SlideShare una empresa de Scribd logo
1 de 25
ESTATICA
• Cuerpo Rígido
• Fuerza
• Tipos de Fuerza
• Primera Ley de Newton
• Tercera Ley de Newton
CONTENIDOS TEMÁTICOS
ESTATICA
Es la parte de la Mecánica que estudia la
estabilidad y equilibrio de los cuerpos.
CUERPO RIGIDO
Son cuerpos constituidos por un sistema de
partículas de manera que la distancia relativa
entre ellas no se altera bajo la acción de
fuerzas externas.
Concepto de Fuerza
• Es una interacción entre dos o más cuerpos. Una fuerza
puede causar un cambio en la velocidad, entonces,
podemos considerar que una fuerza es aquello que
ocasiona que un cuerpo acelere; y/o un cambio en la forma
del mismo.
• Si la fuerza neta ejercida sobre un cuerpo es cero la
aceleración de este es cero y su velocidad permanece
constante o ser nula.
Fuerza
TIPOS DE FUERZA
a)Fuerza de Contacto.- Aparecen cuando hay
contacto directo entre los cuerpos. Ejemplo: La fuerza
normal, las reacciones.
b)Fuerzas de Campo.-Estas fuerzas aparecen como
consecuencia de la interacción entre los cuerpos y no
necesariamente hay contacto entre los cuerpos.
Ejemplo: Fuerza gravitacional.
• La primera ley de Newton o ley del movimiento a
veces llamada ley de inercia establece que: “Un
cuerpo sobre el que no actúa una fuerza neta posee una
velocidad constante ( que puede ser cero ) y aceleración
nula”
• O también: “Todo cuerpo permanece en reposo
(velocidad igual a cero ) o con movimiento uniforme
rectilíneo (velocidad constante ) a menos que actúe una
fuerza que cambie su estado” (Ley de Inercia)
PRIMERA LEY DE NEWTON
Inercia.-nercia.- EEs la oposición que un cuerpo ofrece a
cambiar su estado de reposo o movimiento.
Masa.-Masa.- Es la medida cuantitativa de la inercia. La
masa es una propiedad inherente de un cuerpo y es
independiente del entorno del cuerpo y del método
empleado para medirlo. La masa no debe confundirse
con el peso. “Masa y peso son dos cantidades
diferentes”. El peso de un cuerpo es igual a la
magnitud de la fuerza gravitacional ejercida sobre el
cuerpo y varia con su ubicación.
LINEA DE ACCION Y PUNTO DE APLICACIÓNLINEA DE ACCION Y PUNTO DE APLICACIÓN
• Cuando una fuerza actúa sobre un cuerpo indeformable, se puede
desplazar libremente sobre su línea de acción, provocando el mismo
efecto, en consecuencia una fuerza puede ser aplicada en cualquier
punto a lo largo de su línea de acción, siempre y cuando se mantenga la
magnitud y sentido. Ejemplo:
TERCERA LEY DE NEWTON
Cuando un par de fuerzas que no son paralelas entre sí, que están
en un mismo plano y que actúan sobre un cuerpo sólido
indeformable, se puede comprobar, por lo indicado en el punto
anterior, que esas dos fuerzas pueden ser trasladadas a una
intersección común a lo largo de sus líneas de acciones.
Se puede comprobar que esas dos fuerzas actuando en el punto
de intersección de las líneas de acciones, son equivalentes a
una sola fuerza aplicada actuando en ese punto y cuyo valor
es
• La fuerza de acción es igual en magnitud a la fuerza de reacción y
opuesta en sentido. En todos los casos, las fuerzas de acción y
reacción actúan sobre objetos diferentes y deben ser del mismo
tipo.
m
1
m2
F12
F12
Esto significa que la fuerza que ejerce el cuerpo 1 sobre el cuerpo
2 (F12) es igual en módulo y dirección, pero de sentido opuesto a la
fuerza que ejerce el cuerpo 2 sobre el cuerpo 1 (- F 21).
EJEMPLOS DE APLICACIÓN
1.Un semáforo que pesa 125 N cuelga de un cable unidos a otros
dos cables sujetos a un soporte, como se ve en la figura. Los
cables superiores forman ángulos de 37º y 53 º con la horizontal
. Estos cables superiores no son tan fuertes como el cable
vertical, y se romperán si la tensión en ellos excede de 100 N
¿permanecerá el semáforo colgando en esta situación o se
romperá uno de los cables?.
= 125 N= 125 N
= 125 N= 125 N
Diagrama de
cuerpo libre.
Según el diagrama de cuerpo libre se
hace una descomposición de los vectores
y aplicamos la ley de Newton, ed.
2. Una esfera de 180 kg se encuentra en equilibrio tal como se ve
en la figura. calcular la tensión en la cuerda y la reacción normal
de la pared.
Se desarrolla su DCL, ubicando las fuerzas en un plano cartesiano XY,
luego usar el triángulo notable de 37º, recordando la proporción que
existe entre sus lados.
Se desarrolla su DCL, ubicando las fuerzas en un plano cartesiano XY,
luego usar el triángulo notable de 37º, recordando la proporción que
existe entre sus lados.
T
W=180 x 10 = 1800 N
N
W = mg
37º
Recordando la
descomposición
Vectorial y ubicando
convenientemente el
triángulo se tiene.
W= 1800 N = 4k
N = 3k
T = 5k
37º
53º
Observamos que 4k=1800N, por lo tanto k=450N, luego
reemplazando en el triángulo Se tiene los valores de T y N.
T = 5k = 5 x 450 N = 2250 N
N = 3k = 3 x 450 N = 1350 N
6.Determinar el valor absoluto y la dirección de la fuerza F2 de la
figura adjunta. Para que el bloque de 780N de peso se encuentre en
equilibrio si el modulo de la fuerza F1 es 460 N.

