entre ella y la circunferencia de adendo se cumple la ley fundamental de engrane. Círculo de base Espesor del diente Espesor del diente: Es el grosor del diente medido sobre la circunferencia de paso.Ancho de cara: Espesor del diente medido en forma paralela al eje del engrane. Ancho de cara Ancho entre dientes: Longitud de arco, medida en el sobre el círculo de paso, del lado derecho de un diente al lado izquierdo del diente adyacente. Ancho entre dientes ELEMENTOS DE MAQUINAS II TERMINOLOGÍA
  • 19. Paso circular: Se define como la distancia circular entre puntos correspondiente de los dientes adyacentes, medida sobre la circunferencia primitiva. Se denota por Pc y define el tamaño de los dientes de un engrane de dientes rectos. El paso circular se determina por la expresión: Donde: N : número de dientes. D : diámetro primitivo. ELEMENTOS DE MAQUINAS II TERMINOLOGÍA N πD Pc  Valores normalizados de Pc (pulg.) 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 (pulg.)
  • 20. Paso diametral: Se define como el numero de dientes contenido en una pulgada de diámetro primitivo: Entre los dos pasos en el plano de rotación Pc y Pd existe una relación dada por: En el caso de un piñón y rueda conectados, entendiendo que una de las condiciones que debe imperar es que ambos deben poseer el mismo paso diametral, se cumple que: ELEMENTOS DE MAQUINAS II TERMINOLOGÍA ) pulg dientes ( D N Pd  πPcPd  r r P P D N D N Pd 
  • 21. Los engranes de uso común, se fabrican con valores estándar del paso diametral. Los tamaños de dientes reales para pasos diametrales normalizados para un ángulo de presión Φ de 20°, correspondientes a dientes de altura completa. Se obtienen valores de pasos diametrales bastos de 1 a 18 y para pasos finos de 20 a 120 ELEMENTOS DE MAQUINAS II TERMINOLOGÍA Pasos diametrales bastos (Pd<20) Pasos diametrales finos (Pd>20) 1 1.25 1.5 1.75 20 24 32 2 2.25 3 4 48 64 72 5 6 8 10 80 96 120 12 14 16 18 --- --- ---
  • 22. En el sistemas SI de unidades, se utiliza en lugar del paso diametral Pd el denominado modulo, denotado por m y expresado como la relación entre el diámetro primitivo del piñón o rueda (expresado en mm) y sus respectivos números de dientes. Su unidad es el milímetro y se expresa por: La conversión entre el sistema modular y el sistema de paso diametral se realiza por medio de la expresión: ELEMENTOS DE MAQUINAS II TERMINOLOGÍA Nr Dr Np Dp m  Pd 25.4 m 
  • 23. Los valores estandarizados de modulo (m) expresados en mm. Son: ELEMENTOS DE MAQUINAS II TERMINOLOGÍA Modulo métrico (mm) Modulo métrico (mm) Modulo métrico (mm) 0.4 2.5 12 0.5 3 16 0.8 4 20 1 5 25 1.25 6 32 1.5 8 40 2 10 50
  • 24. Longitud de la línea de presión Es un segmento de la línea de acción comprendida entre los puntos inicial y final de contacto de una pareja de dientes. Se denota por z, y se expresa por la ecuación: Donde: rap , rar : radios de circunferencias de adendo de piñón y rueda, respectivamente rbp , rbr : radios de circunferencias de básicas de piñón y rueda, respectivamente C : distancia entre centros de piñón y rueda ELEMENTOS DE MAQUINAS II TERMINOLOGÍA senθc)r(r)r(rz 1/22 br 2 ar 1/22 bp 2 ap 
  • 25. Relación de contacto: Se puede definir como la relación entre el arco de acción y el paso básico. La relación de contacto indica el promedio de los dientes en contacto para engranes conjugados, se denota por Rc y su valor se determina a través de: Con objeto de mantener condiciones adecuadas de funcionamiento, para los engranes de dientes rectos, se recomienda que los valores de Rc estén dentro del rango: ELEMENTOS DE MAQUINAS II TERMINOLOGÍA cosθπ Pdz cosθPc z Pd z Rc  2Rc1 
  • 26. Relación de transmisión: Se define como la relación entre las velocidades angulares de piñón y rueda. Se denota por mt y se expresa por: Donde: ωr, ωp = velocidad angular de la rueda y el piñón, respectivamente (rad/seg) nr, np = velocidad angular de la rueda y el piñón, respectivamente (rpm) Es decir, que en el caso de una pareja de engranes de dientes rectos, la relación de transmisión puede tomarse como una relación de diámetros primitivos o como una relación de numero de dientes. ELEMENTOS DE MAQUINAS II TERMINOLOGÍA 1 N N D D n n ω ω m p r P r r p r p t 
  • 27. Es una norma la que especifica las relaciones que existen entre el ángulo de presión, el adendo, el dedendo, la altura total del diente, la altura de trabajo del diente, el espesor del diente, la holgura circunferencial o claro, etc. ELEMENTOS DE MAQUINAS II SISTEMA DE DIENTES PARÁMETRO PASO BASTO (Pd < 20) PASO FINO (Pd ≥ 20) Angulo de presión (Φ) 20° ó 25° 20° Adendo (a) 1.000/Pd 1.000/Pd Dedendo (b) 1.250/Pd 1.250/Pd Altura total del diente (ht) 2.250/Pd 2.200/Pd + 0.002pulg Altura de trab. del diente 2.000/Pd 2.000/Pd Espesor del diente (td) 1.571/Pd 1.571/Pd Claro (c) 0.350/Pd 0.350/Pd + 0.002pulg Especificaciones de la AGMA para engranes con dientes de altura completa.
