SlideShare una empresa de Scribd logo
1 de 40
Descargar para leer sin conexión
Lo primero que nos llama la atención es lo pequeña que parecer nuestra
nariz y es precisamente este órgano, el que hace, en gran parte, que
nuestro rostro sea nuestro rostro. Que contenga el gesto que nos hace
ser lo que somos.
Estudios sobre el rostro
Primeramente para lograr entender la estructuración de superficies curvas y paraboloideales se comenzó
a estudiar el rostro, reconociéndolo con el tacto y dibujándolo de manera tridimensional con algún tipo
de papel. Al poder encontrarnos con las líneas que rigen estas superficies menores podremos tener las
herramientas suficientes para enfrentar un problema mayor, como grandes superficies tensadas.
Abstracción en papel aluminio Abstracción en papel blanco Abstracción en yeso
3
4
Proporciones del rostro
Para dibujar un rostro hay una serie de medidas y proporciones que se mantienen más o menos fijas independiente-
mente de las características particulares de cada uno. Digamos que existen unas proporciones por tener cráneo un
cráneo humano que se mantienen y nos diferencian por ejemplo de otro animal como un mono o gato.
El rostro humano está proporcionado, todos tenemos un armazón o esqueleto similar que viene determinado por la
anatomía: cráneo, nariz, ojos, boca, etc. Sin embargo, estas proporciones no son absolutas ni idénticas en cada perso-
na.
Existen unas proporciones básicas que, con pequeñas variaciones, son semejantes en todas las personas, aunque las
dimensiones varían de unas a otras. Precisamente lo que diferencia los rasgos distintivos entre unos y otros y permite
que seamos únicos y diferentes son las pequeñas desproporciones personales.
Conocer estas proporciones básicas te ayudan a dibujar correctamente una cara proporcionada y te sirven de guía
aunque, al momento de realizar un retrato, hay que estudiar las variaciones personales del esquema general para
adaptar el dibujo al modelo retratado.
5
Proporciones del rostro
Si dividimos la cabeza en cuatro partes iguales
en sentido vertical observaremos lo siguiente:
Y si lo hacemos en sentido horizontal podemos
dividirla en cinco partes iguales:
La línea de los ojos divide al óvalo en dos partes iguales.
El volumen del pelo no forma parte de las proporciones
del rostro puesto que varía en cada persona, por lo tanto,
este se debe dibujar al final, cuando se tenga correctamen-
te distribuidos todos los rasgos faciales.
La anchura de la nariz viene a ser una
quinta parte del ancho de la cara.
Los ojos ocupan aproximadamente
los espacios contiguos a ésta por lo
que la separación entre ambos suele
ser igual al ancho de la nariz.
Topología del rostro
Líneas esenciales del rosto
Construcción de cabeza y rostro completo
Seguidamente se llevó a cabo la construcción de un rostro y cabeza en facetas o planos de papel sin estructura
interior. La decisión de dónde se juntaron los planos unos con otro (aristas) fue primordial, ya que estas son las que
le entregaron la estructura esencial al rostro. Esas líneas de aristas se basan en dibujos realizados y en los métodos
físicos para la reproducción del rostro.
6
Mascarillas y escudos faciales
¿Qué es una mascarilla?
Se denomina máscara quirúrgica, mascarilla quirúrgica, barbijo, cubrebocas o tapabocas a un tipo de máscara auto-
filtrante o mascarilla que cubre parcialmente el rostro y es utilizada por personal médico y sanitario para contener
bacterias y virus provenientes de la nariz y la boca del portador de la misma. Las mascarillas quirúrgicas también las
utilizan civiles en espacios públicos ante brotes o epidemias de enfermedades transmitidas por vía respiratoria, o
bien cuando el aire de un determinado lugar está contaminado.
*Mascarilla quirúrjica simple o barbijo
Efectividad
Las máscaras quirúrgicas simples protegen al usuario de ser salpicado
en la boca con fluidos corporales así como de salpicar y contagiar a sus
pacientes. También le impiden tocarse la nariz y la boca, acción que
podría provocar transferencias de virus y bacterias habiendo tenido
contacto con una superficie contaminada y luego contaminar al pa-
ciente por contacto. Por tanto reducen el esparcimiento de partículas
portadoras de bacterias o virus generadas al estornudar o toser. Sin
embargo, no están diseñadas para proteger al usuario de inhalar estas
partículas; pueden atrapar algunas pero son poco efectivas para ello,
ya que no están diseñadas para este propósito.
*Las máscaras quirúrgicas de protección especial (mascarilla FFP2 y
mascarilla FFP3) o respiradores protegen de posibles contagios así
como evitan al portador contagiar.
7
*Mascarilla protectora de tipo FFP2 rusa, filtrante
del 92% de partículas.
Mascarillas con filtro
Los mascarillas con filtro -Filtro Protección Personal (FPP)- protegen de ‘fuera hacia dentro’, ya que están diseñadas
para filtrar las partículas, aerosoles líquidos y patógenos presentes en el medio ambiente, impidiendo que sean inha-
ladas. No protegen frente a gases o vapores. Para ello, existen otro tipo de máscaras con filtros específicos para esos
casos.
