Conjuntos Numéricos


                                                  CONJUNTOS NUMÉRICOS
     La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver
situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad
de elementos (existen siete notas musicales, 9 planetas, etc.), para establecer un orden entre ciertas
cosas (el tercer mes del año, el cuarto hijo, etc.), para establecer medidas (3,2 metros, 5,7 kg, –4ºC,
etc.), etc.


Números naturales

    Al conjunto de los números que sirven para contar {1, 2, 3, 4, ...} los llamaremos números
naturales y lo notaremos con la letra N.
    Estos números están ordenados, lo que nos permite representarlos sobre una recta del siguiente
modo:

                                              1          2           3           4           5           6

    Como podemos observar en la recta numérica, el conjunto N tiene primer elemento, el 1; y
¿cuál es su último elemento? .................................................................................................................

Actividad:
•    ¿Puedes afirmar que todo número natural tiene un antecesor? ¿Por qué? Ejemplifica.
     ..........................................................................................................................................................
•    ¿Puedes afirmar que todo número natural tiene un sucesor? ¿Por qué? Ejemplifica.
     ..........................................................................................................................................................

   Como ya sabemos, sobre este conjunto de números se pueden definir ciertas operaciones como
suma, resta, multiplicación y división. Observa lo siguiente:


          2+5=7                          La suma de dos números naturales da siempre como
          5+2=7                          resultado un número natural
          3 + 20 = 23

          2 . 7 = 14                     La multiplicación de dos números naturales da siempre
          5 . 8 = 40
                                         como resultado un número natural.
          10 . 3 = 30

          8–3=5
          20 – 7 = 13                    La resta de dos números naturales no siempre da un
          7 – 20 = ?                     número natural.
          5–5=?
Conjuntos Numéricos


Números Enteros

    Para solucionar el problema de la resta, se crean los números negativos –1, –2, –3, etc. como
opuestos de los números naturales. Además se incorpora el cero para dar solución a la resta de un
número consigo mismo. El conjunto de los números naturales, sus opuestos negativos y el cero
constituyen el conjunto de los números enteros, que se indica con la letra Z. Notemos que N ⊆ Z.

    Su representación sobre la recta numérica es la siguiente:

                                –2      –1      0        1       2       3


                                         …es opuesto de…
Veamos algunos ejemplos:
   El opuesto de 2 es –2.
   El opuesto de 5 es –5, es decir –(–5) = 5.
   El opuesto de 0 es ...............

De esta manera, podemos redefinir la resta de dos números naturales como la suma de dos enteros.

Ejemplo: Calcular

1) 23 + (–12) = ?
   Solución: sumar –12 es lo mismo que restar su opuesto, o sea 12, es decir:
   23 + (–12) = 23 – 12 = 11.
2) 9 – (–20) = ?
   Solución: restar –20 es lo mismo que sumar su opuesto, o sea 20, por lo tanto:
   9 – (–20) = 9 + 20 = 29.

Actividad:
Completar:
• La suma de dos enteros da siempre un número ...............................
  Dar dos ejemplos.
•   La multiplicación de dos números enteros da siempre un número ...............................
    Dar ejemplos.

    Veamos qué ocurre con la división. Observemos lo siguiente:
      4 : 2 = 2 ya que 2 . 2 = 4
      6 : 3 = 2 ya que 2 . 3 = 6
    En general a : b = c, b ≠ 0 si se verifica que b . c = a.
    ¿Cuál será el resultado de 4 : 3 ? Debemos pensar en un número entero tal que al multiplicarlo
por 3 dé como resultado 4. ¿Qué número entero cumple con esta condición? ......................................
Conjuntos Numéricos



Números Racionales

   Para resolver esta situación habrá que introducir otro conjunto numérico, el conjunto de los
números racionales al que denotaremos con la letra Q. Un número racional es el cociente de dos
                                                           m
números enteros m y n, siendo n ≠ 0 . Por lo tanto: Q = { , m, n ∈ Z, n ≠ 0}, donde m es el
                                                           n
numerador y n el denominador. Notemos que Z ⊆ Q. ¿Por qué?

-   ¿Por qué en la definición se excluye al 0 en el denominador?
    .........................................................................................................................................................

    Representemos en la recta numérica algunos números racionales:

                                              −1
                                               3          0            2
                                                                       3          1            4
                                                                                               3




Veamos algunos ejemplos de números racionales:
   5 es racional pues 7 es entero y 5 es entero.
   7


    − 4 es racional pues –4 es entero y 3 es entero.
      3

    4 es racional pues           4
                                 1   = 4 y 4 y 1 son enteros.
    0,3 es la expresión decimal de un número racional porque 0,3 = 10 y 3 y 10 son enteros.
                                                                    3
      )                                                         ) 5
    0,5 es la expresión decimal de un número racional porque 0,5 = 9 y 5 y 9 son enteros.
        )                                                             )
    0,15 es la expresión decimal de un número racional porque 0,15 = 15−1 = 14 y 14 y 90 son
                                                                           90    90
    enteros.

   En definitiva todo número racional puede escribirse como una expresión decimal
cuya parte decimal puede ser periódica, pura o mixta, con un número finito de cifras, o
puede tener un número finito de cifras.

    Así, por ejemplo:

    37
    33   = 1,121212 K = 1,12 es una expresión decimal periódica pura.
                        )
    32
    90   = 0,355K = 0,35 es una expresión decimal periódica mixta.
    9
    20   = 0,45 es una expresión decimal finita.

    Definimos el inverso de un número a ≠ 0 como el número racional que multiplicado por a nos
                   1
dé 1, es decir: a ⋅ = 1 .
                   a
Conjuntos Numéricos

Ejemplos:

     El inverso de a =            2
                                  5       es   1
                                               a   =       5
                                                           2   pues      2
                                                                         5   ⋅ 5 = 1.
                                                                               2

     El inverso de a = − 27 es
                          2
                                                       1
                                                       a   = − 27 pues − 27 ⋅ (− 27 ) = 1 .
                                                                2
                                                                          2
                                                                                  2




     De esta manera, redefinimos la división de dos enteros como la multiplicación de dos
racionales. Además, podemos extender esta idea a la división de dos racionales, definiéndola como
la multiplicación del primero por el inverso del segundo.

Ejemplos:

     2 : 5 = 2 . 1 = 5 es decir a “2 dividido 5” lo pensamos como la multiplicación de los números
                 5
                     2


     racionales 2 y 1 .
                    5

     3:    1
           2   = 3 . 2 = 6 es decir a “3 dividido                                   1
                                                                                    2   ” lo pensamos como la multiplicación entre 3 y el
     inverso de        1
                       2   , que es 2.

Actividad:
Decir si las siguientes afirmaciones son verdaderas o falsas. Justificar.

1) 5 = 3 ⋅ 1 = 1 + 1 + 1
   3
           5    5  5   5

2) −2 = −2 ⋅ 1
   −3         3

3) La quinta parte de                 1
                                      7   es       1
                                                   5   ⋅1 =
                                                        7
                                                                1
                                                                35   .
4) − 8 = −83 = −38
      3




•    Como vimos anteriormente, el sucesor inmediato de un número natural n es n + 1, por ejemplo
     el sucesor inmediato de 5 es 5 + 1 = 6. Si consideramos el conjunto de los racionales, ¿podrías
     decir cuál es el sucesor inmediato de 1 ?
                                           2

     ..........................................................................................................................................................
•    ¿Podrías determinar cuántos números racionales hay entre                                        1
                                                                                                     5   y 2?
     ..........................................................................................................................................................

    Observemos que entre dos números racionales, a y b, a < b, existe el racional (a + b) / 2 que
    verifica:
                                            a < (a + b) / 2 < b
    Conclusión: si existe un racional entre los racionales a y b, existen infinitos.


       Esta propiedad se expresa diciendo que el conjunto Q es un conjunto denso, en
contraposición a los naturales N y los enteros Z, que son conjuntos discretos.
Conjuntos Numéricos


Números Reales


       NÚMEROS IRRACIONALES

    ¿Puedes representar a todos los números que conoces mediante una expresión decimal
periódica o limitada?
    Para contestar a esta pregunta, pensá en un número muy conocido, el número π . ¿Cuál es el
valor de π ? Si te fijás en una calculadora con 8 dígitos el valor de π que te dará es el siguiente:
3,141593; si te fijás en una calculadora con 10 dígitos el valor de π que te dará es 3,14159264. En
algún libro de matemática se puede encontrar, por ejemplo: π = 3,14159265358979323846. ¿Será
π un número racional? ¿Por qué?
................................................................................................................................................................
     A los números reales cuya expresión decimal no es periódica ni limitada los llamaremos
números irracionales, conjunto que denotaremos con I. Algunos ejemplos: π ,       2, − 5,
e = 2,7182....