8,35386,1cot
386,1
47
47cos
460
780
cot
460
780
47coscot47
460
78047coscos47
460
780)47(
==→
=
−
=→=+→
=
+
→=
+
garc
sen
ggsen
sen
sensen
sen
sen
α
αα
α
αα
α
α
Reemplazando en la primera y la segunda ecuación
NF
sen
F
sen
575
478,35
460
2
2
=→=
7.En el esquema de la figura, el bloque de peso P se mantiene en
equilibrio cuando se aplica una fuerza F=500N en el punto B del
sistemas de cables. Determinar las tensiones en los cables y el
peso P.
0702030
0cos70cos20cos30cos
=−+−=
=−−+=
∑
∑
α
α
senFsenFsenFsenFF
FFFFF
ABDCy
ABDCx
Las componentes de la fuerza son
138.9787080020800301000
163.134470cos80020cos80030cos1000cos
=+−=
=−+=
sensensensenF
F
A
A
α
α

36727,0
163.1344
138.978
tan
4,1662)138.978()163.1344( 22
=→==
=+=
αα
AF
entonces
EJERCICIOS
1. Determinar las tensiones sobre
las cuerdas AC y BC . Si M
pesa 40 lb-f.
2. Determinar las tensiones sobre las
cuerdas AC y BC . Si M pesa 40 lb-f .
3.Encontrar la tensión en el cable y la
compresión en la varilla de las Figura
suponiendo que el peso suspendido sea en
todos los casos de 1000 N. Despréciese el peso
de la varilla.
EJERCICIOS
4.Una esfera cuyo peso es
de 50 N descansa sobre
dos planos lisos, inclinados
respectivamente con
respecto a la horizontal,
ángulos de 300 y 450.
Calcular las reacciones de
los dos planos sobre la
esfera.
GRACIAS

Más contenido relacionado

La actualidad más candente

Diagrama del cuerpo libre cta
Diagrama del cuerpo libre ctaDiagrama del cuerpo libre cta
Diagrama del cuerpo libre cta탈리 나
 
Laboratorio5 dinamica rotacional
Laboratorio5 dinamica rotacionalLaboratorio5 dinamica rotacional
Laboratorio5 dinamica rotacionalBoris Seminario
 