*Las mascarillas autofiltrantes se rigen bajo la normativa europea UNE-EN 149 y se clasifican en base a su rendimiento
en:
Mascarillas FFP1: Tienen un 78% de eficacia de filtración mínima, 22% de fuga hacia el exterior. Protege de residuos no
tóxicos y no fibrogénicos de polvo o aerosoles. Impide que se inhalen estos y los olores molestos.
Mascarillas FFP2: 92% de eficacia de filtración mínima, 8% de fuga hacia el exterior. Igual que la anterior ofrece protec-
ción frente a residuos no tóxicos, sí frente a elementos fibrogénicos. De esta manera, impide que inhalemos fluidos
tóxicos de polvo, aerosoles y humos.
Mascarillas FFP3: 98% de eficacia de filtración mínima, 2% de fuga hacia el exterior.Actúa contra distintos tipos vene-
nosos y tóxicos de polvo, humo y aerosoles. Es eficaz contra bacterias,virus y esporas de hongos.
Este tipo de mascarillas pueden tener válvula de exhalación que facilita la respiración y evita la condensación. Este
tipo se recomiendan si se van a usar durante un periodo largo de tiempo. Sin embargo, no son aconsejables en pa-
cientes con procesos respiratorios.
Tipos de mascarilla
Existen diferentes tipos de mascarillas o cubre bocas. Las mascarillas con filtro o las quirúrgicas serían las más acon-
sejables para protegernos frente al coronavirus.
8
*Mascarilla FFP1 *Mascarilla FFP3
Respuestas ante la escasez de mascarillas por COVID-19
Durante la pandemia de enfermedad por coronavirus de 2019-2020 (COVID-19) y su extensión a prácticamente to-
dos los países del mundo, se produjo una escasez generalizada de mascarillas ante la necesidad de su uso para evitar
contagiar y ser contagiado.Ante esta situación surgieron propuestas individuales, empresariales y estatales para la
confección de las denominadas como mascarillas higiénicas, que sin cumplir las normas exigidas para las mascarillas
quirúrgicas y de protección (FFP2 y FFP3) podían cumplír una función higiénica y evitar tanto contagiar y como ser
contagiado.
Escudos Faciales
Los protectores faciales forman parte del equipo esencial en muchos de los procedimientos que se realizan en hospi-
tales. Los médicos y las enfermeras los usan cuando intuban a pacientes con COVID-19 y durante los procedimientos
quirúrgicos que pueden hacer que vuelen fragmentos de sangre y huesos.
Un estudio de simulación de tos en 2014 sugirió que un protector de rostro completo podría reducir la exposición
viral de un usuario en un 96 por ciento, cuando se usa a menos de 45 centímetros de alguien que tose.
*Lo bueno de los protectores es que el usuario puede volver a esterilizarlos y limpiarlos, por lo que pueden reutilizar-
se de manera indefinida hasta que algunos componentes se rompan o agrieten. Los escudos de plástico transparente
pueden ser más fáciles de usar, desinfectar y reutilizar que las mascarillas de tela o quirúrgicas, aunque no las rempla-
zan por completo.
9
Prototipo de FabLab Universidad de Chile
Hace un par de semanas, el Laboratorio de Fabricación Digital (Fablab) de la Facultad de Ciencias Físicas y Mate-
máticas de la Universidad de Chile anunció la creación de un escudo facial imprimible en 3D, compostable, de uso
abierto y de bajo costo. Esta iniciativa para enfrentar la pandemia fue impulsada en coordinación con una red de
300 productores y profesionales para proveer de este equipo al personal médico en distintas partes del país.Ahora,
el proyecto avanza hacia una segunda etapa de fabricación masiva para que cualquier persona con impresora 3D, en
cualquier parte de Chile o el mundo, pueda descargar el diseño de la máscara y producirla de manera correcta.
10
Problemática de los escudos faciales
La propuesta que existe es una especie de cintillo, con un superficie que cubre la parte frontal de la cabeza.Ya no bas-
ta con la mascarilla, sino que se requiere de una protección de los ojos, la nariz, la boca; pero que aún te permita mirar.
Comparando el valor económico y temporal de producción de un elemento impreso en 3D; el valor económico y
temporal del papel plegado, observamos cierta ventaja, el plegado de una lámina de papel tiene un nivel de requeri-
mientos tecnológicos, económicos y temporales mucho menores.
*El gran problema de los escudos faciales que se han desarrollado, es que quedan abiertos; frente a este problema, es que a
través del plegado se puede generar una forma de envolver una mayor área de la cabeza, disminuyendo el espacio que queda
entre la mascarilla y el rostro.
La construcción del rostro por medio de la estructuración del papel y observación cómo en este momento se están
desarrollando múltiples propuestas con el objetivo de proteger las vías respiratorias, llegando incluso a aparecer un
nuevo concepto, el de cobertores o escudos faciales, donde desde el diseño han desarrollado una serie de propues-
tas de código abierto que se están construyendo de manera 3D.
