UNIVERSIDAD FERMIN TORO
DEPARTAMENTO DE FORMACION GENERAL
ESCUELA DE INGENIERIA
CABUDARE EDO. LARA

ESTRUCTURA DISCRETA

INTEGRANTE:
JUNIS CAMPOS
CI: 24544614
Definir, previa revisión Bibliográfica una proposición.
Para otros usos de este término, véase Proposición (desambiguación)
En filosofía y lógica, el término proposición se usa para referirse a:
Las entidades portadoras de los valores de verdad.
Los objetos de las creencias y de otras actitudes proposicionales.
El significado de las oraciones demostrativas, como «el Sol es una
estrella».
Es un producto lógico del pensamiento que se expresa mediante el lenguaje,
sea éste un lenguaje común o formalizado, cuando adopta la forma de oración
gramatical, o simbólico, cuando se expresa por medio de signos o símbolos de
un lenguaje formal.
En Lógica tradicional se distinguen la proposición y el juicio, por cuanto la
primera es el producto lógico del acto por el cual se afirma o se niega algo de
algo, mientras ese acto constituye el juicio.
Para Aristóteles, la proposición es un discurso enunciativo perfecto, que se
expresa en un juicio que significa lo verdadero y lo falso como juicio de
términos. Por eso el juicio es una afirmación categórica, es decir,
incondicionada porque representa adecuadamente la realidad.

Conectivos lógicos de una proposición.
LA NEGACIÓN “NO”
El valor de verdad de la negación de una proposición es el contrario al valor
de la proposición. Esto es, si la proposición es verdadera su negación es falsa,
y si la proposición es falsa, su negación será verdadera.
p *p
VF
FV
DISYUNCIÓN “O”
Se dice que el término de enlace “o” tiene dos sentidos
v Incluyente
v Excluyente
Incluyente: En el sentido incluyente hay una tercera posibilidad de que se
cumplan las dos condiciones
La disyunción de “p o q”, p * q, es la proposición que es verdadera cuando ya
sea que p o q o ambas son verdaderas; la disyunción será falsa solamente
cuando ambas proposiciones p y q sean falsas.
· Disyunción (o)
pqp*q
VVV
VFV
FVV
FFF
LA CONJUNCIÓN
La conjunción de dos proposiciones es una proposición compuesta que resulta
verdadera cuando lo son las dos proposiciones simples que la constituyen, y
falsa en caso contrario, es decir, cuando alguna de las dos es falsa.
· Conjunción (y)
pqp*q
VVV
VFF
FVF
FFF
CONDICIONAL
La condicional de dos proposiciones es una proposición compuesta que resulta
falsa cuando el antecedente es verdadero y el consecuente falso, y en los
demás casos es verdadera.
· Condicional (implica)
pqp*q
VVV
VFF
FVV
FFV
BICONDICIONAL
La bicondicional de dos proposiciones es una proposición compuesta que
resulta verdadera cuando ambas son verdaderas o ambas son falsas, y en caso
contrario es falsa.

Distintas formas proposicionales.
Sujeto:
1. Es necesario que te levantes temprano.
2. Lo racional es que continúes trabajando.
3. Parecía injusto que se olvidara de mí.
Complemento directo:
1. Veo lo que dices.
2. Pide lo que quieras.
3. Olvidé decirle a Carlos lo que me habías encargado.
4. Dijeron que vendrían hoy.
Complemento de un adjetivo:
1. Pedro está arrepentido de lo que hizo.
2. El jurado está convencido de que el reo es inocente.
3. El niño está cansado de que no lo tomen en serio.
Complemento de un adverbio:
1. Ella está muy lejos de que la inviten.
2. El pueblo está más cerca de lo que imaginan.
Conocer las leyes del Álgebra proposicional.

