Matemática
Cuaderno de Práctica
Básico
5º
TOMO I
Copyright © 2009 by Harcourt, Inc.
© 2014 de esta edición Galileo Libros Ltda.
Todos los derechos reservados. Ninguna
parte de esta publicación puede ser
reproducida o transmitida en cualquier
forma o por cualquier medio, ya sea
electrónico o mecánico, incluyendo
fotocopia, grabación o cualquier sistema
de almacenamiento y recuperación de
información sin el permiso por escrito del
editor.
Las solicitudes de permiso para hacer
copias de cualquier parte de la obra
deberán dirigirse al centro de Permisos y
derechos de autor, Harcourt, Inc., 6277
Sea Harbor Drive, Orlando, Florida
32887–6777.
HARCOURT y el logotipo son marcas
comerciales de Harcourt Harcourt, Inc.,
registradas en los Estados Unidos de
América y / o en otras jurisdicciones.
Versión original
Mathematics Content Standards for
California
Public Schools reproduced by permission,
California Department of Education,
CDE Press, 1430 N Street, Suite 3207,
Sacramento, CA 95814
ISBN: 978–956–8155–31–5
Primera Edición
Impreso en Chile.
Se terminó de imprimir esta primera
edición de 251.000 ejemplares en el mes
de enero del año 2014.
Este método de enseñanza de la matemática ha sido diseñado y
realizado por autores profesores de varias universidades de los Estados
Unidos de América y adaptado al currículum nacional chileno por
Editorial Galileo.
Director del programa: Richard Askey, profesor emérito de
matemáticas de la Universidad de Wiscosin. Coordinadores: Evan M.
Maletsky, Joyce McLeod. Autores colaboradores: Angela G. Andrews,
Juli K. Dixon, Karen S. Norwood, Tom Roby, Janet K Scheer, Jennie
M. Bennett, Linda Luckie, Vicki Newman, Robin C. Scarcella, David
G. Wright. Supervisores: Russell Gersten, Michael DiSpezio, Tyrone
Howard, Lidya Song, Rebecca Valbuena.
El presente título forma parte del PROYECTO GALILEO para la
enseñanza de la matemática.
Editoras
Silvia Alfaro Salas
Yuvica Espinoza Lagunas
Sara Cano Fernández
Redactores / Colaboradores
Silvia Alfaro Salas
Profesora de Matemática y
Computación. Licenciada en
Matemática y Computación.
Universidad de Santiago de Chile.
Yuvica Espinoza Lagunas
Profesora de Educación General
Básica.
Pontificia Universidad Católica
de Chile.
Paola Rocamora Silva
Profesora de Matemáticas del
Programa de Educación Continua
para el Magisterio. Universidad
de Chile.
Marco Riquelme Alcaide
Profesor de Matemáticas del
Programa de Educación Continua
para el Magisterio. Universidad
de Chile.
Victoria Ainardi Tamarín
Profesora de Matemáticas por la
Universidad de Concepción.
Vilma Aldunate Díaz
Profesora de Educación General
Básica.
Universidad de Chile.
Pamela Falconi Salvatierra
Profesora de Educación General
Básica.
Pontificia Universidad Católica
de Chile.
Jorge Chala Reyes
Profesor de Educación General
Básica.
Universidad de Las Américas.
Equipo Técnico
Coordinación: Job López
Diseñadores:
Melissa Chávez Romero
Rodrigo Pávez San Martín
Nikolás Santis Escalante
David Silva Carreño
Camila Rojas Rodríguez
Cristhián Pérez Garrido
Ayudante editorial
Ricardo Santana Friedli
TOMO I
UNIDAD 1: NÚMEROS naturales Y
DECIMALES
Capítulo 1: Valor posicional, suma y resta
  1	 Valor posicional hasta los
mil millones............................................... 1
  2	 Comparar y ordenar números
naturales................................................... 3
  3	 Redondear números naturales................ 5
  4	 Sumar y restar números naturales.......... 7
  5	 Taller de resolución de problemas
Estrategia: buscar un patrón................... 9
Capítulo 2: Multiplicar números naturales
  1	 Cálculo mental: patrones en los
múltiplos................................................. 10
  2	 Estimar productos.................................. 12
  3	 Multiplicar por números de
2 dígitos.................................................. 14
  4	 Practicar la multiplicación..................... 16
  5	 Taller de resolución de problemas
Estrategia: predecir y probar................ 18
Capítulo 3: Dividir entre divisores de 1 y 2 dígitos
  1	 Representar la división de 2 dígitos
por 1 dígito............................................. 19
  2	 Dividir entre divisores de 1 dígito......... 21
  3	 Álgebra: patrones de división............... 23
  4	 Dividir con restos.................................... 25
  5	 Taller de resolución de problemas
Destreza: interpretar el resto................ 27
  6	 Ceros en la división ............................... 28
Capítulo 4: Álgebra: usar las operaciones de
multiplicación y división
  1	 Propiedades de la multiplicación.......... 30
  2	 Prevalencia de las operaciones.............. 32
  3	 Expresiones entre paréntesis................. 34
  4	 Resolución de problemas
con calculadora...................................... 36
  5	 Resolver ecuaciones............................... 38
  6	 Resolver desigualdades.......................... 40
  7	 Patrones: hallar una regla..................... 41
UNIDAD 2: NÚMEROS Y CONCEPTOS
DE FRACCIONES
Capítulo 5: Conceptos de fracciones
  1	 Fracciones equivalentes......................... 43
  2	 Fracciones simplificadas a su mínima
expresión................................................ 45
  3	 Comprender números mixtos................ 47
  4	 Comparar y ordenar fracciones y
números mixtos...................................... 49
  5	 Taller de resolución de problemas
Estrategia: hacer una representación... 51
Capítulo 6: Sumar y restar fracciones
  1	 Representar la suma y la resta.............. 52
  2	 Sumar y restar fracciones
con igual denominador......................... 54
  3	 Taller de resolución de problemas
Estrategia: trabajar desde el final
hasta el principio.................................... 56
  4	 Representar la suma de fracciones
de distinto denominador....................... 57
  5	 Representar la resta de fracciones
de distinto denominador....................... 59
  6	 Usar denominadores comunes.............. 61
  7	 Sumar y restar fracciones usando el
mínimo común múltiplo (m.c.m).......... 63
  8	 Taller de resolución de problemas
Estrategia: comparar estrategias.......... 65
Capítulo 7: Valor posicional: comprender los
decimales
  1	 Relacionar fracciones y decimales......... 66
  2	 Usar una recta numérica....................... 68
  3	 Representar milésimas........................... 70
  4	 Comparar y ordenar decimales............. 72
  5	 Taller de resolución de problemas
Estrategia: hacer un diagrama.............. 74
  6	 Sumar y restar decimales....................... 75
  7	 Taller de resolución de problemas
Destreza: estimar o hallar una
respuesta exacta..................................... 77
	 Solucionario............................................ 78
TOMO II
UNIDAD 3: GEOMETRÍA Y MEDICIÓN
Capítulo 8: Figuras congruentes y
plano cartesiano
  1	 Álgebra: hacer gráficos de pares
ordenados............................................... 89
  2	 Taller de resolución de problemas
Destreza: información relevante
o irrelevante........................................... 91
  3	 Figuras 2D y sus elementos................... 92
  4	 Figuras 3D y sus elementos................... 93
  5	 Figuras congruentes............................... 94
 6	 Rotación.................................................. 96
 7	 Simetría................................................... 98
 8	 Traslación.............................................. 100
Capítulo 9: Medición y perímetro
 1	 Longitud............................................... 102
  2	 Usar las fórmulas del perímetro.......... 104
  3	 Taller de resolución de problemas
Destreza: hacer generalizaciones.......... 106
Capítulo 10: Área
1	 Álgebra: relacionar el perímetro
y el área................................................ 107
2	 Taller de resolución de problemas
Estrategia: comparar estrategias........... 109
3	 Representar el área de los
triángulos.............................................. 110
4	 Álgebra: área de los triángulos........... 112
5	 Álgebra: área de los
paralelogramos.................................... 114
UNIDAD 4: DATOS, GRÁFICOS y
probabilidades
Capítulo 11: Analizar datos
1	 Hallar la media (promedio)................. 115
2	 Analizar gráficos.................................. 118
3	 Hacer diagramas de tallo y hojas.......... 120
4	 Hacer gráficos de líneas....................... 122
5	 Taller de resolución de problemas
Destreza: sacar conclusiones............... 124
Capítulo 12: Probabilidad
1	 Hacer una lista de todos los resultados
posibles................................................. 125
2	 Taller de resolución de problemas
Estrategia: hacer una lista
organizada............................................ 127
3	 Hacer predicciones............................... 128
4	 Probabilidad como una fracción......... 130
	 Solucionario.......................................... 132
1	 Práctica
	1.	 189 221 612		2.	512 801 297 		 3.	 908 167 238
		 		 		
	4.	 354 678 128	 5.	901 638 189	 6.	 72 559 334
		 		 		
	7.	 831 225 705	 8.	465 521 983	 9.	 687 245 371
		 		 		
Escribe cada número de otras dos maneras.
	10.	 900 000 000 1 70 000 000 1 8 000 000 1 300 000 1 8 000 1 200 1 5
	11.	 Doscientos diecisiete millones quinientos treinta y uno
¿Qué número hace que el enunciado numérico sea verdadero?
	12.	 500 000 5 50 •	 13.	 1 000 000 000 5 200 •
	14.	 ¿Cuántas monedas de $ 1 son
necesarias para obtener el mismo valor
que 1 000 monedas de $ 10?
16.	 ¿Cuál es el valor del dígito subrayado
en 729 340 233?
A	 20 000	 C	 2 000 000
B	 200 000	 D	 20 000 000
15.	 En una recolección anual de monedas
de $ 1, un grupo de voluntarios reunió
10 000 de monedas de $ 1.
¿Cuántas pilas de 10 monedas de $ 1
podrían hacer con todas sus monedas?
17.	En 479 247 061, ¿cuál dígito está en
el lugar de las centenas de millón?
A	 0	 C	 7
B	 2	 D	 4
Resolución de problemas.
Escribe el valor del dígito subrayado.
Cien millones
Capítulo 1: Valor posicional, suma y resta
Unidad 1
Números naturales y
números decimales
Valorposicionalhastalosmilmillones
Lección 1Capítulo 1
2	 Práctica
Escribe los números de la columna A con las respectivas descomposiciones aditivas
canónicas de la columna B.
		Columna A		 Columna B
18.	 456 000	 	 4DMMi15UMMi16CMi
19.	 4 500 060	 	 4CMi15DMi16UMi
20.	 456 000 000	 	 4CMM15DMM16UMM
21.	 45 600 000 000	 	 4CM15DM16UM
22.	 456 000 000 000	 	 4UMi15CM16D
Descompón cada número en forma estándar.
23.	 21 040 503		 24.	 600 009 014
		 		
25.	 452 000 000 030		 26.	 900 000 900 009
		 		
Escribe el número que corresponda.
27.	 9UMi12C11D14U
28.	 7CMi14UMi13DM11x12U
29.	 1UMM12CMi13DMi14UMi15CM16DM11U
30.	 7CMi18DMi19UMi12CM13DM15UM11C12D
31.	 7CMM18DMM19UMM12CMi15DMi14UM12C13D14U
Lección 1
3	 Práctica
Compararyordenarnúmerosnaturales
Compara. Escribe <, > o = en cada .
	1.	 6 574 6 547	 2.	 270 908 270 908	 3.	 8 306 722 8 360 272
	4.	 3 541 320 3 541 230	 5.	 670 980 680 790	 6.	 12 453 671 12 543 671
Ordena de menor a mayor.
	7.	 1 345 919; 1 299 184; 1 134 845	 8.	 417 689 200; 417 698 200; 417,698,100
		 		
Ordena de mayor a menor.
	9.	 63 574; 63 547; 63 745	 10.	 5 807 334 5 708 434; 5 807 433
		 		
Halla el dígito que falta para que el enunciado sea verdadero.
11.	 13 625  13 6 7  13 630	 12.	 529 781  529 78  529 778
Resolución de problemas.
	13.	 Usa los datos  ¿En qué región circuló el
mayor número de monedas de $ 50 en 2010?
		
14.	 Usa los datos  Ordena de menor a mayor la
cantidad de monedas de $ 50 que circularon
en Los Lagos, Antofagasta y Atacama.
Región
Monedas de $ 50
en 2010
Antofagasta 520 400 000
Los Lagos 488 000 000
Atacama 720 200 000
Biobío 563 400 000
Coquimbo 721 600 000
15.	 ¿Cuál número es menor que 61 534?
A	 61 354
B	 61 543
C	 63 154
D	 63 145
16.	 ¿Cuál opción muestra los números
ordenados de mayor a menor?
A	 722 319; 722 913; 722 139
B	 722 139; 722 319; 722 913
C	 722 913; 722 139; 722 319
D	 722 913; 722 319; 722 139
Lección 2Capítulo 1
4	 Práctica
Escribe una V si es verdadero o una F si la afirmación es falsa.
17. 	 25 214 081 < 35 000 000 	 18. 	 23 523 578 > 23 520 578
19. 	 55 millones < 55 000 	 20. 	 99 999 999 < 100 000 000
21.	 36 214 129 < 	27 000 999 	 22.	 124 567 890 = 124 567 089
Ordena de menor a mayor.
23.	 45 258; 45 852; 41 852
		
24.	 125 386; 125 368; 125 863
		
Ordena de mayor a menor.
25.	 7 124 587; 7 124 597; 7 124 578
		
26.	 996 102; 996 120; 996 121
		
Escribe >, < o = según corresponda.
27.	 10 000 + 20 + 5 10 000 + 200 + 50
28.	 80 000 + 7 000 + 300 + 1 70 000 + 8 000 + 300 + 1
29.	 900 000 + 90 000 + 6 000 + 100 + 2 900 000 + 90 000 + 6 000 + 400 + 2
30.	 500 000 + 60 000 + 8 000 + 900 + 10 + 7 500 000 + 60 000 + 8.000 + 100 + 90 + 7
Lección 2
5	 Práctica
Redondearnúmerosnaturales
Redondea cada número a la posición del dígito subrayado.
	1.	 3 256 029	 2.	 45 673	 3.	 91 341 281	 4.	 621 732 193
		 		 		 		
	5.	 8 067	 6.	 42 991 335	 7.	 182 351 413	 8.	 539 605 281
		 		 		 		
	9.	 	999 887 423	 10.	 76 805 439	 11.	 518 812 051	 12.	 657 388 369
		 		 		 		
Nombra el lugar al que se redondeó cada número.
	13.	 25 398 a 30 000	 14.	 828 828 a 830 000	 15.	 7 234 851 a 7 234 900
		 		 		
	16.	 612 623 a 600 000	 17.	 435 299 a 435 000	 18.	 8 523 194 a 9 000 000
		 		 		
Redondea 34 251 622 al lugar que se menciona.
	19.	 millones	 20.	 centenas de miles	 21.	 unidades de mil
		 		 		
Resolución de problemas.
22.	 dato breve  Un estadio tiene una
capacidad para 41 118 espectadores
sentados.
En un artículo de un periódico ese
número se redondeó a la decena de
mil más cercana. ¿Qué número se
escribió en el artículo del periódico?
24.	 ¿Cuál número redondeado al millón
más cercano es 45 000 000?
A	 43 267 944
B	 44 968 722
C	 45 322 860
D	 44 762 904
23.	 El número de asientos en el Estadio
Nacional se puede redondear a 47 000
cuando se redondea a la unidad de mil
más cercana. ¿Cuál puede ser el
número exacto de asientos del Estadio
Nacional?
25.	 ¿Cuál número redondeado al millón
más cercano es 42 167 587?
A	 40 000 000
B	 41 000 000
C	 42 000 000
D	 43 000 000
Lección 3Capítulo 1
6	 Práctica
Redondea cada número a la posición que se indica.
26. 	 22 434 a la centena			 27. 	 3 988 222 a la decena de mil
		 				
28. 	 70 384 612 a la unidad de millón	 29. 	 151 300 456 a la centena de millón
		 				
30. 	 4 444 444 444 a la unidad de millón	 31. 	 19 999 000 567 a la decena de millón
		 				
Redondea 12 675 al lugar que se menciona.
32.	 Unidades de mil			 33. 	 Decenas de mil
		 				
Aproxima a la decena de millón los siguientes números.
34. 	 863 000 000			 35. 	887 500 000	 36.	 967 300 000
		 				 		
37. 	 894 500 000			 38. 532 900 000	 39.	 221 200 000
		 				 		 	
		
Aproxima a la decena de mil.
40. 	 44 990			 41. 	654 245	 42.	 321 569	
		 				 		
43. 	 182 214			 44. 67 390	 45. 496 200
		 				 		 	
		
Lección 3
7	 Práctica
Sumaryrestarnúmerosnaturales
Estima antes de calcular. Luego, halla la suma o la diferencia.
	 1.	​  6 292     
1 7 318
 
__
 ​	 2.	 ​  28 434     
1 49 617
 
__
 ​	 3.	 ​  205 756      
2 201 765
 
__
 ​	 4.	 ​  529 852      
1 476 196
 
__
 ​
	5.	​  5 071 154      
1 483 913
 
__
 ​	 6.	​  241 933     
1 51 209
 
__
 ​	 7.	​  75 249     
2 41 326
 
__
 ​	 8.	​  1 202 365      
2 278 495
 
__
 ​
	9.	 ​  4 092 125        
​  2 748 810        
1 6 421 339
  
___
 ​
​ 	 10.	​  4 687 184        
2 1 234 562
  
___
 ​	 11.	​  542 002      
2 319 428
 
__
 ​	 12.	​  360 219      
1 815 364
 
__
 ​
13.	 32 109 1 6 234 1 4 827	 14.	 3 709 245 2 1 569 267	 15.	 200 408 2 64 159
		 				
ÁLGEBRA. Halla cada uno de los valores que faltan.
16.	  2 1 982 5 8 754	 17.	 70 380 2  5 43 287	 18.	  1 262 305 5 891 411
Resolución de problemas.
	19.	 Usa los datos  ¿Cuántos kilómetros cuadrados más de superficie que el terreno C tiene
el terreno B?
20.	 Usa los datos  ¿Cuál es el área total de
los dos terrenos con la mayor área de
superficie?
21.	 328 954 1 683 681 5
A	 901 535
B	 1 001 535
C	 1 012 635
D	 1 012 645
22.	 Durante el primer fin de semana de
julio, se vendieron 78 234 entradas en
la sala de cine. Durante el segundo fin
de semana, se vendieron 62 784
entradas. ¿Cuántas entradas más se
vendieron durante el primer fin de
semana de julio?
Lección 4Capítulo 1
Datos superficie de los terrenos
Terreno Área de terreno (en km2
)
A 31 700
B 22 300
C 7 340
D 9 910
E 23 000
8	 Práctica
Si a = 3 543 902, b = 8 997 001 y c = 632 844, resuelve.
23.	a 1 b =	
24. 	a 1 c =	
25. 	 b 1 c =	
26. 	 b – a =	
27. 	 a – c =	
28. 	 ( b – c) + a =	
29. 	 a – c + b =	
30. 	 b – c =	
Pinta del mismo color la operación con su resultado correcto.
31.		 4031152	 505	 555
32.		 121139	 160	 106
33.		 4 275 1 4 210	 8 485	 8 584
34.		 5 795 1 1 080	 6 785	 6 875
35.		24 183 – 24 162	 12	 21
36.		3 123 301– 3 123 056	 245	 254
37.		 45 299 – 8 609 	 36 690	 36 960
38. 		15 235 120 + 9 999	 15 245 209	 15 245 119
39. 		 11 247 – 11 235	 12	 21
40. 		 9 678 + 7 589	 17 267	 17 627	
DESAFÍO Lección 4
9	 Práctica
Aplicacionesmixtas
Del 5 al 6, usa la tabla.
	1.	 Ana pagó un arriendo mensual de
$53 500 por el primer año, $54 000 por
el segundo año, $54 500 por el tercer
año y $55 000 por el cuarto año. Si
este patrón continúa, ¿qué arriendo
mensual pagará Ana por el sexto año?
	3.	 ¿Cuáles son los tres números
siguientes en el patrón?
		 1, 121, 12321, 1234321, . . .
	2.	 En el camino de la costa, los
excursionistas caminaron 28 km el
lunes, 27 km el martes, 25 km el
miércoles y 22 km el jueves. ¿Cuántos
kilómetros caminaron los
excursionistas el domingo?
	4.	 Un pino medía 175 cm de altura en
2007, 179 cm en 2008, 183 cm en
2009 y 187 cm en 2010. ¿Qué altura
tendrá en 2017?
Tallerderesolucióndeproblemas
Estrategia:buscarunpatrón
Prácticadeladestrezaderesolucióndeproblemas
Halla un patrón para resolver el problema.
	5.	 Usa los datos  Predice la cantidad de
personas que pertenecen al club de la
amistad en 2014.
	6.	 Usa los datos En 2011, la cantidad de
personas que pertenecía al club de la
amistad fue el doble de la de 2009.
¿Cuál será la cantidad de personas que
pertenecerán al mismo club en 2014?
	7.	 La secuoya más alta que se ha conocido
en el Parque Nacional Redwood medía
112 m de altura antes de caerse en
1991. El salto Yosemite es 6,5 veces
más alto que ese árbol. ¿Qué altura
tiene el salto Yosemite?
	8.	 Juana gastó $18 200 en un abrigo de
invierno, $1 900 en un sombrero, $800
en una bufanda, $600 en unos guantes
y $21 000 en unas botas. ¿Cuánto
gastó Juana en su ropa de invierno?
Personas que pertenecen al club de la
amistad
Año Número de personas
2008 6
2009 12
2010 18
2011 24
2012 30
Lección 5Capítulo 1
10	 Práctica
Capítulo 2: Multiplicar números naturales
Cálculomental:patronesenlosmúltiplos
Halla el producto.
  1.  9 • 300   2.  3 • 100   3.  60 • 5   4.  5 • 7 000   5.  10 • 4 000
  6.  70 • 20   7.  20 • 90   8.  1 000 • 10   9.  5 000 • 3 10.  6 000 • 80
11.  4 • 9 000 12.  7 • 200 13.  60 • 60 14.  100 • 6 15.  20 • 50
ÁLGEBRA.  Halla el número que falta.
16.  70 • 50 5 17.  • 20 5 900 18.  600 • 5 1 200
19.  • 100 5 3 500 20.  30 • 50 5 21.  400 • 5 40 000
22.  5 • 200 23.  40 •   5 2 000 24.  • 80 5 4 000
Resolución de problemas.
	25.	 En una colonia de pingüinos hay
aproximadamente 8 000 nidos. Si cada
nido está ocupado por tres pingüinos,
¿cuántos pingüinos hay en total?
	26.	 Cada pareja de pingüinos pone 2
huevos. ¿Cuántos huevos pondrán
1 200 parejas de pingüinos?
	27.	 Las entradas para ver una función de
títeres cuestan $900 cada una. ¿Cuánto
dinero se recaudará por la venta de
entradas si se venden 5 entradas?
A	$45 000
B	$450 000
C	$4 500 000
D	$4 500
	28.	 Una tienda de polerones vende cada
polerón de adulto a $8 000.
¿Cuánto dinero se recibirá por la venta
de 7 polerones?
A	$560
B	$5 600
C	$56 000
D	$560 000
Capítulo 2 • Lección 1
11	 Práctica
Escribe el producto de las siguientes multiplicaciones.
29. 	 9 • 7	 	 30. 	 9 • 70	
31. 	 9 • 700	 	 32. 	 5 • 5	
33. 	 5 • 50	 	 34. 	 5 • 500	
35. 	 6 • 3	 	 36. 	 6 • 30	
37. 	 6 • 300	 	 38.	 8 • 6	
39.	 8 • 60	
Une con una línea la multiplicación con su respectivo producto.
40. 	 6 000 • 2		 800
41. 	 40 • 20		 1 000
42. 		10 • 700		 12 000
43. 		 500 • 2		 1 400
44.		14 • 100		 7 000
45.		15 • 100		 9 000
46.		22 • 500		 1 500
47. 	 35 • 20		 1 200
48. 		 40 • 30		 700
49.		900 • 10		 11 000
Lección 1
12	 Práctica
Estimarproductos
Estima el producto.
  1.  65 • 22   2.  18 • $34   3.  738 • 5   4.  19 • 23   5.  8 130 • 7
  6.  91 • 49   7.  64 • 31   8.  555 • 4   9.  4 096 • 2 10.  4 • 1 912
11.  19 • 24 12.  46 • 12 13.  88 • 27 14.  4 • 9 672 15.  6 371 • 5
16.  33 • 18 17.  8 • 60 18.  5 720 • 9 19.  54 • 41
.
20.  7 • 5 118
Resolución de problemas.
	21.	 La Comisión Municipal de Parques
ha presupuestado $5 000 para plantar
32 árboles de plátano oriental en un
parque. Estima si ese dinero es
suficiente para comprar los árboles.
Gastos para el Parque
Árbol Costo
Álamo $110
Naranjo $90
Plátano oriental $180
	22.	 La Comisión también quiere comprar 24 álamos. Estima para saber si
$3 000 son suficientes para comprarlos.
	23.	 ¿Cuál opción es la mejor estimación
para 4 • 54 090?
	A	 4 • 50 000
	B	 4 • 60 000
	C	 5 • 50 000
	D	 5 • 60 000
	24.	 ¿Cuál opción es la mejor estimación
para 11 • 27?
A	 20 • 20
B	 20 • 30
	C	 10 • 30
	D	 10 • 20
Lección 2Capítulo 2
13	 Práctica
Calcula el producto y pinta el resultado correcto.
25.	 23 • 14	 322	 200	 230
26.	 6 224 • 7	 42 000	 43 568	 45 500
27.	 92 • 38	 3 600	 3 680	 3 496
28.	 67 • 42	 1 608	 1 340	 1 400
29. 	 999 • 8	 7 992	 8 000	 7 920
Escribe una C si el resultado es correcto o una I si el resultado está incorrecto.
30.	 12 • 10 5 100 			 31.	 289 • 18 5 6 000 	
32.	 46 • 22 5 1 010 			 33. 	 90 • 32 5 2 880 	
	34. 	 6 830 • 8 5 56 000 	 35. 	 1 914 • 4 5 7 668 	
Estima cada factor. Luego multiplica y anota el resultado aproximado.
36.	 87 • 12	 37.	 75 • 32	 38.	 96 • 45	 39.	 25 • 17	
		 		 		 		
40. 37 • 23	 41.	 42 • 13	 42.	 64 • 73	 43.	 88 • 57	
		 		 		 		
44.	 56 • 13	 45.	 65 • 44	 46.	 78 • 99	 47.	 19 • 33
		 		 		 		
48.	 58 • 11	 49.	 78 • 23	 50.	 45 • 36	 51.	 19 • 34
		 		 		 		
Lección 2
14	 Práctica
Multiplicarpornúmerosde2dígitos
Estima. Luego, halla el producto.
 1. ​  34 • 28
  
 ​   2. ​  45 • 61  3.  ​  70 • 53  4. ​  62 • 34  5. ​  97 • 17
 6. ​ 22 • 77  7. ​  90 • 83
  
 ​  8. ​13 • 23   9. ​  17 • 91
  
 ​ 10.  ​40 • 67 ​
11.  ​  21 • 84 12. ​  72 • 33 13. 19 • 58 14. ​12 • 42 15. ​  89 • 12
16. 96 • 17 17. 65 • 37 18. 99 • 21 19. 18 • 46 20. 57 • 72
ÁLGEBRA  Halla el dígito que falta. Explica tu solución.
21.  4 • 47 5 2 021 22.  14 • 9 5 1 274 23.  5 • 36 5 1 944
Resolución de problemas.
24.	 Ana quiere recorrer 25 kilómetros por
semana en bicicleta durante todo un
año, o sea, en 52 semanas. ¿Cuántos
kilómetros en total planea Ana recorrer
en bicicleta?
25.	 César participó en una maratón de
bicicletas. Veintitrés miembros de su
familia donaron $1 200 cada uno por
cada km que recorrió. Si César recorrió
8 km, ¿cuánto dinero recaudó?
26.	 ¿Cuánto dinero gana una tienda si vende
7 CDs a $1 436 cada uno?
	A  $1 443 C  $10 052
	B  $7 812 	 D  $10 552
27.	 Si el señor Rojas paga cuotas mensuales
de $1 590 durante 9 meses, ¿cuánto
pagará en total por su compra?
	A  $9 580 C  $14 310
	B  $13 580 D  $14 400
Lección 3Capítulo 2
15	 Práctica
Resuelve las siguientes multiplicaciones.
28.	 22 • 46	 29.	 18 • 10	 30. 	 30 • 19
31.	 12 • 7	 32. 	45 • 21	 33. 	 74 • 85
34. 	 14 • 15	 35. 	15 • 60	 36. 	 98 • 11
37. 	 45 • 3	 38. 	25 • 12	 39. 	 56 • 7
40. 	 37 • 21	 41. 	44 • 5	 42. 	 19 • 6
43. 	 84 • 10	 44. 	67 • 13	 45. 	 41 • 9
Escribe el factor que falta para que se cumpla la igualdad.
47. 	 • 5 5 10 000
48. 	 83 • 5 83 000 49. 	 • 100 5 5 700
51. 	 • 23 = 2 300
53. 	 • 7 = 35 000
50. 	 2 • = 8 000
52. 	 12 • = 1 200
46.	 3 • 5 600
Lección 3
16	 Práctica
Practicarlamultiplicación
Haz una estimación. Después, halla el producto.
  1.  ​617 • 5   2. ​407 • 6   3. ​926 • 9   4.  ​1 093 • 4   5.  ​3 528 • 7
 6. 782 • 3  7. 913 • 7  8. 205 • 4  9. 5 • 839 10.  970 • 6
11.  89 • 30 12.  19 • 93 13.  26 • 33 14.  56 • 22 15.  4 106 • 23
16.  19 • 587 17.  3 601 • 44 18.  1 212 • 4	 19.  567 • 9 20.  355 • 3
21.  105 • 7 22.  465 • 32 23.  279 • 6 24.  480 • 4 25.  1 790 • 2
26.  4 301 • 3	 27.  603 • 5
Resolución de problemas.
	28.	 Un zoológico transporta a
4 elefantes machos originarios de
la selva africana a otro zoológico.
¿Cuánto peso se transporta en total?
29.	 ¿Qué diferencia de más hay entre el
peso de 6 elefantes machos y 6
elefantes hembras?
	
31.	 La entrada a un zoológico cuesta $2 631
por auto. ¿Cuánto dinero recibió el
zoológico por los 7 autos que entraron
en una semana?
	A	$14 217 	C	$18 217
	B	$14 417 D	$18 417
	30.	 Un parque de diversiones vende entradas
diarias para familias por $9 800. ¿Cuánto
pagaron 6 familias por sus pases diarios?
	A	$54 500 C 	$58 800
	B	$54 800 D	 $59 800
Peso de los elefantes de la
selva africana
Sexo Peso aproximado
macho 7 200 kg
hembra 3 400 kg
Lección 4Capítulo 2
17	 Práctica
Si a = 38, b = 27 y c = 59, entonces
32.	 Estima el producto de a • b	 33. 	 Estima el producto de a • c
		 		
34.	 Estima el producto de b • c	 35.	 El resultado de ( a – b ) • 59
		 		
36.	 El resultado de a • ( c – b )	 37.	 El resultado de a • ( b • c )
		 		
Usa la propiedad distributiva para resolver las multiplicaciones.
38.	 30 • 42			 39.	 60 • 18
40.	 80 • 15			 41.	 90 • 45
Une con una línea la multiplicación estimada.
42. 	 24 • 97				4 000
43. 	 45 • 81				2 100
44. 	 38 • 65				2 000
45. 	 67 • 31				 2 800
46.	 42 • 79				 4 800
47.	 18 • 54				 1 000
48.	 56 • 84				 3 200
49.	 13 • 75				 800
Lección 4
18	 Práctica
Tallerderesolucióndeproblemas
Estrategia:predeciryprobar
Prácticadeladestrezaderesolucióndeproblemas
Saca una conclusión para resolver el problema.
	 1.	 En el campamento, Benjamín está
aprendiendo a montar a caballo y a hacer
objetos de cerámica. Las clases de
equitación cuestan $2 200 por hora. Las
clases de cerámica cuestan $900 por hora.
Hasta ahora Benjamín ha tomado 4 horas
de equitación y 7 horas de cerámica.
¿Cuánto le han costado las clases hasta
ahora?
	 2.	 Andrea está tomando clases de esgrima y
de esquí en el campamento de invierno.
Las clases de esgrima cuestan $1 400 por
clase. Las clases de esquí cuestan $1 900
por clase. Hasta ahora Andrea ha tomado
8 clases de esgrima y 5 clases de esquí.
¿Cuánto le han costado las clases de
esquí?
	 3.	 Un examen tiene 25 problemas. Por cada
respuesta correcta, se dan 4 puntos. Por
cada respuesta incorrecta, se resta 1
punto. Daniela obtuvo 17 problemas
correctos y 8 incorrectos. ¿Cuál es el
puntaje final de Daniela en el examen?
	 4.	 Las clases de actuación cuestan $2 500
por clase. Las clases de canto cuestan
$2 200 por clase. Doris tomará 7 clases
de actuación y 3 clases de canto. Si ya
tiene ahorrado $12 000, ¿cuánto dinero
le falta?
Aplicacionesmixtas
Del 5 al 6, usa la información de la tabla.
	 5.	 Usa los datos  Claudio tomó por seis días
clases de voleibol en el campamento de
invierno. Si la cuota de ingreso es de
$3 000, ¿cuánto pagó en total?
	 6.	 Usa los datos  Carla realizó actividades en el campamento de invierno los jueves y los
viernes durante 4 semanas. Cada día realizó solo una actividad. Los jueves tomó
cerámica y los viernes tomó basquetbol. ¿Cuánto pagó en total por estas actividades?
Actividades en el
campamento de invierno
Actividad Costo por día
cerámica $1 500
voleibol $1 200
básquetbol $1 000
baile folclórico $900
Lección 5Capítulo 2
19	 Práctica
Representarladivisiónde2dígitospor1dígito
Usa bloques multibase para hallar el cociente y el resto.
  1.  37 : 2 5 r   2.  53 : 5 5 r   3.  92 : 7 5 r   4.  54 : 4 5 r
  5.  56 : 3 5 r   6.  89 : 9 5 r   7.  78 : 6 5 r   8.  92 : 8 5 r
  9.  65 : 4 5 r     10.  79 : 7 5 r ​ 11.  89 : 6 5 r​ 12.  87 : 4 5 r  ​
13.  73 : 8 =  r  14.  47 : 9 =  r  15.  44 : 3 =  r  16.  57 : 5 =  r 
17.  23 : 4 =  r  18.  97 : 8 =  r  19.  49 : 6 =  r  20.  36 : 4 = 
Divide. Puedes usar bloques multibase.
21. ​ ​77 : 3 5 r 22. ​ ​67 : 2 5 r 23.  66 : 4 5 r
 
 ​ 24  ​67 : 5 5 r
25.  37 : 2 5 r 26.  98 : 4 5 r 27.  91 : 6 5 r 28.  72 : 7 5 r
29.  93 : 8 5 r
 
 ​ 30.  57 : 6 5 r ​ 31.  77 : 4 5 r​ ​ 32. ​59 : 9 5 r
 
 ​
33.  88 : 7 =  34.  43 : 3 =  35.  79 : 7 =  36.  27 : 4 = 
37.  86 : 9 =  38.  46 : 6 =  39.  54 : 6 =  40.  39 : 7 = 
Capítulo 3: Dividir entre divisores de 1 y 2 dígitos Capítulo 3 • Lección 1
20	 Práctica
Pinta del mismo color la división con su resultado correcto.
41.		 85 : 5		
42.		 56 : 4		
43.		 63 : 9	
44.		 96 : 3		
45.		 72 : 3
46.		 36 : 2	
47.		 55 : 11
Representa la división, dibujando los bloques multibase 10.
48.	 12 : 2
49.	 54 : 6
50.	 27 : 3
51. 	 44 : 5
52.	 58 : 4
53.	 65 : 3
54.	 70 : 7
17
14
24
32
18
5
7
Lección 1
21	 Práctica
Dividirentredivisoresde1dígito
Resuelve los siguientes ejercicios.
  1.  348 : 4   2.  952 : 7   3.  715 : 5   4.  414 : 6
  5.  837 : 3   6.  367 : 8   7.  804 : 7   8.  534 : 9
Divide. Multiplica para comprobar.
 9.  712 : 2 10.  810 : 5 11.  662 : 7 12.  305 : 4
13.  984 : 6 14.  258 : 3 15.  754 : 9 16.  576 : 7
Resolución de problemas.
	17.	 185 estudiantes van al museo en
microbús. Cada microbús puede llevar
9 estudiantes. ¿Cuántos microbuses
llenos se necesitan? ¿Cuántos
estudiantes viajan en el microbús que no
está lleno?
.
	18.	Hay 185 estudiantes en el museo. Cada
adulto tiene 8 estudiantes en su grupo.
¿Cuántos adultos tendrá un grupo
completo? ¿Cuántos estudiantes no
estarán en un grupo de 8 estudiantes?
	19.	 En una caja se pueden guardar
9 paquetes de cereal. ¿Cuántas cajas se
necesitan para guardar 144 paquetes de
cereal?
A	 1 296
B	 16
C	 17
D	 9
	20.	 Una clase de 5º básico hizo
436 galletas. La clase colocó 6 galletas
en cada bolsa. ¿Cuántas galletas
quedaron?
A	 72 r4
B	 2 616
C	 4
D	 72
Lección 2Capítulo 3
22	 Práctica
Completa la tabla.
División Resultado Resto Comprobación
21.
587 : 6
22.
235 : 7
23.
436 : 5
24.
947 : 3
25.
593 : 9
26.
642 : 7
27.
117 : 2
28.
873 : 3
29.
777 : 7
30.
181 : 9
Lección 2
23	 Práctica
Álgebra.Patronesdedivisión
Usa operaciones básicas y patrones para hallar el cociente.
  1.  60 : 10   2.  140 : 7   3.  180 : 90   4.  480 : 6
  5.  400 : 5   6.  160 : 4   7.  360 : 6   8.  560 : 80
  9.  240 : 3 10.  200 : 10 11.  630 : 7 12.  420 : 6
13.  810 : 90 14.  800 : 2 15.  900 : 3 16.  350 : 5
Compara. Usa , , o = en cada    .
17.  350 : 7 	 3 500 : 7 18.  240 : 8 	 24 : 8 19.  360 : 4 	 360 : 4
Resolución de problemas.
	20.	 En un depósito se almacenaron
7 canastos con papel. El papel
pesaba en total 700 kilogramos.
¿Cuánto pesaba 1 canasto con papel?
	21.	 En una oficina se compraron 8 lapiceras
que costaron $720. Cada lapicera tenía
un descuento de $15. ¿Cuánto costó
cada lapicera después del descuento?
	22.	 Una tienda de ropa gasta $450 en
nueve percheros. ¿Cuánto cuesta
cada perchero?
A	$90
B	$500
C	$54
D	$50
	23.	 Un hombre de negocios gasta $640
en 8 proyectores para su compañía.
¿Cuánto cuesta cada proyector?
A	$8 000
B	$80
C	$64
D	$800
Lección 3Capítulo 3
24	 Práctica
Calcula el resultado.
24.	 10 : 5 5 	 25.	 36 : 4 5
26. 	 100 : 5 5 	 27. 	 360 : 4 5
28. 	 1 000 : 5 5 	 29. 	 3 600 : 4 5
30. 	 10 000 : 5 5 	 31. 	 36 000 : 5 5 			
Escribe una V si la afirmación es verdadera o una F si es falsa.
32.	 440 : 2	  	 4 400 : 2 	
33.	 15 : 3 	 = 	 25 : 5 	
34.	 48 000 : 6	  	 480 : 6
35.	 160 : 80	 = 	 1 600 : 800
36.	 6 000 : 100	  	 6 000 : 10
37.	 5 000 : 10	  	 500 : 10
Divide.
38.	 280 : 4 = 	 39.	 1 400 : 7 = 	 40.	 1 500 : 300 =
41.	 1 800 : 90 = 	 42.	 350 : 5 = 	 43.	 600 : 200 =
44.	 4 000 : 4 000 = 	 45.	 1 200 : 400 = 	 46.	 8 000 : 200 =
Lección 3
25	 Práctica
Dividirconrestos
Usa fichas para hallar el resultado.
  1.  27 : 5 5    2.  34 : 8 5    3.  18 : 4 5 
  4.  57 : 7 5    5.  41 : 6 5    6.  53 : 9 5 
Divide. Como ayuda puedes usar fichas o hacer un dibujo.
  7.  26 : 3 5    8. 34 : 4 5    9. 50 : 6 5 
10.   ​  
 
75 : 9 5  11. ​​  
 
54 : 8 5   12.  ​60 : 7 5 
13.  17 : 3 5  14.  44 : 5 5  15.  33 : 3 5 
Resolución de problemas.
16.	 Cinco estudiantes están jugando cartas
usando una baraja de 54 cartas. Si cada
jugador tiene igual cantidad de cartas,
¿cuántas cartas tendrá cada estudiante?
¿Cuántas cartas sobran?
17.	 Boris construyó un juego usando 10
bolitas de cada color: morado, amarillo,
verde, azul, naranja y rojo. Si Boris
divide las bolitas por igual entre
8 jugadores, ¿cuántas sobrarán?
18.	 ¿Qué problema describe la
representación?
A	 34 : 5	 C	 30 : 4
B	 28 : 5	 D	 20 : 6​
19.	 ¿Qué problema describe la
representación?
A	 28 : 6	 C	 34 : 8
B	 42 : 4	 D	 24 : 4
Capítulo 3 Lección 4
26	 Práctica
Anota la división que está representada en el modelo.
20.
							