Mascarillas de papel
11
Planimetrías de mascarillas
12
Las siguientes planimetrías pueden ser replicadas en papel, utilizando el plegado y las técnicas de origami
Técnicas de plegado
Origami
El origami o papiroflexia es un arte que consiste en el plegado de papel sin usar tijeras ni pegamento para obte-
ner figuras de formas variadas, muchas de las cuales podrían considerarse como esculturas de papel. En un sentido
específico, el origami es un tipo de papiroflexia de origen japonés que incluye ciertas restricciones, (por ejemplo, no
admite cortes en el papel y se parte desde ciertas bases) con lo que el origami es papiroflexia pero no toda la papiro-
flexia es origami.
*La particularidad de esta técnica es la transformación del papel en formas de distintos tamaños partiendo de una
base inicial cuadrada o rectangular que pueden ir desde sencillos modelos hasta plegados de gran complejidad.
Origen
El arte de doblar papel se originó en China alrededor del siglo I o II d. C., llegó a Japón en el s.VI y se integró en la tra-
dición japonesa. En el periodo Heian, desde 794 hasta 1185, el origami formó parte importante en las ceremonias de
la nobleza, pues doblar papel era un lujo que solo podían darse personas de posición económica acomodada. Entre
1338 y 1573 del periodo Muromachi, el papel se volvió lo suficientemente barato para todos, y el estilo de origami
servía para distinguir un estrato social de otro, por ejemplo, entre un samurái aristócrata y un campesino. La total
democratización del arte solo ocurre entre 1603 y 1867, periodo Tokugawa, en donde se documenta la base del pájaro
y la base de la rana en el libro Senbazuru Orikata en el año 1797.
13 *Primer libro de origami de 1797
Tipos de origami
Origami de acción
El origami no sólo representa figuras inmóviles, también existen objetos móviles donde las figuras pueden moverse
de maneras ingeniosas. El origami de acción incluye modelos que vuelan, que requieren ser inflados para completar-
los o que presionando o tirando de cierta región del modelo se consigue que la figura mueva un miembro.Algunos
sostienen que, en realidad, solo este último es realmente “reconocido” como origami de acción. El origami de acción,
habiendo aparecido primero con el pájaro aleteador japonés tradicional, es bastante común. Un ejemplo son los
instrumentalistas de Robert Lang; cuando se hallan las cabezas de las figuras en sentido contrario a sus cuerpos, sus
manos se moverán, asemejándose a la acción de tocar música.
Origami modular (Kusudama)
El origami modular consiste en poner una cantidad de piezas idénticas juntas para formar un modelo completo. Las
piezas son normalmente simples pero el conjunto final puede ser complicado. Muchos de los modelos modulares de
origami son bolas decorativas como el kusudama, sin embargo la técnica difiere en que el kusudama permite que las
piezas sean puestas juntas usando hilo o pegamento.
14
*Ejemplo de origami modular: Esfera
* Ejemplo origami de acción: Sapo saltarín
Plegado en húmedo
El plegado en húmedo es una técnica de origami para producir modelos con curvas finas en vez de pliegues geomé-
tricos rectos y superficies planas. Consiste en humedecer el papel para que pueda ser moldeado fácilmente. El
modelo final mantiene su forma cuando se seca. Puede ser utilizado por ejemplo para producir modelos de animales
de apariencia muy natural. Existe otra forma de realizar plegado en húmedo, se trata de colocar una capa de metilce-
lulosa al papel y esperar que esta seque. Una vez finalizado el modelo se humedece con agua para dar la forma final.
En variantes se pliega sin tratamiento y con el modelo finalizado se trata con metilcelulosa para acercar las capas de
papel en especial es extremidades de la figura.
Origami pureland
Se trata de un estilo en el que se necesita mucho cuidado y técnica en el cual solamente se puede hacer un pliegue a
la vez y no se permiten pliegues más complejos, como los invertidos. Todos los pliegues deben tener localizaciones
directas. Fue desarrollado por John Smith en los años 70 para ayudar a plegadores novatos o a aquellos con habi-
lidades motoras limitadas.A algunos diseñadores también les gusta el desafío de crear buenos modelos dentro de
límites tan estrictos.
Tipos de origami
*Ejemplo plegado en húmedo: Toro
15
16
Tipos de origami
Teselados o teselaciones
Esta rama del origami ha crecido recientemente en popularidad, pero tiene una historia extensa. Un teselado es una
regularidad o patrón de figuras que cubre o pavimenta completamente una superficie plana sin dejar huecos ni su-
perponer las figuras. Los teselados de origami se hacen normalmente con papel pero se pueden utilizar otros mate-
riales que retengan el pliegue. La historia del vestir incluye teselados hechos en tela que han sido registrados desde la
época de los egipcios.
*Fujimoto, uno de los primeros maestros japoneses del origami, publicó libros que incluían teselados y en los años 60
hubo una gran exploración de los teselados por Ron Resch. Chris Palmer es un artista que también ha trabajado ex-
tensivamente con los teselados y ha encontrado maneras de crear teselados de origami detallados a partir de la seda.