    Observemos que la suma de dos números irracionales no siempre da un número irracional y
que el producto de dos números irracionales no siempre da un número irracional. Buscar ejemplos
en donde se verifiquen dichas afirmaciones.

................................................................................................................................................................
    Observar que si n ∈ Z, entonces n. 2 y n + 2 son también irracionales. Se puede
generalizar para r ∈ Q y t ∈ I, r + t y r . t son números irracionales. Obviamente I también es
un conjunto infinito de números.

     El conjunto formado por los racionales y los irracionales se llama conjunto de números reales,
y se designa por R. Notemos que por esta definición Q ⊂ R. Los números reales llenan por
completo la recta numérica, por eso se la llama recta real. Dado un origen y una unidad, a cada
punto de la recta le corresponde un número real y, a cada número real, le corresponde un punto de
la recta.

Resumiendo

         Naturales
             {0}                                        Enteros
   Opuestos de los naturales                                                                  Racionales
                                                        Fraccionarios                                                            Reales
                                                                                              Irracionales
Conjuntos Numéricos


Propiedades de las operaciones en R

SUMA Y PRODUCTO
    Las operaciones de suma y producto definidas en R cumplen ciertas propiedades. Veamos
algunas de ellas:

Sean a, b y c números reales cualesquiera.

             PROPIEDADES                                                 SUMA                                             PRODUCTO

Ley de cierre                                                        a+b∈R                                                  a.b∈R

Asociativa                                              a + (b + c) = (a + b) + c *                              a . (b . c) = (a . b) . c *

Conmutativa                                                       a+b=b+a                                                 a.b=b.a
                                                                  Es el 0:                                              Es el 1:
Existencia de elemento neutro
                                                              a+0=0+a=a                                             a.1=1.a=a
                                                           Es el opuesto aditivo:                           Es el inverso multiplicativo:
Existencia de inverso                                                                                          a ⋅ 1 = 1 ⋅ a = 1 si a ≠ 0
                                                           a + (–a) = (–a) + a = 0                                 a   a

Distributiva del producto con
                                                                                     (a + b) . c = a . c + b . c
respecto a la suma


* Observación: La propiedad asociativa nos permite prescindir del uso del paréntesis y escribir
simplemente a + b + c ó a . b . c.


Actividad:
1) Compruebe con ejemplos las propiedades anteriormente mencionadas.
   ..........................................................................................................................................................
   ..........................................................................................................................................................
2) Decir si las siguientes afirmaciones son verdaderas o falsas. En caso de ser verdaderas,
   mencionar las propiedades utilizadas.

   a) 1 ⋅ (5 + 4) = 4 + 5
      3              3   3

   b) − 2 ⋅ ( 8 − 5) = (−2) ⋅ 8 − 5
              9               9

   c)        2+c=c+               2
   d) 2 + [8 . (–9)] = (2 + 8) . [2 + (–9)]
   e)    1
         a   ⋅ a = 1 para todo a real.
                                                                       5
   f) Existe un número real x para el cual                                 + x = 0.
                                                                     π
Conjuntos Numéricos

POTENCIACIÓN
    Si a es un número real y n es un número natural, entonces decimos que an se obtiene
multiplicando n veces el factor a, es decir:
                                           an = a . a . a … a
                                                                            n veces
Ejemplo: a6 = a . a . a . a . a . a

     Decimos entonces que an es una potencia que tiene a como base y n como exponente.
     Extendemos la definición para exponentes enteros definiendo, para a ≠ 0:
                                                             a0 = 1
                                                             a–n = (a–1)n con n ∈ N
Actividad:
Decir si los siguientes enunciados son verdaderos o falsos:
    a) 28 = 22 . 26 = 25 . 23                        g) -32 = (-3)2
    b) (8 + 3)2 = 82 + 32                            h) 54 = 45
    c) (8 . 3)2 = 82 . 32
                                                                                              −2
                                                                                      5               5 −2
            3 2
     d) (2 ) = 2       5
                                                                                   i)  1 
                                                                                                 =
                                                                                      2              ( 1 )−2
                                                                                                         2
     e) (23)2 = 26
     f) 5–2 = –10

La actividad anterior ejemplifica algunas de las siguientes propiedades de la potencia:
Sean a, b números reales, m, n números enteros, excluyendo los casos 00.

                           PROPIEDAD                                                                             POTENCIA

Distributiva con respecto al producto                                                                      (a . b)m = am . bm
                                                                                                                        m
                                                                                                                 a  am
Distributiva con respecto a la división                                                                            = m
                                                                                                                 b  b

Producto de potencias de igual base                                                                            an . am = an + m

                                                                                                                  an
División de potencias de igual base                                                                                 m
                                                                                                                      = a n−m
                                                                                                                  a

Potencia de potencia                                                                                             (a )
                                                                                                                   n m
                                                                                                                            = a n⋅m


Observación: Como se vio en el ejercicio anterior la potencia no es distributiva con respecto a la
suma ni a la resta.
• ¿Qué sucede si a un número negativo lo elevamos a una potencia par? ¿Cuál es el signo del
   resultado?
    ..........................................................................................................................................................
Conjuntos Numéricos

•   ¿Existe alguna potencia de 5 que dé como resultado un número negativo? ¿Por qué?
    ..........................................................................................................................................................


RADICACIÓN
     La radicación es una operación inversa de la potenciación. Se llama raíz enésima de un número
a, al número b tal que la potencia enésima de b es igual a a. En símbolos:
                                                          n
                                                              a = b ⇔ b n = a , con n ∈ N..
     n es el índice de la raíz y a es el radicando.
Ejemplos:

    4
      16 = 2 ya que 24 = 16.
    3
      − 8 = −2 ya que (–2)3 = –8.
      − 16 = ?

     Se presenta el problema ante una raíz de índice par de un número negativo, pues ningún
número real elevado a una potencia par da como resultado un número negativo.
     Debemos advertir que las raíces de índice par, cuando tienen solución, tiene dos soluciones y se
trata de dos números opuestos. Por ejemplo 64 = ± 8 pues 82 = (–8)2 = 64. En lo sucesivo, salvo
aclaración expresa, se indicará solamente la solución positiva, llamada solución aritmética.

     Veamos ahora las propiedades de la radicación, las cuales son análogas a las de la potenciación.
Sean a, b números reales positivos y n, m números naturales:

                          PROPIEDADES                                                                       RADICACIÓN

Distributiva con respecto al producto                                                                      n
                                                                                                               a.b = n a .n b
                                                                                                                           n
                                                                                                                     a         a
Distributiva con respecto a la división                                                                         n      =
                                                                                                                     b     n
                                                                                                                               b

Raíz de raíz                                                                                                   n m
                                                                                                                     a = n.m a


Observaciones:
• Al igual que con la potenciación, la radicación no es distributiva con respecto a la suma ni a la
  resta. Proponga contraejemplos que muestren que esta afirmación es verdadera.
    ..........................................................................................................................................................
•   ¿Qué sucede si aplicamos la propiedad distributiva al siguiente radical:                                               (−4).(−16) ?
    ..........................................................................................................................................................
Conjuntos Numéricos

    SIMPLIFICACIÓN DE RADICALES
Efectúa las siguientes operaciones:
•   4
         28 y       2 4 y 22: ............................................................................................................................
•   10
         3 20 y      3 4 y 32: ...........................................................................................................................
•        (−2) 6 y (–2)3: ...............................................................................................................................


    Observemos que se puede dividir el índice de la raíz y el exponente del radicando por un
mismo número sin alterar el resultado. A esta propiedad la llamaremos simplificación de
radicales.

•   ¿Es posible simplificar radicales en cualquier caso?
    .........................................................................................................................................................

    Si el índice de la raíz es impar se puede simplificar siempre sin tener en cuenta el signo de la
    base del radicando. Por ejemplo:
    5
         (−2) 5 = −2 (dividimos índice y exponente por 5)
               21           3
         2          2
    7             =   (dividimos índice y exponente por 3)
         3          3


    Si el índice de la raíz es par, sólo se puede simplificar si la base es positiva, ya que si la base
    fuera negativa podría presentarse el siguiente caso:
    4
         (−2) 4 = 4 16 = 2
    4
     (−2) 4 = −2 (si dividiéramos índice y exponente en 4)
    Observamos que los resultados no coinciden. Por lo tanto:

                    Cuando el índice es par y el radicando es negativo no se puede simplificar...