21.
						 	
22.
						 	
23.
					 		
24.
						 	
25.
							
Divide.
26.	 55 : 5 	 27.	 38 : 3 	 28.	 29 : 4
29.	 74 : 9 	 30.	 60 : 8 	 31. 	 53 : 6
32.	 27 : 2 	 33.	 15 : 3
Lección 4
27	 Práctica
Tallerderesolucióndeproblemas
Destreza:interpretarelresto
Prácticadeladestrezaderesolucióndeproblemas
Resuelve. Escribe a, b o c para explicar cómo interpretar el resto.
 a.	 El cociente queda igual. Bajo el resto.
 b.	Aumento el cociente en 1.
  c.	 Uso el resto como respuesta.
  1.	 El profesor de artes le dio a 8
estudiantes un total de 55 cuentas para
hacer collares. Si él dividió las cuentas
por igual entre los estudiantes, ¿cuántas
tiene cada estudiante?
  2.	 En total, los estudiantes de 3 carpas
trajeron 89 troncos para una fogata. Los
estudiantes de 2 carpas trajeron cantidades
iguales, pero los de la tercera trajeron
más. ¿Cuánto más?
  3.	 Gabriela tenía 150 vasos de agua para
dividirlas por igual entre 9 estudiantes.
¿Cuántos vasos le dio a cada estudiante?
  4.	 Los líderes del campamento dividieron
52 latas de comida por igual entre 9
estudiantes. ¿Cuántas latas de comida
sobraron?
Aplicacionesmixtas
  5.	 Gina tiene 34 hot dogs. Ella le dio a 3
estudiantes 2 hot dogs a cada uno
antes de dividir el resto entre 7
estudiantes. ¿Cuántos hot dogs le dio a
cada estudiante?
  6.	 En la mañana de una excursión, la
temperatura fue de 21 ºC. Hacia la mitad
de la tarde la temperatura había
aumentado a 32 ºC. ¿Cuánto más cálida
fue la temperatura de la tarde?
  7.	 Formula un problema Intercambia la
información conocida por desconocida
en el ejercicio 5 para escribir un
problema nuevo.
  8.	 Cristian compró estas herramientas de
camping: una linterna, un hacha
por $1 500, una lámpara por $1 200 y
una silla para camping por $2 300. Si él
gastó $5 700, ¿cuánto costó la linterna?
Capítulo 3 Lección 5
28	 Práctica
Cerosenladivisión
Divide.
  1.  366 : 3   2.  374 : 5   3.  635 : 7   4.  923 : 4​   5.  672 : 8
  6.  811 : 5   7.  921 : 9   8.  597 : 6 ​   9.  816 : 2 10.  177 : 7
11. 456 : 5 12. 764 : 3 13. 932 : 8 14. 321 : 4 15. 237 : 6
Divide y comprueba.
Resolución de problemas.
29.	 Jaime tiene una colección de 702
autitos en miniatura que coloca en 6
estantes en su biblioteca. Si los autitos
están divididos en partes iguales,
¿cuántos hay en cada estante?
30.	En 5 días, los scouts hacen un total de
865 adornos para recaudar dinero. Si
hacen el mismo número cada día,
¿cuántos hacen en 1 día?
31.	 Martina tiene 594 volantes en montones
de 9 volantes cada uno. ¿Cómo hallas el
número de montones que Martina hizo?
Explica.
32.	 Susana tiene 320 rebanadas de pan
de huevo. Quiere llenar bolsas con 8
rebanadas de pan en cada una.
¿Cuántas bolsas llenará Susana?
16.  495 : 5  	 17.  719 : 6  	 18.  735 : 3  	
19. 897 : 4  	 20.  210 : 4  21.  103 :  14 r5
22.  : 5  61 23. 350 : 5= 24. 298 : 4 =
25. 219 : 3 = 26. 345 : 7 = 27. 754 : 6 =
28. 643 : 4 =
Lección 6Capítulo 3
29	 Práctica
Escribe cada comprobación como una división.
33.	 3 • 296 1 2	
		
34.	 6 • 98 1 5	
		
35.	 5 • 144 1 3	
		
36.	 2 • 408 1 1	
		
37.	 8 • 84 1 5	
		
38.	 3 • 313 1 9	
		
Halla el valor que falta.
39.	 801 : 2 5 resto 	 40. 	 : 3 5 96
41. 	 470 : 4 5 resto 5 2	 42. 	 624 : 6 5
43. 	 : 9 5 102 resto 5 2	 44. 	 407 : 3 5 resto
45. 	 : 4 5 71 resto 1	 46. 	 700 : 5 5
Une la división con su cociente y con su respectiva comprobación.
División Resultado Comprobación
47. 457 : 5 97 127 • 4 + 2
48. 604 : 2 91 302 • 2 + 0
49. 900 : 8 127 112 • 8 + 4
50. 292 : 3 112 91 • 5 + 2
51. 510 : 4 302 97 • 3 + 1
Lección 6
30	 Práctica
Propiedadesdelamultiplicación
Usa las propiedades y el cálculo mental para hallar el producto.
 1.	 3 • 4 • 2  2.	 4 • 5 • 5  3.	 7 • 4 • 0  4.	 7 • 12 • 1
Halla el número que falta. Nombra la propiedad que usaste.
 5.	 (5 • 3) • 4  5 • ( • 4)  6.	 3 • 5  5 • 
 7.	 8 •   (2 • 10) 1 (6 • 2)  8.	 3 • (7 2 )  3
 9.	 8 • (5 2 3 2 2)   10.	 3 • (2 • 4)   • (2 • 3)
Haz un dibujo y usa la propiedad distributiva para hallar el producto.
11.	 14 • 6 12.	 5 • 15 13.	 9 • 17
Muestra dos maneras de agrupar usando paréntesis. Usa alguna estrategia.
14.	 12 • 5 • 6 15.	 4 • 3 • 2 16.	 9 • 3 • 8
Resolución de problemas.
17.	 La vitrina de una tienda de mascotas
tiene 5 jaulas con 4 cachorros en cada
una y 6 jaulas con 6 gatitos en cada
una. ¿Cuántos animales hay en la
vitrina?
18.	 Jaime lleva a caminar a su perro pastor
para hacer ejercicio. Caminan cuatro
cuadras que miden 200 metros cada
una. ¿Cuántos metros caminaron Jaime
y su perro?
19.	 Cada paquete de juguetes para gato
tiene 7 juguetes. Cada caja de paquetes
tiene 20 paquetes. ¿Cuántos juguetes hay
en 5 cajas de juguetes para gato?
A	 500	 C	 700
B	 600	 D	 800
20.	 ¿Es verdadero el enunciado numérico?
5 • (4 2 3)  5? Explica.
Capítulo 4: Álgebra. Usar las operaciones
de multiplicación y división
Capítulo 4 • Lección 1
31	 Práctica
Escribe el nombre de la propiedad usada.
21.	24 • 58 = 58 • 24
22.	 14 • ( 21 • 4 ) 5 ( 14 • 21 ) • 4
23.	 9 • ( 7 + 19 ) 5 ( 9 • 7) + ( 9 • 19 )
24.	 ( 25 • 3 ) • 2 5 25 • ( 3 • 2 )
25.	 14 • 2 5 2 • 14
26.	 7 • 14 5 ( 7 • 10 ) + ( 7 • 4 )
Si a = 7 , b = 8 y c = 9. Calcula.
27.	 ( a • b ) • c 5 	 28. 	 ( a + b ) • c 5
29. 	 a • b 5 	 30. 	 b • a 5
31. 	 b • c = 	 32. 	 b • c • a =
33. 	 ( a +c ) • b = 	 34. 	 14 + ( b • a ) =
35. 	 ( b + c ) • a = 	 36. 	 100 – ( b • a ) =
37. 	 ( b + 200 ) – c = 	 38. 	 c + b • a + 9 =
39. 	 7 + a • c = 	 40. 	 9 + a • b =
Comprueba si se cumple la igualdad.
41.	 23 • 4 5 4 • 23			 42.	 6 • 12 5 6 • 10 + 6 • 2
43.	 ( 15 • 3 ) • 2 5 15 • ( 3 • 2)	 44.	 8 • 12 5 12 • 8
Lección 1
32	 Práctica
Prevalenciadelasoperaciones
Escribe correcto si las operaciones están escritas en el orden correcto.
Si no, escribe el orden correcto de las operaciones.
	 1.	 (7 • 8) : 4	 Multiplica, divide 	 2.	 36 2 7 • 3	 Resta, multiplica
	 3.	 4 1 6 • 3	 Suma, multiplica 	 4.	 28 2 4 • 6 1 12	 Resta, multiplica, suma
	 5.	 45 : (12 2 7)	 Resta, divide 	 6.	 72 : 8 2 4 1 7	 Suma, resta, divide
Sigue el orden de las operaciones para hallar el valor de cada expresión.
	 7.  7 1 10 • 3 	 8.  (41 2 5) : 6 	 9.  7 1 25 : 5 	10.  31 1 72 : 8
	11.  7 1 35 : 5 2 8 	12.  4 1 5 1 9 • 6 	13.  28 2 10 • 2 1 33 	14.  6 1 81 : 9 2 7
Usa los siguientes números para que el enunciado numérico sea verdadero.
	15.  5, 6 y 42
 2  •  5 12
	16.  3, 15 y 21
 1  :  5 22
	17.  7, 9 y 81
 :  2  5 2
	18.  3, 4 y 12
 1  •  5 51
	19.  5, 6 y 7
 •  2  5 37
	20.  4, 16 y 28
 :  1  5 23
21. 9, 14, 2
 •  + = 37	
22. 12, 15, 5
 :  •  = 36
23. 3, 7, 12
 :  •  = 28
Lección 2Capítulo 4
33	 Práctica
Resuelve los ejercicios de acuerdo a la prevalencia de las operaciones.
24.	 31 1 47 – 5 • 12 5
25.	 36 : 6 1 25 – 10 5
26.	 12 • 6 : 3 – 24 5
27.	 16 – 4 1 8 : 2 5
28.	 25 1 15 : 3 – 15 5
29.	 14 • 2 – 21 : 3 5
30.	 9 • 8 1 7 • 4 5
Pinta el resultado correcto de cada operación.
31.	 7 • 7 1 15	 32.	 25 : 5 1 3 • 7	 33.	 12 – 6 : 3 1 18
	 64 154		 56 26		 10 28
34.	 33 1 11 – 42	 35.	 37 1 3 • 7 – 12	 36.	 15 : 5 • 12 1 4
		 2 0		 46 268		 40 48
37.	 21 : 3 1 48 : 6	 38.	 13 + 10 : 5 • 4	 39.	 9 • 9 – 16 : 8
		 10 15 		 21 16		 63 79
Resuelve las operaciones. Escribe el orden que ocupaste al resolverlas.
40.	 77 : 11 + 25 • 8	 41.	 14 – 7 • 1 + 18
		 		
42.	 84 – 21 : 3 – 10	 43. 	 35 + 84 : 12 – 20
		 		
44.	 200 : 10 – 10 • 1	 45.	 67 – 35 : 5 + 60
		 		
46. 	 90 + 9 : 3 • 7	 47. 	 35 – 12 + 15 : 5
		 		
Lección 2
34	 Práctica
Expresionesentreparéntesis
Sigue el orden de las operaciones para hallar el valor de cada expresión.
	 1.	 2 2 3 • 8 : 12 	 2.	(5 1 28) : 3 2 5 	 3.	(15 1 9) : 2 2 1 	 4.	(2 1 7) • 6 2 3
Elige la expresión que corresponda con las palabras.
	 5.	 Gina dividió 12 soldaditos de juguete en
2 grupos iguales. Luego compró
6 más.
		A	 12 : 2 1 6	 B	 12 : (2 1 6)
	 6.	 Sabrina compró 6 grupos de 5 flores
juntas. Luego botó 4 que estaban
marchitas.
		A	 6 • (5 2 4)	 B	 6 • 5 2 4
Escribe palabras que correspondan a la expresión.
	 7.	 49 : 7 1 2 	 8.	 6 • 7 1 28 	 9.	(4 • 9) : (16 2 14)
Usa paréntesis para que el enunciado numérico sea verdadero.
	10.	 48 : 2 1 2 5 12 	11.	 81 : 7 1 2 1 4 5 13 	12.	 3 • 21 1 2 2 3 5 66
Resolución de problemas.
	13.	En 7 árboles había 5 pájaros en cada
nido. Jorge alimentó a todos menos a 2.
¿Cuántos pájaros alimentó Jorge?
	14.	 Graciela fue a observar pájaros durante
7 días. Cada día ella vio 3 codornices, 5
chincoles y 1 zorzal. ¿Cuántos pájaros
vio Graciela en total?
	15.	 ¿Cuál expresión tiene un valor de 14?
A	 10 1 (4 • 2) 2 6
B	 44 : 11 1 12
C	 27 : 9 1 11
D	 18 • 2 2 14
	16.	 Halla el valor de la siguiente expresión:
		(12 • 6) : (4 2 3)
Lección 3Capítulo 4
35	 Práctica
Resuelve los ejercicios combinados.
17.	 15 • 3 1 3 • 9
		
18. 	 ( 12 : 6 ) 1 ( 25 : 5 )
		
19. 	 ( 48 : 2 ) 1 15
		
20. 	 ( 63 : 9 ) – 8 : 8
		
Escribe la expresión numérica para cada situación.
21.	 Pepe tenía 10 gomas, prestó 8 y después
le regalaron 3.
		
22.	 Rafael compró 15 dulces, regaló 7 y se le
perdieron 3.
			
23.	 Gabriel estudió 3 horas al día por 3 días y
estudió 4 horas el cuarto día.
			
24.	 Laura compró 3 paquetes de papas fritas
a $ 250 cada uno. Pagó $ 200 de
impuesto.
		
29.	 40 – 8 : 4 5 8 30.	 35 – ( 4 1 3 ) : 7 5 34
31.	 5 • ( 10 – 5 ) + ( 8 : 2 ) 5 29 32.	 18 – ( 2 • 2 ) 5 15
33.	 10 1 ( 2 • 6 ) 5 22 34.	 6 • 7 – 2 5 42
35.	 12 + 3 • 8 – 6 = 30 	 	 36.	 200 – 4 • 3 + 10 = 508
37.	 23 • 3 + 7 = 230 	 	 38.	 350 – 50 + 9 • 3 = 327
39.	 28 : 4 • 9 – 60 = 60 	 	 40.	 1 500 : 30 – 45 + 5 = 10 =
25. 	 Juan tenía dos chocolates y le regalaron
cinco más.
		
26. 	 Esteban compró 10 bolitas, regaló siete y
luego ganó 3.
		
27. 	 Pedro tiene catorce láminas, jugó y las
perdió todas.
		
28.	 Ana vendió 5 collares a $100 cada uno y
gastó 200 en comprar más hilo.
		
Escribe C si el ejercicio está correcto o I si está incorrecto.
Lección 3
36	 Práctica
Resolucióndeproblemasconcalculadora
Resuelve.
1.	 Beatriz se compró un auto en $ 6 780 890. Para ello, dio un avance de $ 2 500 000 y el
dinero faltante lo debe pagar en 25 cuotas de $ 171 600 cada una. Si ha cancelado
13 cuotas, ¿cuánto dinero le queda para terminar de pagar su auto?
2.	 La distancia entre Santiago y Valparaíso es de 120 km aproximadamente. Si un bus realiza
5 viajes ida y vuelta, ¿cuántos kilómetros recorre en total?
3.	 Edgardo compra 3 chalecos y 3 pantalones. cada pantalón le cuesta $ 12 990 y cada
chaleco cuesta $ 10 990. Si paga con 4 billetes de $ 20 000, ¿cuánto dinero le dan de
vuelto?
Une con una línea cada problema con la expresión que permita resolverlo.
4. Hay 45 cajas con paquetes de 10 dulces
cada una. ¿Cuántos dulces hay?
5. Hay 10 edificios de 45 pisos cada uno.
En cada piso hay 10 departamentos y en
cada departamento 10 ventanas.
¿Cuántas ventanas hay en los 10
edificios?
6. Hay 10 casilleros con 45 cuadernos
cada uno. ¿Cuántos cuadernos hay en
total?
Resuelve cada problema, usando calculadora. Escribe la secuencia de teclas que ocupaste
en cada caso.
7.	 A una librería llegaron 50 cajas con
10 paquetes cada una, y cada paquete
contiene 10 lápices. ¿Cuántos lápices
llegaron en total?
8.	 Un carro lleva 30 bolsas que contienen 10
paquetes con 10 cajas de jugo de 1 litro
cada uno. ¿Cuántos litros lleva el carro?
4 5 • 1 0 =
4 5 • 1 0 = =
4 5 • 1 0 = = =
Lección 4Capítulo 4
37	 Práctica
9.	 Diez parcelas tienen 10 árboles cada una.
Cada árbol tiene 10 frutos y cada fruto
tiene 10 pepas. ¿Cuántas pepas hay en
las diez parcelas?
10.	 En una población hay 20 casas, hay 3
perros en cada casa. Cada perro caza 5
gatos y cada gato caza 5 ratones.
¿Cuántos ratones hay en la población?
11.	 En un ropero hay 7 cajones, en cada
cajón hay 15 pares de calcetines.
¿Cuántos pares de calcetines hay en
total?
12. 	 Tengo 10 cajas, cada caja tiene 10 bolsas,
cada bolsa tiene 10 estuches, en cada
estuche hay 10 lápices. ¿Cuántos lápices
hay en total?
Lección 4
38	 Práctica
Lección 5Capítulo 4
Resolverecuaciones
¿Cuál de los números 2, 9 o 12 es la solución de la ecuación?
  1.  k • 8 5 72   2.  36 : r 5 18   3.  7 1 c 5 19   4.  16 2 w 5 14
  5.  g 2 1 5 8   6.  m : 3 5 3   7.  9 ​2
 __ 
3
​1 b 5 11 ​2
 __ 
3
​   8.  p : 2,5 5 4,8
Usa el cálculo mental para resolver cada ecuación. Comprueba tu solución.
  9.  h 1 11 5 21 10.  c 2 59 5 161 11.  400 : q 5 10 12.  v • 5 5 4,5
13.  16 • f 5 64 14.  9,4 1 a 5 10,5 15.  u 2 6,2 5 12,8 16.  24 2 z 5 12,4
17.  10 ​1
 __ 
2
​1 y 5 14 ​3
 __ 
4
​ 18.  x 2 9 ​1
 __ 
2
​5 4 ​1
 __ 
2
​ 19.  m : ​3
 __ 
4
​5 28 20.  u • 6 ​2
 __ 
3
​5 20
21.  5,4 : p 5 0,27 22.  1,9 1 j 5 22,4 23.  t : 12 5 6 24.  n 2 7,2 5 1,5
Resolución de problemas.
25.	 En promedio, el oso macho de un año
de edad tiene 4 veces el peso de un
osezno de 4 meses de edad. ¿Cuál es el
peso del osezno?
26.	 En promedio, una osezno hembra de un
año de edad pesa 12 libras menos que
el osezno macho de un año de edad.
¿Cuánto pesa la osezno hembra?
27.	 La ecuación 3y 5 $42 representa el
costo de rentar una canoa por 3 horas.
¿Cuánto cuesta rentarla por hora?
A	$14	 C	$45
B	$39	 D	$126
28.	 ¿Qué valor de n hace que la ecuación
sea verdadera?
8n 2 40 5 8
A	 0	 C	 6
B	 5	 D	 8
Promedio de peso de un
oso negro macho
un año de edad 70
adulto 250
39	 Práctica
Marca con una X el número que resuelve la ecuación.
29.	 x – 4 5 13		 11		 17
30.	 35 – y 5 28		 63		 7
31.	 z : 12 5 48		 60	 576
32.	 y – 84 5 240	 324	 156
33.	 72 : r 5 9		 8		 63
34.	 f 1 40 5 70		 110		 30
35.	 g • 12 5 36		 24		 3
Cada letra representa un número. Encuentra el valor de cada letra.
36.	 x + 2 = 6		 x =
		3 + y = x		y =
37. 	 7 + b = 18 		 a =
		a – b = 33		b =
38. 	 4 + c = 19		c =
		c + d = 20		d =
39. 	 5 + g = 40		g =
		g – h = 2 		 h =
40.	 z + 8 = 11		z =
		z – m = 1		m =
41. 	 14 + n = 28		n =
		n – l = 4		l =
42.	 27 – f = 25		f =
		i + f = 100		i =
43.	 70 + i = 100		i =
i – d = 0		 d =
44.	 ñ + 15 = 45		ñ =
		ñ + o = 42		o =
46. 	 j + 35 = 80		 j =
		k – j = 55 		 k =
45.	 27 – 12 = p		p = 	
p + q = 20		 q =
47. 	 r – 12 = 40 		 r =
	 22 + s = r		s =
Lección 5
40	 Práctica
Resolverdesigualdades
Representa en una recta numérica las soluciones de cada desigualdad.
	1. 	 x  0 	
		
	2. 	 g  7	
		
	3. 	 h  10	
		
	4. 	 8  t	
		
	 5. 	 I  3	
		
	 6. 	 5  l	
		
	7. 	 4  y	
		
Resuelve cada desigualdad.
	9.	 a – 3  1
		
	10.	 r – 1  6
		
11.	 p – 8  7
		
12.	 l – 2  4	
		
13.	 z + 4  12	
		
14.	 ñ + 3  10
		
15.	 k + 7  –7	
		
	 8.	 15 – f  6
		
16. 	 14 – h  7
		
17. 	 y + 3  9
		
18. 	 8 – w  5
		
19.	 q  12
		
20.	 s  7
		
Lección 6Capítulo 4
41	 Práctica
Patrones:hallarunaregla
Halla una regla.
Usa la regla para hallar los números que faltan.
 1.	  2.	
 3.	  4.	
Usa la regla y la ecuación para llenar una tabla de entrada y salida.
  5.	Multiplicar a por 3, restar 1.
a • 3 2 1 5 ?
 6.	Dividir c entre 2, sumar 1.
c : 2 1 1 5 ?
Resolución de problemas.
7.	 Usa los datos  Lee la etiqueta. Aldo
consume 3 porciones de leche al día.
¿Cuántos gramos de proteína habrá
consumido en 5, 6 y 7 días? Haz una
tabla.
 8.	 ¿Que ecuación muestra una regla para
la tabla?
 9.	 ¿Qué ecuación muestra una regla de la
tabla?
Entrada, c 4 8 32 128 512
Salida, d 1 2 8  
Entrada, r 4 5 6 7 8
Salida, s 8 10 12  
Entrada, a 10 20 30 40 50
Salida, b 1 2 3  
Entrada, m 85 80 75 70 65
Salida, n 17 16 15  
Entrada, p (pintas) 1 2 3 4 5
Salida, c (tazas) 2 4 6 8 10
Entrada, p 2 4 6 8 10
Salida, g 6 12 18 24 30
Lección 7Capítulo 4
42	 Práctica
Encuentra el patrón en cada caso y anótalo.
22.
Entrada 25 100 75 80 1 500
Salida 5 20
26.
Entrada 15 30 60 80 90
Salida 45 90
18.
Entrada 7 21 56 63 70
Salida 1 3
19.
Entrada 3 15 21 24 27
Salida 9 45
20.
Entrada 48 100 250 300 1 000
Salida 24 50
21.
Entrada 9 12 20 121 34
Salida 81 108
	24.
Entrada
Salida
25.
Entrada
Salida
10.	 6 – 8 – 10 – 12 – 14
		
11.	 9 – 12 – 15 – 18
		
12.	 28 – 24 – 20 – 16
		
13.	 100 – 200 – 300
		
14.	 1 000 – 900 – 800 – 700
		
15.	 750 – 500 – 250
		
16.	 1 100 – 900 – 700 – 500
		
17.	 3 000 – 1 500 – 0
Escribe los números que faltan.
23.
Entrada 14 50 100 200 300
Salida 28 100
27.
Entrada 144 96 84 72 60
Salida 12 8
Ahora tú inventa una regla para cada tabla y escribe los números.
Lección 7
43	 Práctica
Fraccionesequivalentes
Escribe una fracción equivalente.
 1. ​1
 __ 
8
​   2. ​ 7
 ___ 
10
​   3. ​4
 __ 
5
​   4. ​6
 __ 
8
​   5. ​3
 __ 
4
​   6. ​1
 __ 
3
​
  7. ​3
 __ 
6
​   8. ​ 8
 ___ 
12
​   9. ​6
 __ 
9
​ 10. ​10
 ___ 
15
​ 11. ​10
 ___ 
16
​ 12. ​5
 __ 
6
​
13. ​2
 __ 
4
​ 14. ​ 3
 ___ 
12
​ 15. ​4
 __ 
6
​ 16. ​ 4
 ___ 
10
​ 17. ​1
 __ 
5
​ 18. ​12
 ___ 
16
​
Resolución de problemas.
Usa los datos. Para los ejercicios19 y 20, usa la tabla.
	19.	 Natalia preguntó a varias personas cuál de
los seis colores de la tabla les gustaba más
que el resto. Escribe tres fracciones
equivalentes que muestren la fracción de
personas que eligieron el rojo.
	20.	 Natalia pidió la opinión de 4 personas más
y todas prefirieron el azul. Escribe tres
fracciones equivalentes que muestren la
fracción de personas que eligieron el rojo.
	21.	 ¿Qué fracción es equivalente a ​ 2
 
_ 5 ​?
A	​ 
3
 ___ 
10
​	 C	​ 
7
 ___ 
10
​
B	​ 
4
 ___ 
10
​	 D	​
3
 __ 
5
​
	22.	 ¿Qué fracción es equivalente a ​ 14
 
__ 16 ​?
A	​
7
 __ 
8
​	 C	​
4
 __ 
6
B	​
7
 __ 
9
​	 D	​ 
2
 ___ 
16
​
Colores preferidos
Color
Cantidad de personas
que lo eligieron
anaranjado 1
rojo 4
morado 2
azul 3
verde 1
amarillo 1
Capítulo 5: Conceptos de fracciones
Unidad 2
Números y conceptos
de fracciones
Capítulo 5 • Lección 1
Lección 1Capítulo 5
44	 Práctica
Marca con una X la fracción que no es equivalente a las demás.
23. 	 ​2
 __ 
8
​  _​​,  4
 ___ 
10
,
4
 ___ 
16	
24. ​5
 __ 
9
  _​​, 1
 __ 
2
​  _​​, 3
 __ 
6
​  _​​	 25. ​2
 __ 
3
  _​​, 1
 __ 
2
​  _​​, 3
 __ 
6
​  _​​	26.	 ​
12
 ___ 
16
​, 3
 __ 
4
​  _​​, 1
 __ 
7
​  _​​
27. ​3
 __ 
4
  _​​, 6
 __ 
8
​  _​​, 1
 __ 
5
  _​​	 28. ​2
 __ 
5
​  _​​,  4
 ___ 
10
, 1
 __ 
7	
29. ​1
 __ 
8
​  _​​,  2
 ___ 
16
, 5
 __ 
9	
30.	
1
 __ 
8
​  _​​,
2
 __ 
7
  _​​,
4
 ___ 
32
	
31. ​2
 __ 
5
​  _​​, ​3
 __ 
7
​  _​​,  6
 ___ 
14
	 32.  2
 ___ 
10
, 5
 __ 
8
,  6
 ___ 
30
	 33.	
3
 __ 
6
  _​​,
6
 ___ 
12
, 1
 __ 
9
  _​​	34.	
4
 __ 
7
  _​​, 2
 __ 
8
  _​​,
6
 ___ 
24
Escribe dos fracciones equivalentes.
35. 	  1
 __ 
4
  _​​ = 	 36. 	  1
 __ 
2
  _​​ = 	 37.	 ​12
 ___ 
24
​=
38. 	  3
 __ 
7
  _​​ = 	 39. 	  4
 __ 
9
  _​​ = 	 40.	 5
 __ 
9
  _​​ =
41. 	  2
 __ 
5
  _​​ = 	 42. 	  1
 __ 
3
  _​​ = 	 43. 	
4
 ___ 
16
=
44.	 5
 __ 
7
= 	 45.	 8
 __ 
9
= 	 46.	
7
 ___ 
14
=
Escribe una fracción equivalente a la dada.
47.	
12
 ___ 
24
= 	 48.	 ​35
 ___ 
45
= 	 49.	  7
 ___ 
21
= 	 50.	 ​ 
40
 ____ 
100
​=
51.	  2
 ___ 
36
= 	 52.	 ​63
 ___ 
70
= 	 53.	  8
 ___ 
16
= 	 54.	 2
 __ 
4
  _​​=
55.	 ​32
 ___ 
36
= 	 56.	 ​ 
10
 ____ 
100
​= 	57.	 ​15
 ___ 
90
= 	 58.	 1
 __ 
2
  _​​=
59.	 3
 __ 
4
  _​​ = 	 60.	 7
 __ 
8
  _​​ = 	 61. 	 ​16
 ___ 
32
​= 	 62.	 ​25
 ___ 
40
​=
Lección 1Capítulo 5
45	 Práctica
Fraccionessimplificadasasumínimaexpresión
Escribe cada fracción simplificada en su mínima expresión.
  1. ​14
 ___ 
16
​   2. ​40
 ___ 
64
​   3. ​12
 ___ 
36
​   4. ​ 9
 ___ 
30
​   5. ​10
 ___ 
25
​
  6. ​ 8
 ___ 
22
​   7. ​17
 ___ 
34
​   8. ​28
 ___ 
77
​   9. ​ 16
 ____ 
100
​ 10. ​24
 ___ 
30
​
11. ​10
 ___ 
12
​ 12. ​ 9
 ___ 
36
​ 13. ​20
 ___ 
60
​ 14. ​36
 ___ 
45
​ 15. ​12
 ___ 
57
​
16. ​10
 ___ 
24
​ 17. ​15
 ___ 
25
​ 18. ​32
 ___ 
40
​ 19. ​ 70
 ____ 
100
​ 20. ​48
 ___ 
60
​
Resolución de problemas.
	21.	 Dato breve Ocho parcelas limitan con
el Fundo San Francisco. Escribe una
fracción que represente la parte de las
50 parcelas que limita con el Fundo San
Francisco. Escribe la fracción simplificada
en su mínima expresión.
	22.	 De los 75 clientes de la peluquería,
20 pidieron cita para cortarse el cabello.
¿Qué fracción de los clientes pidió cita
para cortarse el cabello? Escribe la
fracción simplificada en su mínima
expresión.
	23.	 ¿Qué fracción muestra ​ 21
 
__ 28 ​simplificada
en su mínima expresión?
A	​1
 __ 
8
​
B	​1
 __ 
7
​
C	​3
 __ 
7
​
D	​3
 __ 
4
​
	24.	 Doce de 30 estudiantes viajaron hoy
en el bus. ¿Qué fracción de los
estudiantes viajó en el bus? Escribe la
fracción simplificada en su mínima
expresión.
Capítulo 5 Lección 2
46	 Práctica
Simplifica.
25.	
30
 ___ 
35
​= 	 26.	  4
 ___ 
12
= 	27.	
22
 ___ 
55
​=
28.	
70
 ___ 
80
​= 	 29.	
27
 ___ 
30
​= 	 30.	
16
 ___ 
14
=
Divide el numerador y denominador por el número que se indica para formar una fracción
simplificada.
31.	
24
 ___ 
36
se divide en 12 	 32.	
21
 ___ 
42
se divide en 21
33.	 6
 __ 
9
  _​​se divide en 3 	 34.	
10
 ___ 
20
se divide en 10
35.	 6
 __ 
9
  _​​se divide en 5 	 36.	  4
 ___ 
10
se divide en 2
37.	
18
 ___ 
30
se divide en 6 	 38.	
40
 ___ 
64
se divide en 8
Marca con una X la fracción simplificada.
39.	 ​12
 ___ 
24
, ​15
 ___ 
9
 ​, 2
 __ 
7
	 40.	 3
 __ 
5
, ​20
 ___ 
30
, ​40
 ___ 
45
	 41.	
100_____
1 000
,
34___
120
, 4
 __ 
9
	 42.	 ​ 
20
 ____ 
100
​,
3
 __ 
9
  _​​,
1
 __ 
3
  _​​
43.	 ​37
 ___ 
13
, 3
 __ 
9
, 2
 __ 
5
	 44.	 8
 __ 
7
, ​21
 ___ 
27
,
16
 ___ 
14
	 45.	  3
 ___ 
19
,  3
 ___ 
19
, ​24
 ___ 
36	
46.	
2
 __ 
3
  _​​,
1
 __ 
9
  _​​,
4
 ___ 
10
47.	 2
 __ 
4
, ​18
 ___ 
22
, 5
 __ 
4
	 48.	
8
 __ 
3
,  9
 ___ 
18
, ​15
 ___ 
23
	 49.	 1
 __ 
9
, ​40
 ___ 
80
, ​40
 ___ 
80
	 50.	 ​14
 ___ 
21
​,
2
 ___ 
12
,
5
 __ 
9
  _​​
	51	
6
 ___ 
12
,
4
 __ 
8
  _​​,
1___
100
	 52.	
4
 ___ 
12
,
1
 __ 
7
  _​​,
1
 __ 
3
  _​​	 53.	 ​ 60
 ____ 
100
​, ​12
 ___ 
9
 ​,
7
 __ 
8
  _​​	 54.	
8
 ___ 
10
,
6
 __ 
9
  _​​,
8
 ___ 
13
55.	
7
 ___ 
63
,
8
 ___ 
12
,
1
 __ 
4
  _​​	 56.	
6
 __ 
9
  _​​,
9
 ___ 
20
,
8
 __ 
9
  _​​	 57.	
3
 ___ 
11
,
2
 __ 
9
  _​​,
2
 ___ 
12
	 58.	
3
 __ 
8
  _​​,
6
 ___ 
15
,
1
 ___ 
10
Lección 2
47	 Práctica
Comprendernúmerosmixtos
Escribe cada número mixto en forma de fracción. Escribe cada fracción
en forma de número mixto.
 1.  1 ​7
 __ 
8
​   2. ​10
 ___ 
9
 ​   3. ​27
 ___ 
4
 ​   4.  3 ​4
 __ 
5
​   5.  1 ​11
 ___ 
15
​   6.  4 ​ 1
 ___ 
12
​
  7. ​41
 ___ 
10
​   8. ​41
 ___ 
8
 ​   9. ​61
 ___ 
3
 ​ 10.  5 ​ 9
 ___ 
10
​ 11.  3 ​1
 __ 
9
​ 12. ​39
 ___ 
5
 ​
13.  4 ​3
 __ 
7
​ 14. ​21
 ___ 
4
 ​ 15. ​57
 ___ 
7
 ​ 16.  8 ​5
 __ 
6
​ 17.  9 ​4
 __ 
9
​ 18. ​41
 ___ 
6
 ​
19.  7 ​2
 __ 
3
​ 20.  6 ​ 3
 ___ 
10
​ 21.  4 ​ 2
 ___ 
15
​ 22. ​31
 ___ 
4
 ​ 23. ​16
 ___ 
5
 ​ 24. ​35
 ___ 
6
 ​
Resolución de problemas.
	25.	 ¿Cuántas veces llenará Graciela un
cucharón de ​ 1
 
_ 2 ​taza para servir
8​ 1
 _ 2
 ​tazas de jugo de frutas?
26.	 Una receta pide 2​ 3
 _ 4
 ​tazas de leche.
Escribe 2​ 3
 _ 4
 ​en forma de fracción.
	27.	 ¿Qué fracción es igual a 2​ 4
 
_ 5 ​?
A	​
8
 __ 
5
​
B	​
9
 __ 
5
​
C	​
14
 ___ 
5
 ​
D	​
24
 ___ 
5
 ​
	28.	 ¿Qué número mixto es igual a  ​
23
 ___ 
4
 ​?
A	 2 ​
3
 __ 
4
​
B	 3 ​
1
 __ 
2
​
C	 4 ​
1
 __ 
4
​
D	 5 ​
3
 __ 
4
​
Capítulo 5 Lección 3
48	 Práctica
Relaciona las fracciones impropias de la columna A con los números mixtos de la columna B.
Columna A Columna B
29. ​14
 ___ 
9
 ​ 3 ​5
 __ 
8
​
30. ​25
 ___ 
3
 ​ 8 ​1
 __ 
3
​
31. ​36
 ___ 
7
 ​ 4 ​2
 __ 
3
​
32. ​12
 ___ 
5
  6 ​3
 __ 
4
​
33. ​32
 ___ 
6
  5 ​2
 __ 
6
​
34. ​27
 ___ 
4
  1 ​5
 __ 
9
​
35. ​19
 ___ 
2
  9 ​1
 __ 
2
​
36. ​29
 ___ 
8
  8 ​6
 __ 
7
37. ​62
 ___ 
7
  5 ​1
 __ 
7
38. ​14
 ___ 
3
  2 ​2
 __ 
5
Transforma a fracción impropia o número mixto según corresponda.
39.	 5
 __ 
2
  _​​= 	 40.	 7​2
 __ 
3
= 	 41.	 ​37
 ___ 
8
 ​= 	 42	 3 ​1
 __ 
8
=
43.	 10 ​7
 __ 
9
= 	 44.	 ​57
 ___ 
6
  = 	 45. 	 ​54
 ___ 
3
 ​= 	 46.	 ​87
 ___ 
12
​= 		
	
