EJEMPLO DE BERNOULLI.
            1 EJEMPLO EXPLICADO.
La probabilidad de que obtengamos un 5 viene definida como la
probabilidad de que X sea igual a 1. Entonces ahora los datos que
obtuvimos se sustituyen en la fórmula.
                    P(x=1) = (1/5) 1 * (4/5) 0 = 1/5 = 0.2

La probabilidad de que NO obtengamos un 6 viene definida como la
probabilidad de que X sea igual a 0.
                    P(x=0) = (1/5)0 * (4/5)1 = 4/5 = 0.8

Este experimento nos dice que hay 0.2 de probabilidad de que salga el
numero 5 en el dado, y de que no salga ese numero existe la
probabilidad del 0.8.
Ejemplo binomial
   Se lanza una moneda cuatro veces. Calcular la
  probabilidad de que salgan más caras que cruces.
 B(4, 0.5) p = 0.5q = 0.5
explicación
 En el ejemplo anterior se calculan las probabilidades
  de que al tirar una moneda
  salgan mas caras que cruces y para eso
  La moneda es lanzada 4 veces de esos 4 tiros solo 1 cae
  cara y los otros 3 tiros cae cruz pero el resultado va a
  variar
 probabilidades:
1cara-3 cruces     2 caras- 2 cruces
3 caras- 1 cruz     2 cruces- 2 caras
Ejemplo 1.-Si un banco recibe en promedio 6 cheques sin fondo por
                        día, ¿ Cuales son las probabilidades reciba,
                         b)Cuatro cheque sin fondo en un día dado,
         c)B)reciba 10 cheques sin fondo en cualquiera de dos días
                                                       consecutivos

                            Variable discreta= cantidad de personas
                                       Intervalo continuo= una hora
                                                            Formula
 P(x): Probabilidad de que ocurran x éxitos
 : Número medio de sucesos esperados por unidad de
  tiempo.
 e: es la base de logaritmo natural cuyo valor es 2.718
 X: es la variable que nos denota el número de éxitos
  que se desea que ocurran
 A) x= Variable que nos define el número de cheques sin
    fondo que llega al banco en un día cualquiera;
   El primer paso es extraer los datos
   Tenemos que         o el promedio es igual a 6 cheques sin
    fondo por día
   e= 2.718
   x= 4 por que se pide la probabilidad de que lleguen cuatro
    cheques al día
Reemplazar valores en las formulas
   =6
 e= 2.718
 X= 4
 P(x=4,     = 6) =(6)^4(2.718)^-6
                         4!

                        =(1296)(0,00248)
                               24
                            =o,13192
    Es la probabilidad que representa de que lleguen cuatro
                     cheques sin fondo al día
 B)
 X= es la variable que nos define el número de cheques sin fondo que llegan en dos
  días consecutivos
        =6x2= 12 Cheques sin fondo en promedio que llegan al banco en dos días
  consecutivos

                                                          Lambda por t comprende
                                              al promedio del cheque a los dos días


 DATOS
      = 12 Cheques sin fondo por día

 e= 2.718
 X=10
 P(x=10,      =12 )= (129^10(2.718)^-12
                            10!
 =(6,191736*10^10)(0,000006151)
           3628800
 =0,104953 es la es la probalidad de que lleguen 10 cheques sin fondo en dos
  días consecutivos
Una variable aleatoria continua, X, sigue
   una distribución normal de media μ y desviación
   típica σ, y se designa por N(μ , σ ), si se cumplen las
   siguientes condiciones:
1. La variable puede tomar cualquier valor: (-∞, +∞)
2. La función de densidad, es la expresión en términos
   de ecuación matemática de la curva de Gauss:
   Curva de la distribución normal