    Notemos que la única diferencia en el resultado es el signo y que las raíces de índice par dan
    como resultado siempre un número positivo. Podemos entonces escribir:                                                      4
                                                                                                                                   ( − 2) 4 = − 2 = 2 ,
    donde el valor absoluto a de un número a se define de la siguiente manera:

                                                                     a si a ≥ 0
                                                                 a =
                                                                    − a si a < 0

CONCLUSIÓN:

             Si n es impar,         n
                                        an = a .
             Si n es par,       n
                                    an = a .
Conjuntos Numéricos

Actividad:
1) Descubra los dos errores cometidos en el siguiente desarrollo:
                                                                          −2
                     1                    3
    4
        28 ⋅               + − 2 ⋅ − 8 + −                                   =
               8
                    (−2) 8                5
                                                                 2
          1               5
    =2 ⋅  2
            + (−2)(−8) +  −  =
         −2               3
      4         25            25 43
    =    + 16 +    = −2 + 4 +   =
      −2        9             9   9

2) ¿Podría decir en qué casos vale la igualdad:                                           a2 = ( a )2 ?
    ..........................................................................................................................................................

Racionalización de denominadores

    Sabemos efectuar divisiones cuando el divisor es un número racional, pero ¿qué sucede si
                       3
quisiéramos calcular      ? ¿Cómo efectuaríamos dicha operación?
                        2
    Podríamos solucionar este inconveniente si encontráramos una fracción equivalente a la
anterior cuyo denominador fuera un número racional. Al procedimiento que nos permite hallar tal
fracción equivalente se lo denomina racionalización de denominadores.
    Veamos algunos ejemplos:

              17         17           21            17 ⋅ 21                 357
    ♦                =            ⋅           =                      =
               21            21       21                 212                21
                5                 5           7
                                                  36 ⋅ 5 4               5 ⋅ 7 36 ⋅ 5 4          5 ⋅ 7 36 ⋅ 5 4                 5 ⋅ 7 36 ⋅ 5 4 7 36 ⋅ 5 4
    ♦                    =                ⋅                      =                           =                          =                     =
          7
               3 ⋅ 53        7
                                 3 ⋅ 53       7
                                                  36 ⋅ 5 4           7
                                                                         3 ⋅ 53 ⋅ 36 ⋅ 5 4           7
                                                                                                         37 ⋅ 5 7                    3⋅5           3
                                                                                                                        a
     En ambos casos, para racionalizar una expresión del tipo                                                                    con m < n y b ∈ R+, lo que se
                                                                                                                    n       m
                                                                                                                        b
                                                                                                 n       n−m
hizo fue multiplicar y dividir dicha expresión por                                                   b         . De esto resulta una expresión cuyo
                                          n−m
denominador es b ⋅ b         n    m
                                                   = b , y así podemos simplificar índice y exponente para eliminar la
                                                     n       n

raíz del denominador.

Actividad:
¿Cómo racionalizaría los denominadores de las siguientes expresiones?
        −8
•                    =
        2 ⋅5    1
                3

          7
•                    =
        53 ⋅ 34
Conjuntos Numéricos

Potencias de exponente fraccionario

Observemos las siguientes analogías:
              6
     ♦ a 3 = a2 y             3
                                   a6 = a2
              15
     ♦ a 5 = a3 y              5
                                   a 15 = a 3

    Estos ejemplos nos inducen a adoptar la siguiente definición para el caso de potencias de
exponente fraccionario:
                                                      n
                                                    a m = m a n , donde a ∈ R+, n ∈ Z y m ∈ N

•    ¿Cuándo será posible calcular una potencia de exponente fraccionario de base negativa?
     ..........................................................................................................................................................

Actividad:
Llevar a exponente fraccionario y resolver.
                       −2
          1
a) 13 ⋅   =
     8

           13 
            1
   7 −2 ⋅  
            7
b)               =
       3
         7 −5

         a⋅ a
c)        3
                   =
              a

     16 0.25 ⋅ 3 2
d)                 =
          −4



LOGARITMACIÓN

    Dada la siguiente potencia x3 = 8, ya hemos visto la operación de radicación que nos permite
calcular x como 3 8 . Ahora nos interesa resolver la ecuación 2x = 8, es decir a qué exponente debo
elevar el número 2 para obtener 8 como resultado. Para esto definimos otra operación inversa de la
potenciación, la logaritmación, de la siguiente manera:
                                     log b a = c si y sólo si bc = a, donde a, b ∈ R+, b ≠ 1..

De esta forma, en el ejemplo anterior, x = log 2 8 = 3.
Conjuntos Numéricos

Ejemplos:
    log 1
          3
              1
              9   = 2 pues       (1 )2 = 1
                                  3      9

    log 5 125 = −3 pues 5 −3 = 125
           1                    1

                                        1
    log10 10 =          1
                        2       pues 10 2 = 10
    log 6 1 = 0 pues 6 0 = 1


Actividad:
•   ¿Existe log 4 − 2 ? ¿Por qué?
    ..........................................................................................................................................................
•   ¿Por qué en la definición se aclara que la base b sea distinta de 1?
    ..........................................................................................................................................................

Observación: En la práctica hay dos bases de interés especial: 10 y e = 2,7182... El logaritmo en
base 10 de un número a se denota log a, es decir log10 a = log a, mientras que el logaritmo en base
e de a, llamado logaritmo natural o neperiano, se denota ln a, es decir log e a = ln a.

El logaritmo cumple con las siguientes propiedades, compruébelo con ejemplos:
    Para valores b, c, x, y, n que tengan sentido:
        log b ( x ⋅ y ) = log b x + log b y
               x
        log b = log b x − log b y
               y
        log b x n = n ⋅ log b x
                     log c x
        log b x =
                     log c b

Actividad:
Resolver:

1) log 4 5 + log 4
         4
                            4
                            5


2) log (10 . 100)2

3) ln 1 − 2 ln e .
      e



4) Sabiendo que log x =                5
                                       8     y log b x = 2 , calcule log b.
                                                         3
Conjuntos Numéricos


Relación de orden en R
    Hasta ahora hemos definido ciertas operaciones en los números reales y analizado sus
propiedades. En esta sección lo que haremos es establecer un orden entre dos números reales
cualesquiera.

     Dados dos números reales a y b, se tiene sólo uno de los siguientes casos:

     ♦ a < b (se lee “a es menor que b”, o “b es mayor que a”)
     ♦ b < a (se lee “b es menor que a”, o “a es mayor que b”)
     ♦ a = b (se lee “a es igual a b” o “b es igual a”)

Ejemplo: –8 < 1;              1
                              5   > 0,        2 < 3.

Observaciones:

♦ a < b y b > a son expresiones equivalentes.
♦ a ≤ b (se lee “a es menor o igual que b”) significa que a < b o bien a = b. Por ejemplo: 7 ≤ 9 y
  también 7 ≤ 7.

    Responder: ¿Es a < a? ¿Es a ≤ a? ¿Por qué?
    ..........................................................................................................................................................
    ¿Cómo ubicamos a los números reales en la recta numérica?
    Para ello debemos tener en cuenta que dados dos números reales el menor siempre deberá estar
ubicado a la izquierda del mayor. De esta manera:


                                           − 8                      –1           0                 3
                                                                                                   2


Una vez establecido un orden entre los números reales, podemos preguntarnos:
•   ¿Cuántos números naturales hay entre –5 y 7?
    ..........................................................................................................................................................
•   ¿Cuántos números enteros hay entre –5 y 7?
    ..........................................................................................................................................................
•   ¿Cuántos números racionales hay entre –5 y 7? ¿Y cuántos números reales?
    ..........................................................................................................................................................
     Como, dados 2 números naturales (enteros), existe una cantidad finita de números naturales
(enteros) entre ellos, decimos que el conjunto de los números naturales (enteros) es DISCRETO.
     Por otra parte, la propiedad que tienen los números racionales y reales de que entre dos de ellos
existan infinitos más se explica debido a que tanto Q como R son conjuntos DENSOS.
Conjuntos Numéricos

Intervalos de números reales
    DEFINICIÓN: A un subconjunto de la recta real le llamamos intervalo si contiene por lo menos
dos números y también todos los números reales entre dos de sus elementos.

Ejemplo: A = {x ∈ R: 6 < x < 8} es un intervalo.