47.	 1 ​2
 __ 
7
= 	 48.	 4 ​3
 __ 
5
= 	 49. 	 6 ​5
 __ 
6
= 	 50.	 ​44
 ___ 
9
 ​= 		
51.	 ​75
 ___ 
10
​= 	 52.	 5 ​ 9
 ___ 
15
= 	 53.	 2 ​6
 __ 
8
= 	 54.	 9
 __ 
2
  _​​ =
Lección 3
49	 Práctica
Compararyordenarfraccionesynúmerosmixtos
Compara. Escribe ,  o = en cada .
  1. ​4
 __ 
9
​	 	​5
 __ 
9
​   2. ​3
 __ 
4
​	 	​3
 __ 
5
​   3. ​2
 __ 
3
​	 	​ 8
 ___ 
12
​   4. ​5
 __ 
8
​	 	 ​4
 __ 
7
​   5. ​ 9
 ___ 
11
​	 	 ​8
 __ 
9
​ 
  6. ​ 5
 ___ 
12
​	 	​3
 __ 
7
​   7. ​ 6
 ___ 
10
​	 	​4
 __ 
5
​   8.  2 ​7
 __ 
9
​	 	 2 ​5
 __ 
6
​   9.  4 ​5
 __ 
8
​	 	 4 ​3
 __ 
4
​ 10.  9 ​2
 __ 
6
​	 	 8 ​3
 __ 
9
​
11.  3 ​4
 __ 
5
​	 	 3 ​5
 __ 
6
​ 12.  1 ​ 2
 ___ 
10
​	 	 1 ​1
 __ 
5
​ 13.  4 ​4
 __ 
6
​	 	 3 ​3
 __ 
4
​ 14.  1 ​1
 __ 
3
​	 	 1 ​ 4
 ___ 
12
​ 15.  6 ​3
 __ 
8
​	 	 6 ​1
 __ 
4
​
16.  7 ​5
 __ 
6
​	 	 9 ​5
 __ 
6
​ 17.  2 ​4
 __ 
9
​	 	 2 ​1
 __ 
5
​ 18.  5 ​3
 __ 
4
​	 	 5 ​2
 __ 
3
​ 19.  7 ​4
 __ 
6
​	 	 8 ​1
 __ 
2
​ 20.  1 ​ 5
 ___ 
11
​	 	 1 ​3
 __ 
7
​
Ordena de menor a mayor.
21. ​3
 __ 
8
​ , ​3
 __ 
4
​ , ​1
 __ 
4
​ 22. ​2
 __ 
3
​ , ​1
 __ 
6
​ , ​7
 __ 
9
​ 23.  1 ​5
 __ 
8
​ , 1 ​3
 __ 
4
​ , 1 ​5
 __ 
6
​ 24.  7 ​3
 __ 
5
​ , 6 ​2
 __ 
3
​ , 6 ​ 6
 ___ 
10
​
Resolución de problemas.
25.	 Usa los datos  Liliana pinta silbatos de
madera y los vende. Haz una lista de los
silbatos ordenándolas del más corto al
más largo.
	26.	 Usa los datos  Liliana hizo un silbato
nuevo que mide 6​ 2 _ 3
 ​cm de longitud. ¿Cuál
de todos sus silbatos es el más largo?
	27.	 Cristina ensayó con el violín 2​ 1 _ 4
 ​horas el
lunes, 1​ 3
 __ 10
 ​horas el martes y 1​ 4 _ 9
 ​horas el
miércoles. ¿Qué día ensayó menos
tiempo?
	28.	 Daniel ensayó con su trombón 1​ 2 _ 3
 ​horas
el lunes, 1​ 7 __ 12
 ​horas el martes y 1​ 7 _ 9
 ​horas
el miércoles. ¿Qué día ensayó más
tiempo?
Silbato de Liliana
Nombre del silbato Longitud, en cm
petra 6 ​ 3
 _ 
4
 ​
cónico 6 ​ 5
 _ 
8
 ​
mágico 6 ​  7
 __ 
12
 ​
Capítulo 5 Lección 4
50	 Práctica
Marca con una X la fracción mayor.
29.	 5
 __ 
2
  _​​; 8
 __ 
4
  _​​	 30.	 1
 __ 
9
  _​​;  2
 ___ 
10
	 31.	 7
 __ 
8
  _​​; 2
 __ 
3
  _​​	 32.	 9
 __ 
4
  _​​; 5
 __ 
3
  _​​
Marca con una X la fracción menor.
33.	 1
 __ 
2
  _​​; 3
 __ 
4
  _​​	 34.	 2
 __ 
3
  _​​; 5
 __ 
8
  _​​ 	 35.	 3
 __ 
8
  _​​; 2
 __ 
7
  _​​	 36.	 4
 __ 
9
  _​​; 3
 __ 
7
  _​​
Escribe verdadero o falso según corresponda.
37.	
2
 __ 
4
  _​​= 4
 __ 
8
  _​​ 	 38.	 6
 __ 
8
  _​​ 2
 __ 
4
  _​​ 	 39.	  7
 ___ 
11
 4
 __ 
7
  _​​
Ordena de mayor a menor las fracciones.
40.	 1
 __ 
2
  _​​; 3
 __ 
4
  _​​; 7
 __ 
8
  _​​
41.	 1​1
 __ 
4
; ​10
 ___ 
8
 ; 5
 __ 
6
  _
42.	 5
 __ 
8
  _​​; 1​1
 __ 
2
; 2
 __ 
4
  _​​
43.	  9
 ___ 
15
  _​​;  4
 ___ 
12
  _​​; ​15
 ___ 
30
=
44.	 ​ 
50
 ____ 
100
​; 5
 __ 
2
; 3
 __ 
4
=
Encierra en cada ejercicio la fracción mayor.
45.	 ​12
 ___ 
4
 ​; 2
 __ 
3
	 46. 	 ​12
 ___ 
20
;  7
 ___ 
15
	 47. 	 1
 __ 
2
; 3
 __ 
4
	 48.	 ​​15
 ___ 
3
 ​; 4
 __ 
3
49. 	 4
 __ 
8
; 2
 __ 
3
	 50. 	 5
 __ 
9
;  5
 ___ 
12
	 51.	  7
 ___ 
14
;  9
 ___ 
18
	 52.	  3
 ___ 
12
; ​15
 ___ 
8
 ​
53. 	 ​ 
28
 ____ 
100
​; 12_____
1.000
	 54. 	  6
 ___ 
48
; 1
 __ 
8
	 55. 	
5
 ___ 
10
; 8
 __ 
5
	 56.	 ​23
 ___ 
35
; ​18
 ___ 
7
 ​
57.	 2
 __ 
7
  _​​; 3
 __ 
7
  _​​	 58.	 5
 __ 
3
  _​​; ​10
 ___ 
15
	 59.	
3
 ___ 
12
; 3
 __ 
8
  _​​	 60.	 1
 __ 
9
  _​​; 9
 __ 
8
  _​​
61.	
8
 ___ 
13
; 13
 ___ 
8
 	 62.	 5
 __ 
6
  _​​; ​10
 ___ 
12
	 63.	 4
 __ 
8
  _​​; 4
 __ 
9
  _​​	 64.	
1
 ___ 
12
;
3
 ___ 
16
65.	
6
 ___ 
10
;
4___
100
	 66.	
6
 ___ 
15
;
4
 ___ 
12
	 67.	 7
 __ 
7
  _​​; 5
 __ 
8
  _​​	 68.	 ​14
 ___ 
28
; ​15
 ___ 
30
Lección 4
51	 Práctica
Tallerderesolucióndeproblemas
Estrategia:hacerunarepresentación
Resolucióndeproblemas•Prácticadeestrategias
Haz una representación para resolver los problemas.
	 1.	 Desde su casa, Teo caminó 3 cuadras
hacia el sur y 2 cuadras hacia el este hasta
la casa de un amigo. Después, los dos
caminaron 6 cuadras hacia el oeste para ir
a la escuela. Teo no puede acortar camino
atravesando cuadras. ¿A cuántas cuadras
vive de la escuela?
	 2.	 Adriana está levantando una reja en uno
de los lados de su jardín. Cada estaca
mide 4 centímetros de ancho y está a
2 centímetros de la otra. Adriana tiene
12 estacas. ¿Cuántos centímetros de
longitud medirá su reja?
Aplicacionesmixtas
Resuelve.
	 3.	 Laura pasó 10 minutos conduciendo
hasta la tienda de comestibles y
50 minutos haciendo compras allí.
Tardó 10 minutos para regresar a casa y
40 minutos haciendo sándwiches para
un picnic. Condujo 30 minutos desde su
casa y llegó al picnic a las 3:30 p.m. ¿A
qué hora salió Laura para ir a la tienda
de comestibles?
	 4.	 Cuando jugaban al golf, la pelota de
Leonardo se detuvo a 3​ 5
 _ 8
 ​metros del hoyo,
la pelota de José se detuvo a 3​ 2
 _ 3
 ​metros
del hoyo y la pelota de Alberto se detuvo
a 4​ 1
 _ 4
 ​centímetros del hoyo. ¿La pelota de
quién estuvo más cerca del hoyo?
	 5.	 Un parque tiene la forma de un
rectángulo. Hay un sendero desde cada
esquina del rectángulo hasta todas las
otras esquinas. ¿Cuántos senderos hay?
	 6.	 Formula un problema Vuelve al
problema 5. Escribe otro similar
aumentando el número de esquinas que
tiene el parque. Luego, resuélvelo.
N
EO
S
Capítulo 5 Lección 5
52	 Práctica
Representarlasumaylaresta
Usa barras de fracciones para hallar la suma o la diferencia. Escribe la respuesta como
fracción simplificada.
 1. 
​
3
 __ 
5
​1 ​1
 __ 
5
​5
 2. 
​2
 __ 
8
​1 ​1
 __ 
8
​5
 3. 
​ 6
 ___ 
12
​2 ​ 2
 ___ 
12
​5
Halla la suma o la diferencia. Escríbela como fracción simplificada.
 4.  ​1
 __ 
4
​1 ​1
 __ 
4
​  5.  ​2
 __ 
7
​ 1 ​1
 __ 
7
​  6.  ​3
 __ 
5
​2 ​1
 __ 
5
​  7.  ​3
 __ 
7
​1 ​2
 __ 
7
​
 8.  ​ 7
 ___ 
10
​1 ​ 2
 ___ 
10
​  9.  ​4
 __ 
9
​2 ​3
 __ 
9
​  10.  ​4
 __ 
6
​2 ​1
 __ 
6
​  11.  ​3
 __ 
8
​1 ​3
 __ 
8
​
 12.  ​ 8
 ___ 
10
​2 ​ 5
 ___ 
10
​  13.  ​1
 __ 
6
​1 ​2
 __ 
6
​  14.  ​ 9
 ___ 
12
​2 ​ 3
 ___ 
12
​  15.  ​2
 __ 
4
​2 ​1
 __ 
4
​
 16.  ​7
 __ 
8
​2 ​5
 __ 
8
​  17.  ​2
 __ 
5
​1 ​1
 __ 
5
​  18.  ​ 3
 ___ 
10
​1 ​ 5
 ___ 
10
​  19.  ​10
 ___ 
11
​2 ​ 3
 ___ 
11
​
 20.  ​4
 __ 
5
​2 ​2
 __ 
5
​  21.  ​7
 __ 
9
​2 ​1
 __ 
9
​  22.  ​4
 __ 
7
​1 ​2
 __ 
7
​  23.  ​ 4
 ___ 
10
​2 ​ 3
 ___ 
10
​
1
1
5
1
5
1
5
1
5
1
1
8
1
8
1
8
1
1
12
1
12
1
12
1
12
1
12
1
12
1
12
1
12
Capítulo 6: Sumar y restar fracciones Capítulo 6 • Lección 1
53	 Práctica
Encierra el resultado correcto.
24.	 ​ 4
 ___ 
18
1 ​ 2
 ___ 
18
= 	 ​ 6
 ___ 
18
	 ​ 2
 ___ 
18
	 25.	
15
 ___ 
22
–
11
 ___ 
22
=	
24
 ___ 
22
	 ​ 4
 ___ 
22
26.	 1
 __ 
7
  _​​1 1
 __ 
7
  _​​ + 4
 __ 
7
  _​​=	 1	 6
 __ 
7
  _​​	 27.	 4​ 3
 ___ 
10
– 1​ 1
 ___ 
10
= 	 3​1
 __ 
5
  _​​	 3​ 4
 ___ 
10
28.	 4
 __ 
8
  _​​1 5
 __ 
8
  _​​+ 3
 __ 
8
  _​​ = 	 ​12
 ___ 
8
 	 1​1
 __ 
2
  _​​	 29.	 ​ 8
 ___ 
12
– ​ 1
 ___ 
12
= 	 ​ 7
 ___ 
12
	 ​ 9
 ___ 
12
30.	 ​ 6
 ___ 
18
1 ​ 3
 ___ 
18
=	 1
 __ 
2
  _​​	 ​ 9
 ___ 
18
	 31.	 1​ 8
 ___ 
12
1 2​ 1
 ___ 
12
=	 3​ 7
 ___ 
12
	
45
 ___ 
12
Escribe C si está correcto o I si está incorrecto.
32.	 5
 __ 
7
1 2
 __ 
7
= 1	 	 33.	 4
 __ 
8
– 1
 __ 
8
= 2
 __ 
8
	
34.	
14
 ___ 
20
1 ​ 7
 ___ 
20
= ​ 7
 ___ 
20
	 	 35.	 ​ 5
 ___ 
12
1 ​ 3
 ___ 
12
= 2
 __ 
3
	
36.	 4​1
 __ 
3
– 2​2
 __ 
3
= 7​2
 __ 
3
	 	 37.	  7
 ___ 
10
1  2
 ___ 
10
=  9
 ___ 
10
	
38.	  2
 ___ 
14
+  7
 ___ 
14
–  3
 ___ 
14
=  4
 ___ 
14
	 39.	 ​31
 ___ 
4
 ​+ ​23
 ___ 
4
 ​= 6
40.	 ​21
 ___ 
36
– ​14
 ___ 
36
= ​35
 ___ 
36
	 41.	 ​18
 ___ 
26
–  9
 ___ 
26
=  9
 ___ 
18
Resuelve.
42.	 ​12
 ___ 
15
+  3
 ___ 
15
	 43.	 ​25
 ___ 
30
– ​10
 ___ 
30
	 44.	
79___
100
–
79___
100
	 45.	 ​18
 ___ 
24
+ ​18
 ___ 
24
		 		 		 		
46. 	 ​34
 ___ 
55
+ ​19
 ___ 
55
	 47. 	 ​63
 ___ 
7
 ​– ​56
 ___ 
7
 ​	 48.	  2
 ___ 
40
+  8
 ___ 
40
		49. ​27
 ___ 
27
– ​20
 ___ 
27
		 		 		 		
50.	  9
 ___ 
12
+  3
 ___ 
12
	 51.	  8
 ___ 
21
+  7
 ___ 
21
–  8
 ___ 
21
	 52. 	 ​11
 ___ 
44
–  7
 ___ 
44
		53.	  8
 ___ 
16
+  8
 ___ 
16
–  1
 ___ 
16
		 		 		 		
Lección 1
54	 Práctica
Lección 2Capítulo 6
Sumaryrestarfraccionesconigualdenominador
Halla la suma o la diferencia. Escríbela en su mínima expresión.
  1. ​1
 __ 
4
​1 ​1
 __ 
4
​   2. ​2
 __ 
7
​1 ​1
 __ 
7
​   3. ​3
 __ 
5
​2 ​1
 __ 
5
​   4. ​3
 __ 
7
​1 ​2
 __ 
7
​   5. ​7
 __ 
8
​2 ​5
 __ 
8
​
  6. ​ 7
 ___ 
10
​1 ​ 2
 ___ 
10
​   7. ​4
 __ 
9
​2 ​3
 __ 
9
​   8. ​4
 __ 
6
​2 ​1
 __ 
6
​   9. ​3
 __ 
8
​1 ​3
 __ 
8
​ 10. ​2
 __ 
5
​1 ​1
 __ 
5
​
11. ​ 8
 ___ 
10
​2 ​ 5
 ___ 
10
​ 12. ​1
 __ 
6
​1 ​2
 __ 
6
​ 13. ​ 9
 ___ 
12
​2 ​ 3
 ___ 
12
​ 14. ​2
 __ 
4
​2 ​1
 __ 
4
​ 15. ​ 3
 ___ 
10
​1 ​ 5
 ___ 
10
​
Resolución de problemas.
	16.	 Los glaciares actualmente almacenan
​ 3
 
_ 4 ​del suministro de agua dulce del
mundo. Si ​ 1
 
_ 4 ​de esos glaciares se
derritiera, ¿cuánto quedaría en forma
de glaciar?
	17.	 Cuando un témpano flota en un cuerpo
de agua, se puede ver ​ 1
 
_ 7 ​de la masa
sobre la superficie del agua. ¿Qué parte
del témpano permanece debajo de la
superficie del agua?
	18.	 Los glaciares de Groenlandia se desplazan
por el pasadizo de témpanos de hielo
Iceberg Alley empujados por la corriente,
hasta llegar a Terranova. Si un témpano se
desplaza ​  4
 
__ 10 ​de milla en enero y ​ 6
 
__ 10 ​de
milla en febrero, ¿cuántas millas se
desplaza el témpano en los dos meses?
A	​ 
2
 ___ 
10
​
B	​
1
 __ 
5
​
C	 1
D	 1 ​1
 __ 
2
​
	19.	 Usualmente, los témpanos son blancos
debido a millones de diminutas
burbujas de aire que están atrapadas
en el hielo y a veces tienen franjas
azules. Si ​ 5
 
_ 8 ​del témpano es blanco,
¿qué parte del témpano tiene franjas
azules?
A	 ​
3
 __ 
8
​
B	 ​
5
 __ 
8
​
C	 ​2
 __ 
8
​
D	 1 ​3
 __ 
8
​
55	 Práctica
Halla el número que falta en cada caso.
20.	 1 3
 __ 
9
= 6
 __ 
9
		 21.	 5
 __ 
4
– = 3
 __ 
4
	
22.	 3
 __ 
8
1 5
 __ 
8
= 		 23.	 2
 __ 
5
1 = 8
 __ 
5
24.	
14
 ___ 
20
– =  7
 ___ 
20	
	 25.	 4
 __ 
8
1 1 3
 __ 
8
= ​12
 ___ 
8
 
26.	 1 2
 __ 
7
1 4
 __ 
7
= 9
 __ 
7
	 27. 	
15
 ___ 
19
– =
13
 ___ 
19
	28. 	 ​23
 ___ 
4
  – ​13
 ___ 
4
  = 		 29. 	 ​ 2
 ___ 
10
1 ​ 5
 ___ 
10
=
	30.	 2
 __ 
6
– = 1
 __ 
6
		 31. 	 4
 __ 
7
1 8
 __ 
7
=
	32. 	 ​ 9
 ___ 
11
1 =
15
 ___ 
11	
	 33. 	 7
 __ 
8
– =
1
 __ 
8
34.	 ​15
 ___ 
18
– = ​12
 ___ 
18
		 35.	 ​19
 ___ 
25
+ = 1
36.	 + ​12
 ___ 
45
= ​29
 ___ 
45
		 37.	 –  7
 ___ 
14
=  7
 ___ 
14
38.	  9
 ___ 
37
+ ​​23
 ___ 
37
= 		 39.	 ​34
 ___ 
70
– = ​25
 ___ 
70
Resuelve
40.	 ​18
 ___ 
36
– ​10
 ___ 
36
+  2
 ___ 
36
	 41.	 ​12
 ___ 
25
+  4
 ___ 
25
–  9
 ___ 
25
	 42.	  1
 ___ 
16
+  7
 ___ 
16
–  8
 ___ 
16
		 		 		
43.	 ​13
 ___ 
21
–  7
 ___ 
21
	 44.
86___
100
+
12___
100
	 45.	 ​33
 ___ 
33
– ​​11
 ___ 
33
– ​11
 ___ 
33
		 		 		
Lección 2
56	 Práctica
Tallerderesolucióndeproblemas
Estrategia:trabajardesdeelfinalhastaelprincipio
Resolucióndeproblemas•Prácticadeestrategias
	 1.	 El curso de Pilar está haciendo un carro
para el desfile de Fiestas Patrias. Para
adornar el carro, usaron un total de
4 metros de tela roja, blanca y azul.
Usaron 1​ 1 _ 6
 ​metros de tela roja y 1​ 5
 _ 6
 ​
metros de tela azul. Si el resto de la tela
era blanca, ¿cuántos metros de tela
blanca usó el curso de Pilar?
	 2.	 En el desfile de Fiestas Patrias, Paula usó
su mesada para comprar varios
recuerdos.
Pagó $22 000 por dos camisetas y una
gorra. La gorra costó $6 000. Paula no se
acuerda del precio exacto de las
camisetas. ¿Cuánto pagó por cada
camiseta?
Prácticadeestrategiasmixtas.Del3al4,usalatabla.
	 3.	 Los estudiantes usaron 8​ 1 _ 4
 ​metros de
banderines para el frente del carro y
9​ 3
 _ 4
 ​metros de banderines para la parte
de atrás. ¿Cuántos metros de banderines
sobraron para los costados del carro?
Materiales para el carro del desfile
Materiales Cantidad
madera 36 ​ 1
 _ 
4
 ​ metros
banderines 32 ​ 3
 _ 5
 ​ metros
pintura 9 ​ 1
 _ 
6
 ​ metros
	 4.	 Usa los datos Los estudiantes usaron
madera para construir 5 pilares en el
carro. Para cada pilar usaron 5​ 7 _ 8
 ​ metros
de madera. ¿Cuánta madera les sobró
después de construir los pilares?
	 5.	 Nicolás pinta murales en los edificios de
su ciudad. Para su mural más reciente,
usó 5​ 1 _ 2
 ​litros de pintura roja y de pintura
verde. Nicolás usó 1​ 1 _ 2
 ​litros de pintura roja
más que de pintura verde. ¿Cuántos litros
usó Nicolás de cada color?
	 6.	 Antes del desfile, Eduardo repartió 60 banderas en tres calles. En la calle San Joaquín,
repartió 26 banderas. Si en la calle Salomón y en la calle San Martín repartió la misma
cantidad de banderas, ¿cuántas banderas repartió Eduardo al público en cada una de
esas dos calles?
Lección 3Capítulo 6
57	 Práctica
Representarlasumadefraccionesdedistintodenominador
Halla la suma. Escribe la respuesta como fracción simplificada.
 1. 
	​1
 __ 
2
​1 ​5
 __ 
8
​5
 2. 
	​3
 __ 
5
​1 ​1
 __ 
4
​5
 3. 
	​1
 __ 
2
​1 ​1
 __ 
5
​5
Halla la suma usando barras de fracciones. Escríbela como fracción simplificada.
 4. ​1
 __ 
5
​1 ​ 4
 ___ 
10
​5  5. ​1
 __ 
2
​1 ​ 3
 ___ 
10
​5  6. ​5
 __ 
6
​1 ​2
 __ 
3
​5  7. ​2
 __ 
3
– ​3
 __ 
8
5
 8. ​1
 __ 
3
​1 ​2
 __ 
4
​5  9. ​1
 __ 
2
​1 ​1
 __ 
8
​5 10. ​1
 __ 
3
​1 ​1
 __ 
2
​5 11.
3
 __ 
9
+  7
 ___ 
10
=
12. ​5
 __ 
8
​1 ​2
 __ 
5
​5 13. ​5
 __ 
8
​1 ​3
 __ 
4
​5 14. ​3
 __ 
4
​1 ​2
 __ 
3
​5 15.
5
 __ 
7
+ 4
 __ 
9
=
16. ​3
 __ 
5
​1 ​1
 __ 
2
​5 17. ​2
 __ 
6
​1 ​3
 __ 
9
​5 18. ​1
 __ 
4
​1 ​ 5
 ___ 
12
​5 19.
7
 __ 
8
+  2
 ___ 
12
=
20. ​1
 __ 
2
​1 ​2
 __ 
6
​5 21. ​ 6
 ___ 
10
​1 ​1
 __ 
3
​5 22. ​ 1
 ___ 
12
​1 ​3
 __ 
4
​5 23.  3
 ___ 
10
+  9
 ___ 
15
=
24. ​15
 ___ 
20
+ 4
 __ 
8
= 25.
7
 __ 
9
+ 1
 __ 
8
= 26.  4
 ___ 
18
+ 2
 __ 
9
= 27.
6
 __ 
8
+ 4
 __ 
7
=
1
?
1
2
1
8
1
8
1
8
1
8
1
8
1
5
1
5
1
5
1
4
1
?
1
5
1
?
1
2
Lección 4Capítulo 6
58	 Práctica
Representa la suma, dibujando barras de fracciones. Escribe el resultado como fracción
simplificada.
28.	
2
 __ 
5
 1 3
 __ 
4
 	 		 29. 	
2
 __ 
6
 1 2
 __ 
5
 	
30.	
3
 __ 
4
 1 2
 __ 
6
 	 		 31.	
2
 __ 
3
 1 3
 __ 
5
 	
32.	
1
 __ 
4
 1 1
 __ 
8
 	 		 33.	
3
 __ 
6
 1 2
 __ 
3
 	
34.	
5
 __ 
6
 1 1
 __ 
4
 	 		 35.	
5
 __ 
4
 1 7
 __ 
8
 	
36.	
2
 __ 
5
 1  7
 ___ 
10
	 		 37.	
2
 __ 
3
 1 1
 __ 
4
 	
38.	
1
 __ 
3
 1 5
 __ 
6
 	 		 39.	
3
 __ 
4
 1 1
 __ 
2
 	
40.	
2
 __ 
4
 1  6
 ___ 
12
	 		 41.	
3
 __ 
8
 1 2
 __ 
4
 	
Lección 4
59	 Práctica
Representarlarestadefraccionesdedistintodenominador
Usa barras de fracciones para hallar la diferencia. Escribe la respuesta como fracción
simplificada.
 1. 
	​5
 __ 
6
​2 ​2
 __ 
3
​5
 2. 
	​3
 __ 
4
​2 ​1
 __ 
5
​5
 3. 
	​5
 __ 
8
​2 ​1
 __ 
4
​5
Halla la diferencia usando barras de fracciones. Escríbela como fracción simplificada.
 4. ​2
 __ 
5
​2 ​ 2
 ___ 
10
​5  5. ​1
 __ 
2
​2 ​ 1
 ___ 
12
​5  6. ​7
 __ 
8
​2 ​1
 __ 
2
​5 7.
8
 __ 
9
– ​12
 ___ 
15
5
 8. ​3
 __ 
4
​2 ​4
 __ 
6
​5  9. ​2
 __ 
3
​2 ​1
 __ 
5
​5  10. ​6
 __ 
7
​2 ​1
 __ 
2
​5 11. ​18
 ___ 
35
–
3
 __ 
7
5
12. ​4
 __ 
5
​2 ​ 3
 ___ 
10
​5 13. ​ 7
 ___ 
12
​2 ​1
 __ 
3
​5 14. ​1
 __ 
4
​2 ​ 1
 ___ 
10
​5 15.  9
 ___ 
10
–
7
 __ 
8
5
16. ​7
 __ 
8
​2 ​3
 __ 
8
​5 17. ​5
 __ 
7
​2 ​1
 __ 
2
​5 18. ​8
 __ 
9
​2 ​1
 __ 
3
​5 19. ​12
 ___ 
14
– ​15
 ___ 
20
5
20. ​ 4
 ___ 
10
​2 ​1
 __ 
4
​5 21. ​6
 __ 
7
​2 ​1
 __ 
3
​5 22. ​3
 __ 
4
​2 ​1
 __ 
2
​5 23. ​15
 ___ 
20
–  7
 ___ 
15
5
24.
7
 __ 
9
2 1
 __ 
4
5 25.  4
 ___ 
10
2 1
 __ 
5
5 26.  6
 ___ 
18
2 2
 __ 
7
5 27.  9
 ___ 
10
2 3
 __ 
8
5
1
1
6
1
3
1
3
1
6
1
6
1
6
1
6
1
1
4
1
5
1
4
1
4
1
1
8
1
4
1
8
1
8
1
8
1
8
Lección 5Capítulo 6
60	 Práctica
Representa la suma, dibujando barras de fracciones. Escribe el resultado como fracción
simplificada.
28.	 1
 __ 
4
– 1
 __ 
6
	 		 29.	 1
 __ 
6
– 1
 __ 
3
	
30.	 1
 __ 
2
– 1
 __ 
3
			 31.	 1
 __ 
3
– 1
 __ 
4
	
32.	 3
 __ 
4
– 1
 __ 
8
			 33.	  5
 ___ 
12
– 1
 __ 
3
	
34.	 4
 __ 
5
–  3
 ___ 
10
		 35.	 7
 __ 
8
– 4
 __ 
8
	
36.	 2
 __ 
6
– 2
 __ 
8
			 37.	 2
 __ 
3
– 1
 __ 
4
	
38.	 3
 __ 
5
– 1
 __ 
7
			 39.	 4
 __ 
6
– 2
 __ 
3
	
40.	 6
 __ 
7
– 2
 __ 
3
			 41.	 8
 __ 
9
– 2
 __ 
3
	
Lección 5
61	 Práctica
Usardenominadorescomunes
Halla la suma o la diferencia. Escribe la respuesta como fracción simplificada.
  1. ​4
 __ 
5
​1 ​1
 __ 
2
​   2. ​7
 __ 
8
​1 ​1
 __ 
4
​   3. ​ 1
 ___ 
10
​1 ​1
 __ 
5
​   4. ​ 7
 ___ 
12
​1 ​1
 __ 
4
​   5. ​2
 __ 
9
​1 ​ 1
 ___ 
10
​
  6. ​6
 __ 
7
​2 ​3
 __ 
8
​   7. ​8
 __ 
9
​2 ​1
 __ 
2
​   8. ​3
 __ 
4
​2 ​1
 __ 
5
​   9. ​4
 __ 
5
​2 ​ 4
 ___ 
15 
​ 10. ​ 7
 ___ 
10
​2 ​1
 __ 
4
​
Resolución de problemas.
	11.	 Los Selknam u Onas fueron una
comunidad que vivió en el sector norte
de la Isla Grande en Tierra del Fuego y
fueron vistos por primera vez en 1520.
Los miembros de la tribu eran hábiles
cazadores de guanacos y usaban todas
las partes del animal en beneficio de la
tribu. Si ​ 1
 
_ 2 ​del guanaco se usaba como
alimento y ​ 1
 
_ 4 ​se usaba para hacer ropa de
piel, ¿qué cantidad del guanaco se usaba?
	12.	 Los Selknam u Onas eran hábiles para
rastrear animales en Tierra del Fuego.
Uno de los senderos de cacería favorito
tenía una longitud de ​ 7
 
_ 8 ​de kilómetros,
pero los cazadores solo caminaban ​ 1
 
_ 6 ​de
kilómetro por el sendero antes de ver el
primer guanaco. ¿Cuánto les queda por
recorrer después de haber visto el
primer guanaco?
	13.	 Los Selknam u Onas cazaban guanacos
y aves como medio de subsistencia. Si
​ 3
 
_ 8 ​de su fuente de alimento era carne de
guanaco y ​ 2
 
_ 5 ​era carne de ave, ¿qué
cantidad de su fuente de alimentos
dependía de estos animales?
A	​
5
 __ 
8
​
B	​
31
 ___ 
40
​
C	 1
D	​
5
 __ 
8
​
	14.	 Las mujeres onas usaban las partes
filosas de los huesos de los guanacos
como agujas para coser. Si un hueso de
guanaco medía ​ 5
 
_ 6 ​de centímetro pero
solo se necesitaban ​ 3
 
_ 4 ​de centímetro
para la aguja, ¿cuánto hueso sobraba?
A	 ​ 1
 ___ 
12
​de centímetro
B	 ​1
 __ 
2
​centímetro
C	 ​4
 __ 
5
​de centímetro
D	 ​1
 __ 
3
​de centímetro
Lección 6Capítulo 6
62	 Práctica
¿Cuál es el denominador común de las siguientes fracciones? Anótalo.
15.	 7
 __ 
8
y ​10
 ___ 
7
  = 		 16.	 4
 __ 
5
y 9
 __ 
8
=
17.	 2
 __ 
3
y  1
 ___ 
10
= 		 18.	
14
 ___ 
15
y 1
 __ 
2
=
19.	 1
 __ 
4
y 3
 __ 
8
= 		 20.	 5
 __ 
6
y 3
 __ 
4
=
Halla la suma o diferencia, usando un denominador común.
21.	 3
 __ 
5
– ​ 3
 ___ 
10
= 		 22.	 3
 __ 
4
 – 1
 __ 
3
 = 	 23.	 8
 __ 
9
  _​​+ 7
 __ 
8
  _​​=
24.	 1
 __ 
2
 – ​ 1
 ___ 
10
= 		 25.	 3
 __ 
5
– 1
 __ 
2
 = 	 26.	 3
 __ 
5
  _​​+ 5
 __ 
7
  _​​=
27.	 1
 __ 
4
 1  4
 ___ 
12
= 		 28.	 2
 __ 
3
 1 1
 __ 
4
 = 	 29.	
12
 ___ 
15
–  4
 ___ 
12
=
30.	 3
 __ 
4
 1 1
 __ 
3
 = 		 31.	 2
 __ 
5
 1 1
 __ 
2
 = 	 32.	
14
 ___ 
20
–  7
 ___ 
10
=
33.	 2
 __ 
9
  _​​+ 1
 __ 
7
  _​​= 			 34. 	
14
 ___ 
20
+ 7
 __ 
2
  _​​= 	 35.	 5
 __ 
9
  _​​+  8
 ___ 
11
=
36.	
12
 ___ 
15
– 2
 __ 
3
  _​​= 		 37.	 3
 __ 
8
  _​​+ 7
 __ 
9
  _​​= 	 38.	  7
 ___ 
10
– 6
 __ 
9
  _​​=
39.	 2
 __ 
4
  _​​– 1
 __ 
7
  _​​= 		 40.	 9
 __ 
8
  _​​+ 4
 __ 
7
  _​​= 	 41.	
10
 ___ 
12
+ 6
 __ 
7
  _​​=
42.	 ​12
 ___ 
3
  – 9
 __ 
4
  _​​= 		 43.	  4
 ___ 
12
– 1
 __ 
3
  _​​= 	 44.	 7
 __ 
9
  _​​+ 7
 __ 
8
  _​​=
45.	  1
 ___ 
11
+ 2
 __ 
4
  _​​= 		 46.	 ​ 8
 ___ 
10
+ 6
 __ 
4
  _​​= 	 47.	 6
 __ 
7
  _​​– 5
 __ 
8
  _​​=
Lección 6
63	 Práctica
Sumaryrestarfraccionesusandoel
mínimocomúnmúltiplo(m.c.m)
Halla la suma o la diferencia. Escríbela como fracción simplificada.
	 1.	​
5
 __ 
7
​1 ​
1
 __ 
5
​ 	 2.	​
7
 __ 
8
​ ​
1
 __ 
2
​ 	 3.	​
8
 __ 
9
​1 ​
1
 __ 
4
​ 	 4.	​
3
 __ 
4
​ ​
2
 __ 
3
​ 	 5.	​
1
 __ 
3
​ ​
4
 __ 
5
​
	 6.	​ 
3
 ___ 
10
​ ​
1
 __ 
6
​ 	 7.	 1  ​
7
 __ 
9
​ 	 8.	​
1
 __ 
3
​ ​
1
 __ 
8
​ 	 9.	​ 
7
 ___ 
12
​ ​
3
 __ 
5
​ 	10.	​
6
 __ 
8
​ ​ 
4
 ___ 
16
​
Resolución de problemas.
	11.	 Los cóndores son del tamaño aproximado
de un cuervo, sin embargo, las hembras
son un poco más grandes que los
machos. Si la envergadura de la hembra
es de 3​ 1
 _ 2
 ​metros y la envergadura del
macho es de 2​ 3
 _ 4
 ​metros, ¿cuál es la
diferencia entre la envergadura de la
hembra y la del macho?
	12.	 Los cóndores tienen cortejos nupciales
cada dos años. Se calcula que en Chile y
Argentina hay 2 500 individuos. Es
considerada el ave voladora más grande
del mundo, sin embargo se encuentra en
peligro de extinción. Si la hembra de una
de estas parejas pesa 12​ 8
 __ 10
 ​kilogramo y el
macho pesa 12​ 1
 _ 6
 ​kilogramo, ¿cuál es el
peso total de la pareja de cóndores?
	13.	 Hay 320 especies de colibríes en el
mundo. Al comparar dos ejemplos,
el colibrí gigante tiene un tamaño de
8​ 1
 _ 3
 ​centímetros y el colibrí abeja tiene un
tamaño de 2​ 1
 _ 8
 ​centímetros. ¿Cuál es la
diferencia de tamaño entre estos dos
colibríes?
A	 6 ​ 1
 ___ 
12
​
B	 6 ​ 1
 ___ 
11
​
	C	 6 ​ 5
 ___ 
24
​
	D	 6 ​ 1
 ___ 
24
​
	14.	 Dependiendo de la especie, los colibríes
ponen de uno a tres huevos. Si la madre
empolló sus huevos durante 13​ 7
 _ 8
 ​días
para su primera camada y durante 15​ 1
 _ 6
 ​
días para su segunda camada, ¿cuánto
tiempo pasó la madre empollando ambas
camadas de huevos?
A	 28 ​ 1
 ___ 
24
​
B	 29 ​ 1
 ___ 
24
​
C	 29
D	 28
Lección 7Capítulo 6
64	 Práctica
Halla el mínimo común múltiplo (m.c.m.) de las siguientes fracciones.
15.	 1
 __ 
3
y 2
 __ 
4
=	 m.c.m. =
16. 	 2
 __ 
5
y 6
 __ 
8
= 	 m.c.m. =
17. 	 1
 __ 
5
y  1
 ___ 
10
= 	 m.c.m. = 	
18.	 8
 __ 
9
y 1
 __ 
2
=	 m.c.m. =
19.	 6
 __ 
7
y 3
 __ 
8
= 	 m.c.m. = 	
20.	 4
 __ 
5
y 1
 __ 
2
= 	 m.c.m. =
21.	
1
 __ 
6
y 1
 __ 
2
= 	 m.c.m. =
Halla la suma o diferencia, usando el mínimo común denominador.
22.	 1
 __ 
2
+ 3
 __ 
7
= 	 23.	 1
 __ 
6
+ 7
 __ 
8
 =
24.	 3
 __ 
5
  _​​– 1
 __ 
8
  _​​= 	 25.	 3
 __ 
4
 – 3
 __ 
5
 =
Escribe verdadero o falso según corresponda.
26.	 El m.c.m. entre 2
 __ 
7
 y 3
 __ 
4
 es 28
27. 	 El resultado de 3
 __ 
5
 + 1
 __ 
4
 es 4
 __ 
9
 
28. 	 La diferencia entre 4
 __ 
8
 – 1
 __ 
2
 es
Lección 7
65	 Práctica
Tallerderesolucióndeproblemas
Estrategia:compararestrategias
Resolucióndeproblemasconsupervisión
	 1.	 Clara estudió durante 6​ 1 _ 4
 ​horas para
aprender de memoria su papel en los
tres actos de la obra de teatro de la
escuela. Estudió el primer acto durante
2​ 3
 _ 4
 ​horas y el segundo acto durante
1​ 5
 _ 8
 ​horas. ¿Por cuántas horas estudió
Clara el tercer acto?
	 2.	 ¿Qué pasaría si Clara hubiera estudiado
durante 5​ 7 _ 8
 ​horas para aprender de
memoria su papel? ¿Entonces, por
cuántas horas habría estudiado Clara el
tercer acto?
Prácticadeestrategiasmixtas
	 3.	 En la obra musical de la escuela, ​ 1
 
_ 4 ​de los actores tenían papeles principales y ​ 1
 
_ 5 ​de los
actores tenían papeles de reparto. Todos los demás actores pertenecían al coro. ¿Qué
fracción de los actores de la obra musical de la escuela pertenecía al coro?
	 4.	 Laura quiere hacer tres trajes. ¿Cuántos
metros de seda amarilla necesitará para
hacer los trajes?
	 5.	 ¿Cuánto chifón azul más que seda
amarilla necesitará Laura para hacer 2
trajes para la obra musical de la
escuela?
	 6.	 Lorena compró 12​ 1 _ 2
 ​litros de pintura
para la escenografía. Si 8​ 1 _ 3
 ​litros eran de
pintura roja, 2​ 1 _ 6
 ​litros eran de pintura
negra y el resto era pintura blanca,
¿cuántos litros de pintura blanca había?
Materiales para hacer
1 traje
Tela
Cantidad en
metros
chifón azul 3 ​ 1
 _ 2
 ​
seda amarilla 2 ​ 3
 _ 5
 ​
ribete dorado 2 ​ 6
 _ 7
 ​
Usa los datos. Para 4 y 5, usa la tabla.
Lección 8Capítulo 6
66	 Práctica
Capítulo 7: Valor posicional: comprender los decimales Capítulo 7 • Lección 1
Relacionarfraccionesydecimales
Escribe el decimal y la fracción que muestra cada figura.
  1.	   2.	   3.	   4.	
Escribe cada fracción como un decimal. Puedes hacer un dibujo.
  5.	​ 
6
 ___ 
10
​   6.	​  2
 ____ 
100
​   7.	​  1
 ___ 
10
​   8.	​ 
63
 ____ 
100
​
Escribe como número decimal y como fracción decimal cada ejercicio.
  9.	 cuarenta y dos
centésimos
10.	 nueve
centésimos.
11.	 cinco milésimos. 12.	 un entero y seis
décimos.
ÁLGEBRA.  Halla el número que falta.
13.	 9 décimos 1 7 centésimos 5 14.	 6 décimos 1 centésimos 5 0,66
Resolución de problemas.
15.	 Escribe 5 milésimos en forma de
fracción.
16.	 Escribe uno y treinta y cuatro
centésimos en forma decimal.
17.	 ¿Cuál decimal muestra el gráfico?
A	 0,08
B	 0,06
C	 0,8
D	 0,6
18.	 Ana y Berta tienen $100 cada una. Hoy
Ana ha gastado 0,40 de su dinero y
Berta ha gastado  8
 ___ 
10
del suyo. Ana dice
que ella ha gastado más que Berta.
Explica cómo saber si Ana está en lo
correcto.
67	 Práctica
Escribe como fracción decimal.
19.	 Ocho décimos	 	 20.	 Veinte centésimos	
21.	 Treinta y nueve milésimos	 	 22.	 Seis milésimos	
Escribe como número decimal.
23.	​ 
24
 ____ 
100
​=	 	 24.	
153_____
1 000
= 	
25.	 61_____
1 000
=	 	 26.	​ 
1
 ___ 
10
​ = 	
27.	​ 
7
 ___ 
10
​ =	 	 28.	 
3
 ____ 
100
​=	
Escribe cada número decimal como fracción decimal.
29.	 0,003 =	 	 30.	 0,32 = 	
31.	 0,01 = 	 	 32.	 0,4 =	
33.	 0,08 = 	 	 34.	 0,10 =	
35.	 0,75 = 	 	 36.	 0,3 =	
Completa la tabla
Fracción decimal Número decimal Se lee
37.
Dos centésimos
38.
 7
 ___ 
10
39.
0,007
40.
Quince milésimos
Lección 1
68	 Práctica
Lección 2Capítulo 7
Usarunarectanúmerica
1.  Para 0,7; 60% y ​
1
 __ 
5
​, identifica que letra representa a cada cantidad en la recta 68
numérica.
 