  • 28. Los valores mínimos de numero de dientes que deberá poseer un piñón para engranar con una cremallera, ambos con dientes de profundidad completa; para que no se produzca interferencia entre sus dientes. ELEMENTOS DE MAQUINAS II SISTEMA DE DIENTES ANGULO DE PRESIÓN Φ NÚMERO MÍNIMO DE DIENTES DEL PIÑÓN 14.5 32 20 18 25 12
  • 29. NPmin Nrmáx 17 1309 16 101 15 45 14 26 13 16 Adicionalmente, se dan valores mínimos de dientes de un piñón que engrana con una rueda, ambos con dientes se altura completa de 20°, con el objeto de evitar el fenómeno de interferencia. ELEMENTOS DE MAQUINAS II SISTEMA DE DIENTES
  • 30. W W Wr Wr Wt Wt   Las magnitudes de las componentes radial y tangencial, así como, la carga total que actúa sobre el diente se determinan a partir de las expresiones: N TP D T W d p t 22   tantr WW   cos tW W ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Y ESFUERZOS
  • 31. Para analizar la relación entre la componente tangencial, la velocidad de rotación y la potencia asociada al eje, se debe tener en cuenta que la velocidad de la línea primitiva que se llamara V (V = Vr =VP) a partir de este instante, expresada en el sistema ingles donde V viene dada en ft/min, es: Donde: nP : velocidad del piñón en min-1 nr : velocidad de la rueda en min-1 12 nDπ 12 nDπ V rrPP  ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Y ESFUERZOS
  • 32. Por definición la potencia transmitida se obtiene entonces de, Donde: Pot : potencia transmitida en hp. Wt : en lb y la velocidad en ft/min-1 T : momento de torsión, lb/pulg N : velocidad de rotación, rpm V : velocidad periférica, Pie/min 63000 nT 33000 VW )(33000)(12 nT2π Pot t  ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Y ESFUERZOS
  • 33. En el sistema internacional (SI) tenemos: Donde la velocidad angular (n) debe estar en min-1 y la velocidad lineal (V) en m/s. Entonces, la potencia en Watts (W) se calcula por, Donde la carga transmitida (Wt) esta en Newtons. Y el Torsor T en Newtons_metros 60000 nπD 60000 nπD V rrPP  TVWPot t  ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Y ESFUERZOS
  • 34. Potenciatransmitidaenhp Potenciatransmitidaen,KW Velocidad del piñón, rpm La presente grafica muestra la capacidad de potencia de un par de engranes de acero contra la velocidad de giro del piñón y se ilustran varios valores de paso diametral y de módulos. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Y ESFUERZOS
  • 35. La carga plena se aplica en la punta de un solo diente. El efecto de la componente radial, Wr, es despreciable La carga se distribuye uniformemente en el ancho de la cara del diente. Las fuerzas de fricción por deslizamiento son despreciables. La concentración de esfuerzo en la raíz del diente no es considerada. HIPÓTESIS DE LA ECUACIÓN DE ESFUERZO DE LEWIS ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Y ESFUERZOS
  • 36. WWr Wt t h A B C El momento flector sobre la sección AC es: hWM t Con el ancho de cara F, el módulo de flexión de la sección transversal es: 2 2 1 2 12 1 2 1 6 1 Ft t Ft t I Z  Así, el esfuerzo máximo es: 2 6 1 Ft hW Z M t  ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Y ESFUERZOS
  • 37. WWr Wt t h 90º x A B C D Según Lewis (1893): x t h x t t h 4 2 2 1 2 1  Si el esfuerzo máximo es: 2 6 1 Ft hWt  entonces: FY PW P P Fx W dt d dt  3 2 donde dxPY 3 2  es el factor de forma de Lewis ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Y ESFUERZOS
  • 38. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Y ESFUERZOS La ecuación de flexión de la AGMA se basa es las siguientes hipótesis: 1) La razón de contacto es entre 1 y 2. 2) No hay interferencia entre los engranes. 3) Ningún diente es puntiagudo. 4) Existe un juego distinto de cero. 5) Los filetes de las raíces son estándar, se suponen lisos. 6) Se desprecia las fuerzas de friccion.
  • 39. Las dos formas fundamentales de la AGMA para la determinación del esfuerzo flexionante de trabajo que se induce en los dientes de los engranes de dientes rectos son: Sistema Ingles Sistema Internacional Donde: σf : esfuerzo de trabajo por flexión en los dientes J : factor geométrico Km : factor de forma y determinación de carga Ka : factor de aplicación Kv : factor dinámico Ks : factor de tamaño Kb : factor de espesor del “rim” KvJF KbKsKmPdKaW σ t f  KvJmF KbKsKmKaW σ t f  ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Y ESFUERZOS
  • 40. El factor J toma en consideración los aspectos siguientes: el punto de aplicación de la carga en el diente, la forma que poseen los dientes, el efecto de concentración de esfuerzos y la forma como esta compartida la carga. Para un conjunto de engranes de altura completa y carga compartida podemos determinar el factor geométrico de la siguiente manera: ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS
  • 41. Np=20, Nr=40 Jp=0.34, Jr=0.38 ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS
  • 42. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Número de dientes, N Factorgeométrico,J Carga aplicada en la punta del diente Número de dientes en el engrane de aplacamiento
  • 43. El factor de carga dinámico Kv (Cv) se introdujo inicialmente para tomar en cuenta factores como la inexactitud de la separación entre los dientes, el hecho de los perfiles de los dientes no son involutas perfectas, el efecto de la línea primitiva y la velocidad angular, la deformación bajo carga del eje y sus soportes, la deformación de los dientes bajo carga, vibraciones generadas por aplicaciones de carga de impacto, y la carga transmitida por pulgada de ancho de cara del engrane. La AGMA suministra graficas para la determinación del factor dinámico en velocidad en la línea primitiva, y de los índices de calidad Qv, los cuales definen las tolerancias para engranes de diferentes tamaños y fabricados de una clase de calidad especifica. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS
  • 44. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Velocidad en pies/seg. FactordinámicoKvyCv Familia de curvas para la determinación de los factores dinámicos Kv y Cv
  • 45. El calculo del factor dinámico se basa en los índices de calidad Qv, y se realiza a partir de las expresiones. Sistema Internacional Sistema Ingles Donde A y B se obtiene de : ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS B 1/2 VA A CvKv         B 1/2 V)200(A A CvKv         B)56(150A  11Qv6para 4 Qv)(12 B 2/3   
  • 46. Los valores del índice de calidad Qv recomendada en función de la velocidad en ft/min Con la velocidad encontramos el rango recomendado del índice de calidad ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS
  • 47. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS El factor de distribución de carga Km (Cm) se emplea para considerar los aspectos siguientes: el desalineamineto de los ejes geométricos de rotación, las desviaciones del avance, y las deflexiones elásticas originadas por las cargas en los ejes, cojinetes o en le alojamiento. F en pulg (mm) Factor Km <2 (50) 1.6 Hasta 6 (150) 1.7 Hasta 9 (230) 1.8 >20 (500) 2.0 Valores del factor de distribución de carga Km en función de la achura de la cara
  • 48. Para tomar en consideración el hecho de que la carga transmitida no se distribuya uniformemente a lo largo de la anchura del diente, se ha llegado a determinar restricciones para la anchura de la cara en función del paso diametral y el paso circunferencial, dichas restricciones son: Estas restricciones no son rígidas, puesto que a medida que los dientes son fabricados con mayor precisión, los perfiles de los mismos se acercan mas al perfil teórico. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Pd 16 F Pd 8  π 16Pc F π 8Pc 
  • 49. El factor de tamaño Ks (Cs) toma en consideración principalmente, cualquier falta de uniformidad de las propiedades del material del cual se fabrica el engrane. La AGMA no establece normas para este factor, se recomienda utilizar el valor de 1 salvo que se presenten situaciones particulares; como el caso de los dientes demasiado largos; donde debería tomarse valores mayores. Valores conservativos para Ks podrían establecerse en el rango, ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS 1.5Ks1.25 
  • 50. El factor de aplicación de carga Ka (Ca) se utiliza con el objeto de compensar la posible existencia de valores de carga real mayores que la carga transmitida Wt. En efecto, los momentos de flexión fluctuantes podrían originar variaciones de carga tangencial de magnitud mayor que la carga transmitida Wt. Y todo dependerá de cómo se realiza la transmisión entre la maquina conductora y la conducida. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Máquina conducida Máquina conductora Uniforme Choque moderado Choque pesado -Uniforme: motor eléctrico, turbina, etc. 1.00 1.25 1.75 ó mayor -Carga ligera: máquinas muticilíndricas 1.25 1.50 2.00 ó mayor -Choque medio: máquinas de cilindro simple. 1.50 1.75 2.25 ó mayor
  • 51. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS El factor del “rim” Kb (Cb) considera los casos de engranes de gran diametro, hechos con un “rim” y rayos en lugar de un disco solido; donde dicho “rim” posee un espesor delgado en comparacion con la altura de los dientes. La AGMA define una relacion entre le espesor del “rim” y la altura de los dientes, es decir: Donde: mb : relación detrás del pie del diente tR : espesor del “rim” desde el diametro de dendeo a diametro interior del “rim” ht : altura total del diente (suma de adendo mas el dedendo) t R b h t m 
  • 52. Los valores obtenidos en la ecuación anterior se utilizan para determinar el factor Kb en la forma: Para la relación mb no se recomienda valores menores de 0.5, y en el caso de engranes de discos sólidos, se toma Kb = 1. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS 1.2m0.5para3.42mKb bb  1.2mpara1.0Kb b 
  • 53. ELEMENTOS DE MAQUINAS II ESTADOS DE ESFUERZOS Los engranes rectos deben tener seguridad contra una falla por rotura debido a esfuerzos repetitivos por flexión, y además, ser capaces de poseer para la vida deseada o estimada; efectos de picadura de importancia insignificante. La picadura de se puede definir como el fenómeno en el cual, pequeñas partículas se remueven de la superficie de los dientes debido a las elevadas cargas de contacto superficial que se presentan durante el proceso de engrane; y se considera como falla por fatiga de la superficie de los dientes.
  • 54. La ecuación fundamental de la AGMA para la determinación del esfuerzo por contacto en los dientes es: Donde: σc : esfuerzo por contacto superficial. CP :coeficiente elástico I : factor geométrico Ca, Cm, Cv y Cs : son iguales a los valores Ka, Km, Kv y Ks respectivamente, y se determinan de la misma forma. Cf : factor de condición de superficie. ELEMENTOS DE MAQUINAS II ESTADOS DE ESFUERZOS 1/2 P t C CsCf Cv CaCm IDF W Cpσ       
  • 55. El coeficiente Cp toma en consideración las diferencias de los materiales del piñón y la rueda. Por ejemplo: ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS
  • 56. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Si se dispone de toda la información concerniente a los materiales utilizados para piñón y rueda, el coeficiente Cp se determina en forma exacta de la expresión: Donde: νp, νr : relaciones de poisson de los materiales de piñón y rueda, respectivamente Ep, Er : módulos de elasticidad de los materiales de piñón y rueda, respectivamente                         r 2 r P 2 P E υ1 E υ1 π 1 Cp
  • 57. El factor geométrico I, también denominado factor geométrico de resistencia a la picadura por la AGMA, toma en cuenta el radio de curvatura de los dientes de los engranes y el ángulo de presión. La AGMA define para el referido factor la expresión: Donde: ρp, ρr : radios de curvatura de los dientes del piñón y la rueda, respectivamente Los signos (+) para engranes externos y el signo (–) para engranes internos ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS           rp P ρ 1 ρ 1 D cosφ I
  • 58. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Las ecuaciones para la determinación de los radios de curvatura de los dientes del piñón y rueda se obtienen de: Donde: C : distancia entre centros de rotación del piñón y la rueda. Pd πcosφ 2 cosφD Pd 1 2 D ρ 1/22 P 2 P p                       Pr ρCsenφρ 
  • 59. Angulo de presion a 20° 0.060 0.080 0.100 0.120 0.140 0.160 0 1 2 3 4 5 6 7 8 9 10 Relación de Engranes FactorgeometricoI Np = 16 Np=50 o más Np = 30 Np = 24 ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS
  • 60. Angulo de presion a 25° 0.080 0.100 0.120 0.140 0.160 0.180 0 1 2 3 4 5 6 7 8 9 10 Relación de Engranes FactorgeometricoI Np = 16 Np=50 o más Np = 30 Np = 24 ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS
  • 61. ESFUERZOS ADMISIBLES PARA LOS DIENTES DE ENGRANES DE SIENTES RECTOS A LA FLEXIÓN Y A LA DURABILIDAD SUPERFICIAL. Los esfuerzos de trabajo que se originan en los dientes de los engranes rectos, debidos a esfuerzos repetitivos de flexión y de contacto superficial, deberán ser comparados con esfuerzos admisibles que pueden resistir los materiales con los cuales se fabrican los engranes, para verificar si son capaces de resistir aquellos. Obviamente, que en un proceso general de diseño de estos elementos mecánicos, el objetivo principal que se busca es que los mismos, no fallen ni por ruptura de los dientes (debido a esfuerzos de flexión) ni por picadura (debido a esfuerzos por contacto superficial). ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS
  • 62. Para el caso de los esfuerzos de flexión, el esfuerzo admisible se obtiene de: Donde: (σf)adm : esfuerzo de flexión admisible KL : factor de duración o vida KT : factor de temperatura KR : factor de confiabilidad St : numero de esfuerzos admisibles de la AGMA ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS   t RT L admf S KK K σ 
  • 63. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS El factor de duración o vida KL se determina por medio de la grafica. Número de ciclos
  • 64. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS El factor Kt depende de la temperatura de trabajo del engrane, este valor puede asumirse como 1 para temperaturas menores a 120°C. para temperatura mayores y solamente para aceros, el factor se calcula a través de : Donde: Ta : temperatura del aceite lubricante. 620 Ta460 KT  
  • 65. El factor de confiabilidad KR es un indicativo de la probabilidad de fallo del engrane. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Confiabilidad (%) Kr 90 0.85 99 1.00 99.9 1.25 99.99 1.50
  • 66. Los valores para los números de esfuerzo admisible de la AGMA a la flexión St y a la durabilidad superficial Sc, se encuentran tanto en la Tabla 6.13, Pág. 207 de la guía “ANALISIS, SINTESIS Y SELECCIÓN DE ELEMENTOS DE MAQUINAS” del profesor Oswaldo Arteaga, o de manera grafica de las figuras que se muestran a continuación. El grado de acero definido por la AGMA difiere en lo que respecta al grado de control de la microestructura, a la composición de la aleación, a los antecedentes del tratamiento térmico utilizado, a la ejecución de los ensayos no destructivos, a los valores de la dureza del núcleo, y a otros factores. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS
  • 67. Dureza BHN NúmerodeesfuerzosadmisiblesSt ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Efecto de la dureza Brinell sobre el esfuerzo flexionante permisible (St)
  • 68. NúmerodeesfuerzosadmisiblesSc Dureza BHN ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Efecto de la dureza Brinell sobre el esfuerzo de contacto permisible (St)
  • 69. Los esfuerzos admisibles a la durabilidad superficial se determina de: Donde: (σC)adm : esfuerzo admisible a la durabilidad superficial CL : factor de duración CH : factor de relación de durezas CT : factor de temperatura CR : factor de confiabilidad Sc : números de esfuerzos permisible a la durabilidad superficial ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS   C RT HL admc S CC CC σ 
  • 70. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS El factor CL posee el mismo propósito que el factor KL, aunque se obtiene de la siguiente figura. Número de ciclos
  • 71. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Los factores CT y CR son idénticos, respectivamente a los factores KT y KR utilizados para esfuerzo admisible a la flexión, y se determina de la misma forma descrita para los últimos. El factor CH, puede decirse que es en función de la dureza de los materiales con los cuales se fabrican el piñón y la rueda, y su valor debe ser siempre mayor que 1, con objeto de incrementar el valor de los números de esfuerzos admisible de los materiales usados para la construcción de los engranes. Además, el factor CH solo se aplica para determinar el esfuerzo admisible a la durabilidad superficial de la rueda, y no tiene efecto sobre el piñón, con el objeto de ajustar los números de esfuerzos admisibles a la durabilidad superficial.
  • 72. Las formulas para el calculo de CH son dadas por la AGMA, dichas formulas son: El valor de A se obtiene de: ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS 1)A(m1C tH  0Aentonces1.2, (BHN) (BHN) si r P  00829.0 (BHN) (BHN) 00898.0Aentonces1.7, (BHN) (BHN) 2.1si r P r P  00698.0Aentonces1.7, (BHN) (BHN) si r P 
  • 73. SEGURIDAD CONTRA FALLO POR FLEXIÓN EN LOS DIENTES En los engranes de dientes rectos, se tendrá seguridad contra fallo por ruptura de los dientes debido a esfuerzos repetitivos de flexión, si se cumple que, ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS admff )(σσ 
  • 74. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS SEGURIDAD CONTRA FALLO POR PICADURA Con el objeto de asegurar que un sistema de transmisión a través de engranes de dientes rectos posea seguridad contra fallo por picadura, debido a esfuerzos por contacto superficial tipo Hertziano, debe cumplirse que : admfC )(σσ 
  • 75. FRACTURA DEL DIENTE PICADURA ABRASIÓN RAYADURA ARRASTRE O DESPLAZAMIENTO DE METAL ELEMENTOS DE MAQUINAS II MODOS DE FALLA
  • 76. Fractura del diente Formación de una grieta en la raíz del diente, debido a fatiga por repetición de carga ELEMENTOS DE MAQUINAS II MODOS DE FALLA
  • 77. Picadura Inicio del proceso de picadura Etapa de picadura severa ELEMENTOS DE MAQUINAS II MODOS DE FALLA
  • 78. Abrasión Proceso abrasivo debido a la presencia de materias extrañas o a la acción resultante del esmerilado ELEMENTOS DE MAQUINAS II MODOS DE FALLA
  • 79. Rayadura Marcas y rayaduras superficiales debido a prolongaciones filosas, acabado áspero o desalineamiento. ELEMENTOS DE MAQUINAS II MODOS DE FALLA
  • 80. Arrastre o desplazamiento de metal Ablandamiento y deslizamiento del metal debido a la falla de la película de aceite lubricante. ELEMENTOS DE MAQUINAS II MODOS DE FALLA
  • 81. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS PROCEDIMIENTOS DE ANÁLISIS Y SÍNTESIS DE LOS ENGRANES DE DIENTES RECTOS En los procedimientos de Análisis y Síntesis de los engranes tratados en este capítulo, en general son prácticamente idénticos, diferenciándose únicamente en la forma de obtener algunas variables y parámetros que; aunque poseen el mismo significado, se determinan de manera diferente.
  • 82. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS PROCEDIMIENTO DE ANÁLISIS PARA LOS ENGRANES DE DIENTES RECTOS El procedimiento de análisis a seguir para los engranes de dientes rectos, no difiere de la concepción básica de la fase de análisis dentro del proceso de diseño de cualquier elemento de máquina, Para la fase de análisis se tendrá siempre una transmisión de un piñón y una rueda, cuyas características geométricas y requerimientos funcionales son totalmente conocidas, de tal manera que se pueden determinar los esfuerzos de trabajo debido a flexión y a contacto superficial en los dientes del elemento más débil, y posteriormente verificar si el engrane en estudio es seguro ó no. En el caso de que con los valores obtenidos no se suceda alguna falla (ni por flexión ni por picadura), el engrane en estudio corresponde a una solución factible que posteriormente podría mejorarse. Si por el contrario, ocurre alguna falla (por flexión, por picadura, Ó por ambas) deberán cambiarse algunas condiciones geométricas y/o algunos requerimientos funcionales, tratando de obtener una solución factible dentro de la infinitas soluciones posibles.