Presentación Power Point Potencia
 Presentación Power Point Potencia Presentación Power Point Potencia
Presentación Power Point Potenciaandresito_92
 
Movimiento parabolico presentacion
Movimiento parabolico presentacionMovimiento parabolico presentacion
Movimiento parabolico presentacionOmar Mora Diaz
 
Diagrama de cuerpo libre - fuerzas
Diagrama de cuerpo libre - fuerzasDiagrama de cuerpo libre - fuerzas
Diagrama de cuerpo libre - fuerzasJULIO CÉSAR HUAYRE
 
Fuerza de rozamiento
Fuerza de rozamientoFuerza de rozamiento
Fuerza de rozamientoJudit Camacho
 
Dinámica del movimiento rotacional
Dinámica del movimiento rotacionalDinámica del movimiento rotacional
Dinámica del movimiento rotacionalYuri Milachay
 
Vectores en una dimension
Vectores en una dimensionVectores en una dimension
Vectores en una dimensionElba Sepúlveda
 
Movimiento oscilatorio
Movimiento oscilatorioMovimiento oscilatorio
Movimiento oscilatorio7300311
 
Informe de laboratorio: Movimiento parabólico.
Informe de laboratorio: Movimiento parabólico.Informe de laboratorio: Movimiento parabólico.
Informe de laboratorio: Movimiento parabólico.Alejo Lerma
 
Factores de inercia 4
Factores de inercia 4Factores de inercia 4
Factores de inercia 4wendyfari12
 

La actualidad más candente (20)

Diagrama del cuerpo libre cta
Diagrama del cuerpo libre ctaDiagrama del cuerpo libre cta
Diagrama del cuerpo libre cta
 
Laboratorio5 dinamica rotacional
Laboratorio5 dinamica rotacionalLaboratorio5 dinamica rotacional
Laboratorio5 dinamica rotacional
 
Proyecto fisica 2016
Proyecto fisica 2016Proyecto fisica 2016
Proyecto fisica 2016
 
Estática fuerza y movimiento
Estática fuerza y movimientoEstática fuerza y movimiento
Estática fuerza y movimiento
 
Dinamica del movimiento rotacional
Dinamica del movimiento rotacionalDinamica del movimiento rotacional
Dinamica del movimiento rotacional
 
Presentación Power Point Potencia
 Presentación Power Point Potencia Presentación Power Point Potencia
Presentación Power Point Potencia
 
Centro de gravedad
Centro de gravedadCentro de gravedad
Centro de gravedad
 
Movimiento parabolico presentacion
Movimiento parabolico presentacionMovimiento parabolico presentacion
Movimiento parabolico presentacion
 
Diagrama de cuerpo libre - fuerzas
Diagrama de cuerpo libre - fuerzasDiagrama de cuerpo libre - fuerzas
Diagrama de cuerpo libre - fuerzas
 
Fuerza de rozamiento
Fuerza de rozamientoFuerza de rozamiento
Fuerza de rozamiento
 
Dinámica lineal
Dinámica linealDinámica lineal
Dinámica lineal
 
Dinámica del movimiento rotacional
Dinámica del movimiento rotacionalDinámica del movimiento rotacional
Dinámica del movimiento rotacional
 
Vectores en una dimension
Vectores en una dimensionVectores en una dimension
Vectores en una dimension
 
Estática 02 momento-2014
Estática 02  momento-2014Estática 02  momento-2014
Estática 02 momento-2014
 
Movimiento oscilatorio
Movimiento oscilatorioMovimiento oscilatorio
Movimiento oscilatorio
 
Informe de laboratorio: Movimiento parabólico.
Informe de laboratorio: Movimiento parabólico.Informe de laboratorio: Movimiento parabólico.
Informe de laboratorio: Movimiento parabólico.
 