Del 2 al 7, haz una recta numérica. Después, coloca cada cantidad en la recta
numérica.
  2.  ​4
 __ 
5
​ 3.  0,95 4.  21%
  5.  0,30 6.  43% 7. ​3
 __ 
5
​
Resolución de problemas.
  8.	 Mario caminó 25% de un km. Hernán
caminó ​ 3
 
_ 5 ​de un km. ¿Quién caminó
más?
	 9.	 Ariel terminó el 72% de su tarea. Claudio
terminó 0,85 de su tarea. ¿Quién ha
terminado más de la tarea?
10.	 ¿Cuál de los siguientes números es el
menor?
A	 0,34
B	 8%
C	 0,19
D	 ​1
 __ 
4
​
11.	 ¿Cuál de los siguientes números es el
mayor?
A	​ 9
 ___ 
10
​
B	 17%
C	 0,71
D	 34,5%
0%
0 1
A
50%
B C
100%
1
2
69	 Práctica
Usa la recta numérica y ubica el número decimal donde corresponda.
12.	 6,4
13.	 3,7
14.	 0,9
15.	 4,8
16.	 2,2
17.	 5,5
18.	 8,9
19.	 1,1
Usa la recta numérica y ubica los siguientes números.
20.	 1
 __ 
2
	 21.	 1,4	 22.	 ​15
 ___ 
8
  	 23.	 1,8	 24.	 4
 __ 
3
	 25.	 50%
Lección 2
70	 Práctica
Representarmilésimas
Escribe el decimal representado por la parte sombreada.
  1.    2. 
  3.    4. 
Escribe el valor del dígito subrayado.
  5.  0,725   6.  0,018   7.  4,093   8.  6,007   9.  1,072
10.  0,896 11.  0,831 12.  2,471 13.  3,719 14.  9,103
Escribe cada número de otras dos maneras.
15. cincuenta y cuatro
milésimas
16.  0,736 17.  5 1 0,7 1 0,02 1 0,006
18.  3 1 0,2 1 0,009 19.  7,081 20.  cuatro con seis milésimas
Lección 3Capítulo 7
71	 Práctica
Escribe en forma estándar y en palabras los siguientes números decimales.
21.	 3 con 221 milésimas.	
			
22.	 4 con 200 milésimas.	
			
23.	 1 con 74 milésimas.	
			
24.	 3 con 141 milésimas.	
			
25.	 18 con 401 milésimas.	
			
26.	 4 con 29 milésimas.	
			
27.	 0 con 352 milésimas. 	
			
28.	 7 con 136 milésimas. 	
			
Anota el valor del dígito subrayado.
29.	 6,553	 	 30.	 9,15 	
31.	 1,7	 	 32.	 4,35	
33.	 0,1	 	 34.	 0,009	
Lección 3
72	 Práctica
Compararyordenardecimales
Compara. Escribe , , o = en cada .
  1.  0,37 0,370   2.  3,10 3,101   3.  0,579 0,576   4.  7,7 7,690
  5.  0,812 0,821   6.  9,810 9,809   7.  0,955 0,95   8.  3,218 3,218
  9.  5,202 5,220 10.  0,78 0,780 11.  4,17 4,017 12.  0,897 0,987
Ordena de menor a mayor.
13.  0,301; 0,13; 0,139; 0,5 14.  7,203; 7,032; 7; 7,2
15.  0,761; 0,67; 0,776; 0,7 16.  0,987; 0,978; 0,97; 0,98
Resolución de problemas.
Del 17 al 18, usa la tabla.
17.	 ¿Cuál escarabajo es el más corto? ¿Y el
más largo?
Tamaños de escarabajos
Escarabajo Tamaño (en cm)
escarabajo japonés 1,295
escarabajo sanjuanero 2,518
libélula 1,063
18.	 Otro tipo de escarabajo tiene una
longitud de 1,281 cm. ¿Cuál escarabajo
mide menos de 1,281 cm?
19.	 Algunos tipos de escarabajos pueden
saltar hasta 15 cm de altura. Imagina
que tres escarabajos saltaron 14,03 cm;
14,029 cm y 14,031 cm. ¿Cuál es el
orden de las alturas que los escarabajos
alcanzaron, de menor a mayor?
20.	 Una larva de escarabajo japonés puede
hibernar a 29,301 cm debajo de la
superficie de la tierra. ¿Entre cuáles dos
números está 29,301?
A	 29,103 y 29,300
B	 29,21 y 29,3
C	 29,3 y 29,31
D	 29,31 y 29,32
Lección 4Capítulo 7
73	 Práctica
Escribe V o F según corresponda.
21.	_______
10
 ___ 
40
es equivalente a 2,5
22.	_______ 0,625 equivale en fracción a 5
 __ 
8
23.	_______ Toda fracción decimal puede convertirse en número decimal.
24.	_______ 5
 1_ 
8
es equivalente 0,1.
Escribe  , o =
25.	 0, 876 0,876	 26.	 2,087 1,999	 27.	 11,89 10,99	
28.	 2,87 3	 29.	 6,51 6,49	 30.	 4,621 4,63
Ordena los números de menor a mayor.
31.	3,001; 3,01; 3,021; 3,101
32.	 3,211; 3,112; 3,21; 3,11
33.	 21,75; 21,375; 1,375; 12,57
34.	 0,75; 1,9; 0,007; 2,3
​ 1
 ___ 
10
Lección 4
74	 Práctica
	1.	 Todas las mañanas durante sus
vacaciones, la familia de Juan viaja a
un nuevo sitio para conocerlo. El lunes
recorren 23,91 km; el martes recorren
23,67 km y el miércoles recorren 24,09
km. ¿Qué día recorrió la familia de
Juan el menor número de kilómetros?
	2.	 Teo pasea en bicicleta cuatro días
seguidos. El lunes recorre 11,87 km; el
martes recorre 11,93 km; el miércoles
recorre 12,12 km y el jueves recorre
12,05 km. ¿Qué día recorrió Teo la
mayor distancia?
Prácticadeestrategiasmixtas
Del 3 al 4, usa la información del mapa.
	3.	 Tres amigos se encuentran de viaje.
Miguel viaja de Playa Bonita a Playa
Llifén. Francisco viaja de Playa
Huenqueheura a Playa Llifén. Pedro
viaja de Piedra Azul a Playa Bonita.
Mide con una regla los
desplazamientos y averigua quién
recorre la mayor distancia.
	4.	 El señor Maturana hace un viaje de ida
y vuelta de Cerro Llifén hasta Playa
Bonita. Esta distancia mide:
Tallerderesolucióndeproblemas
Estrategia:hacerundiagrama
Prácticadeladestrezaderesolucióndeproblemas
Haz un diagrama para resolver.
Playa Bonita
Playa Llifén
Playa Huenqueheura
Piedra azul
Lección 5Capítulo 7
75	 Práctica
Sumaryrestardecimales
Halla la suma o la diferencia.
 1. ​  5     
1 0,9
 
_
 ​  2. ​  11,7      
2 3,04
 
__
 ​  3. ​  12,67     
1 18,5
 
__
 ​  4. ​  16,08     
1 3,49
 
__
 ​  5. ​  18,394     
1 15,602
 
__
 ​
 6. ​  32,44     
2 4,78
 
__
 ​  7. ​  0,45      
1 0,071
 
__
 ​  8. ​  0,868     
2 0,23
 
__
 ​  9. ​  17,645     
1 11,268
 
__
 ​ 10.  ​  9,46     
2 0,5
 
__
 ​
11.  ​  25,73     
1 15,48
 
__
 ​ 12.  ​  8      
2 4,091
 
__
 ​ 13.  ​  0,12      
1 1,095
 
__
 ​ 14.  ​  1,304     
2 1,239
 
__
 ​ 15.  ​  0,49       
0,561
 
   
 
1 2,7   
​
16.  ​  24,006     
2 2,73
 
__
 ​ 17.  ​  8,18       
0,517
 
   
 
1 1,304
​ 18.  ​  0,1      
2 0,025
 
__
 ​ 19.  ​  0,775     
5,31 
 
   
 
1 3,016
​ 20.  ​  0,003     
1    
 
   
 
1 9,44 
​
Resolución de problemas.
21.	 Hasta las Olimpíadas del año 2002,
la velocidad récord en luge fue de
137,42 km/h. Tony Benshoof rompió
ese récord con una velocidad de
139,85 km/h. ¿Por cuánto superó el
récord?
22.	 Beatriz y su abuela compran 23 kg de
harina para hacer pan amasado. Un
restaurante les compra 6,5 kg más que el
almacén. ¿Cuánto pan compra la
amasandería?
23.	 Lorena compra cinta roja, blanca e hilo
dorado para adornar un vestido. Si
quiere comprar en total 5 m de
materiales, ¿cuánto falta por comprar?
A	 0,46
B	 0,56
C	 0,26
D	 1,55
24.	 Raúl compra género verde, amarillo, azul y
negro. En total quiere comprar 20 m.
¿Cuánto le falta por comprar?
A	 6,54 m
B	 16,93 m
C	 4,75 m
D	 3,07 m
Tienda
Producto Metros
cinta roja 3,45 m
cinta blanca 0,80 m
hilo dorado 0,49 m
Tienda
Color de género Cantidad
verde 4,55 m
amarillo 2,14 m
azul 1,29 m
negro 8,95 m
Lección 6Capítulo 7
76	 Práctica
Resuelve los ejercicios.
25.	 32, 465 1 132,39 =
		
26.	 63,26 1 216,9 =
27.	 143,82 1 12,7 1 2,7 =
		
28.	 4,25 1 3,5 1 97,02 =
29.	 6,8 – 2,3 =
		
30.	 23,87 – 21,34 =
31.	 144,8 – 66,02 =
		
32.	 61,41 – 53,967 =
Resuelve los ejercicios combinados.
33.	 ( 159,34 – 28,14) 1 4,12 =
		
34.	 567,30 – ( 97,27 1 0,07 ) =
	
35.	 ( 720,05 – 60,34 ) – 659, 71=
		
36.	 ( 141,312 1 27,15) – 68,462 =
37.	 ( 223,7 1 58,6 ) 1 13,73 =
		
38.	 1,76 – 0,44 1 2,89 =
39.	 ( 1,47 – 0,31) 1 73,57 =
		
Lección 6
77	 Práctica
Tallerderesolucióndeproblemas
Destreza:estimarohallarunarespuestaexacta
Prácticadeladestrezaderesolucióndeproblemas
Indica si necesitas una estimación o una respuesta exacta. Después, resuelve los problemas.
	 1.	 Sara compra ropa de hacer ejercicio en
una tienda deportiva. Incluyendo el
impuesto, compra zapatos por $ 41 660,
calcetines por $ 3 490, pantalones por
$ 9 620 y una camiseta por $ 7 840.
Sara solamente tiene billetes de
$ 10 000 en su billetera.
¿Cuántos billetes de $ 10 000 debe
darle a la cajera por todas sus compras?
	 2.	 Alberto compra en el supermercado
una pelota de basquetbol por $ 12 490
y una tabla de basquetbol con aro por
$ 6 990. Ambos precios incluyen
impuestos. Le da a la cajera 2 billetes
de $ 10 000. ¿Cuánto vuelto debe
recibir Alberto?
	 3.	 Jessica necesita $ 140 000 para
comprar una bicicleta. Ella ahorra
$ 10 000 cada semana. Ya ahorró
$ 60 000. ¿En cuántas semanas, a partir
de ahora, puede comprar Jessica la
bicicleta?
	 4.	 Las manzanas que quiere comprar
Carlos varían en peso de 0,2 kg a 0,4 kg.
¿Cuántos kg pesarán 12 manzanas?
Aplicacionesmixtas
	 5.	 Tomás tiene 21 plantas de flores blancas,
rosadas y azul lavanda. Tiene 2 plantas
más de flores rosadas que de flores azul
lavanda. ¿Cuál es la mayor cantidad de
plantas de flores blancas que Tomás
puede tener?
	 6.	 Al mediodía, la temperatura era de
18 C. En la hora siguiente, la temperatura
subió 2 C. Una hora después, subió 4 C.
Durante la hora siguiente, subió 6 C y,
una hora más tarde, subió 8 C. ¿Cuál era
la temperatura a la 1:00 p.m.?
	 7.	 Si cada pollo tiene 2 patas y cada vaca
tiene 4 patas, ¿cuántas patas tienen en
total 9 pollos y 23 vacas?
	 8.	 Formula un problema Vuelve al problema
6. Cambia la temperatura dada al comienzo
del problema. Luego, resuélvelo.
Lección 7Capítulo 7
78	 Práctica
Solucionario
Página 1 · Lección 1	
1.	 Cien millones
2.	 Dos millones
3.	 Cien mil
4.	 Cincuenta millones
5.	 Un millón
6.	 Setenta millones
7.	 Ochocientos millones
8.	 Quinientos mil
9.	 Cinco mil
10.	978 308 205 =
novecientos setenta
y ocho millones
trescientos ocho mil
doscientos cinco.
11. 217 000 531 =
200 000 000 +
10 000 000 + 7 000
000 + 500 + 30 + 1
12. 10 000
13. 5 000 000
14. 10 000
15. 1 000
16. D
17. D
Página 2		
18. 45 600 000 000
19. 456 000 000
20. 456 000 000 000
21. 456 000
22. 4 560 060
23. 20 000 000 +
1 000 000 +
40 000 + 500 + 3
24. 600 000 000 + 9 000
+ 10 + 4
25. 400 000 000 000 +
	 50 000 000 000 +
2 000 000 000 + 30
26. 900 000 000 000 +
900 000 + 9
27. 9 000 214
28. 74 030 002
29. 1 234 560 001
30. 789 235 120
31. 789 250 004 234
Capítulo 1 – Lección 2	
Página 3		
1. 
2.	=
3.	 
4.	
5.	
6.	 
7.	 1134845  1299184
 1345919
8.	 417689200 
417698100 
417698200
9.	 63547  63574 
63745
10.	5708434  5807334
 5807433
11. 2
12. 0
13. Coquimbo
14. 488 000 000  520
400 000  720
200 000
15. A
16. D
Página 4		
17. V
18. V
19. F
20. V
21. F
22. F
23. 41 852  45 258  45
852
24. 125 368  125 386 
125 863
25. 7 124 597  7 124
587  7 124 578
26. 996 121  996 120 
996 102
27. 
28. 
29. 
30. 
Capítulo 1 – Lección 3	
Página 5		
1. 3 300 000
2. 46 000
3. 91 340 000
4. 600 000 000
5. 8 000
6. 42 991 300
7. 182 000 000
8. 539 610 000
9. 999 887 000
10. 76 800 000
11. 520 000 000
12. 700 000 000
13. Decena de mil
14. Decena de mil
15. Centena
16. Centena de mil
17. Unidad de mil
18. Unidad de millón
19. 34 000 000
20. 34 300 000
21. 34 252 000
22. 40 000
23. Desde 46 500 hasta
47 499
24. B
25. B
Página 6		
26. 22 400
27. 3 990 000
28. 70 000 000
29. 200 000 000
30. 4 444 000 000
31. 20 000 000 000
32. 13 000
33. 10 000
34. 860 000 000
35. 890 000 000
36. 970 000 000
37. 890 000 000
38. 530 000 000
39. 220 000 000
40. 40 000
41. 650 000
42. 320 000
43. 180 000
44. 70 000
45. 500 000
Capítulo 1 – Lección 4	
Página 7		
1. 13 610
2. 78 051
3. 3 991
4. 1 006 048
5. 5 555 067
6. 293 142
7. 33 923
8. 923 870
9. 13 262 274
10. 3 452 622
11. 222 574
12. 1 175 583
13. 43 170
14. 2 139 978
15. 136 249
16. 10 736
17. 27 093
18. 629 106
19. 14 960
20. 54 700
21. C
22. 15 450
Página 8		
23. 12 540 903
24. 4 176 746
25. 9 629 845
26. 5 453 099
27. 2 911 058
28. 11 908 059
29. 11 908 059
30. 8 364 157
31. 555
32. 160
33. 8 485
34. 6 875
35. 21
36. 245
37. 36 690
38. 15 245 119
39. 12
Unidad 1, Capítulo 1
79	 Práctica
Solucionario
40. 17 267
Capítulo 1 – Lección 5	
Página 9		
1. $ 55 500
2. 7 km
3. 123454321;
12345654321;
1234567654321
4. 215 cm
5. 42
6. 42
7. 728 m
8. 42 500
Capítulo 2 – Lección 1	
Página10		
1. 2 700
2. 300
3. 300
4. 35 000
5. 40 000
6. 1 400
7. 1 800
8. 10 000
9. 15 000
10. 480 000
11. 36 000
12. 1 400
13. 3 600
14. 600
15. 1 000
16. 3 500
17. 45
18. 2
19. 35
20. 1 500
21. 100
22. 1 000
23. 50
24. 50
25. 24 000
26. 2 400
27. D
28. C
Página 11		
29. 63
30. 630
31. 6 300
32. 25
33. 250
34. 2 500
35. 18
36. 180
37. 1 800
38. 48
39. 480
40. 12 000
41. 800
42. 7 000
43. 1 000
44. 1 400
45. 1 500
46. 11 000
47. 700
48. 1 200
49. 9 000
Capítulo 2 – Lección 2	
Página 12		
1. 1 400
2. 600
3. 3 500
4. 400
5. 56 000
6. 4 500
7. 1 800
8. 2 400
9. 8 000
10. 8 000
11. 400
12. 500
13. 2 700
14. 40 000
15. 30 000
16. 600
17. 480
18. 54 000
19. 2 000
20. 35 000
21. No es suficiente
22. Sí, es suficiente
23. A
24. C
Página 13		
25. 322
26. 43 568
27. 3 496
28. 2 814
29. 7 992
30. I
31. I
32. I
33. C
34. I
35. I
36. 1080 – 1044
37. 2 400 – 2 400
38. 4 500 – 4 320
39. 400 – 425
40. 800 – 851
41. 400 – 546
42. 4 900 – 4 672
43. 5 400 – 5 016
44. 600 – 728
45. 2 800 – 2 860
46. 7 800 – 7 722
47. 600 – 627
48. 600 – 638
49. 1 600 – 1 794
50. 1 500 – 1 620
51. 600 – 646
Capítulo 2 – Lección 3
Página 14		
1. 900; 952
2. 3000; 2 745
3. 3 500; 3 710
4. 1 800; 2 108
5. 1 700; 1 649
6. 1 600; 1 694
7. 7 200; 7 470
8. 200; 299
9. 1 800; 1 547
10. 2 800; 2 680
11. 1 600; 1 764
12. 2 100; 2 376
13. 1 200; 1 102
14. 480; 504
15. 1 080; 1 068
16. 1 700; 1 632
17. 2 600; 2 405
18. 2 100; 2 079
19. 800; 828
20. 4 200; 4 104
21. 3
22. 1
23. 4
24. 1 300 km
25. $220 800
26. C
27. C
Página 15		
28. 1 012
29. 180
30. 570
31. 84
32. 945
33. 6 290
34. 210
35. 900
36. 1 078
37. 135
38. 300
39. 392
40. 777
41. 220
42. 114
43. 840
44. 871
45. 369
46. 200
47. 2 000
48. 1 000
49. 57
50. 4 000
51. 100
52. 100
53. 5 000
80	 Práctica
Solucionario
Capítulo 2 – Lección 4
Página 16		
1. 3 000; 3 085
2. 2 400; 2 442
3. 8 100; 8 334
4. 4 000; 4 372
5. 28 000; 24 696
6. 2 400; 2 346
7. 6 300; 6 391
8. 800; 820
9. 4 000; 4 195
10. 6 000; 5 820
11. 2 700; 2 670
12. 1 800; 1 767
13. 900; 858
14. 1 200; 1 232
15. 80 000; 94 438
16. 12 000; 11 153
17. 160 000; 158 444
18. 4 000; 4 848
19. 5 400; 5 103
20. 1 200; 1 065
21. 700; 735
22. 15 000; 14 880
23. 1 800; 1 674
24. 2 000; 1 920
25. 4 000; 3 580
26. 12 000; 12 903
27. 3 000; 3 015
28. 28 800 kg
29. 22 800 kg
30. C
31. D
Página 17		
32. 1 200
33. 2 400
34. 2 400
35. 649
36. 1 216
37. 60 534
38. 30 (40+2)=1
200+60=1260
39. 60 (10+8)=600+480=
1 080
40. 80
(10+5)=800+400=1
200
41. 90 (40+5)=3
600+450=4 050
42. 2 000
43. 4 000
44. 2 800
45. 2 100
46. 3 200
47. 1 000
48. 4 800
49. 800
Capítulo 2 – Lección 5
Página 18		
1. (2 200 · 4) + (900 · 7)
2. (1 900 · 5)
3. (17 · 4) – (8 · 1)
4. (2 500 · 7) +
(2 200 · 3) = 24 100
24 100 – 12 000 =
12 100
5. (1200 · 6) + 3000
6. (4 · 1500) + (4 · 1000)
Capítulo 2 – Lección 1
Página 19		
1. 18 r 1
2. 10 r 3
3. 13 r 1
4. 13 r 2
5. 18 r 2
6. 9 r 8
7. 13 r 0
8. 11 r 4
9. 16 r 1
10. 11 r 2
11. 14 r 5
12. 21 r 3
13. 9 r 1
14. 5 r 2
15. 14 r 2
16. 11 r 2
17. 5 r 3
18. 12 r 1
19. 8 r 1
20. 9 r 0
21. 25 r 2
22. 33 r 1
23. 16 r 2
24. 13 r 2
25. 18 r 1
26. 24 r 2
27. 15 r 1
28. 10 r 2
29. 11 r 5
30. 9 r 3
31. 19 r 1
32. 6 r 5
33. 12 r 4
34. 14 r 1
35. 11 r 2
36. 6 r 3
37. 9 r 5
38. 7 r 4
39. 9 r 0
40. 5 r 4
Página 20		
41. 17
42. 14
43. 7
44. 32
45. 24
46. 18
47. 5
48 a 54 dibujar bloques
base 10
Capítulo 3 – Lección 2
Página 21		
1. decena, 8
2. centena, 1
3. centena, 1
4. decena, 6
5. centena, 2
6. decena, 4
7. centena, 1
8. decena, 5
9. 356
10. 162
11. 94 r 4
12. 76 r 1
13. 164
14. 86
15. 83 r 7
16. 82 r 2
17. 20 en cada bus y 5
en el que no está
lleno
18. 23 adultos tienen
grupo completo y
9 estudiantes están
en un grupo que no
tiene 1.
19. B
20. C
Página 22		
21. 97; 5; 97 · 6+5
22. 33; 4; 33 · 7+4
23. 87; 1; 87 · 5+1
24. 315; 2; 315 · 3+2
25. 65; 8; 65 · 9+8
26. 91; 5; 91 · 7+5
27. 58; 1; 58 · 2+1
28. 291; 0; 291 · 3
29. 111; 0; 111 · 7
30. 20; 1; 20 · 9+1
Capítulo 3 – Lección 3
Página 23		
1. 6
2. 20
3. 2
4. 80
5. 80
6. 40
7. 60
8. 7
9. 80
10. 20
11. 90
12. 70
13. 9
14. 400
15. 300
16. 70
81	 Práctica
Solucionario
17. 
18. 
19. =
20. 100 kg
21. $ 75
22. D
23. B
Página 24		
24. 2
25. 9
26. 20
27. 90
28. 200
29. 900
30. 2 000
31. 9000
32. F
33. V
34. V
35. V
36. V
37. F
38. 70
39. 200
40. 5
41. 20
42. 70
43. 3
44. 1
45. 3
46. 40
Capítulo 3 – Lección 4
Página 25		
1. 5 r 2
2. 4 r 2
3. 4 r 2
4. 8 r 1
5. 6 r 5
6. 5 r 8
7. 8 r 2
8. 8 r 2
9. 8 r 2
10. 8 r 3
11. 6 r 6
12. 8 r 4
13. 5 r 2
14. 8 r 4
15. 11 r 0
16. 10 cartas y sobran 4
17. 4 bolitas
18. A
19. C
Página 26		
20. 16 : 3
21. 21 : 4
22. 36 : 5
23. 48 : 7
24. 51 : 6
25. 26 : 2
26. 11 r 0
27. 12 r 2
28. 7 r 1
29. 8 r 2
30. 7 r 4
31. 8 r 5
32. 13 r 1
33. 5 r 0
Capítulo 3 – Lección 5
Página 27		
1. 6 cuentas
2. 2 más
3. 16 tazas
4. 7 latas
5. 4 para c/u
6. 11°C más cálido
7. Según datos del
estudiante
8. $ 700
Capítulo 3 – Lección 6
Página 28		
1. 122
2. 74 r 4
3. 90 r 5
4. 230 r 3
5. 84
6. 162 r 1
7. 102 r 3
8. 99 r 3
9. 408
10. 25 r 2
11. 91 r 1
12. 254 r 2
13. 116 r 4
14. 80 r 1
15. 39 r 3
16. 99
17. 119 r 5
18. 245
19. 224 r 1
20. 52 r 2
21. 7
22. 305
23. 70
24. 74 r 2
25. 73
26. 49 r 2
27. 125 r 4
28. 160 r 3
29. 117 autitos
30. 173 adornos
31. Dividiendo 594 en 9
32. 40 bolsas
Página 29		
33. 890 : 3
34. 593 : 6
35. 723 : 5
36. 817 : 2
37. 677 : 8
38. 948 : 3
39. 400 r 1
40. 288
41. 117
42. 104
43. 920
44. 135 r 2
45. 285
46. 140
47. 91 ; 91 · 5+2
48. 302 ; 302 · 2 + 0
49. 112 ; 112 · 8 + 4
50. 97 ; 97 · 3 + 1
51. 127 ; 127 · 4 + 2
Capítulo 4 – Lección 1	
Página 30		
1. 24
2. 100
3. 0
4. 84
5. 3 ; asociativa
6. 3 ; conmutativa
7. 4 ; distributiva y
conmutativa
8. 6 ; elemento neutro
9. 0 ; absorbente del
cero
10. 4 ; conmutativa y
asociativa
11. 6 (10 + 4) = 60 + 24
= 84
12. 5 (10 + 5) = 50 + 25
= 75
13. 9 (10 + 7) = 90 + 63
= 153
14. (12 · 5) · 6 = 12 · (5
· 6)
15. (4 · 3) · 2 = 4 · (3 · 2)
16. (9 · 3) · 8 = (9 · 8) · 3
17. 56 animales
18. 800 metros
19. C
20. Sí, porque 4 – 3 = 1 y
5 · 1 = 5
Página 31		
21. Conmutativa
22. Asociativa
23. Distributiva
24. Asociativa
25. Conmutativa
26. Distributiva
27. 504
28. 135
29. 56
30. 56
31. 72
32. 504
33. 128
82	 Práctica
Solucionario
34. 70
35. 119
36. 44
37. 199
38. 74
39. 70
40. 65
41. Sí
42. Sí
43. Sí
44. Sí
Capítulo 4 – Lección 2	
Página 32		
1. Correcto
2. Multiplica, resta
3. Multiplica, suma
4. Multiplica, resta,
suma
5. Correcto
6. Divide, resta, suma
7. 37
8. 6
9. 12
10. 40
11. 6
12. 63
13. 41
14. 8
15. 42 – 5 · 6
16. 15 + 21 : 3
17. 81 : 9 – 7
18. 3 + 12 · 4
19. 7 · 6 – 5
20. 28 : 4 + 16
21. 14 · 2 + 9
22. 15 : 5 · 12
23. 12 : 3 · 7
Página 33		
24. 18
25. 21
26. 0
27. 16
28. 15
29. 21
30. 100
31. 64
32. 26
33. 28
34. 2
35. 46
36. 40
37. 15
38. 21
39. 79
40. 207, división,
multiplicación, suma.
41. 25, multiplicación,
resta, suma.
42. 67, división, resta,
resta.
43. 22, división, suma,
resta.
44. 10, división,
multiplicación, resta.
45. 120, división, resta,
suma.
46. 111, división,
multiplicación, suma.
47. 26, división, resta,
suma.
Capítulo 4 – Lección 3	
Página 34		
1. Multiplicación,
división, resta = 0
2. Suma del paréntesis,
división, resta = 6
3. Suma del paréntesis,
división, resta = 11
4. Suma del paréntesis,
multiplicación, resta
= 51
5. A
6. B
7. A la división entre 49 y
7 se le suma 2.
8. Al producto de 6 y 7
se le suma 28
9. El producto de 4 y
9 se divide en la
diferencia de 16 y 14.
10. 48 : (2 + 2)= 12
11. 81 : (7 + 2) + 4 = 13
12. 3 (21 + 2) – 3 = 66
13. 33
14. 63
15. C
16. 72
Página 35		
17. 72
18. 7
19. 39
20. 6
21. 10 – 8 +3
22. 15 – 7 – 3
23. 3 · 3 + 4
24. 3 · 250 + 200
25. 2 + 5
26. 10 – 7 + 3
27. 14 – 14
28. 5 · 100 – 200
29. I
30. C
31. C
32. I
33. C
34. I
35. C
36. I
37. I
38. C
39. I
40. C
Capítulo 4 – Lección 4	
Página 36		
1. $ 2 059 200
2. 1 200 Km
3. $ 8 060
4. 45 · 10 =
5. 45 · 10 = = =
6. 45 · 10 =
7. 5 000 lápices; 10 ·50
= =
8. 3 000 litros; 10 · 30 = =
Página 37		
9. 10 000; 10 · 10 = = =
10. 20 · 3 · 5 · 5 = 1 500
11. 105; 7 · 15 =
12. 10 000; 10 · 10 = = =
Capítulo 4 – Lección 5	
Página 38		
1. 9
2. 2
3. 12
4. 2
5. 9
6. 9
7. 2
8. 12
9. 10
10. 220
11. 40
12. 0,9
13. 4
14. 1,1
15. 19
16. 11,6
17. 4 1/4
18. 14
19. 112/3
20. 3
21. 20
22. 20,5
23. 72
24. 8,7
25. 17,5 kg.
26. 58 kg.
27. A
28. C
Página 39		
29. 17
30. 7
31. 576
32. 324
33. 8
34. 30
35. 3
36. X = 4 ; Y = 1
37. a = 44 ; b = 11
83	 Práctica
Solucionario
38. c = 15 ; d = 5
39. g = 35 ; h = 33
40. z = 3 ; m = 2
41. n = 14 ; I = 10
42. f = 2 ; i = 98
43. i = 30 ; d = 30
44. ñ = 30 ; o = 12
45. p = 15 ; q = 5
46. j = 45 ; k = 100
47. r = 52 ; s = 30
Capítulo 4 – Lección 6	
Página 40		
1 a 8. Ver cuaderno de
ejercicios. Copiar
recta numérica
9. a  4 ↔ {4, 5, 6, 7,
…}
10. r  7 ↔ {0, 1, 2, 3,
4, 5, 6}
11. p  15 ↔ {15, 16,
17,…}
12. l  6 ↔ {7, 8, 9, … }
13. z  8 ↔ {0, 1, 2, 3,
4, 5, 6, 7}
14. ñ  7 ↔ {8, 9, 10,
…}
15. k  0
16. h  7 ↔ {8, 9, 10,
…}
17. y  6 ↔ {0, 1, 2, 3,
4, 5, 6}
18. w  3 ↔ {0, 1, 2,
3}
19. {0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11}
20. {8, 9, 10, 11, 12,…}
Capítulo 4 – Lección 7	
Página 41		
1. 32, 128 (C : 4)
2. 14, 16 (R · 2)
3. 4, 5 (A : 10)
4. 14, 13 (m : 5)
5. Respuesta abierta
6. Respuesta abierta
7. 120 g, 144 g y 168 g
respectivamente. 24
· =?
8. 2x =?
9. 3x =?
Página 42		
10. Sumar 2
11. Sumar 3
12. Restar 4
13. Sumar por 100
14. Restar 100
15. Restar 250
16. Restar 200
17. Restar 1500
18. 8, 9, 10
19. 63, 72, 81
20. 125,150, 500
21. 180, 1089,306
22. 15, 16, 300
23. 200, 400, 600
Capítulo 5 – Lección 1	
Página 43		
1 a 18. Hay infinitas
posibilidades.
19. por ejemplo:
4/12=1/3=2/6
20. Por ejemplo:
4/( 16)=1/4=2/8
21. B
22. A
Página 44		
23. 4/10
24. 5/9
25. 2/3
26. 1/7
27. 1/5
28. 1/7
29. 5/9
30. 2/7
31. 2/5
32. 5/8
33. 1/9
34. 4/7
35 a 62. Hay infinitas
respuestas.
Capítulo 5 – Lección 2	
Página 45		
1. 7/8
2. 5/8
3. 1/3
4. 3/10
5. 2/5
6. 4/11
7. 1/2
8. 4/11
9. 4/25
10. 4/5
11. 5/6
12. 1/4
13. 1/3
14. 4/5
15. 4/19
16. 5/12
17. 3/5
18. 4/5
19. 7/10
20. 4/5
21. 4/25
22. 4/15
23. D
24. 2/5
Página 46		
25. 6/7
26. 1/3
27. 2/5
28. 7/8
29. 9/10
30. 8/7
31. 2/3
32. 1/2
33. 2/3
34. 1/2
35. 3/8
36. 2/5
37. 3/5
38. 5/8
39. 2/7
40. 3/5
41. 4/9
42. 1/3
43. 2/5
44. 8/7
45. 3/19 y 2/3
46. 1/9
47. 5/4
48. 8/3
49. 1/9
50. 5/9
51. 1/100
52. 1/3 y 1/7
53. 7/8
54. 8/13
55. 1/4
56. 8/9
57. 3/11 y 2/9
58. 3/8
Capítulo 5 – Lección 3	
Página 47		
1. 15/8
2. 11/9
3. 6 3/4
4. 19/5
5. 26/15
6. 49/12
7. 4 1/10
8. 5 1/18
9. 20 1/3
10. 59/10
11. 28/9
12. 7 4/5
13. 31/7
14. 5 1/4
15. 8 1/7
16. 53/6
17. 85/9
18. 6 5/6
19. 23/3
20. 63/10
21. 62/15
84	 Práctica
Solucionario
22. 7 3/4
23. 3 1/5
24. 5 5/6
25. 17 veces
26. 1/14
27. C
28. D
Página 48		
29. 1 5/9
30. 8 1/3
31. 5 1/7
32. 2 2/5
33. 5 2/6
34. 6 3/4
35. 9 1/2
36. 3 5/8
37. 8 6/7
38. 4 2/3
39. 2 1/2
40. 2 3/3
41. 4 5/8
42. 2 5/8
43. 9 7/9
44. 9 3/6
45. 18
46. 7 3/12
47. 9/7
48. 23/5
49. 41/6
50. 4 8/9
51. 7 5/10
52. 84/15
53. 22/8
54. 4 1/2
Capítulo 5 – Lección 4	
Página 49		
1. 
2. 
3. =
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. =
13. 
14. =
15. 
16. 
17. 
18. 
19. 
20. 
21. 1/43/83/4
22. 1/6  2/3  7/9
23. 1 5/8  1 3/4  1 5/6
24. 6 6/10  6 2/3  7
3/5
25. Mágica, cónica, petra
26. Petra
27. Martes
28. Miércoles
Página 50		
29. 5/2
30. 2/10
31. 7/8
32. 9/4
33. 1/2
34. 5/8
35. 2/7
36. 3/7
37. Verdadero
38. Verdadero
39. Falso
40. 7/8  3/4  1/2
41. 1 1/4  10/8  5/6
42. 1 1/2  5/8  2/4
43. 9/15  15/30  4/12
44. 5/2  3/4  50/100
45. 12/4
46. 12/20
47. 3/4
48. 15/3
49. 2/3
50. 5/9
51. ambas son iguales
52. 15/8
53. 28/100
54. ambas son iguales
55. 8/5
56. 18/7
57. 3/7
58. 5/3
59. 3/860
61. 13/8
62. ambas son iguales
63. 4/8
64. 3/16
65. 6/10
66. 6/15
67. 7/7
68. ambas son iguales
Capítulo 5 – Lección 5	
Página 51		
1. 7 cuadras
2. 70 cm.
3. A la 1:10 p.m.
4. La pelota de Leonardo
5. 6 senderos
6. Revisar cuaderno del
estudiante
Capítulo 6 – Lección 1	
Página 52		
1. 4/5
2. 3/8
3. 4/12
4. 1/2
5. 3/7
6. 2/5
7. 5/7
8. 9/10
9. 1/9
10. 1/2
11. 3/4
12. 3/10
13. 1/2
14. 1/2
15. 1/4
16. 1/4
17. 3/5
18. 4/5
19. 7/11
20. 2/5
21. 2/3
22. 6/7
23. 110
Página 53		
24. 6/18
25. 4/22
26. 6/7
27. 3 1/5
28. 12/8
29. 7/12
30. 9/18
31. 45/12
32. C
33. I
34. I
35. C
36. I
37. C
38. I
39. I
40. I
41. I
42. 1
43. 1/2
44. 0
45. 3/2
46. 53/55
47. 1
48. 1/4
49. 7/27
50. 1
51. 7/21
52. 1/11
53. 15/16
Capítulo 6 – Lección 2
Página 54		
1. 1/2
2. 3/7
3. 2/5
4. 5/7
5. 1/4
6. 9/10
7. 1/9
8. 1/2
85	 Práctica
Solucionario
9. 3/4
10. 3/5
11. 3/10
12. 1/2
13. 1/6
14. 1/4
15. 4/5
16. 1/2
17. 6/7
18. C
19. A
Página 55		
20. 3/9
21. 2/4
22. 1
23. 6/5
24. 7/20
25. 5/8
26. 3/7
27. 2/19
28. 10/4
29. 7/10
30. 1/6
31. 12/7
32. 6/11
33. 6/8
34. 3/18
35. 6/25
36. 17/45
37. 1
38. 32/37
39. 9/70
40. 10/36
41. 7/25
42. 0
43. 6/21
44. 98/100
45. 11/33
Capítulo 6 – Lección 3	
Página 56		
1. 1 m
2. $ 8 000
3. 14 3/5
4. 115, 625
5. 2 litros de verde y 3
1/2 de roja
6. 17 en cada una
Capítulo 6 – Lección 4	
Página 57		
1. 1 1/8
2. 17/20
3. 7/10
4. 3/5
5. 4/5
6. 3/2
7. 7/24
8. 5/6
9. 5/8
10. 5/6
11. 31/30
12. 41/40
13. 11/8
14. 17/12
15. 73/63
16. 11/10
17. 2/3
18. 2/3
19. 25/24
20. 5/6
21. 14/15
22. 5/6
23. 9/10
24. 5/4
25. 65/72
26. 4/9
27. 37/28
Página 58		
28. 23/20
29. 11/15
30. 13/12
31. 19/15
32. 3/8
33. 7/6
34. 13/12
35. 17/8
36. 11/10
37. 11/12
38. 7/6
39. 5/4
40. 1
41. 7/8
Capítulo 6 – Lección 5	
Página 59		
1. 1/6
2. 11/20
3. 3/8
4. 1/5
5. 5/12
6. 3/8
7. 4/45
8. 1/12
9. 7/15
10. 5/14
11. 3/35
12. ½
13. ¼
14. 3/20
15. 1/40
16. ½
17. 3/14
18. 5/9
19. 3/28
20. 3/20
21. 11/21
22. ¼
23. 17/60
24. 19/36
25. 1/5
26. 1/21
27. 21/40
Página 60		
28. 1/12
29. – 1/6
30. 1/6
31. 1/12
32. 5/8
33. 1/12
34. ½
35. 3/8
36. 1/12
37. 5/12
38. 16/35
39. 0
40. 4/21
41. 2/9
Capítulo 6 – Lección 6	
Página 61		
1. 13/10
2. 9/8
3. 3/10
4. 5/6
5. 29/90
6. 27/56
7. 7/18
8. 11/20
9. 8/15
10. 9/20
11. ¾
12. 17/24
13. B
14. A
Página 62		
15. 56
16. 40
17. 30
18. 30
19. 8
20. 12
21. 3/10
22. 5/12
23. 127/72
24. 2/5
25. 1/10
26. 46/35
27. 7/12
28. 11/12
29. 7/15
30. 13/12
31. 9/10
32. 0
33. 23/63
34. 21/5
35. 127/99
36. 2/15
37. 83/72
38. 1/30
86	 Práctica
Solucionario
39. 5/14
40. 95/56
41. 71/42
42. 7/4
43. 0
44. 119/72
45. 13/22
46. 23/10
47. 13/56
Capítulo 6 – Lección 7	
Página 63		
1. 32/35
2. 3/8
3. 41/36
4. 1/12
5. 17/15
6. 2/15
7. 2/9
8. 11/24
9. 71/60
10. ½
11. ¾ m.
12. 24 29/30
13. C
14. B
Página 64		
15. 12
16. 40
17. 10
18. 18
19. 56
20. 10
21. 6
22. 13/14
23. 25/24
24. 19/40
25. 3/20
26. V
27. F
28. V
Capítulo 6 – Lección 8	
Página 65		
1. 1 7/8
2. 1 1/2
3. 11/20
4. 39/5
5. 9/5 o 1 4/5
6. 2
Capítulo 7 – Lección 1	
Página 66		
1. 0,3 y 3/10
2. 0,9 y 9/10
3. 0,45 y 45/100
4. 0,75 y 75/100
5. 0,6
6. 0,02
7. 0,1
8. 0,63
9. 42/100 = 0,42
10. 9/100 = 0,09
11. 5/ 1 000 = 0,005
12. 1 1/6 = 1,6
13. 0,97
14. 6
15. 0,005
16. 1,34
17. C
18. Berta ha gastado
más porque
40/100=4/10 y es
menor que 8/10
Página 67		
19. 8/10
20. 20/100
21. 39/1000
22. 6/1000
23. 0,24
24. 0,153
25. 0,061
26. 0,1
27. 0,7
28. 0,03
29. 3/1000
30. 32/100
31. 1/100
32. 4/10
33. 8/100
34. 10/100
35. 75/100
36. 3/10
37. 2/100 ; 0,02
38. 0,7 ; siete décimos
39. 7/1000 ; siete
milésimos
40. 15/1000 ; 0,015
Capítulo 7 – Lección 2
Página 68		
1. A = 1/5; B = 60%; C
= 0,7
2. Al 7. Ver cuaderno del
estudiante
8. Hernán
9. Claudio
10. B
11. A
Página 69		
12. al 25. Ver cuaderno
del estudiante
Capítulo 7 – Lección 3	
Página 70		
1. 0,286
2. 0,191
3. 0,433
4. 0,555
5. 5 milésimos
6. 1 centésimo
7. 0 décimos
8. 7 milésimos
9. 2 milésimos
10. 9 centésimos
11. 1 milésimo
12. 4 décimos
13. 1 centésimo
14. 1 décimo
15. 0,054; 54/1000
16. 0,7 + 0,03 + 0,006;
736/1000
17. 5,726; cinco con
setecientos veintiséis
milésimos.
18. 3,209; tres con
doscientos nueve
milésimos
19. 7 81/1000 ; siete
con ochenta y un
milésimo.
20. 4,006; 4006/1000
Página 71		
21. 3 + 0,2 + 0,02 +
0,001; tres con
doscientos veintiún
milésimos.
22. 4 + 0,2 ; cuatro con
dos décimos
23. 1 + 0,7 + 0,04; uno
con setenta y cuatro
centésimos
24. 3+0,1+0,04+0,001;
tres con ciento
cuarenta y un
milésimo.
25. 10+8+0,4+0,001;
dieciocho con
cuatrocientos un
milésimo
26. 4+0,2+0,09; cuatro
con veintinueve
centésimos
27. 0,3+0,05+0,002;
trescientos cincuenta
y dos milésimas
28. 7+0,1+0,03+0,006;
siete con ciento
treinta y seis
milésimos.
29. 3 milésimos
30. 5 centésimos
31. 7 décimos
32. 3 décimos
87	 Práctica
Solucionario
33. 1 décimo
34. 9 milésimos
Capítulo 7 – Lección 4
Página 72		
1. =
2. 
3. 
4. 
5. 
6. 
7. 
8. =
9. 
10. =
11. 
12. 
13. 0,13  0,139  0,301
 0,5
14. 7  7,032  7,2 
7,203
15. 0,670,7  0,761 
0,776
16. 0,97  0,978  0,98 
0,987
17. Más corto,
escarabajo libélula
y el más largo
el escarabajo
sanjuanero.
18. El escarabajo libélula
19. 14,029  14,03 
14,031
20. C
Página 73		
21. F
22. V
23. V
24. V
25. =
26. 
27. 
28. 
29. 
30. 
31. 3, 0013,013,021
3,101
32. 3,113,1123,21
3,211
33. 1,37512,5721,375
21,75
34. 0,0070,751,92,3
Capítulo 7 – Lección 5
Página 74		
1. Martes
2. Miércoles
3. Miguel
4. Ver cuaderno del
estudiante
Capítulo 7 – Lección 6	
Página 75		
1. 5,9
2. 8,66
3. 31,17
4. 19,57
5. 33,996
6. 27,66
7. 0,521
8. 0,638
9. 28,913
10. 8,96
11. 41,21
12. 3,909
13. 1,215
14. 0,065
15. 3,751
16. 21,276
17. 10,001
18. 0,075
19. 9,101
20. 10,443
21. 2,43
22. 29,5
23. C
24. D
Página 76		
25. 164,855
26. 280,16
27. 159,22
28. 104,77
29. 4,5
30. 2,53
31. 78,78
32. 7,443
33. 135,32
34. 469,96
35. 0
36. 100
37. 296,03
38. 4,21
39. 74,73
Capítulo 7 – Lección 7
Página 77		
1. 7 billetes
2. U$ 520
3. 8 semanas
4. Entre 2,4 kg y 4,8 kg
5. 17
6. 20 °C
7. 110 patas
8. Revisar cuaderno del
estudiante
5ºBásicoMatemática
Cuaderno
de Práctica
TOMO I
Matemática
5º Básico
Cuaderno
de Práctica
TOMO I