  • 83. PROCEDIMIENTO DE SÍNTESIS PARA LOS ENGRANES DE DIENTES RECTOS En la fase de síntesis de estos elementos de máquinas, se tiene por lo general un problema complejo derivado de la gran cantidad de variables independientes (variables desconocidas) interactuando simultáneamente, pueden estar presentes comúnmente en los problemas de cualquier tipo de engrane. La aseveración anterior se puede visualizar muy fácilmente, a través de las ecuaciones que gobiernan el comportamiento de los engranes; pues de la simple expresión que relaciona al paso diametral (Pd), al número de dientes (N) y al diámetro primitivo (D), puede notarse que por lo general ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS
  • 84. dos de las tres serán variables independientes en un problema específico y La tercera quedará como variable dependiente. Además, la anchura de cara del engrane (F) es de por sí casi siempre variable independiente, al igual que las durezas (en BHN) de los materiales a utilizar para piñón y rueda y por otro lado se podría tener una distancia entre centros (C) no totalmente definida o dada dentro de un rango determinado, lo que transformaría a esta variable en independiente. Es de hacer notar, que todavía podrían aparecer variables nuevas cuando se consideren factores relacionados con procesos de fabricación, rangos de temperaturas de operación, lubricación, número de ciclos de aplicación de carga, etc. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS
  • 85. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS En conclusión, de lo anteriormente referido en el proceso de síntesis de los engranes de dientes rectos, se puede tener un problema iterativo donde pueden intervenir muchas variables independientes; lo cual no resulta ser un problema sencillo, puesto que se tendrán que seleccionar valores para una de las variables independientes, y lograr que las mismas conduzcan a una solución factible dentro de la infinitas soluciones posibles. Es decir, los valores supuestos para las variables independientes deberán cumplir con la condición de que el engrane no falle ni por flexión ni por picadura. De no ser así deberán tomarse un nuevo juego de valores para las variables independientes, hasta encontrar una solución factible, proceso que por lo general no se logra fácilmente.
  • 86. En un problema de síntesis de engranes de dientes rectos, el objetivo principal es el tratar de transformarlo en un problema de análisis por medio de asignar valores justificados, la mayoría de las veces (no al azar), a algunas de las variables independientes; para posteriormente realizar procesos iterativos de análisis hasta lograr una solución factible. En la fase de síntesis de los engranes, la experiencia en determinadas aplicaciones y buen manejo de la información disponible, juegan un papel fundamental para encontrar una solución adecuada que cumpla con todos los objetivos de esos elementos mecánicos; y que son principalmente: -Ser compactos a objeto de ocupar el menor espacio posible -Operar uniformemente entre la máquina conductora y conducida -Poseer una larga vida -Tener un costo bajo -Ser de fácil construcción ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS
  • 87. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES ENGRANES HELICOIDALES Los engranes helicoidales se usan para transmitir potencia ó movimiento entre ejes paralelos. Cuando se emplean para ejes no paralelos reciben el nombre de engranes helicoidales cruzados, haciendo la salvedad de que éste tipo de engranes se recomienda para transmitir bajas potencias puesto su fallo por durabilidad superficial es prematuro. Durante la transmisión con una pareja de engranes helicoidales (simples), los ejes que soportan a ambos, quedan sujetos a la acción de una carga de empuje, la cual puede eliminarse a través del uso de los denominados engranes bihelicoidales; pero ello repercute en el costo de fabricación y montaje, resultando una solución en la mayoría de las veces no la más adecuada.
  • 88. A medida que los engranes helicoidales giran, cada diente engrana primero en un lado, y posteriormente el contacto va aumentando hasta recorrer toda la anchura del diente conforme continúa la rotación, Por lo tanto, el proceso de engranado gradual en estos tipos de engrane, los hace más silenciosos y suaves que la de los engranes de dientes rectos, lo cual repercute en que pueden utilizarse para velocidades de rotación más altas. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES
  • 89. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES
  • 90. Wr = W sen Φn Wt = W cos Φn cos Ψ Wa = W cos Φn sen Ψ Donde: W : fuerza total Wr : componente radial Wt : componente tangencial Wa : componente axial Ψ : ángulo de hélice ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES
  • 91. Carga transmitida, Wt La fuerza que actúa tangencial a la superficie de paso del engrane se denomina la carga transmitida y es la fuerza que en realidad transmite torque y potencia desde el engrane impulsor hacia el engrane que es impulsado. Actúa en sentido perpendicular al eje de la flecha que soporta el engrane. Se calcula a través de la ecuación: Donde: T : torque que se transmite. D : diámetro de pase del engrane D/2 T Wt  ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES
  • 92. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS La carga transmitida Wt se puede determinar también mediante la ecuación: En las transmisiones con engrane helicoidales se recomienda, con el objeto de evitar los problemas que se originan sobre los apoyos del eje que los sustentan como consecuencia de Wa, el utilizar rodamientos que puedan absorber dicha carga de empuje sobre el eje. P Pd r rd t N T2P N T2P W 
  • 93. Carga axial, Wa Es aquella que se dirige en forma paralela al eje de la flecha que soporta el engrane. Esta, que también se denomina carga de empuje es la fuerza, por general indeseable, a la que deben resistir los cojinetes de ejes o flechas que tienen capacidad de empuje. Se determina a través de la expresión: Donde: Φ : torque que se transmite. Ψ : diámetro de pase del engrane ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES Wa = Wt cos Φ sen Ψ
  • 94. Carga radial, Wr La fuerza que actúa hacia el centro del engrane, esto es, en sentido radial. El sentido de la fuerza es siempre tal que tiende a separar los engranes. Puede determinarse a través de la ecuación: Donde: Φn : ángulo de presión normal. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES Wr = Wt sen Φn