Clasificación de intervalos:


   Se llama intervalo abierto de extremos a y b al conjunto de los x que están entre a y b, sin
   considerar los extremos a y b. Escribiremos (a, b) = {x ∈ R: a < x < b}. Gráficamente:

                                  (                    )
                                  a                    b
   Se llama intervalo cerrado de extremos a y b al conjunto de los x que están entre a y b,
   incluyendo los extremos a y b. Escribiremos [a, b] = {x ∈ R: a ≤ x ≤ b}. Gráficamente:

                                  [                    ]
                                  a                    b
   Se llama intervalo abierto a la izquierda al conjunto de los x tales que a < x ≤ b. Escribiremos
   (a, b] = {x ∈ R: a < x ≤ b}. Gráficamente:

                                  (                    ]
                                  a                    b
   Se llama intervalo abierto a la derecha al conjunto de los x tales que a ≤ x < b. Escribiremos
   [a, b) = {x ∈ R: a ≤ x < b}. Gráficamente:

                                  [                    )
                                  a                    b
   Llamaremos intervalos infinitos a los siguientes conjuntos de puntos:
   -   {x ∈ R: x > a} = (a, +∞)                    (
                                                   a
   -   {x ∈ R: x ≥ a} = [a, +∞)                    [
                                                   a
   -   {x ∈ R: x < a} = (–∞, a)                                     )
                                                                    a
   -   {x ∈ R: x ≤ a} = (–∞, a]                                     ]
                                                                    a
   -   R = (–∞, +∞)

Observación: A +∞ y –∞ no se los debe considerar como números; son solamente símbolos
convencionales que indican todos los números reales hacia la derecha o izquierda de un número a
fijo.
Conjuntos Numéricos

Ejemplo:

1) El conjunto A = {x ∈ R: x ≠ 0} es la unión de dos intervalos, o sea, A = (–∞, 0) ∩ (0, +∞).

2) Consideremos los siguientes conjuntos:
   A = {x ∈ R: –2 < x ≤ 5} = (–2, 5] y B = {x ∈ R: 0 ≤ x} = [0, +∞)

Gráficamente:

                                    (                   ]
                                   -2                   5
                                           [
                                           0
Podemos ver que A ∩ B = {x ∈ R: –2 < x ≤ 5 o 0 ≤ x} = {x ∈ R: –2 < x} = (–2, +∞).
También podemos observar que A ∪ B = {x ∈ R: –2 < x ≤ 5 y 0 ≤ x} = {x ∈ R: 0 ≤ x ≤ 5} = [0, 5].

Actividad:
Consideremos los siguientes intervalos: A = (–5, 0] y B = (2, 4).
Expresarlos utilizando desigualdades, representarlos en la recta numérica y hallar:
       i) A ∩ B       ii) A ∪ B         iii) A’      iv) B ∩ ∅       v) A ∪ ∅
Conjuntos Numéricos


                       TRABAJO PRÁCTICO – NÚMEROS REALES
1) Completar con los símbolos ∈, ∉, ⊂ o ⊄ según corresponda.
   4 ........ N                                       2 ........ Q
                                                      1

     2 ........ I                                     R ........ R
                                                        )
   N ........ R                                       0.3 ........ I
   {–2, π , 0}........ Z                              N ........Z ........Q........R

2) Dado el conjunto S = {12, 5 , 7 , − 38, 571, π , 0.6} , encontrar:
                              3

   a) S ∪ N                                                  c) S ∪ I
   b) S ∪ Q                                                  d) S ∪ Z
   Representar el conjunto S en la recta numérica.

3) Decir si las siguientes afirmaciones son verdaderas o falsas:
   a) La suma de dos números naturales es siempre un número natural.
   b) La diferencia de dos números naturales es siempre un número natural.
   c) El cuadrado de un número racional negativo es un racional positivo.
   d) Existen infinitos números racionales comprendidos entre 0 y ½.
   e) El conjunto de los números naturales carece de primer elemento.

4) Responde:
    a) Si m = 14, ¿cómo pueden representarse los números 13, 15 y 16 en términos de m?
    b) Sea n un número par cualquiera, ¿cuál es el siguiente entero par? ¿Cuál el anterior?
    c) Si x representa cualquier entero impar, ¿cuál es el siguiente entero impar? ¿Cuál el anterior?
    d) Si x es cualquier entero par, ¿x + 1 es un entero par o impar? ¿Y x – 1?
    e) Si x es cualquier entero, ¿2x es par o impar? ¿Y 2x – 1? ¿Y 2x + 1?

5) Indique si las siguientes afirmaciones son verdaderas o falsas. Justificar la respuesta proponiendo
un contraejemplo, en caso de ser falsa, o enunciando las propiedades aplicadas, en caso de ser
verdadera.
    a) si a = –2 y b = 0, entonces a : b = 0              h) a – (b + c) = a – b + c
    b) (–a) . (–b) = –(a . b)                             i) (b + c) : a = b : a + c, con a ≠ 0
    c) el cociente entre un número y su                   j) para todo a ∈ R, a : a −1 = 1
        opuesto es igual a –1                             k) para todo a ∈ R, (a −1 ) −1 = a
    d) a + (–b + c) = a – b + c
                                                          l) a . (–b) = a . b
    e) el inverso de 2 es − 1 .
                              2                           m) a . (b – c) = a . b – a . c
    f) a : (b + c) = a : b + a : c, siendo b + c          n) la ecuación 2x = 1 tiene solución en Z
        ≠ 0, b ≠ 0 y c ≠ 0                                o) –(–a) = a
    g) b – [–c . (2 – 1) – 1] = b

6) Calcular:
   a) (5 + 3)2 = ..........   52 + 32 = ..........
                  4                4
      2                      2
   b)  − 1 = ..........        − 1 = ..........
                                       4

      3                      3
          3              –2
   c) (–2) = .......... 3 = ..........
   d)
              2
        (−2) 3 = ..........    [(−2) ] 3 2
                                             = ..........
Conjuntos Numéricos

7) Completar con = o ≠ y mencionar qué propiedades se cumplen o no se cumplen:
   a) (a + b)n .......... an + bn                     d) ( p ⋅ q ) a .......... p a ⋅ q a
       b            a
   b) a .......... b
         c
   c) a b .......... (a b ) c

8) Resolver aplicando propiedades de la potenciación:
                               2                                                                                      5
      1             2                                                                       2 ⋅ (3b −2 d )(bd 3 ) 
   a)  +              =                                                                 d)                         =
      2             3                                                                            12b 3 d −1       
   b)
        (3   2
                 ⋅ 23      )
                           3

                                   =                                                      e) 0.2
                                                                                                   −
                                                                                                       5
                                                                                                       2
                                                                                                                3
                                                                                                             −1 4
                                                                                                           : (5 ) =
                 66
                2                             5
            −                             −
                       −1
   c) a         3
                    ⋅a ⋅a⋅a                   6
                                                  =

9) En los siguientes cálculos se han cometido errores al aplicar las propiedades. Se propone indicar
cuáles son y corregirlos.
   a)   (2 ⋅ 2 ⋅ 2 ) = (2 ) = 2
             2        −3           5 2                 4 2      16


   b)   (5 ) : (5 ) = 5 : 5 = 5 = 1
            2 4                −3 2               6        −6    0


        7 ⋅ (7 )
            4          2 6
                    7 ⋅7                  4           12
                           = (− 7 ) = 49
                                                                     2
   c)             =
          (7 )      9 2
                     7                        18


   d)   (7 ⋅ 2 − 14)0 + 5 0 = 2
10) Aplicando las propiedades de potenciación demostrar que:
   a) (a + 2) − (a − 2 ) − 4 ⋅ (2a + 1) = −4
             2          2


   b)   (3 ⋅ 3 + 3 ) : (3 ) = 8
                    n +1           n+2 3               n+ 2 3


   c)   (10 ⋅ 2 ) : (2 ) = 1000
                      n +1 3              n +1 3


   d)   2 ⋅ (2 ⋅ 2 + 2 ) = 32
            2−n                    n +1           n+2




11) Determinar si han sido resueltos en forma correcta los siguientes ejercicios y justificar:
   a)   4⋅9 = 4 ⋅ 9 = 2⋅3 = 6                         e) 9 + 16 = 25 = 5
   b) − 4 ⋅ − 9 = (−4) ⋅ (−9) = 36 = 6                                      − 64 3
                                                      f) 3 − 64 : 3 − 8 = 3      = 8=2
   c)   (−2) ⋅ (−8) = 16 = 4                                                 −8
   d)       9 + 16 = 3 + 4 = 7

12) Indicar si las siguientes afirmaciones son verdaderas o falsas:
a) Si x es un número real, entonces                                      x 2 = x.       c) Si x es un número real, entonces   3
                                                                                                                                  x 3 = x.
b) Si x es un número real, entonces                                      x2 = x.        d) Si x es un número real, entonces   3
                                                                                                                                  x3 = x .