Estatica I
Estatica IEstatica I
Estatica I
 
Factores de inercia 4
Factores de inercia 4Factores de inercia 4
Factores de inercia 4
 
Polea ideal
Polea idealPolea ideal
Polea ideal
 
Deformación y comportamiento de los materiales
Deformación y comportamiento de los materiales Deformación y comportamiento de los materiales
Deformación y comportamiento de los materiales
 

Destacado

Nancy_vasquez_diagramas_corte_momento
Nancy_vasquez_diagramas_corte_momentoNancy_vasquez_diagramas_corte_momento
Nancy_vasquez_diagramas_corte_momentovasqueznancy
 
Ejercicio_2_nancy_vasquez_Estructura_II
Ejercicio_2_nancy_vasquez_Estructura_IIEjercicio_2_nancy_vasquez_Estructura_II
Ejercicio_2_nancy_vasquez_Estructura_IIvasqueznancy
 
Ejercicio estructura nancy_vasquez
Ejercicio estructura nancy_vasquezEjercicio estructura nancy_vasquez
Ejercicio estructura nancy_vasquezvasqueznancy
 
Clase 19 20-21-22-23-24 pav rigidos[resumen] (1)
Clase 19 20-21-22-23-24 pav rigidos[resumen] (1)Clase 19 20-21-22-23-24 pav rigidos[resumen] (1)
Clase 19 20-21-22-23-24 pav rigidos[resumen] (1)Ulises Mamani Condori
 
Viga continua ejercicio
Viga continua ejercicioViga continua ejercicio
Viga continua ejercicioYohan Tovar
 
Prueba-1_nancy_vasquez
Prueba-1_nancy_vasquezPrueba-1_nancy_vasquez
Prueba-1_nancy_vasquezvasqueznancy
 
Vector unitario y descomposicion rectangular
Vector unitario y descomposicion rectangularVector unitario y descomposicion rectangular
Vector unitario y descomposicion rectangularromeljimont
 
Introducción a la estática
Introducción a la estáticaIntroducción a la estática
Introducción a la estáticaAlonzo Gómez
 
Descomposición de fuerzas
Descomposición de fuerzasDescomposición de fuerzas
Descomposición de fuerzasJ. Ramon
 
estática temas selectos de física, ejemplos y problema resuelto
estática temas selectos de física, ejemplos y problema resueltoestática temas selectos de física, ejemplos y problema resuelto
estática temas selectos de física, ejemplos y problema resueltosergioec1997
 
Descomposición rectangular de vectores
Descomposición rectangular de vectoresDescomposición rectangular de vectores
Descomposición rectangular de vectoresMAXIMO VALENTIN MONTES
 
Analisis Combinatorio
Analisis CombinatorioAnalisis Combinatorio
Analisis Combinatorioguest5dcb8426
 

Destacado (12)

Nancy_vasquez_diagramas_corte_momento
Nancy_vasquez_diagramas_corte_momentoNancy_vasquez_diagramas_corte_momento
Nancy_vasquez_diagramas_corte_momento
 
Ejercicio_2_nancy_vasquez_Estructura_II
Ejercicio_2_nancy_vasquez_Estructura_IIEjercicio_2_nancy_vasquez_Estructura_II
Ejercicio_2_nancy_vasquez_Estructura_II
 
Ejercicio estructura nancy_vasquez
Ejercicio estructura nancy_vasquezEjercicio estructura nancy_vasquez
Ejercicio estructura nancy_vasquez
 
Clase 19 20-21-22-23-24 pav rigidos[resumen] (1)
Clase 19 20-21-22-23-24 pav rigidos[resumen] (1)Clase 19 20-21-22-23-24 pav rigidos[resumen] (1)
Clase 19 20-21-22-23-24 pav rigidos[resumen] (1)
 
Viga continua ejercicio
Viga continua ejercicioViga continua ejercicio
Viga continua ejercicio
 
Prueba-1_nancy_vasquez
Prueba-1_nancy_vasquezPrueba-1_nancy_vasquez
Prueba-1_nancy_vasquez
 
Vector unitario y descomposicion rectangular
Vector unitario y descomposicion rectangularVector unitario y descomposicion rectangular
Vector unitario y descomposicion rectangular
 
Introducción a la estática
Introducción a la estáticaIntroducción a la estática
Introducción a la estática
 