  • 95. Relación de contacto con la cara: Es definida como la relación entre la anchura de la cara F y el paso axial; es decir: Donde: Rcc : razón de contacto con la cara ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES π tanΨpF Px F Rcc dt 
  • 96. Para darse una idea clara de la geometría de los engranes helicoidales, es necesario comprender los cinco diferentes pasos. Paso circular, p: Es la distancia desde un punto en el diente hasta el punto correspondiente en el diente siguiente adyacente, medida en la línea de paso en el plano transverso. Y es igual a: Paso circular normal, pn: es la distancia entre dos puntos correspondientes adyacentes medida en la superficie en el sentido normal. Se obtiene de la ecuación: pn = p cos Ψ ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES N Dπ p 
  • 97. Paso diametral, pd : Es la relación del numero de dientes en el engrane con el diámetro de paso. Paso diametral normal, pnd : Es el paso diametral equivalente en el plano normal respecto a los dientes ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES D N Pd  cosΨ p P d dn 
  • 98. Paso axial, px : Es la distancia entre puntos correspondientes en dientes adyacentes, medida en la superficie de paso en sentido axial. Es necesario tener cuando menos dos pasos axiales en el ancho de la cara para obtener acción helicoidal total y la transferencia suave de la carga de un diente a otro. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES tanΨ p px 
  • 99. Existen dos ángulos de presión, uno en la dirección normal y otro en el plano de rotación, lo cual es debido a la angularidad de los dientes. Dichos ángulos se relacionan por: Donde: Φn, Φt : ángulos de presión en los planos normal y transversal, respectivamente. t n tanΦ tanΦ cosΨ  ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES
  • 100. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES Pasos de engranes helicoidales. (a) Circular; (b) axial
  • 101. En los engranes helicoidales aparece lo que se denomina Número Virtual de Dientes, los cual es consecuencia de que el cilindro es cortado por un plano oblicuo con un ángulo igual al ángulo de hélice Ψ. Podemos determinar el numero de dientes virtual de dientes en un engrane helicoidal a través de: Donde: NV : numero virtual de dientes N : numero real de dientes. Ψcos N N 3V  ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES
  • 102. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES a Cilindro primitivo cortado por un plano a-b
  • 103. El enfoque de la AGMA para definir los esfuerzos de trabajo sobre los dientes de los engranes helicoidales, es idéntico al descrito para los engranes de dientes rectos; para los esfuerzos por flexión y por contacto superficial. Dichas ecuaciones se repiten nuevamente, y en ellas todos los términos continúan bajo el mismo significado, y solamente se ha cambiado la notación correspondiente al paso diametral; con el objeto de hacer la adaptación a la nomenclatura usada para los engranes helicoidales. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES
  • 104. Para los esfuerzos de flexión en los dientes: Kv KaKmKsKb FJ PW σ dt f  Kv KaKmKsKb FmJ W σ t f  ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES Sistema Ingles Sistema Internacional
  • 105. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES Factor de geometría J para un ángulo de presión normal de 22°, cabeza estándar y fresa para acabado
  • 106. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES Multiplicador del factor J para un ángulo de presión de 22°
  • 107. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES Factor de geometría J para un ángulo de presión normal de 20°, cabeza estándar y fresa para acabado
  • 108. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES Multiplicador del factor J para un ángulo de presión de 20°
  • 109. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES Factor de geometría J para un ángulo de presión normal de 15°, cabeza estándar y fresa para acabado
  • 110. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES Multiplicador del factor J para un ángulo de presión de 15°
  • 111. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Para los esfuerzos de contacto: Los factores geométrico I y J, los cuales se modifica en estos tipos de engranes por efecto adicional que se induce por el ángulo de hélice Ψ 1/2 P t PC CsCf Cv CaCm IFD W Cσ       
  • 112. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Para la obtención del factor geométrico I, se utiliza la expresión: Donde: RN : razón o relación de repartición de carga Lmin : longitud mínima de las líneas de contacto Nd rp t RP ρ 1 ρ 1 cosΦ I           min N L F R 
  • 113. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Definiendo a (PF)C y a (PF)CC, como las partes fraccionales de Rc y Rcc, respectivamente, obtenemos: Donde Ψb recibe el nombre de ángulo de hélice base y se determina a partir de la ecuación: b CCC minCCC cosΨ px(PF)(PF)RcF Lentonces,(PF)1(PF)si   b CCC minCCC cosΨ ]px(PF)-][1(PF)1[RcF Lentonces,(PF)1(PF)si           t n1 b cosΨ cosΨ cosΨcosΨ
  • 114. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Los radios de curvatura de las hélices del piñón y de la rueda, se obtiene de: 2 t p 2 r p p p p cosφ 2 D a 2 D Ca 2 D 0.5ρ                                   ptr ρCsenφρ  ρp, ρr : radios de curvatura del piñón y la rueda, respectivamente ap, ar : adendo del piñón y la rueda, respectivamente
  • 115. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES Factor de geometría I, para engranes helicoidales con ángulo de presión de 20° y cabeza estándar
  • 116. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES Factor de geometría I, para engranes helicoidales con ángulo de presión de 25° y cabeza estándar
  • 117. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS ESFUERZOS ADMISIBLES A LA FLEXIÓN Y A LA PICADURA Los esfuerzos admisibles que pueden resistir los dientes de los engranes helicoidales, se determinan de idéntica forma a la referida para los engranes de dientes rectos. Posteriormente se deberán comparar con los esfuerzos de trabajo para determinar si cumplen las especificaciones de seguridad.
  • 118. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS ENGRANES CÓNICOS DE DIENTES RECTOS Cuando se desea transmitir potencia (y movimiento) entre ejes que se cortan, se utilizan comúnmente los engranes cónicos de dientes rectos. En la figura, se muestra un engrane cónico de dientes rectos, donde se describe parte de la nomenclatura utilizada.