   El campo de existencia es cualquier valor real, es decir, (-
    ∞, +∞).
   Es simétrica respecto a la media µ.
   Tiene un máximo en la media µ.
   Crece hasta la media µ y decrece a partir de ella.
   En los puntos µ − σ y µ + σ presenta puntos de inflexión.
   El eje de abscisas es una asíntota de la curva.
El área del recinto determinado por la función y el
   eje de abscisas es igual a la unidad.
Al ser simétrica respecto al eje que pasa por x = µ,
   deja un área igual a 0.5 a la izquierda y otra
   igual a 0.5 a la derecha.
La probabilidad equivale al área encerrada bajo
   la curva.
p(μ - σ < X ≤ μ + σ) = 0.6826 = 68.26 %
p(μ - 2σ < X ≤ μ + 2σ) = 0.954 = 95.4 %
p(μ - 3σ < X ≤ μ + 3σ) = 0.997 = 99.7 %
Parámetros




A continuación se sustituye la formula en
          base alas 8 horas.
Formula
Probabilidad
 Un fabricante de focos afirma que su producto durará un
  promedio de 500 horas de trabajo. Para conservar este
  promedio esta persona verifica 25 focos cada mes. Si el valor y
  calculado cae entre –t 0.05 y t 0.05, él se encuentra satisfecho
  con esta afirmación. ¿Qué conclusión deberá él sacar de una
  muestra de 25 focos cuya duración fue?:
AQUÍ SE ENCUENTRAN LAS MUESTRAS QUE SE TOMARON PARA
               RESOLLVER EL PROBLEMA.




    520     521    511     513     510   µ=500 h
    513     522    500     521     495    n=25
    496     488    500     502     512   Nc=90%
    510     510    475     505     521   X=505.36
    506     503    487     493     500   S=12.07
SOLUCION

 Para poder resolver el problema lo que se tendrá que hacer será lo siguiente se
  aplicara una formula la cual tendremos que desarrollar con los datos con los
  que contamos.
 Tendremos que sustituir los datos

 t= x -μ
 SI n                              α = 1- Nc = 10%
 v = n-1 = 24
 t = 2.22
Procedimiento:se demostrara la forma en que se sustituiran los
                          datos.
 VALOR DE LOS DATOS..        APLICACION DE LA FORMULA




 µ=500 h                 t=505.36-500 t = 2.22
 n=25                      12.07 25
 Nc=90%                 v = 25 -1 = 24
 X=505.36                  α = 1- 90% = 10%
 S=12.07
Enseguida se muestra la distribución del problema según
                    el grafico sig.