Descomposición de fuerzas
Descomposición de fuerzasDescomposición de fuerzas
Descomposición de fuerzas
 
estática temas selectos de física, ejemplos y problema resuelto
estática temas selectos de física, ejemplos y problema resueltoestática temas selectos de física, ejemplos y problema resuelto
estática temas selectos de física, ejemplos y problema resuelto
 
Descomposición rectangular de vectores
Descomposición rectangular de vectoresDescomposición rectangular de vectores
Descomposición rectangular de vectores
 
Analisis Combinatorio
Analisis CombinatorioAnalisis Combinatorio
Analisis Combinatorio
 

Similar a CAPITULO II: ESTATICA

Ione cañizres fisica
Ione cañizres fisicaIone cañizres fisica
Ione cañizres fisicaione26
 
Resistencia de materiales
Resistencia de materialesResistencia de materiales
Resistencia de materialesmarcelo rios
 
Fuerzas equilibrio particula
Fuerzas equilibrio particulaFuerzas equilibrio particula
Fuerzas equilibrio particulaMichael Valarezo
 
Fuerzas equilibrio particula
Fuerzas equilibrio particulaFuerzas equilibrio particula
Fuerzas equilibrio particulaJesus Varela
 
QUE ES LA FUERZA Y SU CLASIFICACION
QUE ES LA FUERZA Y SU CLASIFICACIONQUE ES LA FUERZA Y SU CLASIFICACION
QUE ES LA FUERZA Y SU CLASIFICACIONSteven Gomez
 
Dinamica y equilibrio estatico (slideshare)
Dinamica y equilibrio estatico (slideshare)Dinamica y equilibrio estatico (slideshare)
Dinamica y equilibrio estatico (slideshare)LuisRaulMasabetMarti
 
FUERZA Y SU CLASIFICACION
FUERZA Y SU CLASIFICACIONFUERZA Y SU CLASIFICACION
FUERZA Y SU CLASIFICACIONORLAN31
 
2º Bachillerato: Mecanica (Fuerzas y Energía)
2º Bachillerato: Mecanica (Fuerzas y Energía)2º Bachillerato: Mecanica (Fuerzas y Energía)
2º Bachillerato: Mecanica (Fuerzas y Energía)Domingo Baquero
 
UI-FI- TO5-ESTÁTICA.pdf
UI-FI- TO5-ESTÁTICA.pdfUI-FI- TO5-ESTÁTICA.pdf
UI-FI- TO5-ESTÁTICA.pdfluiszeballos13
 
Fuerza y su aplicacion
Fuerza y su aplicacionFuerza y su aplicacion
Fuerza y su aplicaciontorresandres
 
Tema 9 Segunda Ley de Newton y sus aplicaciones.pdf
Tema 9 Segunda Ley de Newton y sus aplicaciones.pdfTema 9 Segunda Ley de Newton y sus aplicaciones.pdf
Tema 9 Segunda Ley de Newton y sus aplicaciones.pdfNicolas813706
 
Tema 9 Segunda Ley de Newton y sus aplicaciones.pdf
Tema 9 Segunda Ley de Newton y sus aplicaciones.pdfTema 9 Segunda Ley de Newton y sus aplicaciones.pdf
Tema 9 Segunda Ley de Newton y sus aplicaciones.pdfNicolas813706
 

Similar a CAPITULO II: ESTATICA (20)

Semana 2 estatica
Semana 2 estaticaSemana 2 estatica
Semana 2 estatica
 
Semana 2mod
Semana 2modSemana 2mod
Semana 2mod
 
Ione cañizres fisica
Ione cañizres fisicaIone cañizres fisica
Ione cañizres fisica
 
Resistencia de materiales
Resistencia de materialesResistencia de materiales
Resistencia de materiales
 
Trabajo y energía
Trabajo y energíaTrabajo y energía
Trabajo y energía
 
Fuerzas equilibrio particula
Fuerzas equilibrio particulaFuerzas equilibrio particula
Fuerzas equilibrio particula
 
Fuerzas equilibrio particula
Fuerzas equilibrio particulaFuerzas equilibrio particula
Fuerzas equilibrio particula
 