Robert Lang y Alex Bateman son dos diseñadores que utilizan programas de computadora para diseñar teselados de
origami. El primer libro estadounidense sobre el tema fue publicado por Eric Gjerde y la primera convención interna-
cional fue realizada en Brasilia (Brasil), en 2006.
* Ejemplo teselado: Teselación del remolino de Eric Gjerde
Origami clásico
*Consiste en obtener figuras a partir de una hoja cuadrada de papel, sin uso de tijeras ni pegamento.
Dobleces
doblez valle
doblez monte
Doblar y desdoblar valle
volver y línea invisible
Una figura está formada por dobleces de dos tipos, visto desde arriba:
*Valles: son dobleces que se hunden en la hoja
*Montes: son dobleces que parecen una montaña, una arista entre vértices que se proyecta hacia el observador
Un conjunto de valles y montes generado al desdoblar una figura terminada se denomina CP (Crease pattern). Es ha-
bitual que se diseñe el CP y posteriormente se realicen las instrucciones paso a paso para la figura doblada final.
17
18
Bases del origami
Tradicionalmente las bases clásicas son cuatro. Se realizan co-
menzando con una hoja cuadrada de papel:
*La base del cometa: de donde se origina la figura del cisne.
*La base del pez: de ella surge un pez.
*La base del pájaro: la grulla es un ejemplo que la ocupa.
*La base de la rana: que resulta en la rana.
A estas se añaden otras dos bases sencillas:
*La base bomba de agua: de ella resulta el globo de papel
que requiere ser inflado.
*El doblez preliminar del inglés Preliminar fold.
En la década de 1970 aparecieron varios nombres de bases
nuevas, que solamente eran modificaciones de las antiguas. Hay
poco consenso respecto de cuales son las bases del origami,
pero al menos se reconocen las primeras cuatro mencionadas.
Actualmente hay tantas bases como figuras, ya que la tendencia
actual es a diseñar una base para cada figura, por lo tanto existen
miles de bases.
En el diseño, las seis bases mencionadas pueden emplearse para
crear extremidades extra en los diseños más complejos. La base
del pájaro se ocupa generalmente para crear aves porque da
origen a 4 solapas que pueden transformarse en una cabeza, una
cola y dos alas, aunque ciertas figuras, como el caracol, también
parten de esta base.
Todas las técnicas de diseño enfocan el diseño de la figura pensando en la figura desdoblada, una hoja cuadrada con todos
los dobleces valles y montes en ella, lo que se denomina como crease pattern o patrón de doblado (uno de ellos se puede ver
en la figura de los teoremas y axiomas del origami)
Existen muchas técnicas de diseño, la mayoría inventadas en los últimos 50 años, entre las cuales Robert Lang clasifica en:
*División de puntas: Del inglés splitting points. Consiste en dividir una solapa en dos o más solapas dividiendo un
punto. La desventaja es que las solapas finales son más cortas que la original. Es muy útil para crear dedos en patas o
manos de seres vivos.
*Injerto: Del inglés grafting. Consiste en ampliar las características de una base añadiéndole otras.A partir de un cua-
drado principal, añadimos cuadrados más pequeños en las esquinas, como la figura resultante no es práctica, se toma
un cuadrado de papel que los contiene a todos. El cuadrado principal será una base principal, los demás serán bases
secundarias. El resultado es una base final más compleja que añade características adicionales al diseño básico. Por lo
general la técnica produce desperdicio de papel.
*Injerto de patrones: Del inglés pattern Grafting.A un modelo básico se le añade un patrón regular, un doblez típico
repetido muchas veces que da un efecto profesional. por ejemplo escamas en peces, dragones y caparazones en
tortugas.
*Mosaico: Del inglés tiling. Consiste en observar la figura a diseñar y descomponerla en sus bloques más básicos
(baldosas) compuestos generalmente por triángulos con dobleces internos. El punto de vista al abordar el proble-
ma de diseño es que la hoja de papel no es una sola unidad sino varias unidades flexibles, triángulos que pueden ser
separados, rectángulos o ríos que pueden injertarse. Una forma de abordar el problema es imaginar la figura final con
un diagrama de palos o segmentos. Después dibujar en el cuadrado los círculos y los ríos (se denominan así porque
parecen ríos de papel sin doblar, en medio de los círculos y semicírculos). Posteriormente estudiar el doblado de cada
“baldosa” del mosaico para que calce con las otras y dé origen a una secuencia de doblado exitosa.
*Ejemplo Origami Mosaico
Tipos de diseño en el origami
19
*Empaquetamiento de círculos: Del inglés circle packing. Cuando se desea construir una nueva figura, lo primero que
se debe hacer es contar el número de solapas que tendrá, por ejemplo si se quisiera diseñar un perro, este tiene una
cabeza, una cola y cuatro patas, por lo tanto la figura debe tener 6 solapas. Cada solapa tiene un largo del radio de un
círculo. En el inicio del diseño, en el papel cuadrado se dibujan estos 6 círculos con la restricción de que sus centros
siempre queden dentro del papel y que no se superponga un círculo con otro (ver figura). Después se conectan los
centros de los círculos contiguos con un doblez. Posteriormente se añaden dobleces secundarios. Finalmente se en-
cuentra una secuencia de doblado que origine el patrón de dobleces. Se consigue así una base para la figura, quedan-
do por añadir tan sólo los detalles.