13) Unir con flechas las expresiones iguales, siendo a, b ∈ R+ :
    •   3
                64a 5 ⋅ 216b 9                                                      3 ab
                400
    •                                                                               4
                 25
Conjuntos Numéricos


         •       4
                     a 9b 7c8                                               24ab 3     3
                                                                                           a2
                 5   b 2 1 16 2 2
         • 5 ab − a 4 2 − 4   a b                                           a 2 bc 2   4
                                                                                           ab 3
                 3   a   2 81

14) Calcular:
a) 16 0.25 =                                                    1
                                                                                                                  ⋅ ⋅( −1) 
                                                                                                                  11            −2
                                                           
                                                          2 3
                                                                                                             32 3 
b) 16 −0.25 =                                       5 ⋅ 53                                            f)                        =
                                                                                                          5            
                                                 d)  −1  =
                 1

     2⋅2         3                                                                                                         
c)                   =                                 5
             1                                                      2
         2   6                                       1      − 
                                                              1
                                                 e)  3 2 − 3 2  =
                                                               
                                                               

15) Expresar como potencia de exponente fraccionario y calcular:
a) 3 ⋅ 4 27 =                          5⋅3 3
                                 c)              =
b)
     (
     2⋅ 2
            4

              =
                         )            125 ⋅ 27
      5
        8                           a⋅ a
                                 d) 3       =
                                        a

                                             1     1
                                a−b
16) Demostrar que:               1     1
                                           = a +b .
                                             2     2


                                a −b
                                 2     2




17) Calcular:
   a) log 1000 =                                       e) log 5 1000 − log 5 40 =                                  log 2 128 − 3 log 2 32
              1                                                                                             g)                              =
   b) log11     =                                                                                                 log 6 216 6 + log 5 625 3
            121                                                             1                   1

   c) log 1 =                                                3 ⋅ log 1        − 4 ⋅ (log 3 27 ) 2
                                                                            8
   d) log 3 10 =                                       f)               2
                                                                                                    =
                                                                log 2 3 4 + log 81 9

18) Resuelva las siguientes ecuaciones:
   a) log 2 x + log 2 5 = 6
     b) 5 3 x ⋅ 2 x = 250

19) Exprese el subconjunto de los números reales que satisfacen las condiciones siguientes como un
    intervalo o unión de intervalos:
   a) x ≥ 4 y x < 5                                    d) x ≠ –1
   b) x < 2 y x ≥ –3                                   e) x > –2
   c) x > –5 o x < –6                                  f) x < 2 o x ≥ 4

20) a) Determine el conjunto de los números naturales que satisfacen –3 ≤ x < 7.

     b) Determine el conjunto de los números enteros que satisfacen - π ≤ x ≤ e.