  • 119. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Existen dos ángulos primitivos, uno para el piñón y otro para la corona que se designara con la letra c; donde el termino corona sustituirá al de la rueda, utilizado para los engranes tratados anteriormente, dichos ángulos se determinan por: γ : ángulo primitivo del piñón Γ : ángulo primitivo de la corona Np, Nc : números de dientes del piñón y la corona, respectivamente         Nc Np tanγ 1         Np Nc tanΓ 1
  • 120. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS Para la determinación del numero virtual de dientes que aparecen en estos engranes aunque en forma distinta a lo indicado para los engranes helicoidales. Por medio de la geometría de la referida figura, el numero de dientes se obtiene por medio de la expresión: Donde: Nv : numero virtual de dientes rcp : radio del cono posterior pc : paso circunferencial medio en el extremo mayor de los dientes C CP P r2π Nv 
  • 121. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS m P t r T W   tancosWtWa  tanφcosγWtWr 
  • 122. ELEMENTOS DE MAQUINAS II ESTADOS DE ESFUERZOS El enfoque de la AGMA para los engranes de dientes rectos y helicoidales, continua siendo valido para los cónicos de dientes rectos con muy pequeñas diferencias; tanto en la forma de obtener los esfuerzos por flexión como los de contacto superficial. Para los engranes cónicos de dientes rectos, los factores geométricos J e I, Km y el coeficiente elástico Cp; se obtiene de forma diferente a los dientes rectos y a los helicoidales. Las normas AGMA ofrecen diagramas para los coeficiente geométricos de los engranes cónicos de dientes rectos.
  • 123. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS
  • 124. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS
  • 125. Las ecuaciones para determinar los esfuerzos de trabajo por flexión para los engranes cónicos de dientes rectos para el piñón y rueda respectivamente a través de las expresiones: Kv KaKmKsKb FJD PT2 σ p dp f  ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES Kv KaKmKsKb FJD PT2 σ r dr f 
  • 126. El factor de distribución de carga se determina de forma Km (Cm) diferente a los engranes cilíndricos de dientes rectos. Se toman los valores de la tabla. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES TIPO DE ENGRANE PIÑÓN Y CORONA MONTADOS INTERIORMENTE UN ENGRANE MONTADO EXTERIORMENTE PIÑÓN Y CORONA MONTADOS EXTERIORMENTE Engranes de calidad comercial general 1.44 1.58 1.80 Engranes comerciales de alta calidad 1.20 1.32 1.50 El interiormente y exteriormente se refiere a los apoyos
  • 127. ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES Ejemplo de distribución de los engrane cónicos montados interiormente
  • 128. Para los esfuerzos por contacto superficial en los dientes: ELEMENTOS DE MAQUINAS II ENGRANES HELICOIDALES 1/2 2 p p PC CsCf Cv CaCm IFD T2 Cσ         
  • 129. ELEMENTOS DE MAQUINAS II ESTADOS DE ESFUERZOS Material de la corona Material del Piñón Modulo de Elasticidad Acero Hierro Fundido Bronce de Aluminio Bronce de Estaño Acero 30 Mpsi 2800 2450 2400 2350 (207 Gpa) 232 203 199 195 Hierro fundido 19 Mpsi 2450 2250 2200 2150 (131Gpa) 203 187 183 178 Bronce de Aluminio 17.5Mpsi 2400 2200 2150 2100 (121Gpa) 199 183 178 174 Bronce de estaño 16 Mpsi 2350 2150 2100 2050 (110 Gpa) 195 178 174 170 El factor elástico Cp para engranes cónicos de dientes rectos puede determinarse de la siguiente tabla.
  • 130. ELEMENTOS DE MAQUINAS II ESTADOS DE CARGAS ESFUERZOS ADMISIBLES PARA LOS DIENTES DE ENGRANES CÓNICOS DE DIENTES RECTOS Para este tipo de engranes continua siendo validas las ecuaciones que se utilizan para la obtención de los valores de los esfuerzos admisibles a la flexión y a la durabilidad superficial. Dichos valores deberán compararse con los valores de seguridad contra fallo.
  • 131. ELEMENTOS DE MAQUINAS II TORNILLO SINFIN Un engranaje de sinfín esta formado por un tornillo sinfín y una rueda helicoidal, como se observa en la figura. Este engrane une flechas que no son paralelas y que no se cruzan, por lo común en ángulo recto una con la otra. El tornillo sinfín es un engrane helicoidal, con un ángulo de hélice tan grande que un solo diente se enrolla de manera continua alrededor de su circunferencia. Se usan frecuentemente para casos donde se necesiten caídas bruscas de velocidad.
  • 132. Análisis esquemático de un tornillos sinfín y su distribución de fuerzas ejercidas sobre el. ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 133. De la figura anterior determinamos el estado de carga actuante sobre el tornillo sinfín sin fricción obtenemos: Donde: Wt : fuerza tangencial. Wr : fuerza radial. Wa : fuerza axial cosλcosWW WsenW senλcosWW n Z n Y n X       ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 134. Como las fuerzas que actúan en el engrane son contrarias a las que actúan en el tornillo sinfín, podemos resumir estas relaciones escribiendo: Debe tenerse en cuenta que el eje geométrico del engrane es paralelo a la dirección x y que el eje geométrico del tornillo es paralelo a la dirección z Z GtWa Y GrWr X GaWt WWW WWW WWW    ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 135. Tomando en cuenta el efecto del roce sobre las componentes tangencial, radia y axial, obtenemos:    senλμcosλcosWW WsenW cosλμsenλcosWW n Z n Y n X       ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 136. La fuerza consumida por la fricción la obtenemos de la ecuación: Donde: μ :coeficiente de roce. cosλcossenλμ Wμ μWW n Gt f   ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 137. La relación entre la dos fuerzas tangenciales puede establecerse como: La eficiencia η se puede definir utilizando la ecuación: cosλcossenλμ cosλμsenλcos WW n n GtWt      cotλμcos μtanλcos fricción)(conW fricción)(sinW η n n Wt Wt      ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 138. Muchos experimentos han demostrado que el coeficiente de fricción depende de la velocidad relativa o desplazamiento (VS), de la velocidad en la línea de paso (VG) del engrane y de la velocidad de la línea de paso del sinfín. En forma vectorial, VW = VG +VS; en consecuencia: cosλ V V W S  ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 139. De manera grafica el coeficiente de roce puede determinarse de: ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 140. Los diámetros de paso y el numero de dientes de engranajes que son de sinfín tienen una relación única, pero esto no es cierto en los engranes de sinfín. Una vez tomada la decisión en relación con el numero de inicios en los dientes Ntor deseados del tornillos sinfín, el numero de dientes de la rueda Neng queda definido por la razón requerida de engranaje