Bernoulli ejemplo explicado nancy

  • 1.
    EJEMPLO DE BERNOULLI. 1 EJEMPLO EXPLICADO.
  • 3.
    La probabilidad deque obtengamos un 5 viene definida como la probabilidad de que X sea igual a 1. Entonces ahora los datos que obtuvimos se sustituyen en la fórmula. P(x=1) = (1/5) 1 * (4/5) 0 = 1/5 = 0.2 La probabilidad de que NO obtengamos un 6 viene definida como la probabilidad de que X sea igual a 0. P(x=0) = (1/5)0 * (4/5)1 = 4/5 = 0.8 Este experimento nos dice que hay 0.2 de probabilidad de que salga el numero 5 en el dado, y de que no salga ese numero existe la probabilidad del 0.8.
  • 4.
    Ejemplo binomial  Se lanza una moneda cuatro veces. Calcular la probabilidad de que salgan más caras que cruces.  B(4, 0.5) p = 0.5q = 0.5
  • 5.
    explicación  En elejemplo anterior se calculan las probabilidades de que al tirar una moneda salgan mas caras que cruces y para eso La moneda es lanzada 4 veces de esos 4 tiros solo 1 cae cara y los otros 3 tiros cae cruz pero el resultado va a variar probabilidades: 1cara-3 cruces 2 caras- 2 cruces 3 caras- 1 cruz 2 cruces- 2 caras
  • 6.
    Ejemplo 1.-Si unbanco recibe en promedio 6 cheques sin fondo por día, ¿ Cuales son las probabilidades reciba, b)Cuatro cheque sin fondo en un día dado, c)B)reciba 10 cheques sin fondo en cualquiera de dos días consecutivos Variable discreta= cantidad de personas Intervalo continuo= una hora Formula
  • 7.
     P(x): Probabilidadde que ocurran x éxitos  : Número medio de sucesos esperados por unidad de tiempo.  e: es la base de logaritmo natural cuyo valor es 2.718  X: es la variable que nos denota el número de éxitos que se desea que ocurran
  • 8.
     A) x=Variable que nos define el número de cheques sin fondo que llega al banco en un día cualquiera;  El primer paso es extraer los datos  Tenemos que o el promedio es igual a 6 cheques sin fondo por día  e= 2.718  x= 4 por que se pide la probabilidad de que lleguen cuatro cheques al día
  • 9.
    Reemplazar valores enlas formulas  =6  e= 2.718  X= 4  P(x=4, = 6) =(6)^4(2.718)^-6  4!  =(1296)(0,00248)  24  =o,13192  Es la probabilidad que representa de que lleguen cuatro cheques sin fondo al día
  • 10.
     B)  X=es la variable que nos define el número de cheques sin fondo que llegan en dos días consecutivos  =6x2= 12 Cheques sin fondo en promedio que llegan al banco en dos días consecutivos  Lambda por t comprende  al promedio del cheque a los dos días  DATOS  = 12 Cheques sin fondo por día  e= 2.718  X=10  P(x=10, =12 )= (129^10(2.718)^-12  10!  =(6,191736*10^10)(0,000006151)  3628800  =0,104953 es la es la probalidad de que lleguen 10 cheques sin fondo en dos días consecutivos
  • 12.
    Una variable aleatoria continua, X,sigue una distribución normal de media μ y desviación típica σ, y se designa por N(μ , σ ), si se cumplen las siguientes condiciones: 1. La variable puede tomar cualquier valor: (-∞, +∞) 2. La función de densidad, es la expresión en términos de ecuación matemática de la curva de Gauss:
  • 13.
    Curva de la distribución normal  El campo de existencia es cualquier valor real, es decir, (- ∞, +∞).  Es simétrica respecto a la media µ.  Tiene un máximo en la media µ.  Crece hasta la media µ y decrece a partir de ella.  En los puntos µ − σ y µ + σ presenta puntos de inflexión.  El eje de abscisas es una asíntota de la curva.
  • 14.
    El área del recintodeterminado por la función y el eje de abscisas es igual a la unidad. Al ser simétrica respecto al eje que pasa por x = µ, deja un área igual a 0.5 a la izquierda y otra igual a 0.5 a la derecha. La probabilidad equivale al área encerrada bajo la curva. p(μ - σ < X ≤ μ + σ) = 0.6826 = 68.26 % p(μ - 2σ < X ≤ μ + 2σ) = 0.954 = 95.4 % p(μ - 3σ < X ≤ μ + 3σ) = 0.997 = 99.7 %
  • 16.
    Parámetros A continuación sesustituye la formula en base alas 8 horas.
  • 17.
  • 18.
  • 19.
     Un fabricantede focos afirma que su producto durará un promedio de 500 horas de trabajo. Para conservar este promedio esta persona verifica 25 focos cada mes. Si el valor y calculado cae entre –t 0.05 y t 0.05, él se encuentra satisfecho con esta afirmación. ¿Qué conclusión deberá él sacar de una muestra de 25 focos cuya duración fue?:
  • 20.
    AQUÍ SE ENCUENTRANLAS MUESTRAS QUE SE TOMARON PARA RESOLLVER EL PROBLEMA. 520 521 511 513 510 µ=500 h 513 522 500 521 495 n=25 496 488 500 502 512 Nc=90% 510 510 475 505 521 X=505.36 506 503 487 493 500 S=12.07
  • 21.
    SOLUCION  Para poderresolver el problema lo que se tendrá que hacer será lo siguiente se aplicara una formula la cual tendremos que desarrollar con los datos con los que contamos.  Tendremos que sustituir los datos  t= x -μ  SI n α = 1- Nc = 10%  v = n-1 = 24  t = 2.22
  • 22.
    Procedimiento:se demostrara laforma en que se sustituiran los datos.  VALOR DE LOS DATOS.. APLICACION DE LA FORMULA  µ=500 h t=505.36-500 t = 2.22  n=25 12.07 25  Nc=90% v = 25 -1 = 24  X=505.36 α = 1- 90% = 10%  S=12.07
  • 23.
    Enseguida se muestrala distribución del problema según el grafico sig.