2 conjuntos numericos

  • 1.
    Conjuntos Numéricos CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad de elementos (existen siete notas musicales, 9 planetas, etc.), para establecer un orden entre ciertas cosas (el tercer mes del año, el cuarto hijo, etc.), para establecer medidas (3,2 metros, 5,7 kg, –4ºC, etc.), etc. Números naturales Al conjunto de los números que sirven para contar {1, 2, 3, 4, ...} los llamaremos números naturales y lo notaremos con la letra N. Estos números están ordenados, lo que nos permite representarlos sobre una recta del siguiente modo: 1 2 3 4 5 6 Como podemos observar en la recta numérica, el conjunto N tiene primer elemento, el 1; y ¿cuál es su último elemento? ................................................................................................................. Actividad: • ¿Puedes afirmar que todo número natural tiene un antecesor? ¿Por qué? Ejemplifica. .......................................................................................................................................................... • ¿Puedes afirmar que todo número natural tiene un sucesor? ¿Por qué? Ejemplifica. .......................................................................................................................................................... Como ya sabemos, sobre este conjunto de números se pueden definir ciertas operaciones como suma, resta, multiplicación y división. Observa lo siguiente: 2+5=7 La suma de dos números naturales da siempre como 5+2=7 resultado un número natural 3 + 20 = 23 2 . 7 = 14 La multiplicación de dos números naturales da siempre 5 . 8 = 40 como resultado un número natural. 10 . 3 = 30 8–3=5 20 – 7 = 13 La resta de dos números naturales no siempre da un 7 – 20 = ? número natural. 5–5=?
  • 2.
    Conjuntos Numéricos Números Enteros Para solucionar el problema de la resta, se crean los números negativos –1, –2, –3, etc. como opuestos de los números naturales. Además se incorpora el cero para dar solución a la resta de un número consigo mismo. El conjunto de los números naturales, sus opuestos negativos y el cero constituyen el conjunto de los números enteros, que se indica con la letra Z. Notemos que N ⊆ Z. Su representación sobre la recta numérica es la siguiente: –2 –1 0 1 2 3 …es opuesto de… Veamos algunos ejemplos: El opuesto de 2 es –2. El opuesto de 5 es –5, es decir –(–5) = 5. El opuesto de 0 es ............... De esta manera, podemos redefinir la resta de dos números naturales como la suma de dos enteros. Ejemplo: Calcular 1) 23 + (–12) = ? Solución: sumar –12 es lo mismo que restar su opuesto, o sea 12, es decir: 23 + (–12) = 23 – 12 = 11. 2) 9 – (–20) = ? Solución: restar –20 es lo mismo que sumar su opuesto, o sea 20, por lo tanto: 9 – (–20) = 9 + 20 = 29. Actividad: Completar: • La suma de dos enteros da siempre un número ............................... Dar dos ejemplos. • La multiplicación de dos números enteros da siempre un número ............................... Dar ejemplos. Veamos qué ocurre con la división. Observemos lo siguiente: 4 : 2 = 2 ya que 2 . 2 = 4 6 : 3 = 2 ya que 2 . 3 = 6 En general a : b = c, b ≠ 0 si se verifica que b . c = a. ¿Cuál será el resultado de 4 : 3 ? Debemos pensar en un número entero tal que al multiplicarlo por 3 dé como resultado 4. ¿Qué número entero cumple con esta condición? ......................................
  • 3.
    Conjuntos Numéricos Números Racionales Para resolver esta situación habrá que introducir otro conjunto numérico, el conjunto de los números racionales al que denotaremos con la letra Q. Un número racional es el cociente de dos m números enteros m y n, siendo n ≠ 0 . Por lo tanto: Q = { , m, n ∈ Z, n ≠ 0}, donde m es el n numerador y n el denominador. Notemos que Z ⊆ Q. ¿Por qué? - ¿Por qué en la definición se excluye al 0 en el denominador? ......................................................................................................................................................... Representemos en la recta numérica algunos números racionales: −1 3 0 2 3 1 4 3 Veamos algunos ejemplos de números racionales: 5 es racional pues 7 es entero y 5 es entero. 7 − 4 es racional pues –4 es entero y 3 es entero. 3 4 es racional pues 4 1 = 4 y 4 y 1 son enteros. 0,3 es la expresión decimal de un número racional porque 0,3 = 10 y 3 y 10 son enteros. 3 ) ) 5 0,5 es la expresión decimal de un número racional porque 0,5 = 9 y 5 y 9 son enteros. ) ) 0,15 es la expresión decimal de un número racional porque 0,15 = 15−1 = 14 y 14 y 90 son 90 90 enteros. En definitiva todo número racional puede escribirse como una expresión decimal cuya parte decimal puede ser periódica, pura o mixta, con un número finito de cifras, o puede tener un número finito de cifras. Así, por ejemplo: 37 33 = 1,121212 K = 1,12 es una expresión decimal periódica pura. ) 32 90 = 0,355K = 0,35 es una expresión decimal periódica mixta. 9 20 = 0,45 es una expresión decimal finita. Definimos el inverso de un número a ≠ 0 como el número racional que multiplicado por a nos 1 dé 1, es decir: a ⋅ = 1 . a
  • 4.
    Conjuntos Numéricos Ejemplos: El inverso de a = 2 5 es 1 a = 5 2 pues 2 5 ⋅ 5 = 1. 2 El inverso de a = − 27 es 2 1 a = − 27 pues − 27 ⋅ (− 27 ) = 1 . 2 2 2 De esta manera, redefinimos la división de dos enteros como la multiplicación de dos racionales. Además, podemos extender esta idea a la división de dos racionales, definiéndola como la multiplicación del primero por el inverso del segundo. Ejemplos: 2 : 5 = 2 . 1 = 5 es decir a “2 dividido 5” lo pensamos como la multiplicación de los números 5 2 racionales 2 y 1 . 5 3: 1 2 = 3 . 2 = 6 es decir a “3 dividido 1 2 ” lo pensamos como la multiplicación entre 3 y el inverso de 1 2 , que es 2. Actividad: Decir si las siguientes afirmaciones son verdaderas o falsas. Justificar. 1) 5 = 3 ⋅ 1 = 1 + 1 + 1 3 5 5 5 5 2) −2 = −2 ⋅ 1 −3 3 3) La quinta parte de 1 7 es 1 5 ⋅1 = 7 1 35 . 4) − 8 = −83 = −38 3 • Como vimos anteriormente, el sucesor inmediato de un número natural n es n + 1, por ejemplo el sucesor inmediato de 5 es 5 + 1 = 6. Si consideramos el conjunto de los racionales, ¿podrías decir cuál es el sucesor inmediato de 1 ? 2 .......................................................................................................................................................... • ¿Podrías determinar cuántos números racionales hay entre 1 5 y 2? .......................................................................................................................................................... Observemos que entre dos números racionales, a y b, a < b, existe el racional (a + b) / 2 que verifica: a < (a + b) / 2 < b Conclusión: si existe un racional entre los racionales a y b, existen infinitos. Esta propiedad se expresa diciendo que el conjunto Q es un conjunto denso, en contraposición a los naturales N y los enteros Z, que son conjuntos discretos.
  • 5.
    Conjuntos Numéricos Números Reales NÚMEROS IRRACIONALES ¿Puedes representar a todos los números que conoces mediante una expresión decimal periódica o limitada? Para contestar a esta pregunta, pensá en un número muy conocido, el número π . ¿Cuál es el valor de π ? Si te fijás en una calculadora con 8 dígitos el valor de π que te dará es el siguiente: 3,141593; si te fijás en una calculadora con 10 dígitos el valor de π que te dará es 3,14159264. En algún libro de matemática se puede encontrar, por ejemplo: π = 3,14159265358979323846. ¿Será π un número racional? ¿Por qué? ................................................................................................................................................................ A los números reales cuya expresión decimal no es periódica ni limitada los llamaremos números irracionales, conjunto que denotaremos con I. Algunos ejemplos: π , 2, − 5, e = 2,7182.... Observemos que la suma de dos números irracionales no siempre da un número irracional y que el producto de dos números irracionales no siempre da un número irracional. Buscar ejemplos en donde se verifiquen dichas afirmaciones. ................................................................................................................................................................ Observar que si n ∈ Z, entonces n. 2 y n + 2 son también irracionales. Se puede generalizar para r ∈ Q y t ∈ I, r + t y r . t son números irracionales. Obviamente I también es un conjunto infinito de números. El conjunto formado por los racionales y los irracionales se llama conjunto de números reales, y se designa por R. Notemos que por esta definición Q ⊂ R. Los números reales llenan por completo la recta numérica, por eso se la llama recta real. Dado un origen y una unidad, a cada punto de la recta le corresponde un número real y, a cada número real, le corresponde un punto de la recta. Resumiendo Naturales {0} Enteros Opuestos de los naturales Racionales Fraccionarios Reales Irracionales
  • 6.