*Moléculas: Del inglés molecules. La moléculas son polígonos, triángulos, cuadrilateros o pentágonos, los cuales si se
juntan aseguran que la figura podrá doblarse y colapsarse, dando origen a la figura final. Si se diseñó por empaqueta-
miento de círculos, las moléculas son la solución para establecer un patrón de doblado de valles y montes.
*Teoría del árbol: Del inglés tree theory. Se basa en enfocar el diseño dibujando la figura final como un árbol con
ramas, en que cada rama es una solapa. Posteriormente esto dará origen a círculos y ríos en la hoja de papel o bien a
polígonos y ríos.
*Pliegue en grilla cuadriculada: Del inglés box pleating. Consiste en empaquetar cuadrados y rectángulos dentro del
papel. El CP se ve repleto de líneas verticales y horizontales, las cuales solo pueden tener ángulos de 45° y 90°. Su
diseño es muy popular hoy en día porque ha permitido un diseño más sencillo, pero es más ineficiente en el uso del
papel que el empaquetado por círculos. La gran mayoría de los insectos y personajes humanos usan esta técnica en
solitario o complementada con otras.
*Pliegue en grilla hexagonal: Del inglés Hex pleating. Técnica de plegado de hexágonos. Intenta lograr lo mejor de dos
mundos: el empaquetamiento de círculos y el de rectángulos. Los ángulos de los pliegues son siempre múltiplos de
30°. No hay un descubridor definido, dado que ha aparecido de forma natural en las convenciones Origami Usa y
Japan Origami Academic Association.
*Ejemplo Origami empaquetamiento de círculos
20
21
Tipos de papel para origami
Casi todos los papeles más valorados y que resisten más dobleces, suelen tener fibras largas, esto de nota al romper el
papel mientras más largas las fibras mejor será para doblar. Otro criterios son los gramos por metro del papel, figuras con
muchas capas y dobleces son muy difíciles de doblar con gramos mayores a 20 gr. Papeles gruesos 40 suelen ser útiles para
plegado en húmedo.
*Origamido: Es una marca de papel fabricado en Origamido Studio a cargo de Richard Ale y Michael Lafosse. Es un pa-
pel muy caro, hecho a pedido por un artista, el cual participa en el proceso de fabricación de acuerdo a requerimien-
tos muy específicos. También puede adquirirse en una sola tienda en Internet a aproximadamente 11 dólares la hoja.
Este papel ocupa distintos tipos de fibras y es teñido con pigmentos naturales.25 Uno de los creadores del estudio,
señala en su libro, que las fibras principales de su papel son el cáñamo (cannabis sativa) y una planta brazileña abaca.
Para los insectos robert lang pidió papel 60% abaca y 40% cáñamo. Kamiya en cambio prefiere 50% abaca y 50%
cáñamo. Otras combinaciones ocupan 80 % abaca y 20% algodón.
*O-gami: Es una marca de papel artesanal, basado en los típicos componentes que han demostrado tener excelentes
características al doblar, abacá y cáñamo. Ha adquirido bastante notoriedad últimamente, ya que antes origamido
era el único lugar donde encontrar papel para las complejas figuras actuales. Podría considerarse una alternativa al
origamido.
* Figura polilla en origamido*Papel Origamido
22
*Tant: Es una marca de papel, de varias gamas de colores, no libre de ácido. Usado a veces en plegado en húmedo.
Ligeramente grueso
*Washi: Es una palabra para denominar al papel japonés hecho de forma tradicional, en el cual se ocupa la corteza de
arbustos como el kozo, gampi y Mitsumata.
*Lokta: Papel elaborado artesanalmente en Nepal.
*Papel sandwitch: Es un papel fabricado artesanalmente con papel seda en una cara, una hoja de aluminio al medio, y
en la otra papel seda.
*Papel de envolver: Es aquel papel que se usa para envolver zapatos, camisas, y que a veces se ocupa en embalaje. Sue-
le tener color blanco. Ha demostrado que es útil para hacer figuras complejas dado sus 20 gramos por metro y gran
resistencia
*Papel Kraft: También es muy resistente al doblado por sus fibras largas y quienes usan lo ocupan para practicar.
Tipos de papel para origami
* Papel Washi
23
Dibujo técnico
¿Qué es el dibujo técnico?
El dibujo técnico es un sistema de representación gráfica de diversos tipos de objetos, con el propósito de propor-
cionar información suficiente para facilitar su análisis, ayudar a elaborar su diseño y posibilitar su futura construcción
y mantenimiento. Suele realizarse con el auxilio de medios informatizados o, directamente, sobre el papel u otros
soportes planos.