meng : Sin embargo, el diámetro de paso del tornillo sinfín no esta ligado a estos números de dientes, como ocurre en otros engranes. En teoría, el tornillo sinfín puede tener cualquier diámetro, siempre y cuando la sección transversal de sus dientes (paso axial) coincida con el paso circular de la rueda. torengeng NmN  ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 141. El diámetro de paso del tornillo sinfín d puede ser seleccionado aparte del diámetro deng de la rueda y, para un deng dado, cualquier modificación en d variará la distancia entre centros C entre el tornillo sinfín y la rueda, pero sin afectar la razón de engranes. AGMA recomienda valores mínimos y máximos para el diámetro de paso del tornillo sinfín, como: Y Dudley recomienda que se use 6.13 875.0875.0 C d C  2.2 875.0 C d  ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 142. El diámetro de paso de la rueda deng se puede relacionar con el correspondiente al tornillo sinfín, a través de la distancia C. Se determina la altura de la cabeza a y la profundidad de la raíz b de los dientes, a partir de: El ancho de la cara de la rueda helicoidal esta limitado por el diámetro del tornillo sinfín. AGMA recomienda un valor máximo para el ancho de cara F como dCdeng  2 x0.3183pa  x0.3683pb  d67.0Fmax  ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 143. Métodos de clasificación: A diferencia de los engranes helicoidales y cónicos, en los cuales se hacen los cálculos en formas separada para los esfuerzos sobre los dientes a flexión y superficiales, y después se comparan con las propiedades de los materiales, los engranes de sinfín se clasifican en función a su capacidad de manejar un nivel de potencia de entrada. La potencia nominal AGMA se basa en su resistencia a picado y desgaste, dado la experiencia ha demostrado que este es el modo usual de falla. En vista de las altas velocidades de desplazamiento existentes en los engranes sinfín. ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 144. La clasificación nominal de un engrane se sinfín se puede expresar como la potencia de entrada permisible Φ, la potencia de salidaΦo, o como el par de torsión permisible T a una velocidad dada de la flecha de entrada o de salida, quedando estas interrelacionadas por la razón general de potencia, par de torsión y velocidad. AGMA define una forma de clasificación de potencia de entrada como: lo  ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 145. Donde Φl es la potencia perdida por fricción en el acoplamiento. La potencia de salida Φo se define de la forma para el sistema ingles: eng engGt o m dWn 126000  33000 ft l WV  Esta son ecuaciones con unidades mixtas. La velocidad de rotación n esta en rpm. La velocidad de deslizamiento tangencial Vt esta en pies/min.. Y se toma el diámetro del tornillo sinfín d en pulgadas. Las carga WGt y Wf estan el lb. La potencia aparece en hp ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 146. Y para el sistema internacional, 1000 ft l WV  Esta son ecuaciones con unidades mixtas. La velocidad de rotación n esta en rpm. La velocidad de deslizamiento tangencial Vt esta en m/seg. Y se toma el diámetro del tornillo sinfín d en mm. Las carga WGt y Wf estan el newtons. La potencia aparece en kW. eng engGt o mE dWn 791.1  ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 147. La carga tangencia WGt sobre la rueda helicoidal se determina de: Donde: Cs : factor del material Cm : factor de corrección de razón Cv : factor de velocidad alintenacionsistema 948.75 inglessistema 8.0 8.0 FdCvCmCs W FCmCvdCsW eng Gt engGt   ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 148. Factor del materia Cs : La AGMA define para el bronce fundido enfriado al aire como: engdCsinCsi CsinCsi 10log825.4556517.14118 10008   ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 149. Factor de corrección de razón Cm : definido por la AGMA por, engeng engengeng engengeng mCmmsi mmCmmsi mmCmmsi 00658.01483.176 5145560107.07620 46.0764002.0203 2 2    ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 150. La velocidad tangencial en el diámetro de paso del tornillo sinfín es: La fuerza de fricción Wf sobre la rueda es: pies/minen cos12   dn Vt  coscosλ Wμ Gt fW ELEMENTOS DE MAQUINAS II TORNILLO SINFIN
  • 151. ELEMENTOS DE MAQUINAS II LUBRICACION A exención de los engranes plásticos con carga muy ligera, todos los engranes deben lubricarse, a fin de evitar la falla prematura debido a alguno de los modos de falla superficial. Como el desgaste adhesivo o abrasivo. Es importante controlar la temperatura de la interfaz de acoplamiento, para reducir rayaduras o raspaduras en los dientes. Los lubricantes también eliminan calor, además de separar las superficies de metal, reduciendo fricción y desgaste. Debe suministrarse suficiente lubricante para transferir el calor de fricción hacia el entorno, y no permitir temperaturas excesivas en el acoplamiento
  • 152. ELEMENTOS DE MAQUINAS II LUBRICACION El procedimiento usual y preferido es proveer un baño de aceite al encerrar los engranes en una caja a prueba de aceite, conocida como caja de engranes. La caja de engranaje esta parcialmente llena con lubricante apropiado, de manera que por lo menos uno de los miembros de cada engranaje quede parcialmente sumergido. (la caja jamás se llena completamente de aceite). La rotación de los engranes transportara el lubricante hacia los acoplamientos, manteniendo aceitados los engranes no sumergidos. El aceite se debe mantener limpio y libre de contaminantes, y debe ser cambiado periódicamente.
  • 153. ELEMENTOS DE MAQUINAS II LUBRICACION Los lubricantes para engranes típicamente con aceites con bases en petróleo de varias viscosidades, dependiendo de la aplicación. Los aceites ligeros (10-30W) se aplican a veces a engranes con velocidades lo suficientemente elevadas y/o cargas los suficientemente baja para promover una lubricación elastohidrodinámica. En engranes de elevada carga y/o baja velocidad, o aquellos con componentes de deslizamientos importantes, a menudo requieren lubricantes de presión extrema (EP). Típicamente se trata de aceites para engranes de 80-90W, con aditivos del tipo ácidos grasos, que aportan alguna protección contra raspaduras bajo situaciones de lubricación marginal.
  • 154. ELEMENTOS DE MAQUINAS II LUBRICACION Lubricantes típicos para engranes
  • 155. Engranes rectos ELEMENTOS DE MAQUINAS II TIPOS DE ENGRANES
  • 156. Engranes Helicoidales ELEMENTOS DE MAQUINAS II TIPOS DE ENGRANES
  • 157. Engranes cónicos de dientes rectos ELEMENTOS DE MAQUINAS II TIPOS DE ENGRANES
  • 158. Engrane de tonillo sin fin. (a) Dientes cilíndricos; (b) Doble envolvente. ELEMENTOS DE MAQUINAS II TIPOS DE ENGRANES