Cuaderno de práctica i

  • 1.
  • 2.
    Copyright © 2009by Harcourt, Inc. © 2014 de esta edición Galileo Libros Ltda. Todos los derechos reservados. Ninguna parte de esta publicación puede ser reproducida o transmitida en cualquier forma o por cualquier medio, ya sea electrónico o mecánico, incluyendo fotocopia, grabación o cualquier sistema de almacenamiento y recuperación de información sin el permiso por escrito del editor. Las solicitudes de permiso para hacer copias de cualquier parte de la obra deberán dirigirse al centro de Permisos y derechos de autor, Harcourt, Inc., 6277 Sea Harbor Drive, Orlando, Florida 32887–6777. HARCOURT y el logotipo son marcas comerciales de Harcourt Harcourt, Inc., registradas en los Estados Unidos de América y / o en otras jurisdicciones. Versión original Mathematics Content Standards for California Public Schools reproduced by permission, California Department of Education, CDE Press, 1430 N Street, Suite 3207, Sacramento, CA 95814 ISBN: 978–956–8155–31–5 Primera Edición Impreso en Chile. Se terminó de imprimir esta primera edición de 251.000 ejemplares en el mes de enero del año 2014. Este método de enseñanza de la matemática ha sido diseñado y realizado por autores profesores de varias universidades de los Estados Unidos de América y adaptado al currículum nacional chileno por Editorial Galileo. Director del programa: Richard Askey, profesor emérito de matemáticas de la Universidad de Wiscosin. Coordinadores: Evan M. Maletsky, Joyce McLeod. Autores colaboradores: Angela G. Andrews, Juli K. Dixon, Karen S. Norwood, Tom Roby, Janet K Scheer, Jennie M. Bennett, Linda Luckie, Vicki Newman, Robin C. Scarcella, David G. Wright. Supervisores: Russell Gersten, Michael DiSpezio, Tyrone Howard, Lidya Song, Rebecca Valbuena. El presente título forma parte del PROYECTO GALILEO para la enseñanza de la matemática. Editoras Silvia Alfaro Salas Yuvica Espinoza Lagunas Sara Cano Fernández Redactores / Colaboradores Silvia Alfaro Salas Profesora de Matemática y Computación. Licenciada en Matemática y Computación. Universidad de Santiago de Chile. Yuvica Espinoza Lagunas Profesora de Educación General Básica. Pontificia Universidad Católica de Chile. Paola Rocamora Silva Profesora de Matemáticas del Programa de Educación Continua para el Magisterio. Universidad de Chile. Marco Riquelme Alcaide Profesor de Matemáticas del Programa de Educación Continua para el Magisterio. Universidad de Chile. Victoria Ainardi Tamarín Profesora de Matemáticas por la Universidad de Concepción. Vilma Aldunate Díaz Profesora de Educación General Básica. Universidad de Chile. Pamela Falconi Salvatierra Profesora de Educación General Básica. Pontificia Universidad Católica de Chile. Jorge Chala Reyes Profesor de Educación General Básica. Universidad de Las Américas. Equipo Técnico Coordinación: Job López Diseñadores: Melissa Chávez Romero Rodrigo Pávez San Martín Nikolás Santis Escalante David Silva Carreño Camila Rojas Rodríguez Cristhián Pérez Garrido Ayudante editorial Ricardo Santana Friedli
  • 3.
    TOMO I UNIDAD 1:NÚMEROS naturales Y DECIMALES Capítulo 1: Valor posicional, suma y resta   1 Valor posicional hasta los mil millones............................................... 1   2 Comparar y ordenar números naturales................................................... 3   3 Redondear números naturales................ 5   4 Sumar y restar números naturales.......... 7   5 Taller de resolución de problemas Estrategia: buscar un patrón................... 9 Capítulo 2: Multiplicar números naturales   1 Cálculo mental: patrones en los múltiplos................................................. 10   2 Estimar productos.................................. 12   3 Multiplicar por números de 2 dígitos.................................................. 14   4 Practicar la multiplicación..................... 16   5 Taller de resolución de problemas Estrategia: predecir y probar................ 18 Capítulo 3: Dividir entre divisores de 1 y 2 dígitos   1 Representar la división de 2 dígitos por 1 dígito............................................. 19   2 Dividir entre divisores de 1 dígito......... 21   3 Álgebra: patrones de división............... 23   4 Dividir con restos.................................... 25   5 Taller de resolución de problemas Destreza: interpretar el resto................ 27   6 Ceros en la división ............................... 28 Capítulo 4: Álgebra: usar las operaciones de multiplicación y división   1 Propiedades de la multiplicación.......... 30   2 Prevalencia de las operaciones.............. 32   3 Expresiones entre paréntesis................. 34   4 Resolución de problemas con calculadora...................................... 36   5 Resolver ecuaciones............................... 38   6 Resolver desigualdades.......................... 40   7 Patrones: hallar una regla..................... 41 UNIDAD 2: NÚMEROS Y CONCEPTOS DE FRACCIONES Capítulo 5: Conceptos de fracciones   1 Fracciones equivalentes......................... 43   2 Fracciones simplificadas a su mínima expresión................................................ 45   3 Comprender números mixtos................ 47   4 Comparar y ordenar fracciones y números mixtos...................................... 49   5 Taller de resolución de problemas Estrategia: hacer una representación... 51 Capítulo 6: Sumar y restar fracciones   1 Representar la suma y la resta.............. 52   2 Sumar y restar fracciones con igual denominador......................... 54   3 Taller de resolución de problemas Estrategia: trabajar desde el final hasta el principio.................................... 56   4 Representar la suma de fracciones de distinto denominador....................... 57   5 Representar la resta de fracciones de distinto denominador....................... 59   6 Usar denominadores comunes.............. 61   7 Sumar y restar fracciones usando el mínimo común múltiplo (m.c.m).......... 63   8 Taller de resolución de problemas Estrategia: comparar estrategias.......... 65 Capítulo 7: Valor posicional: comprender los decimales   1 Relacionar fracciones y decimales......... 66   2 Usar una recta numérica....................... 68   3 Representar milésimas........................... 70   4 Comparar y ordenar decimales............. 72   5 Taller de resolución de problemas Estrategia: hacer un diagrama.............. 74   6 Sumar y restar decimales....................... 75   7 Taller de resolución de problemas Destreza: estimar o hallar una respuesta exacta..................................... 77 Solucionario............................................ 78
  • 4.
    TOMO II UNIDAD 3:GEOMETRÍA Y MEDICIÓN Capítulo 8: Figuras congruentes y plano cartesiano   1 Álgebra: hacer gráficos de pares ordenados............................................... 89   2 Taller de resolución de problemas Destreza: información relevante o irrelevante........................................... 91   3 Figuras 2D y sus elementos................... 92   4 Figuras 3D y sus elementos................... 93   5 Figuras congruentes............................... 94  6 Rotación.................................................. 96  7 Simetría................................................... 98  8 Traslación.............................................. 100 Capítulo 9: Medición y perímetro  1 Longitud............................................... 102   2 Usar las fórmulas del perímetro.......... 104   3 Taller de resolución de problemas Destreza: hacer generalizaciones.......... 106 Capítulo 10: Área 1 Álgebra: relacionar el perímetro y el área................................................ 107 2 Taller de resolución de problemas Estrategia: comparar estrategias........... 109 3 Representar el área de los triángulos.............................................. 110 4 Álgebra: área de los triángulos........... 112 5 Álgebra: área de los paralelogramos.................................... 114 UNIDAD 4: DATOS, GRÁFICOS y probabilidades Capítulo 11: Analizar datos 1 Hallar la media (promedio)................. 115 2 Analizar gráficos.................................. 118 3 Hacer diagramas de tallo y hojas.......... 120 4 Hacer gráficos de líneas....................... 122 5 Taller de resolución de problemas Destreza: sacar conclusiones............... 124 Capítulo 12: Probabilidad 1 Hacer una lista de todos los resultados posibles................................................. 125 2 Taller de resolución de problemas Estrategia: hacer una lista organizada............................................ 127 3 Hacer predicciones............................... 128 4 Probabilidad como una fracción......... 130 Solucionario.......................................... 132
  • 5.
    1 Práctica 1. 189221 612 2. 512 801 297 3. 908 167 238 4. 354 678 128 5. 901 638 189 6. 72 559 334 7. 831 225 705 8. 465 521 983 9. 687 245 371 Escribe cada número de otras dos maneras. 10. 900 000 000 1 70 000 000 1 8 000 000 1 300 000 1 8 000 1 200 1 5 11. Doscientos diecisiete millones quinientos treinta y uno ¿Qué número hace que el enunciado numérico sea verdadero? 12. 500 000 5 50 • 13. 1 000 000 000 5 200 • 14. ¿Cuántas monedas de $ 1 son necesarias para obtener el mismo valor que 1 000 monedas de $ 10? 16. ¿Cuál es el valor del dígito subrayado en 729 340 233? A 20 000 C 2 000 000 B 200 000 D 20 000 000 15. En una recolección anual de monedas de $ 1, un grupo de voluntarios reunió 10 000 de monedas de $ 1. ¿Cuántas pilas de 10 monedas de $ 1 podrían hacer con todas sus monedas? 17. En 479 247 061, ¿cuál dígito está en el lugar de las centenas de millón? A 0 C 7 B 2 D 4 Resolución de problemas. Escribe el valor del dígito subrayado. Cien millones Capítulo 1: Valor posicional, suma y resta Unidad 1 Números naturales y números decimales Valorposicionalhastalosmilmillones Lección 1Capítulo 1
  • 6.
    2 Práctica Escribe losnúmeros de la columna A con las respectivas descomposiciones aditivas canónicas de la columna B. Columna A Columna B 18. 456 000 4DMMi15UMMi16CMi 19. 4 500 060 4CMi15DMi16UMi 20. 456 000 000 4CMM15DMM16UMM 21. 45 600 000 000 4CM15DM16UM 22. 456 000 000 000 4UMi15CM16D Descompón cada número en forma estándar. 23. 21 040 503 24. 600 009 014 25. 452 000 000 030 26. 900 000 900 009 Escribe el número que corresponda. 27. 9UMi12C11D14U 28. 7CMi14UMi13DM11x12U 29. 1UMM12CMi13DMi14UMi15CM16DM11U 30. 7CMi18DMi19UMi12CM13DM15UM11C12D 31. 7CMM18DMM19UMM12CMi15DMi14UM12C13D14U Lección 1
  • 7.
    3 Práctica Compararyordenarnúmerosnaturales Compara. Escribe<, > o = en cada . 1. 6 574 6 547 2. 270 908 270 908 3. 8 306 722 8 360 272 4. 3 541 320 3 541 230 5. 670 980 680 790 6. 12 453 671 12 543 671 Ordena de menor a mayor. 7. 1 345 919; 1 299 184; 1 134 845 8. 417 689 200; 417 698 200; 417,698,100 Ordena de mayor a menor. 9. 63 574; 63 547; 63 745 10. 5 807 334 5 708 434; 5 807 433 Halla el dígito que falta para que el enunciado sea verdadero. 11. 13 625  13 6 7  13 630 12. 529 781  529 78  529 778 Resolución de problemas. 13. Usa los datos  ¿En qué región circuló el mayor número de monedas de $ 50 en 2010? 14. Usa los datos  Ordena de menor a mayor la cantidad de monedas de $ 50 que circularon en Los Lagos, Antofagasta y Atacama. Región Monedas de $ 50 en 2010 Antofagasta 520 400 000 Los Lagos 488 000 000 Atacama 720 200 000 Biobío 563 400 000 Coquimbo 721 600 000 15. ¿Cuál número es menor que 61 534? A 61 354 B 61 543 C 63 154 D 63 145 16. ¿Cuál opción muestra los números ordenados de mayor a menor? A 722 319; 722 913; 722 139 B 722 139; 722 319; 722 913 C 722 913; 722 139; 722 319 D 722 913; 722 319; 722 139 Lección 2Capítulo 1
  • 8.
    4 Práctica Escribe unaV si es verdadero o una F si la afirmación es falsa. 17. 25 214 081 < 35 000 000 18. 23 523 578 > 23 520 578 19. 55 millones < 55 000 20. 99 999 999 < 100 000 000 21. 36 214 129 < 27 000 999 22. 124 567 890 = 124 567 089 Ordena de menor a mayor. 23. 45 258; 45 852; 41 852 24. 125 386; 125 368; 125 863 Ordena de mayor a menor. 25. 7 124 587; 7 124 597; 7 124 578 26. 996 102; 996 120; 996 121 Escribe >, < o = según corresponda. 27. 10 000 + 20 + 5 10 000 + 200 + 50 28. 80 000 + 7 000 + 300 + 1 70 000 + 8 000 + 300 + 1 29. 900 000 + 90 000 + 6 000 + 100 + 2 900 000 + 90 000 + 6 000 + 400 + 2 30. 500 000 + 60 000 + 8 000 + 900 + 10 + 7 500 000 + 60 000 + 8.000 + 100 + 90 + 7 Lección 2
  • 9.
    5 Práctica Redondearnúmerosnaturales Redondea cadanúmero a la posición del dígito subrayado. 1. 3 256 029 2. 45 673 3. 91 341 281 4. 621 732 193 5. 8 067 6. 42 991 335 7. 182 351 413 8. 539 605 281 9. 999 887 423 10. 76 805 439 11. 518 812 051 12. 657 388 369 Nombra el lugar al que se redondeó cada número. 13. 25 398 a 30 000 14. 828 828 a 830 000 15. 7 234 851 a 7 234 900 16. 612 623 a 600 000 17. 435 299 a 435 000 18. 8 523 194 a 9 000 000 Redondea 34 251 622 al lugar que se menciona. 19. millones 20. centenas de miles 21. unidades de mil Resolución de problemas. 22. dato breve  Un estadio tiene una capacidad para 41 118 espectadores sentados. En un artículo de un periódico ese número se redondeó a la decena de mil más cercana. ¿Qué número se escribió en el artículo del periódico? 24. ¿Cuál número redondeado al millón más cercano es 45 000 000? A 43 267 944 B 44 968 722 C 45 322 860 D 44 762 904 23. El número de asientos en el Estadio Nacional se puede redondear a 47 000 cuando se redondea a la unidad de mil más cercana. ¿Cuál puede ser el número exacto de asientos del Estadio Nacional? 25. ¿Cuál número redondeado al millón más cercano es 42 167 587? A 40 000 000 B 41 000 000 C 42 000 000 D 43 000 000 Lección 3Capítulo 1
  • 10.
    6 Práctica Redondea cadanúmero a la posición que se indica. 26. 22 434 a la centena 27. 3 988 222 a la decena de mil 28. 70 384 612 a la unidad de millón 29. 151 300 456 a la centena de millón 30. 4 444 444 444 a la unidad de millón 31. 19 999 000 567 a la decena de millón Redondea 12 675 al lugar que se menciona. 32. Unidades de mil 33. Decenas de mil Aproxima a la decena de millón los siguientes números. 34. 863 000 000 35. 887 500 000 36. 967 300 000 37. 894 500 000 38. 532 900 000 39. 221 200 000 Aproxima a la decena de mil. 40. 44 990 41. 654 245 42. 321 569 43. 182 214 44. 67 390 45. 496 200 Lección 3
  • 11.
    7 Práctica Sumaryrestarnúmerosnaturales Estima antesde calcular. Luego, halla la suma o la diferencia. 1. ​  6 292      1 7 318   __  ​ 2. ​  28 434      1 49 617   __  ​ 3. ​  205 756       2 201 765   __  ​ 4. ​  529 852       1 476 196   __  ​ 5. ​  5 071 154       1 483 913   __  ​ 6. ​  241 933      1 51 209   __  ​ 7. ​  75 249      2 41 326   __  ​ 8. ​  1 202 365       2 278 495   __  ​ 9. ​  4 092 125         ​  2 748 810         1 6 421 339    ___  ​ ​ 10. ​  4 687 184         2 1 234 562    ___  ​ 11. ​  542 002       2 319 428   __  ​ 12. ​  360 219       1 815 364   __  ​ 13. 32 109 1 6 234 1 4 827 14. 3 709 245 2 1 569 267 15. 200 408 2 64 159 ÁLGEBRA. Halla cada uno de los valores que faltan. 16.  2 1 982 5 8 754 17. 70 380 2  5 43 287 18.  1 262 305 5 891 411 Resolución de problemas. 19. Usa los datos  ¿Cuántos kilómetros cuadrados más de superficie que el terreno C tiene el terreno B? 20. Usa los datos  ¿Cuál es el área total de los dos terrenos con la mayor área de superficie? 21. 328 954 1 683 681 5 A 901 535 B 1 001 535 C 1 012 635 D 1 012 645 22. Durante el primer fin de semana de julio, se vendieron 78 234 entradas en la sala de cine. Durante el segundo fin de semana, se vendieron 62 784 entradas. ¿Cuántas entradas más se vendieron durante el primer fin de semana de julio? Lección 4Capítulo 1 Datos superficie de los terrenos Terreno Área de terreno (en km2 ) A 31 700 B 22 300 C 7 340 D 9 910 E 23 000
  • 12.
    8 Práctica Si a= 3 543 902, b = 8 997 001 y c = 632 844, resuelve. 23. a 1 b = 24. a 1 c = 25. b 1 c = 26. b – a = 27. a – c = 28. ( b – c) + a = 29. a – c + b = 30. b – c = Pinta del mismo color la operación con su resultado correcto. 31. 4031152 505 555 32. 121139 160 106 33. 4 275 1 4 210 8 485 8 584 34. 5 795 1 1 080 6 785 6 875 35. 24 183 – 24 162 12 21 36. 3 123 301– 3 123 056 245 254 37. 45 299 – 8 609 36 690 36 960 38. 15 235 120 + 9 999 15 245 209 15 245 119 39. 11 247 – 11 235 12 21 40. 9 678 + 7 589 17 267 17 627 DESAFÍO Lección 4
  • 13.
    9 Práctica Aplicacionesmixtas Del 5al 6, usa la tabla. 1. Ana pagó un arriendo mensual de $53 500 por el primer año, $54 000 por el segundo año, $54 500 por el tercer año y $55 000 por el cuarto año. Si este patrón continúa, ¿qué arriendo mensual pagará Ana por el sexto año? 3. ¿Cuáles son los tres números siguientes en el patrón? 1, 121, 12321, 1234321, . . . 2. En el camino de la costa, los excursionistas caminaron 28 km el lunes, 27 km el martes, 25 km el miércoles y 22 km el jueves. ¿Cuántos kilómetros caminaron los excursionistas el domingo? 4. Un pino medía 175 cm de altura en 2007, 179 cm en 2008, 183 cm en 2009 y 187 cm en 2010. ¿Qué altura tendrá en 2017? Tallerderesolucióndeproblemas Estrategia:buscarunpatrón Prácticadeladestrezaderesolucióndeproblemas Halla un patrón para resolver el problema. 5. Usa los datos  Predice la cantidad de personas que pertenecen al club de la amistad en 2014. 6. Usa los datos En 2011, la cantidad de personas que pertenecía al club de la amistad fue el doble de la de 2009. ¿Cuál será la cantidad de personas que pertenecerán al mismo club en 2014? 7. La secuoya más alta que se ha conocido en el Parque Nacional Redwood medía 112 m de altura antes de caerse en 1991. El salto Yosemite es 6,5 veces más alto que ese árbol. ¿Qué altura tiene el salto Yosemite? 8. Juana gastó $18 200 en un abrigo de invierno, $1 900 en un sombrero, $800 en una bufanda, $600 en unos guantes y $21 000 en unas botas. ¿Cuánto gastó Juana en su ropa de invierno? Personas que pertenecen al club de la amistad Año Número de personas 2008 6 2009 12 2010 18 2011 24 2012 30 Lección 5Capítulo 1
  • 14.
    10 Práctica Capítulo 2:Multiplicar números naturales Cálculomental:patronesenlosmúltiplos Halla el producto.   1.  9 • 300   2.  3 • 100   3.  60 • 5   4.  5 • 7 000   5.  10 • 4 000   6.  70 • 20   7.  20 • 90   8.  1 000 • 10   9.  5 000 • 3 10.  6 000 • 80 11.  4 • 9 000 12.  7 • 200 13.  60 • 60 14.  100 • 6 15.  20 • 50 ÁLGEBRA.  Halla el número que falta. 16.  70 • 50 5 17.  • 20 5 900 18.  600 • 5 1 200 19.  • 100 5 3 500 20.  30 • 50 5 21.  400 • 5 40 000 22.  5 • 200 23.  40 •   5 2 000 24.  • 80 5 4 000 Resolución de problemas. 25. En una colonia de pingüinos hay aproximadamente 8 000 nidos. Si cada nido está ocupado por tres pingüinos, ¿cuántos pingüinos hay en total? 26. Cada pareja de pingüinos pone 2 huevos. ¿Cuántos huevos pondrán 1 200 parejas de pingüinos? 27. Las entradas para ver una función de títeres cuestan $900 cada una. ¿Cuánto dinero se recaudará por la venta de entradas si se venden 5 entradas? A $45 000 B $450 000 C $4 500 000 D $4 500 28. Una tienda de polerones vende cada polerón de adulto a $8 000. ¿Cuánto dinero se recibirá por la venta de 7 polerones? A $560 B $5 600 C $56 000 D $560 000 Capítulo 2 • Lección 1
  • 15.
    11 Práctica Escribe elproducto de las siguientes multiplicaciones. 29. 9 • 7 30. 9 • 70 31. 9 • 700 32. 5 • 5 33. 5 • 50 34. 5 • 500 35. 6 • 3 36. 6 • 30 37. 6 • 300 38. 8 • 6 39. 8 • 60 Une con una línea la multiplicación con su respectivo producto. 40. 6 000 • 2 800 41. 40 • 20 1 000 42. 10 • 700 12 000 43. 500 • 2 1 400 44. 14 • 100 7 000 45. 15 • 100 9 000 46. 22 • 500 1 500 47. 35 • 20 1 200 48. 40 • 30 700 49. 900 • 10 11 000 Lección 1
  • 16.
    12 Práctica Estimarproductos Estima elproducto.   1.  65 • 22   2.  18 • $34   3.  738 • 5   4.  19 • 23   5.  8 130 • 7   6.  91 • 49   7.  64 • 31   8.  555 • 4   9.  4 096 • 2 10.  4 • 1 912 11.  19 • 24 12.  46 • 12 13.  88 • 27 14.  4 • 9 672 15.  6 371 • 5 16.  33 • 18 17.  8 • 60 18.  5 720 • 9 19.  54 • 41 . 20.  7 • 5 118 Resolución de problemas. 21. La Comisión Municipal de Parques ha presupuestado $5 000 para plantar 32 árboles de plátano oriental en un parque. Estima si ese dinero es suficiente para comprar los árboles. Gastos para el Parque Árbol Costo Álamo $110 Naranjo $90 Plátano oriental $180 22. La Comisión también quiere comprar 24 álamos. Estima para saber si $3 000 son suficientes para comprarlos. 23. ¿Cuál opción es la mejor estimación para 4 • 54 090? A 4 • 50 000 B 4 • 60 000 C 5 • 50 000 D 5 • 60 000 24. ¿Cuál opción es la mejor estimación para 11 • 27? A 20 • 20 B 20 • 30 C 10 • 30 D 10 • 20 Lección 2Capítulo 2
  • 17.
    13 Práctica Calcula elproducto y pinta el resultado correcto. 25. 23 • 14 322 200 230 26. 6 224 • 7 42 000 43 568 45 500 27. 92 • 38 3 600 3 680 3 496 28. 67 • 42 1 608 1 340 1 400 29. 999 • 8 7 992 8 000 7 920 Escribe una C si el resultado es correcto o una I si el resultado está incorrecto. 30. 12 • 10 5 100 31. 289 • 18 5 6 000 32. 46 • 22 5 1 010 33. 90 • 32 5 2 880 34. 6 830 • 8 5 56 000 35. 1 914 • 4 5 7 668 Estima cada factor. Luego multiplica y anota el resultado aproximado. 36. 87 • 12 37. 75 • 32 38. 96 • 45 39. 25 • 17 40. 37 • 23 41. 42 • 13 42. 64 • 73 43. 88 • 57 44. 56 • 13 45. 65 • 44 46. 78 • 99 47. 19 • 33 48. 58 • 11 49. 78 • 23 50. 45 • 36 51. 19 • 34 Lección 2
  • 18.
    14 Práctica Multiplicarpornúmerosde2dígitos Estima. Luego,halla el producto.  1. ​  34 • 28     ​   2. ​  45 • 61  3.  ​  70 • 53  4. ​  62 • 34  5. ​  97 • 17  6. ​ 22 • 77  7. ​  90 • 83     ​  8. ​13 • 23   9. ​  17 • 91     ​ 10.  ​40 • 67 ​ 11.  ​  21 • 84 12. ​  72 • 33 13. 19 • 58 14. ​12 • 42 15. ​  89 • 12 16. 96 • 17 17. 65 • 37 18. 99 • 21 19. 18 • 46 20. 57 • 72 ÁLGEBRA  Halla el dígito que falta. Explica tu solución. 21.  4 • 47 5 2 021 22.  14 • 9 5 1 274 23.  5 • 36 5 1 944 Resolución de problemas. 24. Ana quiere recorrer 25 kilómetros por semana en bicicleta durante todo un año, o sea, en 52 semanas. ¿Cuántos kilómetros en total planea Ana recorrer en bicicleta? 25. César participó en una maratón de bicicletas. Veintitrés miembros de su familia donaron $1 200 cada uno por cada km que recorrió. Si César recorrió 8 km, ¿cuánto dinero recaudó? 26. ¿Cuánto dinero gana una tienda si vende 7 CDs a $1 436 cada uno? A  $1 443 C  $10 052 B  $7 812 D  $10 552 27. Si el señor Rojas paga cuotas mensuales de $1 590 durante 9 meses, ¿cuánto pagará en total por su compra? A  $9 580 C  $14 310 B  $13 580 D  $14 400 Lección 3Capítulo 2
  • 19.
    15 Práctica Resuelve lassiguientes multiplicaciones. 28. 22 • 46 29. 18 • 10 30. 30 • 19 31. 12 • 7 32. 45 • 21 33. 74 • 85 34. 14 • 15 35. 15 • 60 36. 98 • 11 37. 45 • 3 38. 25 • 12 39. 56 • 7 40. 37 • 21 41. 44 • 5 42. 19 • 6 43. 84 • 10 44. 67 • 13 45. 41 • 9 Escribe el factor que falta para que se cumpla la igualdad. 47. • 5 5 10 000 48. 83 • 5 83 000 49. • 100 5 5 700 51. • 23 = 2 300 53. • 7 = 35 000 50. 2 • = 8 000 52. 12 • = 1 200 46. 3 • 5 600 Lección 3
  • 20.
    16 Práctica Practicarlamultiplicación Haz unaestimación. Después, halla el producto.   1.  ​617 • 5   2. ​407 • 6   3. ​926 • 9   4.  ​1 093 • 4   5.  ​3 528 • 7  6. 782 • 3  7. 913 • 7  8. 205 • 4  9. 5 • 839 10.  970 • 6 11.  89 • 30 12.  19 • 93 13.  26 • 33 14.  56 • 22 15.  4 106 • 23 16.  19 • 587 17.  3 601 • 44 18.  1 212 • 4 19.  567 • 9 20.  355 • 3 21.  105 • 7 22.  465 • 32 23.  279 • 6 24.  480 • 4 25.  1 790 • 2 26.  4 301 • 3 27.  603 • 5 Resolución de problemas. 28. Un zoológico transporta a 4 elefantes machos originarios de la selva africana a otro zoológico. ¿Cuánto peso se transporta en total? 29. ¿Qué diferencia de más hay entre el peso de 6 elefantes machos y 6 elefantes hembras? 31. La entrada a un zoológico cuesta $2 631 por auto. ¿Cuánto dinero recibió el zoológico por los 7 autos que entraron en una semana? A $14 217 C $18 217 B $14 417 D $18 417 30. Un parque de diversiones vende entradas diarias para familias por $9 800. ¿Cuánto pagaron 6 familias por sus pases diarios? A $54 500 C $58 800 B $54 800 D $59 800 Peso de los elefantes de la selva africana Sexo Peso aproximado macho 7 200 kg hembra 3 400 kg Lección 4Capítulo 2
  • 21.
    17 Práctica Si a= 38, b = 27 y c = 59, entonces 32. Estima el producto de a • b 33. Estima el producto de a • c 34. Estima el producto de b • c 35. El resultado de ( a – b ) • 59 36. El resultado de a • ( c – b ) 37. El resultado de a • ( b • c ) Usa la propiedad distributiva para resolver las multiplicaciones. 38. 30 • 42 39. 60 • 18 40. 80 • 15 41. 90 • 45 Une con una línea la multiplicación estimada. 42. 24 • 97 4 000 43. 45 • 81 2 100 44. 38 • 65 2 000 45. 67 • 31 2 800 46. 42 • 79 4 800 47. 18 • 54 1 000 48. 56 • 84 3 200 49. 13 • 75 800 Lección 4
  • 22.
    18 Práctica Tallerderesolucióndeproblemas Estrategia:predeciryprobar Prácticadeladestrezaderesolucióndeproblemas Saca unaconclusión para resolver el problema. 1. En el campamento, Benjamín está aprendiendo a montar a caballo y a hacer objetos de cerámica. Las clases de equitación cuestan $2 200 por hora. Las clases de cerámica cuestan $900 por hora. Hasta ahora Benjamín ha tomado 4 horas de equitación y 7 horas de cerámica. ¿Cuánto le han costado las clases hasta ahora? 2. Andrea está tomando clases de esgrima y de esquí en el campamento de invierno. Las clases de esgrima cuestan $1 400 por clase. Las clases de esquí cuestan $1 900 por clase. Hasta ahora Andrea ha tomado 8 clases de esgrima y 5 clases de esquí. ¿Cuánto le han costado las clases de esquí? 3. Un examen tiene 25 problemas. Por cada respuesta correcta, se dan 4 puntos. Por cada respuesta incorrecta, se resta 1 punto. Daniela obtuvo 17 problemas correctos y 8 incorrectos. ¿Cuál es el puntaje final de Daniela en el examen? 4. Las clases de actuación cuestan $2 500 por clase. Las clases de canto cuestan $2 200 por clase. Doris tomará 7 clases de actuación y 3 clases de canto. Si ya tiene ahorrado $12 000, ¿cuánto dinero le falta? Aplicacionesmixtas Del 5 al 6, usa la información de la tabla. 5. Usa los datos  Claudio tomó por seis días clases de voleibol en el campamento de invierno. Si la cuota de ingreso es de $3 000, ¿cuánto pagó en total? 6. Usa los datos  Carla realizó actividades en el campamento de invierno los jueves y los viernes durante 4 semanas. Cada día realizó solo una actividad. Los jueves tomó cerámica y los viernes tomó basquetbol. ¿Cuánto pagó en total por estas actividades? Actividades en el campamento de invierno Actividad Costo por día cerámica $1 500 voleibol $1 200 básquetbol $1 000 baile folclórico $900 Lección 5Capítulo 2
  • 23.