Así como existen identidades trigonométricas, en el Álgebra Proposicional se
cumplen leyes para cualquier proposición lógica:

MÉTODOS DE DEMOSTRACIÓN EN MATEMÁTICA
Un método de demostración es un esquema argumentativo válido con
fundamento
lógico no perteneciente en si a la matemática sino como elemento propio de
una
metateoría. La validez de la argumentación radica en la veracidad de las
hipótesis
consideradas para deducir una conclusión.
Los métodos de demostración estudiados aquí son:
• Método directo de demostración
• Métodos indirecto de demostración
por reducción al absurdo
por contrapositiva12
• Método de Inducción matemática13
12 También llamado demostración por contrareciproca. 37
3.2 MÉTODO DIRECTO DE DEMOSTRACIÓN

En el método de demostración directa se tiene como hipótesis verdaderas las
proposiciones H1 y H2 y… y Hn procediendo a la deducción de que la
conclusión
Q es verdadera a través de un proceso lógico deductivo, es decir como una
cadena de implicaciones lógicas. El esquema de demostración en el método
directo es de la forma:
Si H1 y H2 y … y Hn entonces Q
en forma simbólica:
H1 ∧ H2 ∧ … ∧ Hn → Q
El método de demostración directo tiene como fundamento lógico la regla de
inferencia clásica o esquema argumentativo válido llamado: Modus Ponens
[ P∧ (P→Q) ] →Q Modus Ponens
que significa: si la hipótesis P es verdadera y la hipótesis P implica la
conclusión
Q entonces la conclusión Q es verdadera.

Para una mejor comprensión del esquema de demostración directa se tiene
algunos ejemplos donde se identifica cada elemento en la demostración.
MÉTODOS DE DEMOSTRACIÓN INDIRECTOS
El método de demostración directa no siempre es aplicable debido a la
naturaleza
de las proposiciones a demostrar, por lo que es necesario realizar una
demostración indirecta las cuales son ampliamente usadas en matemáticas, a
continuación algunos de los métodos usuales de demostración indirecta.

METODO DE DEMOSTRACION POR REDUCCION AL ABSURDO

Se atribuye al filósofo griego Zenón de Elea, alrededor del siglo V a.C., la
invención del método de reducción al absurdo que utilizaba en sus argumentos
y
en sus famosas paradojas, desde entonces es un método ampliamente aplicado
en matemáticas.
Construir una red de circuitos lógicos de una forma proposicional.