Leyes de Newton
Leyes de NewtonLeyes de Newton
Leyes de Newton
 
QUE ES LA FUERZA Y SU CLASIFICACION
QUE ES LA FUERZA Y SU CLASIFICACIONQUE ES LA FUERZA Y SU CLASIFICACION
QUE ES LA FUERZA Y SU CLASIFICACION
 
Leyes de newton 2018
Leyes de newton 2018Leyes de newton 2018
Leyes de newton 2018
 
Dinamica y equilibrio estatico (slideshare)
Dinamica y equilibrio estatico (slideshare)Dinamica y equilibrio estatico (slideshare)
Dinamica y equilibrio estatico (slideshare)
 
FUERZA Y SU CLASIFICACION
FUERZA Y SU CLASIFICACIONFUERZA Y SU CLASIFICACION
FUERZA Y SU CLASIFICACION
 
2º Bachillerato: Mecanica (Fuerzas y Energía)
2º Bachillerato: Mecanica (Fuerzas y Energía)2º Bachillerato: Mecanica (Fuerzas y Energía)
2º Bachillerato: Mecanica (Fuerzas y Energía)
 
ESTATICA
ESTATICAESTATICA
ESTATICA
 
UI-FI- TO5-ESTÁTICA.pdf
UI-FI- TO5-ESTÁTICA.pdfUI-FI- TO5-ESTÁTICA.pdf
UI-FI- TO5-ESTÁTICA.pdf
 
C E09 S04 D C
C E09  S04  D CC E09  S04  D C
C E09 S04 D C
 
SEMANA 3 - Clase 1.pptx
SEMANA 3 - Clase 1.pptxSEMANA 3 - Clase 1.pptx
SEMANA 3 - Clase 1.pptx
 
Fuerza y su aplicacion
Fuerza y su aplicacionFuerza y su aplicacion
Fuerza y su aplicacion
 
Tema 9 Segunda Ley de Newton y sus aplicaciones.pdf
Tema 9 Segunda Ley de Newton y sus aplicaciones.pdfTema 9 Segunda Ley de Newton y sus aplicaciones.pdf
Tema 9 Segunda Ley de Newton y sus aplicaciones.pdf
 
Tema 9 Segunda Ley de Newton y sus aplicaciones.pdf
Tema 9 Segunda Ley de Newton y sus aplicaciones.pdfTema 9 Segunda Ley de Newton y sus aplicaciones.pdf
Tema 9 Segunda Ley de Newton y sus aplicaciones.pdf
 

Más de Levano Huamacto Alberto (20)

CAPITULO VIII: ARMONICO SIMPLE
CAPITULO VIII: ARMONICO SIMPLECAPITULO VIII: ARMONICO SIMPLE
CAPITULO VIII: ARMONICO SIMPLE
 
CAPITULO VII: DINAMICA ROTACIONAL
CAPITULO VII: DINAMICA ROTACIONALCAPITULO VII: DINAMICA ROTACIONAL
CAPITULO VII: DINAMICA ROTACIONAL
 
CAPITULO VI: CANTIDAD DE MOVIMIENTO
CAPITULO VI: CANTIDAD DE MOVIMIENTOCAPITULO VI: CANTIDAD DE MOVIMIENTO
CAPITULO VI: CANTIDAD DE MOVIMIENTO
 
CAPITULO V: TRABAJO MECANICO
CAPITULO V: TRABAJO MECANICOCAPITULO V: TRABAJO MECANICO
CAPITULO V: TRABAJO MECANICO
 
CAPITULO IV: DINAMICA
CAPITULO IV: DINAMICACAPITULO IV: DINAMICA
CAPITULO IV: DINAMICA
 
CAPITULO III: CINEMATICA
CAPITULO III: CINEMATICACAPITULO III: CINEMATICA
CAPITULO III: CINEMATICA
 
11 difracción
11 difracción11 difracción
11 difracción
 
10 audición
10 audición10 audición
10 audición
 
9 hemodinamica
9 hemodinamica9 hemodinamica
9 hemodinamica
 
8 hidrodinamica
8 hidrodinamica8 hidrodinamica
8 hidrodinamica
 
7 hidrostatica
7 hidrostatica7 hidrostatica
7 hidrostatica
 
6 velocidad metabolica
6 velocidad metabolica6 velocidad metabolica
6 velocidad metabolica
 