    Conjuntos Numéricos Propiedades delas operaciones en R SUMA Y PRODUCTO Las operaciones de suma y producto definidas en R cumplen ciertas propiedades. Veamos algunas de ellas: Sean a, b y c números reales cualesquiera. PROPIEDADES SUMA PRODUCTO Ley de cierre a+b∈R a.b∈R Asociativa a + (b + c) = (a + b) + c * a . (b . c) = (a . b) . c * Conmutativa a+b=b+a a.b=b.a Es el 0: Es el 1: Existencia de elemento neutro a+0=0+a=a a.1=1.a=a Es el opuesto aditivo: Es el inverso multiplicativo: Existencia de inverso a ⋅ 1 = 1 ⋅ a = 1 si a ≠ 0 a + (–a) = (–a) + a = 0 a a Distributiva del producto con (a + b) . c = a . c + b . c respecto a la suma * Observación: La propiedad asociativa nos permite prescindir del uso del paréntesis y escribir simplemente a + b + c ó a . b . c. Actividad: 1) Compruebe con ejemplos las propiedades anteriormente mencionadas. .......................................................................................................................................................... .......................................................................................................................................................... 2) Decir si las siguientes afirmaciones son verdaderas o falsas. En caso de ser verdaderas, mencionar las propiedades utilizadas. a) 1 ⋅ (5 + 4) = 4 + 5 3 3 3 b) − 2 ⋅ ( 8 − 5) = (−2) ⋅ 8 − 5 9 9 c) 2+c=c+ 2 d) 2 + [8 . (–9)] = (2 + 8) . [2 + (–9)] e) 1 a ⋅ a = 1 para todo a real. 5 f) Existe un número real x para el cual + x = 0. π
  • 7.
    Conjuntos Numéricos POTENCIACIÓN Si a es un número real y n es un número natural, entonces decimos que an se obtiene multiplicando n veces el factor a, es decir: an = a . a . a … a n veces Ejemplo: a6 = a . a . a . a . a . a Decimos entonces que an es una potencia que tiene a como base y n como exponente. Extendemos la definición para exponentes enteros definiendo, para a ≠ 0: a0 = 1 a–n = (a–1)n con n ∈ N Actividad: Decir si los siguientes enunciados son verdaderos o falsos: a) 28 = 22 . 26 = 25 . 23 g) -32 = (-3)2 b) (8 + 3)2 = 82 + 32 h) 54 = 45 c) (8 . 3)2 = 82 . 32 −2 5 5 −2 3 2 d) (2 ) = 2 5 i)  1    = 2 ( 1 )−2 2 e) (23)2 = 26 f) 5–2 = –10 La actividad anterior ejemplifica algunas de las siguientes propiedades de la potencia: Sean a, b números reales, m, n números enteros, excluyendo los casos 00. PROPIEDAD POTENCIA Distributiva con respecto al producto (a . b)m = am . bm m a am Distributiva con respecto a la división   = m b b Producto de potencias de igual base an . am = an + m an División de potencias de igual base m = a n−m a Potencia de potencia (a ) n m = a n⋅m Observación: Como se vio en el ejercicio anterior la potencia no es distributiva con respecto a la suma ni a la resta. • ¿Qué sucede si a un número negativo lo elevamos a una potencia par? ¿Cuál es el signo del resultado? ..........................................................................................................................................................
  • 8.
    Conjuntos Numéricos • ¿Existe alguna potencia de 5 que dé como resultado un número negativo? ¿Por qué? .......................................................................................................................................................... RADICACIÓN La radicación es una operación inversa de la potenciación. Se llama raíz enésima de un número a, al número b tal que la potencia enésima de b es igual a a. En símbolos: n a = b ⇔ b n = a , con n ∈ N.. n es el índice de la raíz y a es el radicando. Ejemplos: 4 16 = 2 ya que 24 = 16. 3 − 8 = −2 ya que (–2)3 = –8. − 16 = ? Se presenta el problema ante una raíz de índice par de un número negativo, pues ningún número real elevado a una potencia par da como resultado un número negativo. Debemos advertir que las raíces de índice par, cuando tienen solución, tiene dos soluciones y se trata de dos números opuestos. Por ejemplo 64 = ± 8 pues 82 = (–8)2 = 64. En lo sucesivo, salvo aclaración expresa, se indicará solamente la solución positiva, llamada solución aritmética. Veamos ahora las propiedades de la radicación, las cuales son análogas a las de la potenciación. Sean a, b números reales positivos y n, m números naturales: PROPIEDADES RADICACIÓN Distributiva con respecto al producto n a.b = n a .n b n a a Distributiva con respecto a la división n = b n b Raíz de raíz n m a = n.m a Observaciones: • Al igual que con la potenciación, la radicación no es distributiva con respecto a la suma ni a la resta. Proponga contraejemplos que muestren que esta afirmación es verdadera. .......................................................................................................................................................... • ¿Qué sucede si aplicamos la propiedad distributiva al siguiente radical: (−4).(−16) ? ..........................................................................................................................................................
  • 9.
    Conjuntos Numéricos SIMPLIFICACIÓN DE RADICALES Efectúa las siguientes operaciones: • 4 28 y 2 4 y 22: ............................................................................................................................ • 10 3 20 y 3 4 y 32: ........................................................................................................................... • (−2) 6 y (–2)3: ............................................................................................................................... Observemos que se puede dividir el índice de la raíz y el exponente del radicando por un mismo número sin alterar el resultado. A esta propiedad la llamaremos simplificación de radicales. • ¿Es posible simplificar radicales en cualquier caso? ......................................................................................................................................................... Si el índice de la raíz es impar se puede simplificar siempre sin tener en cuenta el signo de la base del radicando. Por ejemplo: 5 (−2) 5 = −2 (dividimos índice y exponente por 5) 21 3 2 2 7   =   (dividimos índice y exponente por 3) 3 3 Si el índice de la raíz es par, sólo se puede simplificar si la base es positiva, ya que si la base fuera negativa podría presentarse el siguiente caso: 4 (−2) 4 = 4 16 = 2 4 (−2) 4 = −2 (si dividiéramos índice y exponente en 4) Observamos que los resultados no coinciden. Por lo tanto: Cuando el índice es par y el radicando es negativo no se puede simplificar... Notemos que la única diferencia en el resultado es el signo y que las raíces de índice par dan como resultado siempre un número positivo. Podemos entonces escribir: 4 ( − 2) 4 = − 2 = 2 , donde el valor absoluto a de un número a se define de la siguiente manera:  a si a ≥ 0 a = − a si a < 0 CONCLUSIÓN: Si n es impar, n an = a . Si n es par, n an = a .
  • 10.
    Conjuntos Numéricos Actividad: 1) Descubralos dos errores cometidos en el siguiente desarrollo: −2 1  3 4 28 ⋅ + − 2 ⋅ − 8 + −  = 8 (−2) 8  5 2 1  5 =2 ⋅ 2 + (−2)(−8) +  −  = −2  3 4 25 25 43 = + 16 + = −2 + 4 + = −2 9 9 9 2) ¿Podría decir en qué casos vale la igualdad: a2 = ( a )2 ? .......................................................................................................................................................... Racionalización de denominadores Sabemos efectuar divisiones cuando el divisor es un número racional, pero ¿qué sucede si 3 quisiéramos calcular ? ¿Cómo efectuaríamos dicha operación? 2 Podríamos solucionar este inconveniente si encontráramos una fracción equivalente a la anterior cuyo denominador fuera un número racional. Al procedimiento que nos permite hallar tal fracción equivalente se lo denomina racionalización de denominadores. Veamos algunos ejemplos: 17 17 21 17 ⋅ 21 357 ♦ = ⋅ = = 21 21 21 212 21 5 5 7 36 ⋅ 5 4 5 ⋅ 7 36 ⋅ 5 4 5 ⋅ 7 36 ⋅ 5 4 5 ⋅ 7 36 ⋅ 5 4 7 36 ⋅ 5 4 ♦ = ⋅ = = = = 7 3 ⋅ 53 7 3 ⋅ 53 7 36 ⋅ 5 4 7 3 ⋅ 53 ⋅ 36 ⋅ 5 4 7 37 ⋅ 5 7 3⋅5 3 a En ambos casos, para racionalizar una expresión del tipo con m < n y b ∈ R+, lo que se n m b n n−m hizo fue multiplicar y dividir dicha expresión por b . De esto resulta una expresión cuyo n−m denominador es b ⋅ b n m = b , y así podemos simplificar índice y exponente para eliminar la n n raíz del denominador. Actividad: ¿Cómo racionalizaría los denominadores de las siguientes expresiones? −8 • = 2 ⋅5 1 3 7 • = 53 ⋅ 34
  • 11.
    Conjuntos Numéricos Potencias deexponente fraccionario Observemos las siguientes analogías: 6 ♦ a 3 = a2 y 3 a6 = a2 15 ♦ a 5 = a3 y 5 a 15 = a 3 Estos ejemplos nos inducen a adoptar la siguiente definición para el caso de potencias de exponente fraccionario: n a m = m a n , donde a ∈ R+, n ∈ Z y m ∈ N • ¿Cuándo será posible calcular una potencia de exponente fraccionario de base negativa? .......................................................................................................................................................... Actividad: Llevar a exponente fraccionario y resolver. −2 1 a) 13 ⋅   = 8  13  1 7 −2 ⋅   7 b) = 3 7 −5 a⋅ a c) 3 = a 16 0.25 ⋅ 3 2 d) = −4 LOGARITMACIÓN Dada la siguiente potencia x3 = 8, ya hemos visto la operación de radicación que nos permite calcular x como 3 8 . Ahora nos interesa resolver la ecuación 2x = 8, es decir a qué exponente debo elevar el número 2 para obtener 8 como resultado. Para esto definimos otra operación inversa de la potenciación, la logaritmación, de la siguiente manera: log b a = c si y sólo si bc = a, donde a, b ∈ R+, b ≠ 1.. De esta forma, en el ejemplo anterior, x = log 2 8 = 3.
  • 12.
    Conjuntos Numéricos Ejemplos: log 1 3 1 9 = 2 pues (1 )2 = 1 3 9 log 5 125 = −3 pues 5 −3 = 125 1 1 1 log10 10 = 1 2 pues 10 2 = 10 log 6 1 = 0 pues 6 0 = 1 Actividad: • ¿Existe log 4 − 2 ? ¿Por qué? .......................................................................................................................................................... • ¿Por qué en la definición se aclara que la base b sea distinta de 1? .......................................................................................................................................................... Observación: En la práctica hay dos bases de interés especial: 10 y e = 2,7182... El logaritmo en base 10 de un número a se denota log a, es decir log10 a = log a, mientras que el logaritmo en base e de a, llamado logaritmo natural o neperiano, se denota ln a, es decir log e a = ln a. El logaritmo cumple con las siguientes propiedades, compruébelo con ejemplos: Para valores b, c, x, y, n que tengan sentido: log b ( x ⋅ y ) = log b x + log b y x log b = log b x − log b y y log b x n = n ⋅ log b x log c x log b x = log c b Actividad: Resolver: 1) log 4 5 + log 4 4 4 5 2) log (10 . 100)2 3) ln 1 − 2 ln e . e 4) Sabiendo que log x = 5 8 y log b x = 2 , calcule log b. 3