Estructura junis

  • 1.
    UNIVERSIDAD FERMIN TORO DEPARTAMENTODE FORMACION GENERAL ESCUELA DE INGENIERIA CABUDARE EDO. LARA ESTRUCTURA DISCRETA INTEGRANTE: JUNIS CAMPOS CI: 24544614
  • 2.
    Definir, previa revisiónBibliográfica una proposición. Para otros usos de este término, véase Proposición (desambiguación) En filosofía y lógica, el término proposición se usa para referirse a: Las entidades portadoras de los valores de verdad. Los objetos de las creencias y de otras actitudes proposicionales. El significado de las oraciones demostrativas, como «el Sol es una estrella». Es un producto lógico del pensamiento que se expresa mediante el lenguaje, sea éste un lenguaje común o formalizado, cuando adopta la forma de oración gramatical, o simbólico, cuando se expresa por medio de signos o símbolos de un lenguaje formal. En Lógica tradicional se distinguen la proposición y el juicio, por cuanto la primera es el producto lógico del acto por el cual se afirma o se niega algo de algo, mientras ese acto constituye el juicio. Para Aristóteles, la proposición es un discurso enunciativo perfecto, que se expresa en un juicio que significa lo verdadero y lo falso como juicio de términos. Por eso el juicio es una afirmación categórica, es decir, incondicionada porque representa adecuadamente la realidad. Conectivos lógicos de una proposición. LA NEGACIÓN “NO” El valor de verdad de la negación de una proposición es el contrario al valor de la proposición. Esto es, si la proposición es verdadera su negación es falsa, y si la proposición es falsa, su negación será verdadera. p *p VF FV DISYUNCIÓN “O” Se dice que el término de enlace “o” tiene dos sentidos
  • 3.
    v Incluyente v Excluyente Incluyente:En el sentido incluyente hay una tercera posibilidad de que se cumplan las dos condiciones La disyunción de “p o q”, p * q, es la proposición que es verdadera cuando ya sea que p o q o ambas son verdaderas; la disyunción será falsa solamente cuando ambas proposiciones p y q sean falsas. · Disyunción (o) pqp*q VVV VFV FVV FFF LA CONJUNCIÓN La conjunción de dos proposiciones es una proposición compuesta que resulta verdadera cuando lo son las dos proposiciones simples que la constituyen, y falsa en caso contrario, es decir, cuando alguna de las dos es falsa. · Conjunción (y) pqp*q VVV VFF FVF FFF CONDICIONAL La condicional de dos proposiciones es una proposición compuesta que resulta falsa cuando el antecedente es verdadero y el consecuente falso, y en los demás casos es verdadera.
  • 4.
    · Condicional (implica) pqp*q VVV VFF FVV FFV BICONDICIONAL Labicondicional de dos proposiciones es una proposición compuesta que resulta verdadera cuando ambas son verdaderas o ambas son falsas, y en caso contrario es falsa. Distintas formas proposicionales. Sujeto: 1. Es necesario que te levantes temprano. 2. Lo racional es que continúes trabajando. 3. Parecía injusto que se olvidara de mí. Complemento directo: 1. Veo lo que dices. 2. Pide lo que quieras. 3. Olvidé decirle a Carlos lo que me habías encargado. 4. Dijeron que vendrían hoy. Complemento de un adjetivo: 1. Pedro está arrepentido de lo que hizo. 2. El jurado está convencido de que el reo es inocente. 3. El niño está cansado de que no lo tomen en serio. Complemento de un adverbio: 1. Ella está muy lejos de que la inviten. 2. El pueblo está más cerca de lo que imaginan.
  • 5.
    Conocer las leyesdel Álgebra proposicional. Así como existen identidades trigonométricas, en el Álgebra Proposicional se cumplen leyes para cualquier proposición lógica: MÉTODOS DE DEMOSTRACIÓN EN MATEMÁTICA Un método de demostración es un esquema argumentativo válido con fundamento lógico no perteneciente en si a la matemática sino como elemento propio de una metateoría. La validez de la argumentación radica en la veracidad de las hipótesis consideradas para deducir una conclusión. Los métodos de demostración estudiados aquí son: • Método directo de demostración • Métodos indirecto de demostración por reducción al absurdo por contrapositiva12 • Método de Inducción matemática13
  • 6.
    12 También llamadodemostración por contrareciproca. 37 3.2 MÉTODO DIRECTO DE DEMOSTRACIÓN En el método de demostración directa se tiene como hipótesis verdaderas las proposiciones H1 y H2 y… y Hn procediendo a la deducción de que la conclusión Q es verdadera a través de un proceso lógico deductivo, es decir como una cadena de implicaciones lógicas. El esquema de demostración en el método directo es de la forma: Si H1 y H2 y … y Hn entonces Q en forma simbólica: H1 ∧ H2 ∧ … ∧ Hn → Q El método de demostración directo tiene como fundamento lógico la regla de inferencia clásica o esquema argumentativo válido llamado: Modus Ponens [ P∧ (P→Q) ] →Q Modus Ponens que significa: si la hipótesis P es verdadera y la hipótesis P implica la conclusión Q entonces la conclusión Q es verdadera. Para una mejor comprensión del esquema de demostración directa se tiene algunos ejemplos donde se identifica cada elemento en la demostración. MÉTODOS DE DEMOSTRACIÓN INDIRECTOS
  • 7.
    El método dedemostración directa no siempre es aplicable debido a la naturaleza de las proposiciones a demostrar, por lo que es necesario realizar una demostración indirecta las cuales son ampliamente usadas en matemáticas, a continuación algunos de los métodos usuales de demostración indirecta. METODO DE DEMOSTRACION POR REDUCCION AL ABSURDO Se atribuye al filósofo griego Zenón de Elea, alrededor del siglo V a.C., la invención del método de reducción al absurdo que utilizaba en sus argumentos y en sus famosas paradojas, desde entonces es un método ampliamente aplicado en matemáticas.
  • 8.
    Construir una redde circuitos lógicos de una forma proposicional.