5 biocinematica
5 biocinematica5 biocinematica
5 biocinematica
 
4 momento torsion
4 momento torsion4 momento torsion
4 momento torsion
 
3 bioestatica
3 bioestatica3 bioestatica
3 bioestatica
 
2 vectores
2 vectores2 vectores
2 vectores
 
1 magnitudes
1 magnitudes1 magnitudes
1 magnitudes
 
Semana8 ondas electromagnetica
Semana8 ondas electromagneticaSemana8 ondas electromagnetica
Semana8 ondas electromagnetica
 
Semana7 ley de faraday
Semana7 ley de faradaySemana7 ley de faraday
Semana7 ley de faraday
 
Semana6 ley de ampere
Semana6 ley de ampereSemana6 ley de ampere
Semana6 ley de ampere
 

CAPITULO II: ESTATICA

  • 2. • Cuerpo Rígido • Fuerza • Tipos de Fuerza • Primera Ley de Newton • Tercera Ley de Newton CONTENIDOS TEMÁTICOS
  • 3. ESTATICA Es la parte de la Mecánica que estudia la estabilidad y equilibrio de los cuerpos. CUERPO RIGIDO Son cuerpos constituidos por un sistema de partículas de manera que la distancia relativa entre ellas no se altera bajo la acción de fuerzas externas.
  • 4. Concepto de Fuerza • Es una interacción entre dos o más cuerpos. Una fuerza puede causar un cambio en la velocidad, entonces, podemos considerar que una fuerza es aquello que ocasiona que un cuerpo acelere; y/o un cambio en la forma del mismo. • Si la fuerza neta ejercida sobre un cuerpo es cero la aceleración de este es cero y su velocidad permanece constante o ser nula. Fuerza
  • 5. TIPOS DE FUERZA a)Fuerza de Contacto.- Aparecen cuando hay contacto directo entre los cuerpos. Ejemplo: La fuerza normal, las reacciones. b)Fuerzas de Campo.-Estas fuerzas aparecen como consecuencia de la interacción entre los cuerpos y no necesariamente hay contacto entre los cuerpos. Ejemplo: Fuerza gravitacional.
  • 6.
  • 7. • La primera ley de Newton o ley del movimiento a veces llamada ley de inercia establece que: “Un cuerpo sobre el que no actúa una fuerza neta posee una velocidad constante ( que puede ser cero ) y aceleración nula” • O también: “Todo cuerpo permanece en reposo (velocidad igual a cero ) o con movimiento uniforme rectilíneo (velocidad constante ) a menos que actúe una fuerza que cambie su estado” (Ley de Inercia) PRIMERA LEY DE NEWTON
  • 8. Inercia.-nercia.- EEs la oposición que un cuerpo ofrece a cambiar su estado de reposo o movimiento. Masa.-Masa.- Es la medida cuantitativa de la inercia. La masa es una propiedad inherente de un cuerpo y es independiente del entorno del cuerpo y del método empleado para medirlo. La masa no debe confundirse con el peso. “Masa y peso son dos cantidades diferentes”. El peso de un cuerpo es igual a la magnitud de la fuerza gravitacional ejercida sobre el cuerpo y varia con su ubicación.
  • 9. LINEA DE ACCION Y PUNTO DE APLICACIÓNLINEA DE ACCION Y PUNTO DE APLICACIÓN • Cuando una fuerza actúa sobre un cuerpo indeformable, se puede desplazar libremente sobre su línea de acción, provocando el mismo efecto, en consecuencia una fuerza puede ser aplicada en cualquier punto a lo largo de su línea de acción, siempre y cuando se mantenga la magnitud y sentido. Ejemplo:
  • 10. TERCERA LEY DE NEWTON Cuando un par de fuerzas que no son paralelas entre sí, que están en un mismo plano y que actúan sobre un cuerpo sólido indeformable, se puede comprobar, por lo indicado en el punto anterior, que esas dos fuerzas pueden ser trasladadas a una intersección común a lo largo de sus líneas de acciones. Se puede comprobar que esas dos fuerzas actuando en el punto de intersección de las líneas de acciones, son equivalentes a una sola fuerza aplicada actuando en ese punto y cuyo valor es