La representación gráfica se basa en la geometría descriptiva y utiliza las proyecciones ortogonales para dibujar las
distintas vistas de un objeto.
Los objetos, piezas, máquinas, edificios, planos urbanos, entre otros , se suelen representar en planta (vista superior,
vista de techo, planta de piso, cubierta, entre otros ), alzado (vista frontal o anterior) y lateral (acotaciones); son nece-
sarias un mínimo de dos proyecciones (vistas del objeto) para aportar información útil del objeto, dependiendo esto
de la complejidad del mismo. Las vistas mencionadas de acuerdo al sistema ortogonal se llaman fundamentales por
pertenecer al triedro fundamental, este triedro lo conforman el plano anterior, superior y lateral.
*Dibujo técnico del símbolo monetario del euro.
24
El dibujo arquitectónico es aquel que se caracteriza por representar arquitectura, sea esta como detalle arquitectóni-
co o como espacio arquitectónico. Puede ser expresado en planta, alzado, sección, perspectiva o perspectiva axo-
nométrica.
A este tipo de dibujo se le confiere una responsabilidad, pues tiene que ser realizado pensando en las personas que
habitarán esa arquitectura, sus medidas (antropometría) y los medios para su construcción. Otros aspectos, como la
distribución de espacios, el color y el trabajo conceptual, se relacionan con el diseño arquitectónico.
Dibujo arquitectónico
*Vistas estándar usadas en el dibujo arquitectónico.
25
Sistemas de proyección
*Sistema Europeo:
El objeto se encuentra entre el observa-
dor y el plano de proyecciones.
Sistema utilizado en una gran cantidad
de países, que además han adoptado el
sistema métrico decimal como sistema
de medida, (metro, cms, mm).
*Sistema Americano:
El plano de proyección se encuentra
entre el observador y el objeto.
Una vez realizadas las seis proyecciones ortogonales sobre las caras del cubo, y manteniendo fija la cara de la proyec-
ción de la vista Frontal (A), se procede a obtener el desarrollo del cubo, que como puede apreciarse en las figuras, es
diferente según el sistema utilizado. SISTEMA ISO (EUROPEO), SISTEMA ASA (AMERICANO).
26
Denominación de vistas
*Ancho: es la distancia horizontal derecha o izquierda entre dos puntos medida sobre la perpendicular a dos planos
laterales que los contienen.
*Altura: es la diferencia de elevación entre dos puntos medidos perpendicularmente entre dos planos horizontales
que los contiene, el movimiento perpendicular es descrito como arriba o abajo.
*Profundidad: es la distancia horizontal entre dos puntos medidos sobre la perpendicular a dos planos frontales que
los contiene.
Dimensiones principales de un volumen
*Vista frontal: es la proyección del objeto obtenida en un
plano de proyección vertical, ubicado detrás del objeto. Se
proyectan las dimensiones alto y ancho.
*Vista horizontal: es la proyección del objeto obtenida en el
plano de proyección horizontal, ubicado debajo del objeto. Se
proyectan las dimensiones ancho y profundidad.
*Vista lateral izquierda o derecha: es la proyección del objeto
obtenida en un plano de proyección vertical, ubicado a la de-
recha o a la izquierda del objeto respectivamente. Se proyec-
tan las dimensiones profundidad y alto.
Vistas principales
27
Tipos de proyecciones tridimensionales
*Perspectiva Isométrica :
Este tipo de perspectiva se utiliza en cualquier representación, siendo una de las más utilizadas ya que permite
conocer las vistas, dando la misma importancia a cada una de ellas y se logra colocando ángulos de 30º en los planos
frontal y lateral.
*Perspectiva militar :
Este tipo de perspectiva se utiliza cuando se requiera conocer más a fondo la vista del plano superior, por lo tanto
estará inclinada más hacia este plano, se pueden utilizar distintos ángulos: 45º - 45º, 30º - 60º, 60º - 60º, 15º - 75º.
*Perspectiva caballera :
Este tipo de perspectiva se utiliza cuando se requiera conocer mas a fondo la vista del plano frontal, por lo tanto el
plano frontal estará perpendicular representando su verdeara magnitud (largo X largo), y la profundidad se logrará
representado los planos laterales a 45º.
28
La planimetría es la parte de la topografía que estudia el conjunto de métodos y procedimientos que tienden a
conseguir la representación a escala de todos los detalles interesantes del terreno sobre una superficie plana (plano
geometría), prescindiendo de su relieve y se representa en una proyección horizontal.
Planimetría
29
Patronajes arquitectónicos
Los patrones arquitectónicos, o patrones de arquitectura, también llamados arquetipos ofrecen soluciones a pro-
blemas de arquitectura de software en ingeniería de software. Dan una descripción de los elementos y el tipo de
relación que tienen junto con un conjunto de restricciones sobre cómo pueden ser usados. Un patrón arquitectónico
expresa un esquema de organización estructural esencial para un sistema de software, que consta de subsistemas,
sus responsabilidades e interrelaciones. En comparación con los patrones de diseño, los patrones arquitectónicos
tienen un nivel de abstracción mayor.