  • 13.
    Conjuntos Numéricos Relación deorden en R Hasta ahora hemos definido ciertas operaciones en los números reales y analizado sus propiedades. En esta sección lo que haremos es establecer un orden entre dos números reales cualesquiera. Dados dos números reales a y b, se tiene sólo uno de los siguientes casos: ♦ a < b (se lee “a es menor que b”, o “b es mayor que a”) ♦ b < a (se lee “b es menor que a”, o “a es mayor que b”) ♦ a = b (se lee “a es igual a b” o “b es igual a”) Ejemplo: –8 < 1; 1 5 > 0, 2 < 3. Observaciones: ♦ a < b y b > a son expresiones equivalentes. ♦ a ≤ b (se lee “a es menor o igual que b”) significa que a < b o bien a = b. Por ejemplo: 7 ≤ 9 y también 7 ≤ 7. Responder: ¿Es a < a? ¿Es a ≤ a? ¿Por qué? .......................................................................................................................................................... ¿Cómo ubicamos a los números reales en la recta numérica? Para ello debemos tener en cuenta que dados dos números reales el menor siempre deberá estar ubicado a la izquierda del mayor. De esta manera: − 8 –1 0 3 2 Una vez establecido un orden entre los números reales, podemos preguntarnos: • ¿Cuántos números naturales hay entre –5 y 7? .......................................................................................................................................................... • ¿Cuántos números enteros hay entre –5 y 7? .......................................................................................................................................................... • ¿Cuántos números racionales hay entre –5 y 7? ¿Y cuántos números reales? .......................................................................................................................................................... Como, dados 2 números naturales (enteros), existe una cantidad finita de números naturales (enteros) entre ellos, decimos que el conjunto de los números naturales (enteros) es DISCRETO. Por otra parte, la propiedad que tienen los números racionales y reales de que entre dos de ellos existan infinitos más se explica debido a que tanto Q como R son conjuntos DENSOS.
  • 14.
    Conjuntos Numéricos Intervalos denúmeros reales DEFINICIÓN: A un subconjunto de la recta real le llamamos intervalo si contiene por lo menos dos números y también todos los números reales entre dos de sus elementos. Ejemplo: A = {x ∈ R: 6 < x < 8} es un intervalo. Clasificación de intervalos: Se llama intervalo abierto de extremos a y b al conjunto de los x que están entre a y b, sin considerar los extremos a y b. Escribiremos (a, b) = {x ∈ R: a < x < b}. Gráficamente: ( ) a b Se llama intervalo cerrado de extremos a y b al conjunto de los x que están entre a y b, incluyendo los extremos a y b. Escribiremos [a, b] = {x ∈ R: a ≤ x ≤ b}. Gráficamente: [ ] a b Se llama intervalo abierto a la izquierda al conjunto de los x tales que a < x ≤ b. Escribiremos (a, b] = {x ∈ R: a < x ≤ b}. Gráficamente: ( ] a b Se llama intervalo abierto a la derecha al conjunto de los x tales que a ≤ x < b. Escribiremos [a, b) = {x ∈ R: a ≤ x < b}. Gráficamente: [ ) a b Llamaremos intervalos infinitos a los siguientes conjuntos de puntos: - {x ∈ R: x > a} = (a, +∞) ( a - {x ∈ R: x ≥ a} = [a, +∞) [ a - {x ∈ R: x < a} = (–∞, a) ) a - {x ∈ R: x ≤ a} = (–∞, a] ] a - R = (–∞, +∞) Observación: A +∞ y –∞ no se los debe considerar como números; son solamente símbolos convencionales que indican todos los números reales hacia la derecha o izquierda de un número a fijo.
  • 15.
    Conjuntos Numéricos Ejemplo: 1) Elconjunto A = {x ∈ R: x ≠ 0} es la unión de dos intervalos, o sea, A = (–∞, 0) ∩ (0, +∞). 2) Consideremos los siguientes conjuntos: A = {x ∈ R: –2 < x ≤ 5} = (–2, 5] y B = {x ∈ R: 0 ≤ x} = [0, +∞) Gráficamente: ( ] -2 5 [ 0 Podemos ver que A ∩ B = {x ∈ R: –2 < x ≤ 5 o 0 ≤ x} = {x ∈ R: –2 < x} = (–2, +∞). También podemos observar que A ∪ B = {x ∈ R: –2 < x ≤ 5 y 0 ≤ x} = {x ∈ R: 0 ≤ x ≤ 5} = [0, 5]. Actividad: Consideremos los siguientes intervalos: A = (–5, 0] y B = (2, 4). Expresarlos utilizando desigualdades, representarlos en la recta numérica y hallar: i) A ∩ B ii) A ∪ B iii) A’ iv) B ∩ ∅ v) A ∪ ∅
  • 16.
    Conjuntos Numéricos TRABAJO PRÁCTICO – NÚMEROS REALES 1) Completar con los símbolos ∈, ∉, ⊂ o ⊄ según corresponda. 4 ........ N 2 ........ Q 1 2 ........ I R ........ R ) N ........ R 0.3 ........ I {–2, π , 0}........ Z N ........Z ........Q........R 2) Dado el conjunto S = {12, 5 , 7 , − 38, 571, π , 0.6} , encontrar: 3 a) S ∪ N c) S ∪ I b) S ∪ Q d) S ∪ Z Representar el conjunto S en la recta numérica. 3) Decir si las siguientes afirmaciones son verdaderas o falsas: a) La suma de dos números naturales es siempre un número natural. b) La diferencia de dos números naturales es siempre un número natural. c) El cuadrado de un número racional negativo es un racional positivo. d) Existen infinitos números racionales comprendidos entre 0 y ½. e) El conjunto de los números naturales carece de primer elemento. 4) Responde: a) Si m = 14, ¿cómo pueden representarse los números 13, 15 y 16 en términos de m? b) Sea n un número par cualquiera, ¿cuál es el siguiente entero par? ¿Cuál el anterior? c) Si x representa cualquier entero impar, ¿cuál es el siguiente entero impar? ¿Cuál el anterior? d) Si x es cualquier entero par, ¿x + 1 es un entero par o impar? ¿Y x – 1? e) Si x es cualquier entero, ¿2x es par o impar? ¿Y 2x – 1? ¿Y 2x + 1? 5) Indique si las siguientes afirmaciones son verdaderas o falsas. Justificar la respuesta proponiendo un contraejemplo, en caso de ser falsa, o enunciando las propiedades aplicadas, en caso de ser verdadera. a) si a = –2 y b = 0, entonces a : b = 0 h) a – (b + c) = a – b + c b) (–a) . (–b) = –(a . b) i) (b + c) : a = b : a + c, con a ≠ 0 c) el cociente entre un número y su j) para todo a ∈ R, a : a −1 = 1 opuesto es igual a –1 k) para todo a ∈ R, (a −1 ) −1 = a d) a + (–b + c) = a – b + c l) a . (–b) = a . b e) el inverso de 2 es − 1 . 2 m) a . (b – c) = a . b – a . c f) a : (b + c) = a : b + a : c, siendo b + c n) la ecuación 2x = 1 tiene solución en Z ≠ 0, b ≠ 0 y c ≠ 0 o) –(–a) = a g) b – [–c . (2 – 1) – 1] = b 6) Calcular: a) (5 + 3)2 = .......... 52 + 32 = .......... 4 4 2  2 b)  − 1 = ..........   − 1 = .......... 4 3  3 3 –2 c) (–2) = .......... 3 = .......... d) 2 (−2) 3 = .......... [(−2) ] 3 2 = ..........
  • 17.
    Conjuntos Numéricos 7) Completarcon = o ≠ y mencionar qué propiedades se cumplen o no se cumplen: a) (a + b)n .......... an + bn d) ( p ⋅ q ) a .......... p a ⋅ q a b a b) a .......... b c c) a b .......... (a b ) c 8) Resolver aplicando propiedades de la potenciación: 2 5 1 2  2 ⋅ (3b −2 d )(bd 3 )  a)  +  = d)   = 2 3  12b 3 d −1  b) (3 2 ⋅ 23 ) 3 = e) 0.2 − 5 2 3 −1 4 : (5 ) = 66 2 5 − − −1 c) a 3 ⋅a ⋅a⋅a 6 = 9) En los siguientes cálculos se han cometido errores al aplicar las propiedades. Se propone indicar cuáles son y corregirlos. a) (2 ⋅ 2 ⋅ 2 ) = (2 ) = 2 2 −3 5 2 4 2 16 b) (5 ) : (5 ) = 5 : 5 = 5 = 1 2 4 −3 2 6 −6 0 7 ⋅ (7 ) 4 2 6 7 ⋅7 4 12 = (− 7 ) = 49 2 c) = (7 ) 9 2 7 18 d) (7 ⋅ 2 − 14)0 + 5 0 = 2 10) Aplicando las propiedades de potenciación demostrar que: a) (a + 2) − (a − 2 ) − 4 ⋅ (2a + 1) = −4 2 2 b) (3 ⋅ 3 + 3 ) : (3 ) = 8 n +1 n+2 3 n+ 2 3 c) (10 ⋅ 2 ) : (2 ) = 1000 n +1 3 n +1 3 d) 2 ⋅ (2 ⋅ 2 + 2 ) = 32 2−n n +1 n+2 11) Determinar si han sido resueltos en forma correcta los siguientes ejercicios y justificar: a) 4⋅9 = 4 ⋅ 9 = 2⋅3 = 6 e) 9 + 16 = 25 = 5 b) − 4 ⋅ − 9 = (−4) ⋅ (−9) = 36 = 6 − 64 3 f) 3 − 64 : 3 − 8 = 3 = 8=2 c) (−2) ⋅ (−8) = 16 = 4 −8 d) 9 + 16 = 3 + 4 = 7 12) Indicar si las siguientes afirmaciones son verdaderas o falsas: a) Si x es un número real, entonces x 2 = x. c) Si x es un número real, entonces 3 x 3 = x. b) Si x es un número real, entonces x2 = x. d) Si x es un número real, entonces 3 x3 = x . 13) Unir con flechas las expresiones iguales, siendo a, b ∈ R+ : • 3 64a 5 ⋅ 216b 9 3 ab 400 • 4 25
  • 18.
    Conjuntos Numéricos • 4 a 9b 7c8 24ab 3 3 a2 5 b 2 1 16 2 2 • 5 ab − a 4 2 − 4 a b a 2 bc 2 4 ab 3 3 a 2 81 14) Calcular: a) 16 0.25 = 1  ⋅ ⋅( −1)  11 −2   2 3  32 3  b) 16 −0.25 = 5 ⋅ 53  f)   =    5   d)  −1  = 1 2⋅2 3   c) = 5 1 2 2 6  1 −  1 e)  3 2 − 3 2  =     15) Expresar como potencia de exponente fraccionario y calcular: a) 3 ⋅ 4 27 = 5⋅3 3 c) = b) ( 2⋅ 2 4 = ) 125 ⋅ 27 5 8 a⋅ a d) 3 = a 1 1 a−b 16) Demostrar que: 1 1 = a +b . 2 2 a −b 2 2 17) Calcular: a) log 1000 = e) log 5 1000 − log 5 40 = log 2 128 − 3 log 2 32 1 g) = b) log11 = log 6 216 6 + log 5 625 3 121 1 1 c) log 1 = 3 ⋅ log 1 − 4 ⋅ (log 3 27 ) 2 8 d) log 3 10 = f) 2 = log 2 3 4 + log 81 9 18) Resuelva las siguientes ecuaciones: a) log 2 x + log 2 5 = 6 b) 5 3 x ⋅ 2 x = 250 19) Exprese el subconjunto de los números reales que satisfacen las condiciones siguientes como un intervalo o unión de intervalos: a) x ≥ 4 y x < 5 d) x ≠ –1 b) x < 2 y x ≥ –3 e) x > –2 c) x > –5 o x < –6 f) x < 2 o x ≥ 4 20) a) Determine el conjunto de los números naturales que satisfacen –3 ≤ x < 7. b) Determine el conjunto de los números enteros que satisfacen - π ≤ x ≤ e.