  • 11. • La fuerza de acción es igual en magnitud a la fuerza de reacción y opuesta en sentido. En todos los casos, las fuerzas de acción y reacción actúan sobre objetos diferentes y deben ser del mismo tipo. m 1 m2 F12 F12 Esto significa que la fuerza que ejerce el cuerpo 1 sobre el cuerpo 2 (F12) es igual en módulo y dirección, pero de sentido opuesto a la fuerza que ejerce el cuerpo 2 sobre el cuerpo 1 (- F 21).
  • 12.
  • 13. EJEMPLOS DE APLICACIÓN 1.Un semáforo que pesa 125 N cuelga de un cable unidos a otros dos cables sujetos a un soporte, como se ve en la figura. Los cables superiores forman ángulos de 37º y 53 º con la horizontal . Estos cables superiores no son tan fuertes como el cable vertical, y se romperán si la tensión en ellos excede de 100 N ¿permanecerá el semáforo colgando en esta situación o se romperá uno de los cables?. = 125 N= 125 N = 125 N= 125 N Diagrama de cuerpo libre.
  • 14. Según el diagrama de cuerpo libre se hace una descomposición de los vectores y aplicamos la ley de Newton, ed.
  • 15. 2. Una esfera de 180 kg se encuentra en equilibrio tal como se ve en la figura. calcular la tensión en la cuerda y la reacción normal de la pared.
  • 16. Se desarrolla su DCL, ubicando las fuerzas en un plano cartesiano XY, luego usar el triángulo notable de 37º, recordando la proporción que existe entre sus lados. Se desarrolla su DCL, ubicando las fuerzas en un plano cartesiano XY, luego usar el triángulo notable de 37º, recordando la proporción que existe entre sus lados. T W=180 x 10 = 1800 N N W = mg 37º Recordando la descomposición Vectorial y ubicando convenientemente el triángulo se tiene. W= 1800 N = 4k N = 3k T = 5k 37º 53º
  • 17. Observamos que 4k=1800N, por lo tanto k=450N, luego reemplazando en el triángulo Se tiene los valores de T y N. T = 5k = 5 x 450 N = 2250 N N = 3k = 3 x 450 N = 1350 N
  • 18. 6.Determinar el valor absoluto y la dirección de la fuerza F2 de la figura adjunta. Para que el bloque de 780N de peso se encuentre en equilibrio si el modulo de la fuerza F1 es 460 N.
  • 20. 7.En el esquema de la figura, el bloque de peso P se mantiene en equilibrio cuando se aplica una fuerza F=500N en el punto B del sistemas de cables. Determinar las tensiones en los cables y el peso P.
  • 21.
  • 22. 0702030 0cos70cos20cos30cos =−+−= =−−+= ∑ ∑ α α senFsenFsenFsenFF FFFFF ABDCy ABDCx Las componentes de la fuerza son 138.9787080020800301000 163.134470cos80020cos80030cos1000cos =+−= =−+= sensensensenF F A A α α  36727,0 163.1344 138.978 tan 4,1662)138.978()163.1344( 22 =→== =+= αα AF entonces
  • 23. EJERCICIOS 1. Determinar las tensiones sobre las cuerdas AC y BC . Si M pesa 40 lb-f. 2. Determinar las tensiones sobre las cuerdas AC y BC . Si M pesa 40 lb-f . 3.Encontrar la tensión en el cable y la compresión en la varilla de las Figura suponiendo que el peso suspendido sea en todos los casos de 1000 N. Despréciese el peso de la varilla.
  • 24. EJERCICIOS 4.Una esfera cuyo peso es de 50 N descansa sobre dos planos lisos, inclinados respectivamente con respecto a la horizontal, ángulos de 300 y 450. Calcular las reacciones de los dos planos sobre la esfera.