Aunque un patrón arquitectónico comunica una imagen de un sistema, no es una arquitectura como tal. Un patrón
arquitectónico es más un concepto que captura elementos esenciales de una arquitectura de software. Muchas
arquitecturas diferentes pueden implementar el mismo patrón y por lo tanto compartir las mismas características.
Además, los patrones son a menudo definidos como una cosa estrictamente descrita y comúnmente disponible. Por
ejemplo, la arquitectura en capas es un estilo de llamamiento-y-regreso, cuando define uno un estilo general para
interaccionar. Cuando esto es descrito estrictamente y comúnmente disponible, es un patrón.
30
*Patronajes de figuras geométricas
31
Mapa Dymaxion
El mapa Dymaxion o proyección de Fuller de la Tierra es una proyección de un mapamundi en la superficie de un po-
liedro que puede desplegarse en una red de muchas formas diferentes y aplanarse para formar un mapa bidimensio-
nal que retiene la mayor parte de la integridad proporcional relativa del mapa del globo. Fue creado por Buckminster
Fuller, quien lo patentó en 1946. En la patente la proyección mostrada es sobre un cuboctaedro. La versión de 1954
publicada por Fuller con el título The AirOcean World Map empleaba un icosaedro ligeramente modificado pero casi
completamente regular como base para la proyección,versión más conocida en la actualidad. El nombre Dymaxion
se aplicó a muchas invenciones de Fuller.
*A diferencia de la mayoría de proyecciones, el Dymaxion está concebido sólo para representar el globo entero.
32
Fuller aseguró que su mapa tenía muchas ventajas sobre otras proyecciones de superficies geográficas.
Tiene menos distorsión del tamaño relativo de las regiones, especialmente si se lo compara con la proyección de
Mercator y menos distorsión de las formas, particularmente cuando se lo compara con la proyección Gall-Peters.
Un rasgo distintivo del Dymaxion es que no tiene una dirección que vaya arriba. Fuller dijo frecuentemente que en
el universo no hay «arriba» y «abajo» ni «norte» y «sur»: sólo «dentro» y «fuera». Las fuerzas gravitacionales de las
estrellas y los planetas crean «dentro», que significa «hacia el centro gravitacional» y «fuera» que significa «lejos
del centro gravitacional».Asoció la representación de los mapas habituales con el norte arriba y el sur abajo al sesgo
cultural. Hay que destacar que hay otras proyecciones geométricas que no tienen el norte arriba.
No hay una orientación «correcta» del mapa Dymaxion. Desplegar las caras triangulares del icosaedro resulta en una
red que muestra masas de tierra casi contiguas que comprenden los continentes de la tierra, y no grupos de conti-
nentes divididos por océanos. Si se despliega de otra forma se muestra el mundo dominado por una masa de agua
conexa rodeada de tierra.
Propiedades del mapa Dymaxion
33
Paraboloide Hiperbólico
El paraboloide hiperbólico es una superficie doblemente reglada por lo que se puede construir a partir de rectas.
Por su apariencia, también se lo denomina superficie de silla de montar.
El paraboloide hiperbólico es una lámina de curvatura doble, anticlástica. Se puede definir desde dos puntos de vista
diferentes:
(I) a partir de dos curvas o (II) de dos familias de rectas.
La superficie se genera trasladando una parábola paralela a sí misma sobre otra de curvatura inversa, si las parábolas
se encuentran en dos planos que forman 90º el paraboloide hiperbólico se denomina equilátero, si no se denomina
no equilátero.
Expresado desde el punto de vista de una superficie reglada se define el paraboloide hiperbólico a través de dos
familias de rectas, una familia - las asíntotas de las hipérbolas, generatrices- que se desplaza de manera paralela,
apoyándose sobre otra formada por dos rectas - directrices- que se cruzan, de inclinaciones diferentes y separadas
una determinada distancia.
3434
Catenaria
Para el sistema de electrificación de alta potencia de los ferrocarriles,véase Catenaria (ferrocarril).
Una catenaria es una curva ideal que representa físicamente la curva generada por una cadena, cuerda o cable sin ri-
gidez flexional, suspendida de sus dos extremos y sometida a un campo gravitatorio uniforme. Esta palabra proviene
del latín catēnarĭus (‘propio de la cadena’). La evoluta de una tractriz es una catenaria.
Historia
El problema de la catenaria, planteado durante el siglo XVII, consistía en determinar la forma que adoptaba una ca-
dena o cuerda (sin rigidez flexional) dentro de un campo gravitatorio uniforme. Es decir, cuando sobre un segmento
de cuerda actuaba el propio peso de la cuerda verticalmente y era sostenido simultáneamente por las tensiones en
sus extremos, en direcciones tangentes a un segmento de curva en sus extremos. Los primeros físicos y matemáticos
que abordaron el problema supusieron que la curva era una parábola, porque empíricamente la forma de la cuerda
se parece mucho a una parábola, especialmente si se consideran longitudes pequeñas de cuerda. Pero fue Christiaan
Huygens, a los 17 años, quien demostró que la curva no era realmente una parábola, sino sólo una curva parecida,
aunque no encontró la ecuación de la catenaria.