    19 Práctica Representarladivisiónde2dígitospor1dígito Usa bloquesmultibase para hallar el cociente y el resto.   1.  37 : 2 5 r   2.  53 : 5 5 r   3.  92 : 7 5 r   4.  54 : 4 5 r   5.  56 : 3 5 r   6.  89 : 9 5 r   7.  78 : 6 5 r   8.  92 : 8 5 r   9.  65 : 4 5 r     10.  79 : 7 5 r ​ 11.  89 : 6 5 r​ 12.  87 : 4 5 r  ​ 13.  73 : 8 =  r  14.  47 : 9 =  r  15.  44 : 3 =  r  16.  57 : 5 =  r  17.  23 : 4 =  r  18.  97 : 8 =  r  19.  49 : 6 =  r  20.  36 : 4 =  Divide. Puedes usar bloques multibase. 21. ​ ​77 : 3 5 r 22. ​ ​67 : 2 5 r 23.  66 : 4 5 r    ​ 24  ​67 : 5 5 r 25.  37 : 2 5 r 26.  98 : 4 5 r 27.  91 : 6 5 r 28.  72 : 7 5 r 29.  93 : 8 5 r    ​ 30.  57 : 6 5 r ​ 31.  77 : 4 5 r​ ​ 32. ​59 : 9 5 r    ​ 33.  88 : 7 =  34.  43 : 3 =  35.  79 : 7 =  36.  27 : 4 =  37.  86 : 9 =  38.  46 : 6 =  39.  54 : 6 =  40.  39 : 7 =  Capítulo 3: Dividir entre divisores de 1 y 2 dígitos Capítulo 3 • Lección 1
  • 24.
    20 Práctica Pinta delmismo color la división con su resultado correcto. 41. 85 : 5 42. 56 : 4 43. 63 : 9 44. 96 : 3 45. 72 : 3 46. 36 : 2 47. 55 : 11 Representa la división, dibujando los bloques multibase 10. 48. 12 : 2 49. 54 : 6 50. 27 : 3 51. 44 : 5 52. 58 : 4 53. 65 : 3 54. 70 : 7 17 14 24 32 18 5 7 Lección 1
  • 25.
    21 Práctica Dividirentredivisoresde1dígito Resuelve lossiguientes ejercicios.   1.  348 : 4   2.  952 : 7   3.  715 : 5   4.  414 : 6   5.  837 : 3   6.  367 : 8   7.  804 : 7   8.  534 : 9 Divide. Multiplica para comprobar.  9.  712 : 2 10.  810 : 5 11.  662 : 7 12.  305 : 4 13.  984 : 6 14.  258 : 3 15.  754 : 9 16.  576 : 7 Resolución de problemas. 17. 185 estudiantes van al museo en microbús. Cada microbús puede llevar 9 estudiantes. ¿Cuántos microbuses llenos se necesitan? ¿Cuántos estudiantes viajan en el microbús que no está lleno? . 18. Hay 185 estudiantes en el museo. Cada adulto tiene 8 estudiantes en su grupo. ¿Cuántos adultos tendrá un grupo completo? ¿Cuántos estudiantes no estarán en un grupo de 8 estudiantes? 19. En una caja se pueden guardar 9 paquetes de cereal. ¿Cuántas cajas se necesitan para guardar 144 paquetes de cereal? A 1 296 B 16 C 17 D 9 20. Una clase de 5º básico hizo 436 galletas. La clase colocó 6 galletas en cada bolsa. ¿Cuántas galletas quedaron? A 72 r4 B 2 616 C 4 D 72 Lección 2Capítulo 3
  • 26.
    22 Práctica Completa latabla. División Resultado Resto Comprobación 21. 587 : 6 22. 235 : 7 23. 436 : 5 24. 947 : 3 25. 593 : 9 26. 642 : 7 27. 117 : 2 28. 873 : 3 29. 777 : 7 30. 181 : 9 Lección 2
  • 27.
    23 Práctica Álgebra.Patronesdedivisión Usa operacionesbásicas y patrones para hallar el cociente.   1.  60 : 10   2.  140 : 7   3.  180 : 90   4.  480 : 6   5.  400 : 5   6.  160 : 4   7.  360 : 6   8.  560 : 80   9.  240 : 3 10.  200 : 10 11.  630 : 7 12.  420 : 6 13.  810 : 90 14.  800 : 2 15.  900 : 3 16.  350 : 5 Compara. Usa , , o = en cada    . 17.  350 : 7 3 500 : 7 18.  240 : 8 24 : 8 19.  360 : 4 360 : 4 Resolución de problemas. 20. En un depósito se almacenaron 7 canastos con papel. El papel pesaba en total 700 kilogramos. ¿Cuánto pesaba 1 canasto con papel? 21. En una oficina se compraron 8 lapiceras que costaron $720. Cada lapicera tenía un descuento de $15. ¿Cuánto costó cada lapicera después del descuento? 22. Una tienda de ropa gasta $450 en nueve percheros. ¿Cuánto cuesta cada perchero? A $90 B $500 C $54 D $50 23. Un hombre de negocios gasta $640 en 8 proyectores para su compañía. ¿Cuánto cuesta cada proyector? A $8 000 B $80 C $64 D $800 Lección 3Capítulo 3
  • 28.
    24 Práctica Calcula elresultado. 24. 10 : 5 5 25. 36 : 4 5 26. 100 : 5 5 27. 360 : 4 5 28. 1 000 : 5 5 29. 3 600 : 4 5 30. 10 000 : 5 5 31. 36 000 : 5 5 Escribe una V si la afirmación es verdadera o una F si es falsa. 32. 440 : 2 4 400 : 2 33. 15 : 3 = 25 : 5 34. 48 000 : 6 480 : 6 35. 160 : 80 = 1 600 : 800 36. 6 000 : 100 6 000 : 10 37. 5 000 : 10 500 : 10 Divide. 38. 280 : 4 = 39. 1 400 : 7 = 40. 1 500 : 300 = 41. 1 800 : 90 = 42. 350 : 5 = 43. 600 : 200 = 44. 4 000 : 4 000 = 45. 1 200 : 400 = 46. 8 000 : 200 = Lección 3
  • 29.
    25 Práctica Dividirconrestos Usa fichaspara hallar el resultado.   1.  27 : 5 5    2.  34 : 8 5    3.  18 : 4 5    4.  57 : 7 5    5.  41 : 6 5    6.  53 : 9 5  Divide. Como ayuda puedes usar fichas o hacer un dibujo.   7.  26 : 3 5    8. 34 : 4 5    9. 50 : 6 5  10.   ​     75 : 9 5  11. ​​     54 : 8 5   12.  ​60 : 7 5  13.  17 : 3 5  14.  44 : 5 5  15.  33 : 3 5  Resolución de problemas. 16. Cinco estudiantes están jugando cartas usando una baraja de 54 cartas. Si cada jugador tiene igual cantidad de cartas, ¿cuántas cartas tendrá cada estudiante? ¿Cuántas cartas sobran? 17. Boris construyó un juego usando 10 bolitas de cada color: morado, amarillo, verde, azul, naranja y rojo. Si Boris divide las bolitas por igual entre 8 jugadores, ¿cuántas sobrarán? 18. ¿Qué problema describe la representación? A 34 : 5 C 30 : 4 B 28 : 5 D 20 : 6​ 19. ¿Qué problema describe la representación? A 28 : 6 C 34 : 8 B 42 : 4 D 24 : 4 Capítulo 3 Lección 4
  • 30.
    26 Práctica Anota ladivisión que está representada en el modelo. 20. 21. 22. 23. 24. 25. Divide. 26. 55 : 5 27. 38 : 3 28. 29 : 4 29. 74 : 9 30. 60 : 8 31. 53 : 6 32. 27 : 2 33. 15 : 3 Lección 4
  • 31.
    27 Práctica Tallerderesolucióndeproblemas Destreza:interpretarelresto Prácticadeladestrezaderesolucióndeproblemas Resuelve. Escribea, b o c para explicar cómo interpretar el resto.  a. El cociente queda igual. Bajo el resto.  b. Aumento el cociente en 1.   c. Uso el resto como respuesta.   1. El profesor de artes le dio a 8 estudiantes un total de 55 cuentas para hacer collares. Si él dividió las cuentas por igual entre los estudiantes, ¿cuántas tiene cada estudiante?   2. En total, los estudiantes de 3 carpas trajeron 89 troncos para una fogata. Los estudiantes de 2 carpas trajeron cantidades iguales, pero los de la tercera trajeron más. ¿Cuánto más?   3. Gabriela tenía 150 vasos de agua para dividirlas por igual entre 9 estudiantes. ¿Cuántos vasos le dio a cada estudiante?   4. Los líderes del campamento dividieron 52 latas de comida por igual entre 9 estudiantes. ¿Cuántas latas de comida sobraron? Aplicacionesmixtas   5. Gina tiene 34 hot dogs. Ella le dio a 3 estudiantes 2 hot dogs a cada uno antes de dividir el resto entre 7 estudiantes. ¿Cuántos hot dogs le dio a cada estudiante?   6. En la mañana de una excursión, la temperatura fue de 21 ºC. Hacia la mitad de la tarde la temperatura había aumentado a 32 ºC. ¿Cuánto más cálida fue la temperatura de la tarde?   7. Formula un problema Intercambia la información conocida por desconocida en el ejercicio 5 para escribir un problema nuevo.   8. Cristian compró estas herramientas de camping: una linterna, un hacha por $1 500, una lámpara por $1 200 y una silla para camping por $2 300. Si él gastó $5 700, ¿cuánto costó la linterna? Capítulo 3 Lección 5
  • 32.
    28 Práctica Cerosenladivisión Divide.   1. 366 : 3   2.  374 : 5   3.  635 : 7   4.  923 : 4​   5.  672 : 8   6.  811 : 5   7.  921 : 9   8.  597 : 6 ​   9.  816 : 2 10.  177 : 7 11. 456 : 5 12. 764 : 3 13. 932 : 8 14. 321 : 4 15. 237 : 6 Divide y comprueba. Resolución de problemas. 29. Jaime tiene una colección de 702 autitos en miniatura que coloca en 6 estantes en su biblioteca. Si los autitos están divididos en partes iguales, ¿cuántos hay en cada estante? 30. En 5 días, los scouts hacen un total de 865 adornos para recaudar dinero. Si hacen el mismo número cada día, ¿cuántos hacen en 1 día? 31. Martina tiene 594 volantes en montones de 9 volantes cada uno. ¿Cómo hallas el número de montones que Martina hizo? Explica. 32. Susana tiene 320 rebanadas de pan de huevo. Quiere llenar bolsas con 8 rebanadas de pan en cada una. ¿Cuántas bolsas llenará Susana? 16.  495 : 5  17.  719 : 6  18.  735 : 3  19. 897 : 4  20.  210 : 4  21.  103 :  14 r5 22.  : 5  61 23. 350 : 5= 24. 298 : 4 = 25. 219 : 3 = 26. 345 : 7 = 27. 754 : 6 = 28. 643 : 4 = Lección 6Capítulo 3
  • 33.
    29 Práctica Escribe cadacomprobación como una división. 33. 3 • 296 1 2 34. 6 • 98 1 5 35. 5 • 144 1 3 36. 2 • 408 1 1 37. 8 • 84 1 5 38. 3 • 313 1 9 Halla el valor que falta. 39. 801 : 2 5 resto 40. : 3 5 96 41. 470 : 4 5 resto 5 2 42. 624 : 6 5 43. : 9 5 102 resto 5 2 44. 407 : 3 5 resto 45. : 4 5 71 resto 1 46. 700 : 5 5 Une la división con su cociente y con su respectiva comprobación. División Resultado Comprobación 47. 457 : 5 97 127 • 4 + 2 48. 604 : 2 91 302 • 2 + 0 49. 900 : 8 127 112 • 8 + 4 50. 292 : 3 112 91 • 5 + 2 51. 510 : 4 302 97 • 3 + 1 Lección 6
  • 34.
    30 Práctica Propiedadesdelamultiplicación Usa laspropiedades y el cálculo mental para hallar el producto.  1. 3 • 4 • 2  2. 4 • 5 • 5  3. 7 • 4 • 0  4. 7 • 12 • 1 Halla el número que falta. Nombra la propiedad que usaste.  5. (5 • 3) • 4  5 • ( • 4)  6. 3 • 5  5 •   7. 8 •   (2 • 10) 1 (6 • 2)  8. 3 • (7 2 )  3  9. 8 • (5 2 3 2 2)   10. 3 • (2 • 4)   • (2 • 3) Haz un dibujo y usa la propiedad distributiva para hallar el producto. 11. 14 • 6 12. 5 • 15 13. 9 • 17 Muestra dos maneras de agrupar usando paréntesis. Usa alguna estrategia. 14. 12 • 5 • 6 15. 4 • 3 • 2 16. 9 • 3 • 8 Resolución de problemas. 17. La vitrina de una tienda de mascotas tiene 5 jaulas con 4 cachorros en cada una y 6 jaulas con 6 gatitos en cada una. ¿Cuántos animales hay en la vitrina? 18. Jaime lleva a caminar a su perro pastor para hacer ejercicio. Caminan cuatro cuadras que miden 200 metros cada una. ¿Cuántos metros caminaron Jaime y su perro? 19. Cada paquete de juguetes para gato tiene 7 juguetes. Cada caja de paquetes tiene 20 paquetes. ¿Cuántos juguetes hay en 5 cajas de juguetes para gato? A 500 C 700 B 600 D 800 20. ¿Es verdadero el enunciado numérico? 5 • (4 2 3)  5? Explica. Capítulo 4: Álgebra. Usar las operaciones de multiplicación y división Capítulo 4 • Lección 1
  • 35.
    31 Práctica Escribe elnombre de la propiedad usada. 21. 24 • 58 = 58 • 24 22. 14 • ( 21 • 4 ) 5 ( 14 • 21 ) • 4 23. 9 • ( 7 + 19 ) 5 ( 9 • 7) + ( 9 • 19 ) 24. ( 25 • 3 ) • 2 5 25 • ( 3 • 2 ) 25. 14 • 2 5 2 • 14 26. 7 • 14 5 ( 7 • 10 ) + ( 7 • 4 ) Si a = 7 , b = 8 y c = 9. Calcula. 27. ( a • b ) • c 5 28. ( a + b ) • c 5 29. a • b 5 30. b • a 5 31. b • c = 32. b • c • a = 33. ( a +c ) • b = 34. 14 + ( b • a ) = 35. ( b + c ) • a = 36. 100 – ( b • a ) = 37. ( b + 200 ) – c = 38. c + b • a + 9 = 39. 7 + a • c = 40. 9 + a • b = Comprueba si se cumple la igualdad. 41. 23 • 4 5 4 • 23 42. 6 • 12 5 6 • 10 + 6 • 2 43. ( 15 • 3 ) • 2 5 15 • ( 3 • 2) 44. 8 • 12 5 12 • 8 Lección 1
  • 36.
    32 Práctica Prevalenciadelasoperaciones Escribe correctosi las operaciones están escritas en el orden correcto. Si no, escribe el orden correcto de las operaciones. 1. (7 • 8) : 4 Multiplica, divide 2. 36 2 7 • 3 Resta, multiplica 3. 4 1 6 • 3 Suma, multiplica 4. 28 2 4 • 6 1 12 Resta, multiplica, suma 5. 45 : (12 2 7) Resta, divide 6. 72 : 8 2 4 1 7 Suma, resta, divide Sigue el orden de las operaciones para hallar el valor de cada expresión. 7.  7 1 10 • 3 8.  (41 2 5) : 6 9.  7 1 25 : 5 10.  31 1 72 : 8 11.  7 1 35 : 5 2 8 12.  4 1 5 1 9 • 6 13.  28 2 10 • 2 1 33 14.  6 1 81 : 9 2 7 Usa los siguientes números para que el enunciado numérico sea verdadero. 15.  5, 6 y 42  2  •  5 12 16.  3, 15 y 21  1  :  5 22 17.  7, 9 y 81  :  2  5 2 18.  3, 4 y 12  1  •  5 51 19.  5, 6 y 7  •  2  5 37 20.  4, 16 y 28  :  1  5 23 21. 9, 14, 2  •  + = 37 22. 12, 15, 5  :  •  = 36 23. 3, 7, 12  :  •  = 28 Lección 2Capítulo 4
  • 37.
    33 Práctica Resuelve losejercicios de acuerdo a la prevalencia de las operaciones. 24. 31 1 47 – 5 • 12 5 25. 36 : 6 1 25 – 10 5 26. 12 • 6 : 3 – 24 5 27. 16 – 4 1 8 : 2 5 28. 25 1 15 : 3 – 15 5 29. 14 • 2 – 21 : 3 5 30. 9 • 8 1 7 • 4 5 Pinta el resultado correcto de cada operación. 31. 7 • 7 1 15 32. 25 : 5 1 3 • 7 33. 12 – 6 : 3 1 18 64 154 56 26 10 28 34. 33 1 11 – 42 35. 37 1 3 • 7 – 12 36. 15 : 5 • 12 1 4 2 0 46 268 40 48 37. 21 : 3 1 48 : 6 38. 13 + 10 : 5 • 4 39. 9 • 9 – 16 : 8 10 15 21 16 63 79 Resuelve las operaciones. Escribe el orden que ocupaste al resolverlas. 40. 77 : 11 + 25 • 8 41. 14 – 7 • 1 + 18 42. 84 – 21 : 3 – 10 43. 35 + 84 : 12 – 20 44. 200 : 10 – 10 • 1 45. 67 – 35 : 5 + 60 46. 90 + 9 : 3 • 7 47. 35 – 12 + 15 : 5 Lección 2
  • 38.
    34 Práctica Expresionesentreparéntesis Sigue elorden de las operaciones para hallar el valor de cada expresión. 1. 2 2 3 • 8 : 12 2. (5 1 28) : 3 2 5 3. (15 1 9) : 2 2 1 4. (2 1 7) • 6 2 3 Elige la expresión que corresponda con las palabras. 5. Gina dividió 12 soldaditos de juguete en 2 grupos iguales. Luego compró 6 más. A 12 : 2 1 6 B 12 : (2 1 6) 6. Sabrina compró 6 grupos de 5 flores juntas. Luego botó 4 que estaban marchitas. A 6 • (5 2 4) B 6 • 5 2 4 Escribe palabras que correspondan a la expresión. 7. 49 : 7 1 2 8. 6 • 7 1 28 9. (4 • 9) : (16 2 14) Usa paréntesis para que el enunciado numérico sea verdadero. 10. 48 : 2 1 2 5 12 11. 81 : 7 1 2 1 4 5 13 12. 3 • 21 1 2 2 3 5 66 Resolución de problemas. 13. En 7 árboles había 5 pájaros en cada nido. Jorge alimentó a todos menos a 2. ¿Cuántos pájaros alimentó Jorge? 14. Graciela fue a observar pájaros durante 7 días. Cada día ella vio 3 codornices, 5 chincoles y 1 zorzal. ¿Cuántos pájaros vio Graciela en total? 15. ¿Cuál expresión tiene un valor de 14? A 10 1 (4 • 2) 2 6 B 44 : 11 1 12 C 27 : 9 1 11 D 18 • 2 2 14 16. Halla el valor de la siguiente expresión: (12 • 6) : (4 2 3) Lección 3Capítulo 4
  • 39.
    35 Práctica Resuelve losejercicios combinados. 17. 15 • 3 1 3 • 9 18. ( 12 : 6 ) 1 ( 25 : 5 ) 19. ( 48 : 2 ) 1 15 20. ( 63 : 9 ) – 8 : 8 Escribe la expresión numérica para cada situación. 21. Pepe tenía 10 gomas, prestó 8 y después le regalaron 3. 22. Rafael compró 15 dulces, regaló 7 y se le perdieron 3. 23. Gabriel estudió 3 horas al día por 3 días y estudió 4 horas el cuarto día. 24. Laura compró 3 paquetes de papas fritas a $ 250 cada uno. Pagó $ 200 de impuesto. 29. 40 – 8 : 4 5 8 30. 35 – ( 4 1 3 ) : 7 5 34 31. 5 • ( 10 – 5 ) + ( 8 : 2 ) 5 29 32. 18 – ( 2 • 2 ) 5 15 33. 10 1 ( 2 • 6 ) 5 22 34. 6 • 7 – 2 5 42 35. 12 + 3 • 8 – 6 = 30 36. 200 – 4 • 3 + 10 = 508 37. 23 • 3 + 7 = 230 38. 350 – 50 + 9 • 3 = 327 39. 28 : 4 • 9 – 60 = 60 40. 1 500 : 30 – 45 + 5 = 10 = 25. Juan tenía dos chocolates y le regalaron cinco más. 26. Esteban compró 10 bolitas, regaló siete y luego ganó 3. 27. Pedro tiene catorce láminas, jugó y las perdió todas. 28. Ana vendió 5 collares a $100 cada uno y gastó 200 en comprar más hilo. Escribe C si el ejercicio está correcto o I si está incorrecto. Lección 3
  • 40.
    36 Práctica Resolucióndeproblemasconcalculadora Resuelve. 1. Beatrizse compró un auto en $ 6 780 890. Para ello, dio un avance de $ 2 500 000 y el dinero faltante lo debe pagar en 25 cuotas de $ 171 600 cada una. Si ha cancelado 13 cuotas, ¿cuánto dinero le queda para terminar de pagar su auto? 2. La distancia entre Santiago y Valparaíso es de 120 km aproximadamente. Si un bus realiza 5 viajes ida y vuelta, ¿cuántos kilómetros recorre en total? 3. Edgardo compra 3 chalecos y 3 pantalones. cada pantalón le cuesta $ 12 990 y cada chaleco cuesta $ 10 990. Si paga con 4 billetes de $ 20 000, ¿cuánto dinero le dan de vuelto? Une con una línea cada problema con la expresión que permita resolverlo. 4. Hay 45 cajas con paquetes de 10 dulces cada una. ¿Cuántos dulces hay? 5. Hay 10 edificios de 45 pisos cada uno. En cada piso hay 10 departamentos y en cada departamento 10 ventanas. ¿Cuántas ventanas hay en los 10 edificios? 6. Hay 10 casilleros con 45 cuadernos cada uno. ¿Cuántos cuadernos hay en total? Resuelve cada problema, usando calculadora. Escribe la secuencia de teclas que ocupaste en cada caso. 7. A una librería llegaron 50 cajas con 10 paquetes cada una, y cada paquete contiene 10 lápices. ¿Cuántos lápices llegaron en total? 8. Un carro lleva 30 bolsas que contienen 10 paquetes con 10 cajas de jugo de 1 litro cada uno. ¿Cuántos litros lleva el carro? 4 5 • 1 0 = 4 5 • 1 0 = = 4 5 • 1 0 = = = Lección 4Capítulo 4
  • 41.
    37 Práctica 9. Diezparcelas tienen 10 árboles cada una. Cada árbol tiene 10 frutos y cada fruto tiene 10 pepas. ¿Cuántas pepas hay en las diez parcelas? 10. En una población hay 20 casas, hay 3 perros en cada casa. Cada perro caza 5 gatos y cada gato caza 5 ratones. ¿Cuántos ratones hay en la población? 11. En un ropero hay 7 cajones, en cada cajón hay 15 pares de calcetines. ¿Cuántos pares de calcetines hay en total? 12. Tengo 10 cajas, cada caja tiene 10 bolsas, cada bolsa tiene 10 estuches, en cada estuche hay 10 lápices. ¿Cuántos lápices hay en total? Lección 4
  • 42.
    38 Práctica Lección 5Capítulo4 Resolverecuaciones ¿Cuál de los números 2, 9 o 12 es la solución de la ecuación?   1.  k • 8 5 72   2.  36 : r 5 18   3.  7 1 c 5 19   4.  16 2 w 5 14   5.  g 2 1 5 8   6.  m : 3 5 3   7.  9 ​2  __  3 ​1 b 5 11 ​2  __  3 ​   8.  p : 2,5 5 4,8 Usa el cálculo mental para resolver cada ecuación. Comprueba tu solución.   9.  h 1 11 5 21 10.  c 2 59 5 161 11.  400 : q 5 10 12.  v • 5 5 4,5 13.  16 • f 5 64 14.  9,4 1 a 5 10,5 15.  u 2 6,2 5 12,8 16.  24 2 z 5 12,4 17.  10 ​1  __  2 ​1 y 5 14 ​3  __  4 ​ 18.  x 2 9 ​1  __  2 ​5 4 ​1  __  2 ​ 19.  m : ​3  __  4 ​5 28 20.  u • 6 ​2  __  3 ​5 20 21.  5,4 : p 5 0,27 22.  1,9 1 j 5 22,4 23.  t : 12 5 6 24.  n 2 7,2 5 1,5 Resolución de problemas. 25. En promedio, el oso macho de un año de edad tiene 4 veces el peso de un osezno de 4 meses de edad. ¿Cuál es el peso del osezno? 26. En promedio, una osezno hembra de un año de edad pesa 12 libras menos que el osezno macho de un año de edad. ¿Cuánto pesa la osezno hembra? 27. La ecuación 3y 5 $42 representa el costo de rentar una canoa por 3 horas. ¿Cuánto cuesta rentarla por hora? A $14 C $45 B $39 D $126 28. ¿Qué valor de n hace que la ecuación sea verdadera? 8n 2 40 5 8 A 0 C 6 B 5 D 8 Promedio de peso de un oso negro macho un año de edad 70 adulto 250
  • 43.
    39 Práctica Marca conuna X el número que resuelve la ecuación. 29. x – 4 5 13 11 17 30. 35 – y 5 28 63 7 31. z : 12 5 48 60 576 32. y – 84 5 240 324 156 33. 72 : r 5 9 8 63 34. f 1 40 5 70 110 30 35. g • 12 5 36 24 3 Cada letra representa un número. Encuentra el valor de cada letra. 36. x + 2 = 6 x = 3 + y = x y = 37. 7 + b = 18 a = a – b = 33 b = 38. 4 + c = 19 c = c + d = 20 d = 39. 5 + g = 40 g = g – h = 2 h = 40. z + 8 = 11 z = z – m = 1 m = 41. 14 + n = 28 n = n – l = 4 l = 42. 27 – f = 25 f = i + f = 100 i = 43. 70 + i = 100 i = i – d = 0 d = 44. ñ + 15 = 45 ñ = ñ + o = 42 o = 46. j + 35 = 80 j = k – j = 55 k = 45. 27 – 12 = p p = p + q = 20 q = 47. r – 12 = 40 r = 22 + s = r s = Lección 5
  • 44.
    40 Práctica Resolverdesigualdades Representa enuna recta numérica las soluciones de cada desigualdad. 1. x 0 2. g 7 3. h 10 4. 8 t 5. I 3 6. 5 l 7. 4 y Resuelve cada desigualdad. 9. a – 3 1 10. r – 1 6 11. p – 8 7 12. l – 2 4 13. z + 4 12 14. ñ + 3 10 15. k + 7 –7 8. 15 – f 6 16. 14 – h 7 17. y + 3 9 18. 8 – w 5 19. q 12 20. s 7 Lección 6Capítulo 4
  • 45.
    41 Práctica Patrones:hallarunaregla Halla unaregla. Usa la regla para hallar los números que faltan.  1.  2.  3.  4. Usa la regla y la ecuación para llenar una tabla de entrada y salida.   5. Multiplicar a por 3, restar 1. a • 3 2 1 5 ?  6. Dividir c entre 2, sumar 1. c : 2 1 1 5 ? Resolución de problemas. 7. Usa los datos  Lee la etiqueta. Aldo consume 3 porciones de leche al día. ¿Cuántos gramos de proteína habrá consumido en 5, 6 y 7 días? Haz una tabla.  8. ¿Que ecuación muestra una regla para la tabla?  9. ¿Qué ecuación muestra una regla de la tabla? Entrada, c 4 8 32 128 512 Salida, d 1 2 8   Entrada, r 4 5 6 7 8 Salida, s 8 10 12   Entrada, a 10 20 30 40 50 Salida, b 1 2 3   Entrada, m 85 80 75 70 65 Salida, n 17 16 15   Entrada, p (pintas) 1 2 3 4 5 Salida, c (tazas) 2 4 6 8 10 Entrada, p 2 4 6 8 10 Salida, g 6 12 18 24 30 Lección 7Capítulo 4
  • 46.
    42 Práctica Encuentra elpatrón en cada caso y anótalo. 22. Entrada 25 100 75 80 1 500 Salida 5 20 26. Entrada 15 30 60 80 90 Salida 45 90 18. Entrada 7 21 56 63 70 Salida 1 3 19. Entrada 3 15 21 24 27 Salida 9 45 20. Entrada 48 100 250 300 1 000 Salida 24 50 21. Entrada 9 12 20 121 34 Salida 81 108 24. Entrada Salida 25. Entrada Salida 10. 6 – 8 – 10 – 12 – 14 11. 9 – 12 – 15 – 18 12. 28 – 24 – 20 – 16 13. 100 – 200 – 300 14. 1 000 – 900 – 800 – 700 15. 750 – 500 – 250 16. 1 100 – 900 – 700 – 500 17. 3 000 – 1 500 – 0 Escribe los números que faltan. 23. Entrada 14 50 100 200 300 Salida 28 100 27. Entrada 144 96 84 72 60 Salida 12 8 Ahora tú inventa una regla para cada tabla y escribe los números. Lección 7
  • 47.
    43 Práctica Fraccionesequivalentes Escribe unafracción equivalente.  1. ​1  __  8 ​   2. ​ 7  ___  10 ​   3. ​4  __  5 ​   4. ​6  __  8 ​   5. ​3  __  4 ​   6. ​1  __  3 ​   7. ​3  __  6 ​   8. ​ 8  ___  12 ​   9. ​6  __  9 ​ 10. ​10  ___  15 ​ 11. ​10  ___  16 ​ 12. ​5  __  6 ​ 13. ​2  __  4 ​ 14. ​ 3  ___  12 ​ 15. ​4  __  6 ​ 16. ​ 4  ___  10 ​ 17. ​1  __  5 ​ 18. ​12  ___  16 ​ Resolución de problemas. Usa los datos. Para los ejercicios19 y 20, usa la tabla. 19. Natalia preguntó a varias personas cuál de los seis colores de la tabla les gustaba más que el resto. Escribe tres fracciones equivalentes que muestren la fracción de personas que eligieron el rojo. 20. Natalia pidió la opinión de 4 personas más y todas prefirieron el azul. Escribe tres fracciones equivalentes que muestren la fracción de personas que eligieron el rojo. 21. ¿Qué fracción es equivalente a ​ 2   _ 5 ​? A ​  3  ___  10 ​ C ​  7  ___  10 ​ B ​  4  ___  10 ​ D ​ 3  __  5 ​ 22. ¿Qué fracción es equivalente a ​ 14   __ 16 ​? A ​ 7  __  8 ​ C ​ 4  __  6 B ​ 7  __  9 ​ D ​  2  ___  16 ​ Colores preferidos Color Cantidad de personas que lo eligieron anaranjado 1 rojo 4 morado 2 azul 3 verde 1 amarillo 1 Capítulo 5: Conceptos de fracciones Unidad 2 Números y conceptos de fracciones Capítulo 5 • Lección 1 Lección 1Capítulo 5
  • 48.
    44 Práctica Marca conuna X la fracción que no es equivalente a las demás. 23. ​2  __  8 ​  _​​,  4  ___  10 , 4  ___  16 24. ​5  __  9   _​​, 1  __  2 ​  _​​, 3  __  6 ​  _​​ 25. ​2  __  3   _​​, 1  __  2 ​  _​​, 3  __  6 ​  _​​ 26. ​ 12  ___  16 ​, 3  __  4 ​  _​​, 1  __  7 ​  _​​ 27. ​3  __  4   _​​, 6  __  8 ​  _​​, 1  __  5   _​​ 28. ​2  __  5 ​  _​​,  4  ___  10 , 1  __  7 29. ​1  __  8 ​  _​​,  2  ___  16 , 5  __  9 30. 1  __  8 ​  _​​, 2  __  7   _​​, 4  ___  32 31. ​2  __  5 ​  _​​, ​3  __  7 ​  _​​,  6  ___  14 32.  2  ___  10 , 5  __  8 ,  6  ___  30 33. 3  __  6   _​​, 6  ___  12 , 1  __  9   _​​ 34. 4  __  7   _​​, 2  __  8   _​​, 6  ___  24 Escribe dos fracciones equivalentes. 35.  1  __  4   _​​ = 36.  1  __  2   _​​ = 37. ​12  ___  24 ​= 38.  3  __  7   _​​ = 39.  4  __  9   _​​ = 40. 5  __  9   _​​ = 41.  2  __  5   _​​ = 42.  1  __  3   _​​ = 43. 4  ___  16 = 44. 5  __  7 = 45. 8  __  9 = 46. 7  ___  14 = Escribe una fracción equivalente a la dada. 47. 12  ___  24 = 48. ​35  ___  45 = 49.  7  ___  21 = 50. ​  40  ____  100 ​= 51.  2  ___  36 = 52. ​63  ___  70 = 53.  8  ___  16 = 54. 2  __  4   _​​= 55. ​32  ___  36 = 56. ​  10  ____  100 ​= 57. ​15  ___  90 = 58. 1  __  2   _​​= 59. 3  __  4   _​​ = 60. 7  __  8   _​​ = 61. ​16  ___  32 ​= 62. ​25  ___  40 ​= Lección 1Capítulo 5
  • 49.
    45 Práctica Fraccionessimplificadasasumínimaexpresión Escribe cadafracción simplificada en su mínima expresión.   1. ​14  ___  16 ​   2. ​40  ___  64 ​   3. ​12  ___  36 ​   4. ​ 9  ___  30 ​   5. ​10  ___  25 ​   6. ​ 8  ___  22 ​   7. ​17  ___  34 ​   8. ​28  ___  77 ​   9. ​ 16  ____  100 ​ 10. ​24  ___  30 ​ 11. ​10  ___  12 ​ 12. ​ 9  ___  36 ​ 13. ​20  ___  60 ​ 14. ​36  ___  45 ​ 15. ​12  ___  57 ​ 16. ​10  ___  24 ​ 17. ​15  ___  25 ​ 18. ​32  ___  40 ​ 19. ​ 70  ____  100 ​ 20. ​48  ___  60 ​ Resolución de problemas. 21. Dato breve Ocho parcelas limitan con el Fundo San Francisco. Escribe una fracción que represente la parte de las 50 parcelas que limita con el Fundo San Francisco. Escribe la fracción simplificada en su mínima expresión. 22. De los 75 clientes de la peluquería, 20 pidieron cita para cortarse el cabello. ¿Qué fracción de los clientes pidió cita para cortarse el cabello? Escribe la fracción simplificada en su mínima expresión. 23. ¿Qué fracción muestra ​ 21   __ 28 ​simplificada en su mínima expresión? A ​1  __  8 ​ B ​1  __  7 ​ C ​3  __  7 ​ D ​3  __  4 ​ 24. Doce de 30 estudiantes viajaron hoy en el bus. ¿Qué fracción de los estudiantes viajó en el bus? Escribe la fracción simplificada en su mínima expresión. Capítulo 5 Lección 2
  • 50.
    46 Práctica Simplifica. 25. 30  ___  35 ​= 26.  4  ___  12 = 27. 22  ___  55 ​= 28. 70  ___  80 ​= 29. 27  ___  30 ​= 30. 16  ___  14 = Divide el numerador y denominador por el número que se indica para formar una fracción simplificada. 31. 24  ___  36 se divide en 12 32. 21  ___  42 se divide en 21 33. 6  __  9   _​​se divide en 3 34. 10  ___  20 se divide en 10 35. 6  __  9   _​​se divide en 5 36.  4  ___  10 se divide en 2 37. 18  ___  30 se divide en 6 38. 40  ___  64 se divide en 8 Marca con una X la fracción simplificada. 39. ​12  ___  24 , ​15  ___  9  ​, 2  __  7 40. 3  __  5 , ​20  ___  30 , ​40  ___  45 41. 100_____ 1 000 , 34___ 120 , 4  __  9 42. ​  20  ____  100 ​, 3  __  9   _​​, 1  __  3   _​​ 43. ​37  ___  13 , 3  __  9 , 2  __  5 44. 8  __  7 , ​21  ___  27 , 16  ___  14 45.  3  ___  19 ,  3  ___  19 , ​24  ___  36 46. 2  __  3   _​​, 1  __  9   _​​, 4  ___  10 47. 2  __  4 , ​18  ___  22 , 5  __  4 48. 8  __  3 ,  9  ___  18 , ​15  ___  23 49. 1  __  9 , ​40  ___  80 , ​40  ___  80 50. ​14  ___  21 ​, 2  ___  12 , 5  __  9   _​​ 51 6  ___  12 , 4  __  8   _​​, 1___ 100 52. 4  ___  12 , 1  __  7   _​​, 1  __  3   _​​ 53. ​ 60  ____  100 ​, ​12  ___  9  ​, 7  __  8   _​​ 54. 8  ___  10 , 6  __  9   _​​, 8  ___  13 55. 7  ___  63 , 8  ___  12 , 1  __  4   _​​ 56. 6  __  9   _​​, 9  ___  20 , 8  __  9   _​​ 57. 3  ___  11 , 2  __  9   _​​, 2  ___  12 58. 3  __  8   _​​, 6  ___  15 , 1  ___  10 Lección 2
  • 51.
    47 Práctica Comprendernúmerosmixtos Escribe cadanúmero mixto en forma de fracción. Escribe cada fracción en forma de número mixto.  1.  1 ​7  __  8 ​   2. ​10  ___  9  ​   3. ​27  ___  4  ​   4.  3 ​4  __  5 ​   5.  1 ​11  ___  15 ​   6.  4 ​ 1  ___  12 ​   7. ​41  ___  10 ​   8. ​41  ___  8  ​   9. ​61  ___  3  ​ 10.  5 ​ 9  ___  10 ​ 11.  3 ​1  __  9 ​ 12. ​39  ___  5  ​ 13.  4 ​3  __  7 ​ 14. ​21  ___  4  ​ 15. ​57  ___  7  ​ 16.  8 ​5  __  6 ​ 17.  9 ​4  __  9 ​ 18. ​41  ___  6  ​ 19.  7 ​2  __  3 ​ 20.  6 ​ 3  ___  10 ​ 21.  4 ​ 2  ___  15 ​ 22. ​31  ___  4  ​ 23. ​16  ___  5  ​ 24. ​35  ___  6  ​ Resolución de problemas. 25. ¿Cuántas veces llenará Graciela un cucharón de ​ 1   _ 2 ​taza para servir 8​ 1  _ 2  ​tazas de jugo de frutas? 26. Una receta pide 2​ 3  _ 4  ​tazas de leche. Escribe 2​ 3  _ 4  ​en forma de fracción. 27. ¿Qué fracción es igual a 2​ 4   _ 5 ​? A ​ 8  __  5 ​ B ​ 9  __  5 ​ C ​ 14  ___  5  ​ D ​ 24  ___  5  ​ 28. ¿Qué número mixto es igual a  ​ 23  ___  4  ​? A 2 ​ 3  __  4 ​ B 3 ​ 1  __  2 ​ C 4 ​ 1  __  4 ​ D 5 ​ 3  __  4 ​ Capítulo 5 Lección 3
  • 52.
    48 Práctica Relaciona lasfracciones impropias de la columna A con los números mixtos de la columna B. Columna A Columna B 29. ​14  ___  9  ​ 3 ​5  __  8 ​ 30. ​25  ___  3  ​ 8 ​1  __  3 ​ 31. ​36  ___  7  ​ 4 ​2  __  3 ​ 32. ​12  ___  5   6 ​3  __  4 ​ 33. ​32  ___  6   5 ​2  __  6 ​ 34. ​27  ___  4   1 ​5  __  9 ​ 35. ​19  ___  2   9 ​1  __  2 ​ 36. ​29  ___  8   8 ​6  __  7 37. ​62  ___  7   5 ​1  __  7 38. ​14  ___  3   2 ​2  __  5 Transforma a fracción impropia o número mixto según corresponda. 39. 5  __  2   _​​= 40. 7​2  __  3 = 41. ​37  ___  8  ​= 42 3 ​1  __  8 = 43. 10 ​7  __  9 = 44. ​57  ___  6   = 45. ​54  ___  3  ​= 46. ​87  ___  12 ​= 47. 1 ​2  __  7 = 48. 4 ​3  __  5 = 49. 6 ​5  __  6 = 50. ​44  ___  9  ​= 51. ​75  ___  10 ​= 52. 5 ​ 9  ___  15 = 53. 2 ​6  __  8 = 54. 9  __  2   _​​ = Lección 3
  • 53.
    49 Práctica Compararyordenarfraccionesynúmerosmixtos Compara. Escribe, o = en cada .   1. ​4  __  9 ​ ​5  __  9 ​   2. ​3  __  4 ​ ​3  __  5 ​   3. ​2  __  3 ​ ​ 8  ___  12 ​   4. ​5  __  8 ​ ​4  __  7 ​   5. ​ 9  ___  11 ​ ​8  __  9 ​    6. ​ 5  ___  12 ​ ​3  __  7 ​   7. ​ 6  ___  10 ​ ​4  __  5 ​   8.  2 ​7  __  9 ​ 2 ​5  __  6 ​   9.  4 ​5  __  8 ​ 4 ​3  __  4 ​ 10.  9 ​2  __  6 ​ 8 ​3  __  9 ​ 11.  3 ​4  __  5 ​ 3 ​5  __  6 ​ 12.  1 ​ 2  ___  10 ​ 1 ​1  __  5 ​ 13.  4 ​4  __  6 ​ 3 ​3  __  4 ​ 14.  1 ​1  __  3 ​ 1 ​ 4  ___  12 ​ 15.  6 ​3  __  8 ​ 6 ​1  __  4 ​ 16.  7 ​5  __  6 ​ 9 ​5  __  6 ​ 17.  2 ​4  __  9 ​ 2 ​1  __  5 ​ 18.  5 ​3  __  4 ​ 5 ​2  __  3 ​ 19.  7 ​4  __  6 ​ 8 ​1  __  2 ​ 20.  1 ​ 5  ___  11 ​ 1 ​3  __  7 ​ Ordena de menor a mayor. 21. ​3  __  8 ​ , ​3  __  4 ​ , ​1  __  4 ​ 22. ​2  __  3 ​ , ​1  __  6 ​ , ​7  __  9 ​ 23.  1 ​5  __  8 ​ , 1 ​3  __  4 ​ , 1 ​5  __  6 ​ 24.  7 ​3  __  5 ​ , 6 ​2  __  3 ​ , 6 ​ 6  ___  10 ​ Resolución de problemas. 25. Usa los datos  Liliana pinta silbatos de madera y los vende. Haz una lista de los silbatos ordenándolas del más corto al más largo. 26. Usa los datos  Liliana hizo un silbato nuevo que mide 6​ 2 _ 3  ​cm de longitud. ¿Cuál de todos sus silbatos es el más largo? 27. Cristina ensayó con el violín 2​ 1 _ 4  ​horas el lunes, 1​ 3  __ 10  ​horas el martes y 1​ 4 _ 9  ​horas el miércoles. ¿Qué día ensayó menos tiempo? 28. Daniel ensayó con su trombón 1​ 2 _ 3  ​horas el lunes, 1​ 7 __ 12  ​horas el martes y 1​ 7 _ 9  ​horas el miércoles. ¿Qué día ensayó más tiempo? Silbato de Liliana Nombre del silbato Longitud, en cm petra 6 ​ 3  _  4  ​ cónico 6 ​ 5  _  8  ​ mágico 6 ​  7  __  12  ​ Capítulo 5 Lección 4
  • 54.
    50 Práctica Marca conuna X la fracción mayor. 29. 5  __  2   _​​; 8  __  4   _​​ 30. 1  __  9   _​​;  2  ___  10 31. 7  __  8   _​​; 2  __  3   _​​ 32. 9  __  4   _​​; 5  __  3   _​​ Marca con una X la fracción menor. 33. 1  __  2   _​​; 3  __  4   _​​ 34. 2  __  3   _​​; 5  __  8   _​​ 35. 3  __  8   _​​; 2  __  7   _​​ 36. 4  __  9   _​​; 3  __  7   _​​ Escribe verdadero o falso según corresponda. 37. 2  __  4   _​​= 4  __  8   _​​ 38. 6  __  8   _​​ 2  __  4   _​​ 39.  7  ___  11 4  __  7   _​​ Ordena de mayor a menor las fracciones. 40. 1  __  2   _​​; 3  __  4   _​​; 7  __  8   _​​ 41. 1​1  __  4 ; ​10  ___  8  ; 5  __  6   _ 42. 5  __  8   _​​; 1​1  __  2 ; 2  __  4   _​​ 43.  9  ___  15   _​​;  4  ___  12   _​​; ​15  ___  30 = 44. ​  50  ____  100 ​; 5  __  2 ; 3  __  4 = Encierra en cada ejercicio la fracción mayor. 45. ​12  ___  4  ​; 2  __  3 46. ​12  ___  20 ;  7  ___  15 47. 1  __  2 ; 3  __  4 48. ​​15  ___  3  ​; 4  __  3 49. 4  __  8 ; 2  __  3 50. 5  __  9 ;  5  ___  12 51.  7  ___  14 ;  9  ___  18 52.  3  ___  12 ; ​15  ___  8  ​ 53. ​  28  ____  100 ​; 12_____ 1.000 54.  6  ___  48 ; 1  __  8 55. 5  ___  10 ; 8  __  5 56. ​23  ___  35 ; ​18  ___  7  ​ 57. 2  __  7   _​​; 3  __  7   _​​ 58. 5  __  3   _​​; ​10  ___  15 59. 3  ___  12 ; 3  __  8   _​​ 60. 1  __  9   _​​; 9  __  8   _​​ 61. 8  ___  13 ; 13  ___  8   62. 5  __  6   _​​; ​10  ___  12 63. 4  __  8   _​​; 4  __  9   _​​ 64. 1  ___  12 ; 3  ___  16 65. 6  ___  10 ; 4___ 100 66. 6  ___  15 ; 4  ___  12 67. 7  __  7   _​​; 5  __  8   _​​ 68. ​14  ___  28 ; ​15  ___  30 Lección 4
  • 55.
    51 Práctica Tallerderesolucióndeproblemas Estrategia:hacerunarepresentación Resolucióndeproblemas•Prácticadeestrategias Haz unarepresentación para resolver los problemas. 1. Desde su casa, Teo caminó 3 cuadras hacia el sur y 2 cuadras hacia el este hasta la casa de un amigo. Después, los dos caminaron 6 cuadras hacia el oeste para ir a la escuela. Teo no puede acortar camino atravesando cuadras. ¿A cuántas cuadras vive de la escuela? 2. Adriana está levantando una reja en uno de los lados de su jardín. Cada estaca mide 4 centímetros de ancho y está a 2 centímetros de la otra. Adriana tiene 12 estacas. ¿Cuántos centímetros de longitud medirá su reja? Aplicacionesmixtas Resuelve. 3. Laura pasó 10 minutos conduciendo hasta la tienda de comestibles y 50 minutos haciendo compras allí. Tardó 10 minutos para regresar a casa y 40 minutos haciendo sándwiches para un picnic. Condujo 30 minutos desde su casa y llegó al picnic a las 3:30 p.m. ¿A qué hora salió Laura para ir a la tienda de comestibles? 4. Cuando jugaban al golf, la pelota de Leonardo se detuvo a 3​ 5  _ 8  ​metros del hoyo, la pelota de José se detuvo a 3​ 2  _ 3  ​metros del hoyo y la pelota de Alberto se detuvo a 4​ 1  _ 4  ​centímetros del hoyo. ¿La pelota de quién estuvo más cerca del hoyo? 5. Un parque tiene la forma de un rectángulo. Hay un sendero desde cada esquina del rectángulo hasta todas las otras esquinas. ¿Cuántos senderos hay? 6. Formula un problema Vuelve al problema 5. Escribe otro similar aumentando el número de esquinas que tiene el parque. Luego, resuélvelo. N EO S Capítulo 5 Lección 5
  • 56.
    52 Práctica Representarlasumaylaresta Usa barrasde fracciones para hallar la suma o la diferencia. Escribe la respuesta como fracción simplificada.  1.  ​ 3  __  5 ​1 ​1  __  5 ​5  2.  ​2  __  8 ​1 ​1  __  8 ​5  3.  ​ 6  ___  12 ​2 ​ 2  ___  12 ​5 Halla la suma o la diferencia. Escríbela como fracción simplificada.  4.  ​1  __  4 ​1 ​1  __  4 ​  5.  ​2  __  7 ​ 1 ​1  __  7 ​  6.  ​3  __  5 ​2 ​1  __  5 ​  7.  ​3  __  7 ​1 ​2  __  7 ​  8.  ​ 7  ___  10 ​1 ​ 2  ___  10 ​  9.  ​4  __  9 ​2 ​3  __  9 ​  10.  ​4  __  6 ​2 ​1  __  6 ​  11.  ​3  __  8 ​1 ​3  __  8 ​  12.  ​ 8  ___  10 ​2 ​ 5  ___  10 ​  13.  ​1  __  6 ​1 ​2  __  6 ​  14.  ​ 9  ___  12 ​2 ​ 3  ___  12 ​  15.  ​2  __  4 ​2 ​1  __  4 ​  16.  ​7  __  8 ​2 ​5  __  8 ​  17.  ​2  __  5 ​1 ​1  __  5 ​  18.  ​ 3  ___  10 ​1 ​ 5  ___  10 ​  19.  ​10  ___  11 ​2 ​ 3  ___  11 ​  20.  ​4  __  5 ​2 ​2  __  5 ​  21.  ​7  __  9 ​2 ​1  __  9 ​  22.  ​4  __  7 ​1 ​2  __  7 ​  23.  ​ 4  ___  10 ​2 ​ 3  ___  10 ​ 1 1 5 1 5 1 5 1 5 1 1 8 1 8 1 8 1 1 12 1 12 1 12 1 12 1 12 1 12 1 12 1 12 Capítulo 6: Sumar y restar fracciones Capítulo 6 • Lección 1
  • 57.
    53 Práctica Encierra elresultado correcto. 24. ​ 4  ___  18 1 ​ 2  ___  18 = ​ 6  ___  18 ​ 2  ___  18 25. 15  ___  22 – 11  ___  22 = 24  ___  22 ​ 4  ___  22 26. 1  __  7   _​​1 1  __  7   _​​ + 4  __  7   _​​= 1 6  __  7   _​​ 27. 4​ 3  ___  10 – 1​ 1  ___  10 = 3​1  __  5   _​​ 3​ 4  ___  10 28. 4  __  8   _​​1 5  __  8   _​​+ 3  __  8   _​​ = ​12  ___  8   1​1  __  2   _​​ 29. ​ 8  ___  12 – ​ 1  ___  12 = ​ 7  ___  12 ​ 9  ___  12 30. ​ 6  ___  18 1 ​ 3  ___  18 = 1  __  2   _​​ ​ 9  ___  18 31. 1​ 8  ___  12 1 2​ 1  ___  12 = 3​ 7  ___  12 45  ___  12 Escribe C si está correcto o I si está incorrecto. 32. 5  __  7 1 2  __  7 = 1 33. 4  __  8 – 1  __  8 = 2  __  8 34. 14  ___  20 1 ​ 7  ___  20 = ​ 7  ___  20 35. ​ 5  ___  12 1 ​ 3  ___  12 = 2  __  3 36. 4​1  __  3 – 2​2  __  3 = 7​2  __  3 37.  7  ___  10 1  2  ___  10 =  9  ___  10 38.  2  ___  14 +  7  ___  14 –  3  ___  14 =  4  ___  14 39. ​31  ___  4  ​+ ​23  ___  4  ​= 6 40. ​21  ___  36 – ​14  ___  36 = ​35  ___  36 41. ​18  ___  26 –  9  ___  26 =  9  ___  18 Resuelve. 42. ​12  ___  15 +  3  ___  15 43. ​25  ___  30 – ​10  ___  30 44. 79___ 100 – 79___ 100 45. ​18  ___  24 + ​18  ___  24 46. ​34  ___  55 + ​19  ___  55 47. ​63  ___  7  ​– ​56  ___  7  ​ 48.  2  ___  40 +  8  ___  40 49. ​27  ___  27 – ​20  ___  27 50.  9  ___  12 +  3  ___  12 51.  8  ___  21 +  7  ___  21 –  8  ___  21 52. ​11  ___  44 –  7  ___  44 53.  8  ___  16 +  8  ___  16 –  1  ___  16 Lección 1
  • 58.
    54 Práctica Lección 2Capítulo6 Sumaryrestarfraccionesconigualdenominador Halla la suma o la diferencia. Escríbela en su mínima expresión.   1. ​1  __  4 ​1 ​1  __  4 ​   2. ​2  __  7 ​1 ​1  __  7 ​   3. ​3  __  5 ​2 ​1  __  5 ​   4. ​3  __  7 ​1 ​2  __  7 ​   5. ​7  __  8 ​2 ​5  __  8 ​   6. ​ 7  ___  10 ​1 ​ 2  ___  10 ​   7. ​4  __  9 ​2 ​3  __  9 ​   8. ​4  __  6 ​2 ​1  __  6 ​   9. ​3  __  8 ​1 ​3  __  8 ​ 10. ​2  __  5 ​1 ​1  __  5 ​ 11. ​ 8  ___  10 ​2 ​ 5  ___  10 ​ 12. ​1  __  6 ​1 ​2  __  6 ​ 13. ​ 9  ___  12 ​2 ​ 3  ___  12 ​ 14. ​2  __  4 ​2 ​1  __  4 ​ 15. ​ 3  ___  10 ​1 ​ 5  ___  10 ​ Resolución de problemas. 16. Los glaciares actualmente almacenan ​ 3   _ 4 ​del suministro de agua dulce del mundo. Si ​ 1   _ 4 ​de esos glaciares se derritiera, ¿cuánto quedaría en forma de glaciar? 17. Cuando un témpano flota en un cuerpo de agua, se puede ver ​ 1   _ 7 ​de la masa sobre la superficie del agua. ¿Qué parte del témpano permanece debajo de la superficie del agua? 18. Los glaciares de Groenlandia se desplazan por el pasadizo de témpanos de hielo Iceberg Alley empujados por la corriente, hasta llegar a Terranova. Si un témpano se desplaza ​  4   __ 10 ​de milla en enero y ​ 6   __ 10 ​de milla en febrero, ¿cuántas millas se desplaza el témpano en los dos meses? A ​  2  ___  10 ​ B ​ 1  __  5 ​ C 1 D 1 ​1  __  2 ​ 19. Usualmente, los témpanos son blancos debido a millones de diminutas burbujas de aire que están atrapadas en el hielo y a veces tienen franjas azules. Si ​ 5   _ 8 ​del témpano es blanco, ¿qué parte del témpano tiene franjas azules? A ​ 3  __  8 ​ B ​ 5  __  8 ​ C ​2  __  8 ​ D 1 ​3  __  8 ​
  • 59.
    55 Práctica Halla elnúmero que falta en cada caso. 20. 1 3  __  9 = 6  __  9 21. 5  __  4 – = 3  __  4 22. 3  __  8 1 5  __  8 = 23. 2  __  5 1 = 8  __  5 24. 14  ___  20 – =  7  ___  20 25. 4  __  8 1 1 3  __  8 = ​12  ___  8   26. 1 2  __  7 1 4  __  7 = 9  __  7 27. 15  ___  19 – = 13  ___  19 28. ​23  ___  4   – ​13  ___  4   = 29. ​ 2  ___  10 1 ​ 5  ___  10 = 30. 2  __  6 – = 1  __  6 31. 4  __  7 1 8  __  7 = 32. ​ 9  ___  11 1 = 15  ___  11 33. 7  __  8 – = 1  __  8 34. ​15  ___  18 – = ​12  ___  18 35. ​19  ___  25 + = 1 36. + ​12  ___  45 = ​29  ___  45 37. –  7  ___  14 =  7  ___  14 38.  9  ___  37 + ​​23  ___  37 = 39. ​34  ___  70 – = ​25  ___  70 Resuelve 40. ​18  ___  36 – ​10  ___  36 +  2  ___  36 41. ​12  ___  25 +  4  ___  25 –  9  ___  25 42.  1  ___  16 +  7  ___  16 –  8  ___  16 43. ​13  ___  21 –  7  ___  21 44. 86___ 100 + 12___ 100 45. ​33  ___  33 – ​​11  ___  33 – ​11  ___  33 Lección 2
  • 60.
    56 Práctica Tallerderesolucióndeproblemas Estrategia:trabajardesdeelfinalhastaelprincipio Resolucióndeproblemas•Prácticadeestrategias 1. El curso de Pilar está haciendo un carro para el desfile de Fiestas Patrias. Para adornar el carro, usaron un total de 4 metros de tela roja, blanca y azul. Usaron 1​ 1 _ 6  ​metros de tela roja y 1​ 5  _ 6  ​ metros de tela azul. Si el resto de la tela era blanca, ¿cuántos metros de tela blanca usó el curso de Pilar? 2. En el desfile de Fiestas Patrias, Paula usó su mesada para comprar varios recuerdos. Pagó $22 000 por dos camisetas y una gorra. La gorra costó $6 000. Paula no se acuerda del precio exacto de las camisetas. ¿Cuánto pagó por cada camiseta? Prácticadeestrategiasmixtas.Del3al4,usalatabla. 3. Los estudiantes usaron 8​ 1 _ 4  ​metros de banderines para el frente del carro y 9​ 3  _ 4  ​metros de banderines para la parte de atrás. ¿Cuántos metros de banderines sobraron para los costados del carro? Materiales para el carro del desfile Materiales Cantidad madera 36 ​ 1  _  4  ​ metros banderines 32 ​ 3  _ 5  ​ metros pintura 9 ​ 1  _  6  ​ metros 4. Usa los datos Los estudiantes usaron madera para construir 5 pilares en el carro. Para cada pilar usaron 5​ 7 _ 8  ​ metros de madera. ¿Cuánta madera les sobró después de construir los pilares? 5. Nicolás pinta murales en los edificios de su ciudad. Para su mural más reciente, usó 5​ 1 _ 2  ​litros de pintura roja y de pintura verde. Nicolás usó 1​ 1 _ 2  ​litros de pintura roja más que de pintura verde. ¿Cuántos litros usó Nicolás de cada color? 6. Antes del desfile, Eduardo repartió 60 banderas en tres calles. En la calle San Joaquín, repartió 26 banderas. Si en la calle Salomón y en la calle San Martín repartió la misma cantidad de banderas, ¿cuántas banderas repartió Eduardo al público en cada una de esas dos calles? Lección 3Capítulo 6
  • 61.
    57 Práctica Representarlasumadefraccionesdedistintodenominador Halla lasuma. Escribe la respuesta como fracción simplificada.  1.  ​1  __  2 ​1 ​5  __  8 ​5  2.  ​3  __  5 ​1 ​1  __  4 ​5  3.  ​1  __  2 ​1 ​1  __  5 ​5 Halla la suma usando barras de fracciones. Escríbela como fracción simplificada.  4. ​1  __  5 ​1 ​ 4  ___  10 ​5  5. ​1  __  2 ​1 ​ 3  ___  10 ​5  6. ​5  __  6 ​1 ​2  __  3 ​5  7. ​2  __  3 – ​3  __  8 5  8. ​1  __  3 ​1 ​2  __  4 ​5  9. ​1  __  2 ​1 ​1  __  8 ​5 10. ​1  __  3 ​1 ​1  __  2 ​5 11. 3  __  9 +  7  ___  10 = 12. ​5  __  8 ​1 ​2  __  5 ​5 13. ​5  __  8 ​1 ​3  __  4 ​5 14. ​3  __  4 ​1 ​2  __  3 ​5 15. 5  __  7 + 4  __  9 = 16. ​3  __  5 ​1 ​1  __  2 ​5 17. ​2  __  6 ​1 ​3  __  9 ​5 18. ​1  __  4 ​1 ​ 5  ___  12 ​5 19. 7  __  8 +  2  ___  12 = 20. ​1  __  2 ​1 ​2  __  6 ​5 21. ​ 6  ___  10 ​1 ​1  __  3 ​5 22. ​ 1  ___  12 ​1 ​3  __  4 ​5 23.  3  ___  10 +  9  ___  15 = 24. ​15  ___  20 + 4  __  8 = 25. 7  __  9 + 1  __  8 = 26.  4  ___  18 + 2  __  9 = 27. 6  __  8 + 4  __  7 = 1 ? 1 2 1 8 1 8 1 8 1 8 1 8 1 5 1 5 1 5 1 4 1 ? 1 5 1 ? 1 2 Lección 4Capítulo 6
  • 62.
    58 Práctica Representa lasuma, dibujando barras de fracciones. Escribe el resultado como fracción simplificada. 28. 2  __  5  1 3  __  4   29. 2  __  6  1 2  __  5   30. 3  __  4  1 2  __  6   31. 2  __  3  1 3  __  5   32. 1  __  4  1 1  __  8   33. 3  __  6  1 2  __  3   34. 5  __  6  1 1  __  4   35. 5  __  4  1 7  __  8   36. 2  __  5  1  7  ___  10 37. 2  __  3  1 1  __  4   38. 1  __  3  1 5  __  6   39. 3  __  4  1 1  __  2   40. 2  __  4  1  6  ___  12 41. 3  __  8  1 2  __  4   Lección 4
  • 63.
    59 Práctica Representarlarestadefraccionesdedistintodenominador Usa barrasde fracciones para hallar la diferencia. Escribe la respuesta como fracción simplificada.  1.  ​5  __  6 ​2 ​2  __  3 ​5  2.  ​3  __  4 ​2 ​1  __  5 ​5  3.  ​5  __  8 ​2 ​1  __  4 ​5 Halla la diferencia usando barras de fracciones. Escríbela como fracción simplificada.  4. ​2  __  5 ​2 ​ 2  ___  10 ​5  5. ​1  __  2 ​2 ​ 1  ___  12 ​5  6. ​7  __  8 ​2 ​1  __  2 ​5 7. 8  __  9 – ​12  ___  15 5  8. ​3  __  4 ​2 ​4  __  6 ​5  9. ​2  __  3 ​2 ​1  __  5 ​5  10. ​6  __  7 ​2 ​1  __  2 ​5 11. ​18  ___  35 – 3  __  7 5 12. ​4  __  5 ​2 ​ 3  ___  10 ​5 13. ​ 7  ___  12 ​2 ​1  __  3 ​5 14. ​1  __  4 ​2 ​ 1  ___  10 ​5 15.  9  ___  10 – 7  __  8 5 16. ​7  __  8 ​2 ​3  __  8 ​5 17. ​5  __  7 ​2 ​1  __  2 ​5 18. ​8  __  9 ​2 ​1  __  3 ​5 19. ​12  ___  14 – ​15  ___  20 5 20. ​ 4  ___  10 ​2 ​1  __  4 ​5 21. ​6  __  7 ​2 ​1  __  3 ​5 22. ​3  __  4 ​2 ​1  __  2 ​5 23. ​15  ___  20 –  7  ___  15 5 24. 7  __  9 2 1  __  4 5 25.  4  ___  10 2 1  __  5 5 26.  6  ___  18 2 2  __  7 5 27.  9  ___  10 2 3  __  8 5 1 1 6 1 3 1 3 1 6 1 6 1 6 1 6 1 1 4 1 5 1 4 1 4 1 1 8 1 4 1 8 1 8 1 8 1 8 Lección 5Capítulo 6
  • 64.
    60 Práctica Representa lasuma, dibujando barras de fracciones. Escribe el resultado como fracción simplificada. 28. 1  __  4 – 1  __  6 29. 1  __  6 – 1  __  3 30. 1  __  2 – 1  __  3 31. 1  __  3 – 1  __  4 32. 3  __  4 – 1  __  8 33.  5  ___  12 – 1  __  3 34. 4  __  5 –  3  ___  10 35. 7  __  8 – 4  __  8 36. 2  __  6 – 2  __  8 37. 2  __  3 – 1  __  4 38. 3  __  5 – 1  __  7 39. 4  __  6 – 2  __  3 40. 6  __  7 – 2  __  3 41. 8  __  9 – 2  __  3 Lección 5
  • 65.
    61 Práctica Usardenominadorescomunes Halla lasuma o la diferencia. Escribe la respuesta como fracción simplificada.   1. ​4  __  5 ​1 ​1  __  2 ​   2. ​7  __  8 ​1 ​1  __  4 ​   3. ​ 1  ___  10 ​1 ​1  __  5 ​   4. ​ 7  ___  12 ​1 ​1  __  4 ​   5. ​2  __  9 ​1 ​ 1  ___  10 ​   6. ​6  __  7 ​2 ​3  __  8 ​   7. ​8  __  9 ​2 ​1  __  2 ​   8. ​3  __  4 ​2 ​1  __  5 ​   9. ​4  __  5 ​2 ​ 4  ___  15  ​ 10. ​ 7  ___  10 ​2 ​1  __  4 ​ Resolución de problemas. 11. Los Selknam u Onas fueron una comunidad que vivió en el sector norte de la Isla Grande en Tierra del Fuego y fueron vistos por primera vez en 1520. Los miembros de la tribu eran hábiles cazadores de guanacos y usaban todas las partes del animal en beneficio de la tribu. Si ​ 1   _ 2 ​del guanaco se usaba como alimento y ​ 1   _ 4 ​se usaba para hacer ropa de piel, ¿qué cantidad del guanaco se usaba? 12. Los Selknam u Onas eran hábiles para rastrear animales en Tierra del Fuego. Uno de los senderos de cacería favorito tenía una longitud de ​ 7   _ 8 ​de kilómetros, pero los cazadores solo caminaban ​ 1   _ 6 ​de kilómetro por el sendero antes de ver el primer guanaco. ¿Cuánto les queda por recorrer después de haber visto el primer guanaco? 13. Los Selknam u Onas cazaban guanacos y aves como medio de subsistencia. Si ​ 3   _ 8 ​de su fuente de alimento era carne de guanaco y ​ 2   _ 5 ​era carne de ave, ¿qué cantidad de su fuente de alimentos dependía de estos animales? A ​ 5  __  8 ​ B ​ 31  ___  40 ​ C 1 D ​ 5  __  8 ​ 14. Las mujeres onas usaban las partes filosas de los huesos de los guanacos como agujas para coser. Si un hueso de guanaco medía ​ 5   _ 6 ​de centímetro pero solo se necesitaban ​ 3   _ 4 ​de centímetro para la aguja, ¿cuánto hueso sobraba? A ​ 1  ___  12 ​de centímetro B ​1  __  2 ​centímetro C ​4  __  5 ​de centímetro D ​1  __  3 ​de centímetro Lección 6Capítulo 6
  • 66.
    62 Práctica ¿Cuál esel denominador común de las siguientes fracciones? Anótalo. 15. 7  __  8 y ​10  ___  7   = 16. 4  __  5 y 9  __  8 = 17. 2  __  3 y  1  ___  10 = 18. 14  ___  15 y 1  __  2 = 19. 1  __  4 y 3  __  8 = 20. 5  __  6 y 3  __  4 = Halla la suma o diferencia, usando un denominador común. 21. 3  __  5 – ​ 3  ___  10 = 22. 3  __  4  – 1  __  3  = 23. 8  __  9   _​​+ 7  __  8   _​​= 24. 1  __  2  – ​ 1  ___  10 = 25. 3  __  5 – 1  __  2  = 26. 3  __  5   _​​+ 5  __  7   _​​= 27. 1  __  4  1  4  ___  12 = 28. 2  __  3  1 1  __  4  = 29. 12  ___  15 –  4  ___  12 = 30. 3  __  4  1 1  __  3  = 31. 2  __  5  1 1  __  2  = 32. 14  ___  20 –  7  ___  10 = 33. 2  __  9   _​​+ 1  __  7   _​​= 34. 14  ___  20 + 7  __  2   _​​= 35. 5  __  9   _​​+  8  ___  11 = 36. 12  ___  15 – 2  __  3   _​​= 37. 3  __  8   _​​+ 7  __  9   _​​= 38.  7  ___  10 – 6  __  9   _​​= 39. 2  __  4   _​​– 1  __  7   _​​= 40. 9  __  8   _​​+ 4  __  7   _​​= 41. 10  ___  12 + 6  __  7   _​​= 42. ​12  ___  3   – 9  __  4   _​​= 43.  4  ___  12 – 1  __  3   _​​= 44. 7  __  9   _​​+ 7  __  8   _​​= 45.  1  ___  11 + 2  __  4   _​​= 46. ​ 8  ___  10 + 6  __  4   _​​= 47. 6  __  7   _​​– 5  __  8   _​​= Lección 6
  • 67.
    63 Práctica Sumaryrestarfraccionesusandoel mínimocomúnmúltiplo(m.c.m) Halla lasuma o la diferencia. Escríbela como fracción simplificada. 1. ​ 5  __  7 ​1 ​ 1  __  5 ​ 2. ​ 7  __  8 ​ ​ 1  __  2 ​ 3. ​ 8  __  9 ​1 ​ 1  __  4 ​ 4. ​ 3  __  4 ​ ​ 2  __  3 ​ 5. ​ 1  __  3 ​ ​ 4  __  5 ​ 6. ​  3  ___  10 ​ ​ 1  __  6 ​ 7. 1  ​ 7  __  9 ​ 8. ​ 1  __  3 ​ ​ 1  __  8 ​ 9. ​  7  ___  12 ​ ​ 3  __  5 ​ 10. ​ 6  __  8 ​ ​  4  ___  16 ​ Resolución de problemas. 11. Los cóndores son del tamaño aproximado de un cuervo, sin embargo, las hembras son un poco más grandes que los machos. Si la envergadura de la hembra es de 3​ 1  _ 2  ​metros y la envergadura del macho es de 2​ 3  _ 4  ​metros, ¿cuál es la diferencia entre la envergadura de la hembra y la del macho? 12. Los cóndores tienen cortejos nupciales cada dos años. Se calcula que en Chile y Argentina hay 2 500 individuos. Es considerada el ave voladora más grande del mundo, sin embargo se encuentra en peligro de extinción. Si la hembra de una de estas parejas pesa 12​ 8  __ 10  ​kilogramo y el macho pesa 12​ 1  _ 6  ​kilogramo, ¿cuál es el peso total de la pareja de cóndores? 13. Hay 320 especies de colibríes en el mundo. Al comparar dos ejemplos, el colibrí gigante tiene un tamaño de 8​ 1  _ 3  ​centímetros y el colibrí abeja tiene un tamaño de 2​ 1  _ 8  ​centímetros. ¿Cuál es la diferencia de tamaño entre estos dos colibríes? A 6 ​ 1  ___  12 ​ B 6 ​ 1  ___  11 ​ C 6 ​ 5  ___  24 ​ D 6 ​ 1  ___  24 ​ 14. Dependiendo de la especie, los colibríes ponen de uno a tres huevos. Si la madre empolló sus huevos durante 13​ 7  _ 8  ​días para su primera camada y durante 15​ 1  _ 6  ​ días para su segunda camada, ¿cuánto tiempo pasó la madre empollando ambas camadas de huevos? A 28 ​ 1  ___  24 ​ B 29 ​ 1  ___  24 ​ C 29 D 28 Lección 7Capítulo 6
  • 68.
    64 Práctica Halla elmínimo común múltiplo (m.c.m.) de las siguientes fracciones. 15. 1  __  3 y 2  __  4 = m.c.m. = 16. 2  __  5 y 6  __  8 = m.c.m. = 17. 1  __  5 y  1  ___  10 = m.c.m. = 18. 8  __  9 y 1  __  2 = m.c.m. = 19. 6  __  7 y 3  __  8 = m.c.m. = 20. 4  __  5 y 1  __  2 = m.c.m. = 21. 1  __  6 y 1  __  2 = m.c.m. = Halla la suma o diferencia, usando el mínimo común denominador. 22. 1  __  2 + 3  __  7 = 23. 1  __  6 + 7  __  8  = 24. 3  __  5   _​​– 1  __  8   _​​= 25. 3  __  4  – 3  __  5  = Escribe verdadero o falso según corresponda. 26. El m.c.m. entre 2  __  7  y 3  __  4  es 28 27. El resultado de 3  __  5  + 1  __  4  es 4  __  9   28. La diferencia entre 4  __  8  – 1  __  2  es Lección 7
  • 69.
    65 Práctica Tallerderesolucióndeproblemas Estrategia:compararestrategias Resolucióndeproblemasconsupervisión 1. Clara estudió durante 6​ 1 _ 4  ​horas para aprender de memoria su papel en los tres actos de la obra de teatro de la escuela. Estudió el primer acto durante 2​ 3  _ 4  ​horas y el segundo acto durante 1​ 5  _ 8  ​horas. ¿Por cuántas horas estudió Clara el tercer acto? 2. ¿Qué pasaría si Clara hubiera estudiado durante 5​ 7 _ 8  ​horas para aprender de memoria su papel? ¿Entonces, por cuántas horas habría estudiado Clara el tercer acto? Prácticadeestrategiasmixtas 3. En la obra musical de la escuela, ​ 1   _ 4 ​de los actores tenían papeles principales y ​ 1   _ 5 ​de los actores tenían papeles de reparto. Todos los demás actores pertenecían al coro. ¿Qué fracción de los actores de la obra musical de la escuela pertenecía al coro? 4. Laura quiere hacer tres trajes. ¿Cuántos metros de seda amarilla necesitará para hacer los trajes? 5. ¿Cuánto chifón azul más que seda amarilla necesitará Laura para hacer 2 trajes para la obra musical de la escuela? 6. Lorena compró 12​ 1 _ 2  ​litros de pintura para la escenografía. Si 8​ 1 _ 3  ​litros eran de pintura roja, 2​ 1 _ 6  ​litros eran de pintura negra y el resto era pintura blanca, ¿cuántos litros de pintura blanca había? Materiales para hacer 1 traje Tela Cantidad en metros chifón azul 3 ​ 1  _ 2  ​ seda amarilla 2 ​ 3  _ 5  ​ ribete dorado 2 ​ 6  _ 7  ​ Usa los datos. Para 4 y 5, usa la tabla. Lección 8Capítulo 6
  • 70.
    66 Práctica Capítulo 7:Valor posicional: comprender los decimales Capítulo 7 • Lección 1 Relacionarfraccionesydecimales Escribe el decimal y la fracción que muestra cada figura.   1.   2.   3.   4. Escribe cada fracción como un decimal. Puedes hacer un dibujo.   5. ​  6  ___  10 ​   6. ​  2  ____  100 ​   7. ​  1  ___  10 ​   8. ​  63  ____  100 ​ Escribe como número decimal y como fracción decimal cada ejercicio.   9. cuarenta y dos centésimos 10. nueve centésimos. 11. cinco milésimos. 12. un entero y seis décimos. ÁLGEBRA.  Halla el número que falta. 13. 9 décimos 1 7 centésimos 5 14. 6 décimos 1 centésimos 5 0,66 Resolución de problemas. 15. Escribe 5 milésimos en forma de fracción. 16. Escribe uno y treinta y cuatro centésimos en forma decimal. 17. ¿Cuál decimal muestra el gráfico? A 0,08 B 0,06 C 0,8 D 0,6 18. Ana y Berta tienen $100 cada una. Hoy Ana ha gastado 0,40 de su dinero y Berta ha gastado  8  ___  10 del suyo. Ana dice que ella ha gastado más que Berta. Explica cómo saber si Ana está en lo correcto.
  • 71.
    67 Práctica Escribe comofracción decimal. 19. Ocho décimos 20. Veinte centésimos 21. Treinta y nueve milésimos 22. Seis milésimos Escribe como número decimal. 23. ​  24  ____  100 ​= 24. 153_____ 1 000 = 25. 61_____ 1 000 = 26. ​  1  ___  10 ​ = 27. ​  7  ___  10 ​ = 28.   3  ____  100 ​= Escribe cada número decimal como fracción decimal. 29. 0,003 = 30. 0,32 = 31. 0,01 = 32. 0,4 = 33. 0,08 = 34. 0,10 = 35. 0,75 = 36. 0,3 = Completa la tabla Fracción decimal Número decimal Se lee 37. Dos centésimos 38.  7  ___  10 39. 0,007 40. Quince milésimos Lección 1
  • 72.
    68 Práctica Lección 2Capítulo7 Usarunarectanúmerica 1.  Para 0,7; 60% y ​ 1  __  5 ​, identifica que letra representa a cada cantidad en la recta 68 numérica.   Del 2 al 7, haz una recta numérica. Después, coloca cada cantidad en la recta numérica.   2.  ​4  __  5 ​ 3.  0,95 4.  21%   5.  0,30 6.  43% 7. ​3  __  5 ​ Resolución de problemas.   8. Mario caminó 25% de un km. Hernán caminó ​ 3   _ 5 ​de un km. ¿Quién caminó más? 9. Ariel terminó el 72% de su tarea. Claudio terminó 0,85 de su tarea. ¿Quién ha terminado más de la tarea? 10. ¿Cuál de los siguientes números es el menor? A 0,34 B 8% C 0,19 D ​1  __  4 ​ 11. ¿Cuál de los siguientes números es el mayor? A ​ 9  ___  10 ​ B 17% C 0,71 D 34,5% 0% 0 1 A 50% B C 100% 1 2
  • 73.
    69 Práctica Usa larecta numérica y ubica el número decimal donde corresponda. 12. 6,4 13. 3,7 14. 0,9 15. 4,8 16. 2,2 17. 5,5 18. 8,9 19. 1,1 Usa la recta numérica y ubica los siguientes números. 20. 1  __  2 21. 1,4 22. ​15  ___  8   23. 1,8 24. 4  __  3 25. 50% Lección 2
  • 74.
    70 Práctica Representarmilésimas Escribe eldecimal representado por la parte sombreada.   1.    2.    3.    4.  Escribe el valor del dígito subrayado.   5.  0,725   6.  0,018   7.  4,093   8.  6,007   9.  1,072 10.  0,896 11.  0,831 12.  2,471 13.  3,719 14.  9,103 Escribe cada número de otras dos maneras. 15. cincuenta y cuatro milésimas 16.  0,736 17.  5 1 0,7 1 0,02 1 0,006 18.  3 1 0,2 1 0,009 19.  7,081 20.  cuatro con seis milésimas Lección 3Capítulo 7
  • 75.
    71 Práctica Escribe enforma estándar y en palabras los siguientes números decimales. 21. 3 con 221 milésimas. 22. 4 con 200 milésimas. 23. 1 con 74 milésimas. 24. 3 con 141 milésimas. 25. 18 con 401 milésimas. 26. 4 con 29 milésimas. 27. 0 con 352 milésimas. 28. 7 con 136 milésimas. Anota el valor del dígito subrayado. 29. 6,553 30. 9,15 31. 1,7 32. 4,35 33. 0,1 34. 0,009 Lección 3
  • 76.
    72 Práctica Compararyordenardecimales Compara. Escribe, , o = en cada .   1.  0,37 0,370   2.  3,10 3,101   3.  0,579 0,576   4.  7,7 7,690   5.  0,812 0,821   6.  9,810 9,809   7.  0,955 0,95   8.  3,218 3,218   9.  5,202 5,220 10.  0,78 0,780 11.  4,17 4,017 12.  0,897 0,987 Ordena de menor a mayor. 13.  0,301; 0,13; 0,139; 0,5 14.  7,203; 7,032; 7; 7,2 15.  0,761; 0,67; 0,776; 0,7 16.  0,987; 0,978; 0,97; 0,98 Resolución de problemas. Del 17 al 18, usa la tabla. 17. ¿Cuál escarabajo es el más corto? ¿Y el más largo? Tamaños de escarabajos Escarabajo Tamaño (en cm) escarabajo japonés 1,295 escarabajo sanjuanero 2,518 libélula 1,063 18. Otro tipo de escarabajo tiene una longitud de 1,281 cm. ¿Cuál escarabajo mide menos de 1,281 cm? 19. Algunos tipos de escarabajos pueden saltar hasta 15 cm de altura. Imagina que tres escarabajos saltaron 14,03 cm; 14,029 cm y 14,031 cm. ¿Cuál es el orden de las alturas que los escarabajos alcanzaron, de menor a mayor? 20. Una larva de escarabajo japonés puede hibernar a 29,301 cm debajo de la superficie de la tierra. ¿Entre cuáles dos números está 29,301? A 29,103 y 29,300 B 29,21 y 29,3 C 29,3 y 29,31 D 29,31 y 29,32 Lección 4Capítulo 7
  • 77.
    73 Práctica Escribe Vo F según corresponda. 21. _______ 10  ___  40 es equivalente a 2,5 22. _______ 0,625 equivale en fracción a 5  __  8 23. _______ Toda fracción decimal puede convertirse en número decimal. 24. _______ 5  1_  8 es equivalente 0,1. Escribe , o = 25. 0, 876 0,876 26. 2,087 1,999 27. 11,89 10,99 28. 2,87 3 29. 6,51 6,49 30. 4,621 4,63 Ordena los números de menor a mayor. 31. 3,001; 3,01; 3,021; 3,101 32. 3,211; 3,112; 3,21; 3,11 33. 21,75; 21,375; 1,375; 12,57 34. 0,75; 1,9; 0,007; 2,3 ​ 1  ___  10 Lección 4
  • 78.
    74 Práctica 1. Todaslas mañanas durante sus vacaciones, la familia de Juan viaja a un nuevo sitio para conocerlo. El lunes recorren 23,91 km; el martes recorren 23,67 km y el miércoles recorren 24,09 km. ¿Qué día recorrió la familia de Juan el menor número de kilómetros? 2. Teo pasea en bicicleta cuatro días seguidos. El lunes recorre 11,87 km; el martes recorre 11,93 km; el miércoles recorre 12,12 km y el jueves recorre 12,05 km. ¿Qué día recorrió Teo la mayor distancia? Prácticadeestrategiasmixtas Del 3 al 4, usa la información del mapa. 3. Tres amigos se encuentran de viaje. Miguel viaja de Playa Bonita a Playa Llifén. Francisco viaja de Playa Huenqueheura a Playa Llifén. Pedro viaja de Piedra Azul a Playa Bonita. Mide con una regla los desplazamientos y averigua quién recorre la mayor distancia. 4. El señor Maturana hace un viaje de ida y vuelta de Cerro Llifén hasta Playa Bonita. Esta distancia mide: Tallerderesolucióndeproblemas Estrategia:hacerundiagrama Prácticadeladestrezaderesolucióndeproblemas Haz un diagrama para resolver. Playa Bonita Playa Llifén Playa Huenqueheura Piedra azul Lección 5Capítulo 7
  • 79.
    75 Práctica Sumaryrestardecimales Halla lasuma o la diferencia.  1. ​  5      1 0,9   _  ​  2. ​  11,7       2 3,04   __  ​  3. ​  12,67      1 18,5   __  ​  4. ​  16,08      1 3,49   __  ​  5. ​  18,394      1 15,602   __  ​  6. ​  32,44      2 4,78   __  ​  7. ​  0,45       1 0,071   __  ​  8. ​  0,868      2 0,23   __  ​  9. ​  17,645      1 11,268   __  ​ 10.  ​  9,46      2 0,5   __  ​ 11.  ​  25,73      1 15,48   __  ​ 12.  ​  8       2 4,091   __  ​ 13.  ​  0,12       1 1,095   __  ​ 14.  ​  1,304      2 1,239   __  ​ 15.  ​  0,49        0,561         1 2,7    ​ 16.  ​  24,006      2 2,73   __  ​ 17.  ​  8,18        0,517         1 1,304 ​ 18.  ​  0,1       2 0,025   __  ​ 19.  ​  0,775      5,31          1 3,016 ​ 20.  ​  0,003      1             1 9,44  ​ Resolución de problemas. 21. Hasta las Olimpíadas del año 2002, la velocidad récord en luge fue de 137,42 km/h. Tony Benshoof rompió ese récord con una velocidad de 139,85 km/h. ¿Por cuánto superó el récord? 22. Beatriz y su abuela compran 23 kg de harina para hacer pan amasado. Un restaurante les compra 6,5 kg más que el almacén. ¿Cuánto pan compra la amasandería? 23. Lorena compra cinta roja, blanca e hilo dorado para adornar un vestido. Si quiere comprar en total 5 m de materiales, ¿cuánto falta por comprar? A 0,46 B 0,56 C 0,26 D 1,55 24. Raúl compra género verde, amarillo, azul y negro. En total quiere comprar 20 m. ¿Cuánto le falta por comprar? A 6,54 m B 16,93 m C 4,75 m D 3,07 m Tienda Producto Metros cinta roja 3,45 m cinta blanca 0,80 m hilo dorado 0,49 m Tienda Color de género Cantidad verde 4,55 m amarillo 2,14 m azul 1,29 m negro 8,95 m Lección 6Capítulo 7
  • 80.
    76 Práctica Resuelve losejercicios. 25. 32, 465 1 132,39 = 26. 63,26 1 216,9 = 27. 143,82 1 12,7 1 2,7 = 28. 4,25 1 3,5 1 97,02 = 29. 6,8 – 2,3 = 30. 23,87 – 21,34 = 31. 144,8 – 66,02 = 32. 61,41 – 53,967 = Resuelve los ejercicios combinados. 33. ( 159,34 – 28,14) 1 4,12 = 34. 567,30 – ( 97,27 1 0,07 ) = 35. ( 720,05 – 60,34 ) – 659, 71= 36. ( 141,312 1 27,15) – 68,462 = 37. ( 223,7 1 58,6 ) 1 13,73 = 38. 1,76 – 0,44 1 2,89 = 39. ( 1,47 – 0,31) 1 73,57 = Lección 6
  • 81.
    77 Práctica Tallerderesolucióndeproblemas Destreza:estimarohallarunarespuestaexacta Prácticadeladestrezaderesolucióndeproblemas Indica sinecesitas una estimación o una respuesta exacta. Después, resuelve los problemas. 1. Sara compra ropa de hacer ejercicio en una tienda deportiva. Incluyendo el impuesto, compra zapatos por $ 41 660, calcetines por $ 3 490, pantalones por $ 9 620 y una camiseta por $ 7 840. Sara solamente tiene billetes de $ 10 000 en su billetera. ¿Cuántos billetes de $ 10 000 debe darle a la cajera por todas sus compras? 2. Alberto compra en el supermercado una pelota de basquetbol por $ 12 490 y una tabla de basquetbol con aro por $ 6 990. Ambos precios incluyen impuestos. Le da a la cajera 2 billetes de $ 10 000. ¿Cuánto vuelto debe recibir Alberto? 3. Jessica necesita $ 140 000 para comprar una bicicleta. Ella ahorra $ 10 000 cada semana. Ya ahorró $ 60 000. ¿En cuántas semanas, a partir de ahora, puede comprar Jessica la bicicleta? 4. Las manzanas que quiere comprar Carlos varían en peso de 0,2 kg a 0,4 kg. ¿Cuántos kg pesarán 12 manzanas? Aplicacionesmixtas 5. Tomás tiene 21 plantas de flores blancas, rosadas y azul lavanda. Tiene 2 plantas más de flores rosadas que de flores azul lavanda. ¿Cuál es la mayor cantidad de plantas de flores blancas que Tomás puede tener? 6. Al mediodía, la temperatura era de 18 C. En la hora siguiente, la temperatura subió 2 C. Una hora después, subió 4 C. Durante la hora siguiente, subió 6 C y, una hora más tarde, subió 8 C. ¿Cuál era la temperatura a la 1:00 p.m.? 7. Si cada pollo tiene 2 patas y cada vaca tiene 4 patas, ¿cuántas patas tienen en total 9 pollos y 23 vacas? 8. Formula un problema Vuelve al problema 6. Cambia la temperatura dada al comienzo del problema. Luego, resuélvelo. Lección 7Capítulo 7
  • 82.
    78 Práctica Solucionario Página 1· Lección 1 1. Cien millones 2. Dos millones 3. Cien mil 4. Cincuenta millones 5. Un millón 6. Setenta millones 7. Ochocientos millones 8. Quinientos mil 9. Cinco mil 10. 978 308 205 = novecientos setenta y ocho millones trescientos ocho mil doscientos cinco. 11. 217 000 531 = 200 000 000 + 10 000 000 + 7 000 000 + 500 + 30 + 1 12. 10 000 13. 5 000 000 14. 10 000 15. 1 000 16. D 17. D Página 2 18. 45 600 000 000 19. 456 000 000 20. 456 000 000 000 21. 456 000 22. 4 560 060 23. 20 000 000 + 1 000 000 + 40 000 + 500 + 3 24. 600 000 000 + 9 000 + 10 + 4 25. 400 000 000 000 + 50 000 000 000 + 2 000 000 000 + 30 26. 900 000 000 000 + 900 000 + 9 27. 9 000 214 28. 74 030 002 29. 1 234 560 001 30. 789 235 120 31. 789 250 004 234 Capítulo 1 – Lección 2 Página 3 1. 2. = 3. 4. 5. 6. 7. 1134845 1299184 1345919 8. 417689200 417698100 417698200 9. 63547 63574 63745 10. 5708434 5807334 5807433 11. 2 12. 0 13. Coquimbo 14. 488 000 000 520 400 000 720 200 000 15. A 16. D Página 4 17. V 18. V 19. F 20. V 21. F 22. F 23. 41 852 45 258 45 852 24. 125 368 125 386 125 863 25. 7 124 597 7 124 587 7 124 578 26. 996 121 996 120 996 102 27. 28. 29. 30. Capítulo 1 – Lección 3 Página 5 1. 3 300 000 2. 46 000 3. 91 340 000 4. 600 000 000 5. 8 000 6. 42 991 300 7. 182 000 000 8. 539 610 000 9. 999 887 000 10. 76 800 000 11. 520 000 000 12. 700 000 000 13. Decena de mil 14. Decena de mil 15. Centena 16. Centena de mil 17. Unidad de mil 18. Unidad de millón 19. 34 000 000 20. 34 300 000 21. 34 252 000 22. 40 000 23. Desde 46 500 hasta 47 499 24. B 25. B Página 6 26. 22 400 27. 3 990 000 28. 70 000 000 29. 200 000 000 30. 4 444 000 000 31. 20 000 000 000 32. 13 000 33. 10 000 34. 860 000 000 35. 890 000 000 36. 970 000 000 37. 890 000 000 38. 530 000 000 39. 220 000 000 40. 40 000 41. 650 000 42. 320 000 43. 180 000 44. 70 000 45. 500 000 Capítulo 1 – Lección 4 Página 7 1. 13 610 2. 78 051 3. 3 991 4. 1 006 048 5. 5 555 067 6. 293 142 7. 33 923 8. 923 870 9. 13 262 274 10. 3 452 622 11. 222 574 12. 1 175 583 13. 43 170 14. 2 139 978 15. 136 249 16. 10 736 17. 27 093 18. 629 106 19. 14 960 20. 54 700 21. C 22. 15 450 Página 8 23. 12 540 903 24. 4 176 746 25. 9 629 845 26. 5 453 099 27. 2 911 058 28. 11 908 059 29. 11 908 059 30. 8 364 157 31. 555 32. 160 33. 8 485 34. 6 875 35. 21 36. 245 37. 36 690 38. 15 245 119 39. 12 Unidad 1, Capítulo 1
  • 83.
    79 Práctica Solucionario 40. 17267 Capítulo 1 – Lección 5 Página 9 1. $ 55 500 2. 7 km 3. 123454321; 12345654321; 1234567654321 4. 215 cm 5. 42 6. 42 7. 728 m 8. 42 500 Capítulo 2 – Lección 1 Página10 1. 2 700 2. 300 3. 300 4. 35 000 5. 40 000 6. 1 400 7. 1 800 8. 10 000 9. 15 000 10. 480 000 11. 36 000 12. 1 400 13. 3 600 14. 600 15. 1 000 16. 3 500 17. 45 18. 2 19. 35 20. 1 500 21. 100 22. 1 000 23. 50 24. 50 25. 24 000 26. 2 400 27. D 28. C Página 11 29. 63 30. 630 31. 6 300 32. 25 33. 250 34. 2 500 35. 18 36. 180 37. 1 800 38. 48 39. 480 40. 12 000 41. 800 42. 7 000 43. 1 000 44. 1 400 45. 1 500 46. 11 000 47. 700 48. 1 200 49. 9 000 Capítulo 2 – Lección 2 Página 12 1. 1 400 2. 600 3. 3 500 4. 400 5. 56 000 6. 4 500 7. 1 800 8. 2 400 9. 8 000 10. 8 000 11. 400 12. 500 13. 2 700 14. 40 000 15. 30 000 16. 600 17. 480 18. 54 000 19. 2 000 20. 35 000 21. No es suficiente 22. Sí, es suficiente 23. A 24. C Página 13 25. 322 26. 43 568 27. 3 496 28. 2 814 29. 7 992 30. I 31. I 32. I 33. C 34. I 35. I 36. 1080 – 1044 37. 2 400 – 2 400 38. 4 500 – 4 320 39. 400 – 425 40. 800 – 851 41. 400 – 546 42. 4 900 – 4 672 43. 5 400 – 5 016 44. 600 – 728 45. 2 800 – 2 860 46. 7 800 – 7 722 47. 600 – 627 48. 600 – 638 49. 1 600 – 1 794 50. 1 500 – 1 620 51. 600 – 646 Capítulo 2 – Lección 3 Página 14 1. 900; 952 2. 3000; 2 745 3. 3 500; 3 710 4. 1 800; 2 108 5. 1 700; 1 649 6. 1 600; 1 694 7. 7 200; 7 470 8. 200; 299 9. 1 800; 1 547 10. 2 800; 2 680 11. 1 600; 1 764 12. 2 100; 2 376 13. 1 200; 1 102 14. 480; 504 15. 1 080; 1 068 16. 1 700; 1 632 17. 2 600; 2 405 18. 2 100; 2 079 19. 800; 828 20. 4 200; 4 104 21. 3 22. 1 23. 4 24. 1 300 km 25. $220 800 26. C 27. C Página 15 28. 1 012 29. 180 30. 570 31. 84 32. 945 33. 6 290 34. 210 35. 900 36. 1 078 37. 135 38. 300 39. 392 40. 777 41. 220 42. 114 43. 840 44. 871 45. 369 46. 200 47. 2 000 48. 1 000 49. 57 50. 4 000 51. 100 52. 100 53. 5 000
  • 84.
    80 Práctica Solucionario Capítulo 2– Lección 4 Página 16 1. 3 000; 3 085 2. 2 400; 2 442 3. 8 100; 8 334 4. 4 000; 4 372 5. 28 000; 24 696 6. 2 400; 2 346 7. 6 300; 6 391 8. 800; 820 9. 4 000; 4 195 10. 6 000; 5 820 11. 2 700; 2 670 12. 1 800; 1 767 13. 900; 858 14. 1 200; 1 232 15. 80 000; 94 438 16. 12 000; 11 153 17. 160 000; 158 444 18. 4 000; 4 848 19. 5 400; 5 103 20. 1 200; 1 065 21. 700; 735 22. 15 000; 14 880 23. 1 800; 1 674 24. 2 000; 1 920 25. 4 000; 3 580 26. 12 000; 12 903 27. 3 000; 3 015 28. 28 800 kg 29. 22 800 kg 30. C 31. D Página 17 32. 1 200 33. 2 400 34. 2 400 35. 649 36. 1 216 37. 60 534 38. 30 (40+2)=1 200+60=1260 39. 60 (10+8)=600+480= 1 080 40. 80 (10+5)=800+400=1 200 41. 90 (40+5)=3 600+450=4 050 42. 2 000 43. 4 000 44. 2 800 45. 2 100 46. 3 200 47. 1 000 48. 4 800 49. 800 Capítulo 2 – Lección 5 Página 18 1. (2 200 · 4) + (900 · 7) 2. (1 900 · 5) 3. (17 · 4) – (8 · 1) 4. (2 500 · 7) + (2 200 · 3) = 24 100 24 100 – 12 000 = 12 100 5. (1200 · 6) + 3000 6. (4 · 1500) + (4 · 1000) Capítulo 2 – Lección 1 Página 19 1. 18 r 1 2. 10 r 3 3. 13 r 1 4. 13 r 2 5. 18 r 2 6. 9 r 8 7. 13 r 0 8. 11 r 4 9. 16 r 1 10. 11 r 2 11. 14 r 5 12. 21 r 3 13. 9 r 1 14. 5 r 2 15. 14 r 2 16. 11 r 2 17. 5 r 3 18. 12 r 1 19. 8 r 1 20. 9 r 0 21. 25 r 2 22. 33 r 1 23. 16 r 2 24. 13 r 2 25. 18 r 1 26. 24 r 2 27. 15 r 1 28. 10 r 2 29. 11 r 5 30. 9 r 3 31. 19 r 1 32. 6 r 5 33. 12 r 4 34. 14 r 1 35. 11 r 2 36. 6 r 3 37. 9 r 5 38. 7 r 4 39. 9 r 0 40. 5 r 4 Página 20 41. 17 42. 14 43. 7 44. 32 45. 24 46. 18 47. 5 48 a 54 dibujar bloques base 10 Capítulo 3 – Lección 2 Página 21 1. decena, 8 2. centena, 1 3. centena, 1 4. decena, 6 5. centena, 2 6. decena, 4 7. centena, 1 8. decena, 5 9. 356 10. 162 11. 94 r 4 12. 76 r 1 13. 164 14. 86 15. 83 r 7 16. 82 r 2 17. 20 en cada bus y 5 en el que no está lleno 18. 23 adultos tienen grupo completo y 9 estudiantes están en un grupo que no tiene 1. 19. B 20. C Página 22 21. 97; 5; 97 · 6+5 22. 33; 4; 33 · 7+4 23. 87; 1; 87 · 5+1 24. 315; 2; 315 · 3+2 25. 65; 8; 65 · 9+8 26. 91; 5; 91 · 7+5 27. 58; 1; 58 · 2+1 28. 291; 0; 291 · 3 29. 111; 0; 111 · 7 30. 20; 1; 20 · 9+1 Capítulo 3 – Lección 3 Página 23 1. 6 2. 20 3. 2 4. 80 5. 80 6. 40 7. 60 8. 7 9. 80 10. 20 11. 90 12. 70 13. 9 14. 400 15. 300 16. 70
  • 85.
    81 Práctica Solucionario 17. 18. 19. = 20. 100 kg 21. $ 75 22. D 23. B Página 24 24. 2 25. 9 26. 20 27. 90 28. 200 29. 900 30. 2 000 31. 9000 32. F 33. V 34. V 35. V 36. V 37. F 38. 70 39. 200 40. 5 41. 20 42. 70 43. 3 44. 1 45. 3 46. 40 Capítulo 3 – Lección 4 Página 25 1. 5 r 2 2. 4 r 2 3. 4 r 2 4. 8 r 1 5. 6 r 5 6. 5 r 8 7. 8 r 2 8. 8 r 2 9. 8 r 2 10. 8 r 3 11. 6 r 6 12. 8 r 4 13. 5 r 2 14. 8 r 4 15. 11 r 0 16. 10 cartas y sobran 4 17. 4 bolitas 18. A 19. C Página 26 20. 16 : 3 21. 21 : 4 22. 36 : 5 23. 48 : 7 24. 51 : 6 25. 26 : 2 26. 11 r 0 27. 12 r 2 28. 7 r 1 29. 8 r 2 30. 7 r 4 31. 8 r 5 32. 13 r 1 33. 5 r 0 Capítulo 3 – Lección 5 Página 27 1. 6 cuentas 2. 2 más 3. 16 tazas 4. 7 latas 5. 4 para c/u 6. 11°C más cálido 7. Según datos del estudiante 8. $ 700 Capítulo 3 – Lección 6 Página 28 1. 122 2. 74 r 4 3. 90 r 5 4. 230 r 3 5. 84 6. 162 r 1 7. 102 r 3 8. 99 r 3 9. 408 10. 25 r 2 11. 91 r 1 12. 254 r 2 13. 116 r 4 14. 80 r 1 15. 39 r 3 16. 99 17. 119 r 5 18. 245 19. 224 r 1 20. 52 r 2 21. 7 22. 305 23. 70 24. 74 r 2 25. 73 26. 49 r 2 27. 125 r 4 28. 160 r 3 29. 117 autitos 30. 173 adornos 31. Dividiendo 594 en 9 32. 40 bolsas Página 29 33. 890 : 3 34. 593 : 6 35. 723 : 5 36. 817 : 2 37. 677 : 8 38. 948 : 3 39. 400 r 1 40. 288 41. 117 42. 104 43. 920 44. 135 r 2 45. 285 46. 140 47. 91 ; 91 · 5+2 48. 302 ; 302 · 2 + 0 49. 112 ; 112 · 8 + 4 50. 97 ; 97 · 3 + 1 51. 127 ; 127 · 4 + 2 Capítulo 4 – Lección 1 Página 30 1. 24 2. 100 3. 0 4. 84 5. 3 ; asociativa 6. 3 ; conmutativa 7. 4 ; distributiva y conmutativa 8. 6 ; elemento neutro 9. 0 ; absorbente del cero 10. 4 ; conmutativa y asociativa 11. 6 (10 + 4) = 60 + 24 = 84 12. 5 (10 + 5) = 50 + 25 = 75 13. 9 (10 + 7) = 90 + 63 = 153 14. (12 · 5) · 6 = 12 · (5 · 6) 15. (4 · 3) · 2 = 4 · (3 · 2) 16. (9 · 3) · 8 = (9 · 8) · 3 17. 56 animales 18. 800 metros 19. C 20. Sí, porque 4 – 3 = 1 y 5 · 1 = 5 Página 31 21. Conmutativa 22. Asociativa 23. Distributiva 24. Asociativa 25. Conmutativa 26. Distributiva 27. 504 28. 135 29. 56 30. 56 31. 72 32. 504 33. 128
  • 86.
    82 Práctica Solucionario 34. 70 35.119 36. 44 37. 199 38. 74 39. 70 40. 65 41. Sí 42. Sí 43. Sí 44. Sí Capítulo 4 – Lección 2 Página 32 1. Correcto 2. Multiplica, resta 3. Multiplica, suma 4. Multiplica, resta, suma 5. Correcto 6. Divide, resta, suma 7. 37 8. 6 9. 12 10. 40 11. 6 12. 63 13. 41 14. 8 15. 42 – 5 · 6 16. 15 + 21 : 3 17. 81 : 9 – 7 18. 3 + 12 · 4 19. 7 · 6 – 5 20. 28 : 4 + 16 21. 14 · 2 + 9 22. 15 : 5 · 12 23. 12 : 3 · 7 Página 33 24. 18 25. 21 26. 0 27. 16 28. 15 29. 21 30. 100 31. 64 32. 26 33. 28 34. 2 35. 46 36. 40 37. 15 38. 21 39. 79 40. 207, división, multiplicación, suma. 41. 25, multiplicación, resta, suma. 42. 67, división, resta, resta. 43. 22, división, suma, resta. 44. 10, división, multiplicación, resta. 45. 120, división, resta, suma. 46. 111, división, multiplicación, suma. 47. 26, división, resta, suma. Capítulo 4 – Lección 3 Página 34 1. Multiplicación, división, resta = 0 2. Suma del paréntesis, división, resta = 6 3. Suma del paréntesis, división, resta = 11 4. Suma del paréntesis, multiplicación, resta = 51 5. A 6. B 7. A la división entre 49 y 7 se le suma 2. 8. Al producto de 6 y 7 se le suma 28 9. El producto de 4 y 9 se divide en la diferencia de 16 y 14. 10. 48 : (2 + 2)= 12 11. 81 : (7 + 2) + 4 = 13 12. 3 (21 + 2) – 3 = 66 13. 33 14. 63 15. C 16. 72 Página 35 17. 72 18. 7 19. 39 20. 6 21. 10 – 8 +3 22. 15 – 7 – 3 23. 3 · 3 + 4 24. 3 · 250 + 200 25. 2 + 5 26. 10 – 7 + 3 27. 14 – 14 28. 5 · 100 – 200 29. I 30. C 31. C 32. I 33. C 34. I 35. C 36. I 37. I 38. C 39. I 40. C Capítulo 4 – Lección 4 Página 36 1. $ 2 059 200 2. 1 200 Km 3. $ 8 060 4. 45 · 10 = 5. 45 · 10 = = = 6. 45 · 10 = 7. 5 000 lápices; 10 ·50 = = 8. 3 000 litros; 10 · 30 = = Página 37 9. 10 000; 10 · 10 = = = 10. 20 · 3 · 5 · 5 = 1 500 11. 105; 7 · 15 = 12. 10 000; 10 · 10 = = = Capítulo 4 – Lección 5 Página 38 1. 9 2. 2 3. 12 4. 2 5. 9 6. 9 7. 2 8. 12 9. 10 10. 220 11. 40 12. 0,9 13. 4 14. 1,1 15. 19 16. 11,6 17. 4 1/4 18. 14 19. 112/3 20. 3 21. 20 22. 20,5 23. 72 24. 8,7 25. 17,5 kg. 26. 58 kg. 27. A 28. C Página 39 29. 17 30. 7 31. 576 32. 324 33. 8 34. 30 35. 3 36. X = 4 ; Y = 1 37. a = 44 ; b = 11
  • 87.
    83 Práctica Solucionario 38. c= 15 ; d = 5 39. g = 35 ; h = 33 40. z = 3 ; m = 2 41. n = 14 ; I = 10 42. f = 2 ; i = 98 43. i = 30 ; d = 30 44. ñ = 30 ; o = 12 45. p = 15 ; q = 5 46. j = 45 ; k = 100 47. r = 52 ; s = 30 Capítulo 4 – Lección 6 Página 40 1 a 8. Ver cuaderno de ejercicios. Copiar recta numérica 9. a 4 ↔ {4, 5, 6, 7, …} 10. r 7 ↔ {0, 1, 2, 3, 4, 5, 6} 11. p 15 ↔ {15, 16, 17,…} 12. l 6 ↔ {7, 8, 9, … } 13. z 8 ↔ {0, 1, 2, 3, 4, 5, 6, 7} 14. ñ 7 ↔ {8, 9, 10, …} 15. k 0 16. h 7 ↔ {8, 9, 10, …} 17. y 6 ↔ {0, 1, 2, 3, 4, 5, 6} 18. w 3 ↔ {0, 1, 2, 3} 19. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} 20. {8, 9, 10, 11, 12,…} Capítulo 4 – Lección 7 Página 41 1. 32, 128 (C : 4) 2. 14, 16 (R · 2) 3. 4, 5 (A : 10) 4. 14, 13 (m : 5) 5. Respuesta abierta 6. Respuesta abierta 7. 120 g, 144 g y 168 g respectivamente. 24 · =? 8. 2x =? 9. 3x =? Página 42 10. Sumar 2 11. Sumar 3 12. Restar 4 13. Sumar por 100 14. Restar 100 15. Restar 250 16. Restar 200 17. Restar 1500 18. 8, 9, 10 19. 63, 72, 81 20. 125,150, 500 21. 180, 1089,306 22. 15, 16, 300 23. 200, 400, 600 Capítulo 5 – Lección 1 Página 43 1 a 18. Hay infinitas posibilidades. 19. por ejemplo: 4/12=1/3=2/6 20. Por ejemplo: 4/( 16)=1/4=2/8 21. B 22. A Página 44 23. 4/10 24. 5/9 25. 2/3 26. 1/7 27. 1/5 28. 1/7 29. 5/9 30. 2/7 31. 2/5 32. 5/8 33. 1/9 34. 4/7 35 a 62. Hay infinitas respuestas. Capítulo 5 – Lección 2 Página 45 1. 7/8 2. 5/8 3. 1/3 4. 3/10 5. 2/5 6. 4/11 7. 1/2 8. 4/11 9. 4/25 10. 4/5 11. 5/6 12. 1/4 13. 1/3 14. 4/5 15. 4/19 16. 5/12 17. 3/5 18. 4/5 19. 7/10 20. 4/5 21. 4/25 22. 4/15 23. D 24. 2/5 Página 46 25. 6/7 26. 1/3 27. 2/5 28. 7/8 29. 9/10 30. 8/7 31. 2/3 32. 1/2 33. 2/3 34. 1/2 35. 3/8 36. 2/5 37. 3/5 38. 5/8 39. 2/7 40. 3/5 41. 4/9 42. 1/3 43. 2/5 44. 8/7 45. 3/19 y 2/3 46. 1/9 47. 5/4 48. 8/3 49. 1/9 50. 5/9 51. 1/100 52. 1/3 y 1/7 53. 7/8 54. 8/13 55. 1/4 56. 8/9 57. 3/11 y 2/9 58. 3/8 Capítulo 5 – Lección 3 Página 47 1. 15/8 2. 11/9 3. 6 3/4 4. 19/5 5. 26/15 6. 49/12 7. 4 1/10 8. 5 1/18 9. 20 1/3 10. 59/10 11. 28/9 12. 7 4/5 13. 31/7 14. 5 1/4 15. 8 1/7 16. 53/6 17. 85/9 18. 6 5/6 19. 23/3 20. 63/10 21. 62/15
  • 88.
    84 Práctica Solucionario 22. 73/4 23. 3 1/5 24. 5 5/6 25. 17 veces 26. 1/14 27. C 28. D Página 48 29. 1 5/9 30. 8 1/3 31. 5 1/7 32. 2 2/5 33. 5 2/6 34. 6 3/4 35. 9 1/2 36. 3 5/8 37. 8 6/7 38. 4 2/3 39. 2 1/2 40. 2 3/3 41. 4 5/8 42. 2 5/8 43. 9 7/9 44. 9 3/6 45. 18 46. 7 3/12 47. 9/7 48. 23/5 49. 41/6 50. 4 8/9 51. 7 5/10 52. 84/15 53. 22/8 54. 4 1/2 Capítulo 5 – Lección 4 Página 49 1. 2. 3. = 4. 5. 6. 7. 8. 9. 10. 11. 12. = 13. 14. = 15. 16. 17. 18. 19. 20. 21. 1/43/83/4 22. 1/6 2/3 7/9 23. 1 5/8 1 3/4 1 5/6 24. 6 6/10 6 2/3 7 3/5 25. Mágica, cónica, petra 26. Petra 27. Martes 28. Miércoles Página 50 29. 5/2 30. 2/10 31. 7/8 32. 9/4 33. 1/2 34. 5/8 35. 2/7 36. 3/7 37. Verdadero 38. Verdadero 39. Falso 40. 7/8 3/4 1/2 41. 1 1/4 10/8 5/6 42. 1 1/2 5/8 2/4 43. 9/15 15/30 4/12 44. 5/2 3/4 50/100 45. 12/4 46. 12/20 47. 3/4 48. 15/3 49. 2/3 50. 5/9 51. ambas son iguales 52. 15/8 53. 28/100 54. ambas son iguales 55. 8/5 56. 18/7 57. 3/7 58. 5/3 59. 3/860 61. 13/8 62. ambas son iguales 63. 4/8 64. 3/16 65. 6/10 66. 6/15 67. 7/7 68. ambas son iguales Capítulo 5 – Lección 5 Página 51 1. 7 cuadras 2. 70 cm. 3. A la 1:10 p.m. 4. La pelota de Leonardo 5. 6 senderos 6. Revisar cuaderno del estudiante Capítulo 6 – Lección 1 Página 52 1. 4/5 2. 3/8 3. 4/12 4. 1/2 5. 3/7 6. 2/5 7. 5/7 8. 9/10 9. 1/9 10. 1/2 11. 3/4 12. 3/10 13. 1/2 14. 1/2 15. 1/4 16. 1/4 17. 3/5 18. 4/5 19. 7/11 20. 2/5 21. 2/3 22. 6/7 23. 110 Página 53 24. 6/18 25. 4/22 26. 6/7 27. 3 1/5 28. 12/8 29. 7/12 30. 9/18 31. 45/12 32. C 33. I 34. I 35. C 36. I 37. C 38. I 39. I 40. I 41. I 42. 1 43. 1/2 44. 0 45. 3/2 46. 53/55 47. 1 48. 1/4 49. 7/27 50. 1 51. 7/21 52. 1/11 53. 15/16 Capítulo 6 – Lección 2 Página 54 1. 1/2 2. 3/7 3. 2/5 4. 5/7 5. 1/4 6. 9/10 7. 1/9 8. 1/2
  • 89.
    85 Práctica Solucionario 9. 3/4 10.3/5 11. 3/10 12. 1/2 13. 1/6 14. 1/4 15. 4/5 16. 1/2 17. 6/7 18. C 19. A Página 55 20. 3/9 21. 2/4 22. 1 23. 6/5 24. 7/20 25. 5/8 26. 3/7 27. 2/19 28. 10/4 29. 7/10 30. 1/6 31. 12/7 32. 6/11 33. 6/8 34. 3/18 35. 6/25 36. 17/45 37. 1 38. 32/37 39. 9/70 40. 10/36 41. 7/25 42. 0 43. 6/21 44. 98/100 45. 11/33 Capítulo 6 – Lección 3 Página 56 1. 1 m 2. $ 8 000 3. 14 3/5 4. 115, 625 5. 2 litros de verde y 3 1/2 de roja 6. 17 en cada una Capítulo 6 – Lección 4 Página 57 1. 1 1/8 2. 17/20 3. 7/10 4. 3/5 5. 4/5 6. 3/2 7. 7/24 8. 5/6 9. 5/8 10. 5/6 11. 31/30 12. 41/40 13. 11/8 14. 17/12 15. 73/63 16. 11/10 17. 2/3 18. 2/3 19. 25/24 20. 5/6 21. 14/15 22. 5/6 23. 9/10 24. 5/4 25. 65/72 26. 4/9 27. 37/28 Página 58 28. 23/20 29. 11/15 30. 13/12 31. 19/15 32. 3/8 33. 7/6 34. 13/12 35. 17/8 36. 11/10 37. 11/12 38. 7/6 39. 5/4 40. 1 41. 7/8 Capítulo 6 – Lección 5 Página 59 1. 1/6 2. 11/20 3. 3/8 4. 1/5 5. 5/12 6. 3/8 7. 4/45 8. 1/12 9. 7/15 10. 5/14 11. 3/35 12. ½ 13. ¼ 14. 3/20 15. 1/40 16. ½ 17. 3/14 18. 5/9 19. 3/28 20. 3/20 21. 11/21 22. ¼ 23. 17/60 24. 19/36 25. 1/5 26. 1/21 27. 21/40 Página 60 28. 1/12 29. – 1/6 30. 1/6 31. 1/12 32. 5/8 33. 1/12 34. ½ 35. 3/8 36. 1/12 37. 5/12 38. 16/35 39. 0 40. 4/21 41. 2/9 Capítulo 6 – Lección 6 Página 61 1. 13/10 2. 9/8 3. 3/10 4. 5/6 5. 29/90 6. 27/56 7. 7/18 8. 11/20 9. 8/15 10. 9/20 11. ¾ 12. 17/24 13. B 14. A Página 62 15. 56 16. 40 17. 30 18. 30 19. 8 20. 12 21. 3/10 22. 5/12 23. 127/72 24. 2/5 25. 1/10 26. 46/35 27. 7/12 28. 11/12 29. 7/15 30. 13/12 31. 9/10 32. 0 33. 23/63 34. 21/5 35. 127/99 36. 2/15 37. 83/72 38. 1/30
  • 90.
    86 Práctica Solucionario 39. 5/14 40.95/56 41. 71/42 42. 7/4 43. 0 44. 119/72 45. 13/22 46. 23/10 47. 13/56 Capítulo 6 – Lección 7 Página 63 1. 32/35 2. 3/8 3. 41/36 4. 1/12 5. 17/15 6. 2/15 7. 2/9 8. 11/24 9. 71/60 10. ½ 11. ¾ m. 12. 24 29/30 13. C 14. B Página 64 15. 12 16. 40 17. 10 18. 18 19. 56 20. 10 21. 6 22. 13/14 23. 25/24 24. 19/40 25. 3/20 26. V 27. F 28. V Capítulo 6 – Lección 8 Página 65 1. 1 7/8 2. 1 1/2 3. 11/20 4. 39/5 5. 9/5 o 1 4/5 6. 2 Capítulo 7 – Lección 1 Página 66 1. 0,3 y 3/10 2. 0,9 y 9/10 3. 0,45 y 45/100 4. 0,75 y 75/100 5. 0,6 6. 0,02 7. 0,1 8. 0,63 9. 42/100 = 0,42 10. 9/100 = 0,09 11. 5/ 1 000 = 0,005 12. 1 1/6 = 1,6 13. 0,97 14. 6 15. 0,005 16. 1,34 17. C 18. Berta ha gastado más porque 40/100=4/10 y es menor que 8/10 Página 67 19. 8/10 20. 20/100 21. 39/1000 22. 6/1000 23. 0,24 24. 0,153 25. 0,061 26. 0,1 27. 0,7 28. 0,03 29. 3/1000 30. 32/100 31. 1/100 32. 4/10 33. 8/100 34. 10/100 35. 75/100 36. 3/10 37. 2/100 ; 0,02 38. 0,7 ; siete décimos 39. 7/1000 ; siete milésimos 40. 15/1000 ; 0,015 Capítulo 7 – Lección 2 Página 68 1. A = 1/5; B = 60%; C = 0,7 2. Al 7. Ver cuaderno del estudiante 8. Hernán 9. Claudio 10. B 11. A Página 69 12. al 25. Ver cuaderno del estudiante Capítulo 7 – Lección 3 Página 70 1. 0,286 2. 0,191 3. 0,433 4. 0,555 5. 5 milésimos 6. 1 centésimo 7. 0 décimos 8. 7 milésimos 9. 2 milésimos 10. 9 centésimos 11. 1 milésimo 12. 4 décimos 13. 1 centésimo 14. 1 décimo 15. 0,054; 54/1000 16. 0,7 + 0,03 + 0,006; 736/1000 17. 5,726; cinco con setecientos veintiséis milésimos. 18. 3,209; tres con doscientos nueve milésimos 19. 7 81/1000 ; siete con ochenta y un milésimo. 20. 4,006; 4006/1000 Página 71 21. 3 + 0,2 + 0,02 + 0,001; tres con doscientos veintiún milésimos. 22. 4 + 0,2 ; cuatro con dos décimos 23. 1 + 0,7 + 0,04; uno con setenta y cuatro centésimos 24. 3+0,1+0,04+0,001; tres con ciento cuarenta y un milésimo. 25. 10+8+0,4+0,001; dieciocho con cuatrocientos un milésimo 26. 4+0,2+0,09; cuatro con veintinueve centésimos 27. 0,3+0,05+0,002; trescientos cincuenta y dos milésimas 28. 7+0,1+0,03+0,006; siete con ciento treinta y seis milésimos. 29. 3 milésimos 30. 5 centésimos 31. 7 décimos 32. 3 décimos
  • 91.
    87 Práctica Solucionario 33. 1décimo 34. 9 milésimos Capítulo 7 – Lección 4 Página 72 1. = 2. 3. 4. 5. 6. 7. 8. = 9. 10. = 11. 12. 13. 0,13 0,139 0,301 0,5 14. 7 7,032 7,2 7,203 15. 0,670,7 0,761 0,776 16. 0,97 0,978 0,98 0,987 17. Más corto, escarabajo libélula y el más largo el escarabajo sanjuanero. 18. El escarabajo libélula 19. 14,029 14,03 14,031 20. C Página 73 21. F 22. V 23. V 24. V 25. = 26. 27. 28. 29. 30. 31. 3, 0013,013,021 3,101 32. 3,113,1123,21 3,211 33. 1,37512,5721,375 21,75 34. 0,0070,751,92,3 Capítulo 7 – Lección 5 Página 74 1. Martes 2. Miércoles 3. Miguel 4. Ver cuaderno del estudiante Capítulo 7 – Lección 6 Página 75 1. 5,9 2. 8,66 3. 31,17 4. 19,57 5. 33,996 6. 27,66 7. 0,521 8. 0,638 9. 28,913 10. 8,96 11. 41,21 12. 3,909 13. 1,215 14. 0,065 15. 3,751 16. 21,276 17. 10,001 18. 0,075 19. 9,101 20. 10,443 21. 2,43 22. 29,5 23. C 24. D Página 76 25. 164,855 26. 280,16 27. 159,22 28. 104,77 29. 4,5 30. 2,53 31. 78,78 32. 7,443 33. 135,32 34. 469,96 35. 0 36. 100 37. 296,03 38. 4,21 39. 74,73 Capítulo 7 – Lección 7 Página 77 1. 7 billetes 2. U$ 520 3. 8 semanas 4. Entre 2,4 kg y 4,8 kg 5. 17 6. 20 °C 7. 110 patas 8. Revisar cuaderno del estudiante
  • 93.