La ecuación fue obtenida por Gottfried Leibniz, Christiaan Huygens y Johann Bernoulli en 1691, en respuesta al desafío
planteado por Jakob Bernoulli. Huygens fue el primero en utilizar el término catenaria en una carta dirigida a Leibniz
en 1690 y David Gregory escribió, ese mismo año, un tratado sobre la curva.
35
Superficies de doble curvatura
Las cubiertas formadas por paraboloides hiperbólicos se encuentran dentro de las llamadas estructuras laminares,
este tipo de estructuras se viene estudiando y construyendo de manera regular desde la primera mitad del siglo XX,
para su desarrollo fue necesaria la investigación desde distintas disciplinas: la geometría, el cálculo, los materiales y la
construcción.
Antoni Gaudí fue consciente de que el arco de la catenaria es la forma mas perfecta que la mecánica proporciona para
llevar las cargas al terreno evitando las flexiones, y aportó las primeras estructuras laminares con forma de superficies
alabeadas.
Dado un elemento lineal sometido solo a cargas verticales, la forma catenaria es precisamente la forma del eje ba-
ricéntrico que minimiza las tensiones. Esa propiedad puede aprovecharse para el diseño de arcos. De este modo un
arco en forma de catenaria invertida es precisamente la forma en la que se evita la aparición de esfuerzos distintos de
los de compresión, como son los esfuerzos cortantes o los flectores.
*Por esa razón, una curva catenaria invertida es un trazado útil para un arco en la arquitectura, forma que fue aplicada,
entre otros y fundamentalmente, por Antoni Gaudí.
*Las columnas de la Sagrada Familia de
Barcelona siguen una catenaria.
* Puente de hormigón sobre el río Ulla, en Vedra,
Galicia, España. El arco principal tiene forma de
catenaria.
36
Estas formas, cuyas definiciones y ecuaciones pueden resultar complejas, se encuentran en la Natura-
leza de manera más habitual de lo que se puede pensar, de lo que se puede deducir que son eficientes
y rentables. Además, según Gaudí, la Naturaleza crea formas que son útiles y hermosas al mismo
tiempo, por lo que, quizá, deberían ser más utilizadas que otras mas comunes en arquitectura, como
la esfera o el cubo.
Estructuras laminares
Las estructuras laminares son elementos que cubren espacios en los que predominan las dimensiones de la planta
frente al espesor de la lámina. Su forma y continuidad estructural es lo que las hace funcionar, para ello tienen que ser
lo suficientemente delgadas para no desarrollar importantes tensiones de flexión, corte o torsión. Toda su labor se
basa en que todos los esfuerzos internos sean normales, de tracción o compresión, y tangenciales .
*La carga debe estar, preferiblemente, uniformemente distribuida y no presentar variaciones bruscas ni cargas pun-
tuales. Esto indica que el apoyo de linternas o elementos puntuales sobre estas cubiertas complica su resolución.
La forma es la característica fundamental que la hace resistir, debe variar sus radios de curvatura sobre la superficie de
manera continua, el espesor se ha de relacionar de manera directa con el radio de curvatura.
Las condiciones de borde tienen que ser tales que estén libres de flexiones como el resto de la superficie. Las genera-
trices del contorno pueden estar libres o unidas.
37
Las estructuras laminares de manera general se clasifican en tres grupos:
I)   el grupo de las superficies sin curvatura en el que se encuentran las láminas plegadas. En estas predomina el esta-
do de flexión frente al de membrana.
II)  las superficies de curvatura simple, son las que tienen forma cilíndrica o cónica, en estas superficies también con-
viven los dos estados, pero en este caso el de membrana predomina sobre la flexión.
III)  las superficies de doble curvatura, dentro de las que se encuentra el paraboloide hiperbólico y son las que están
en estado de membrana puro. Las superficies de doble curvatura pueden ser de curvatura de Gauss positiva o sinclás-
ticas, a este grupo pertenecen los casquetes o los paraboloides elípticos. O de curvatura de Gauss negativa o anticlás-
ticas, en el que se encuentran el paraboloide hiperbólico y el hiperboloide.
Clasificación de estructuras laminares
* La estructura laminar del TWA Flight Center del Aeropuerto Internacional John F. Kennedy de
Nueva York, diseñado por Eero Saarinen.
38
Diferencias entre curvaturas simples y doble curvatura
Las primeras son figuras desarrollables, con curvatura de Gauss nula, y se pueden realizar a partir de figuras planas, lo
que facilita una primera aproximación al diseño y posterior construcción.
El paraboloide hiperbólico presenta una gran ventaja frente a las formas desarrollables y a las otras formas de doble
curvatura, que se genera a partir de una familia de rectas que se va apoyando sobre otras dos rectas, lo que significa
que es una superficie con dos sistemas de generatrices y directrices rectilíneas que facilitan su adaptación a plantas
de carácter ortogonal típicas de la arquitectura moderna y favorecen su construcción en cuanto a la elaboración de
los encofrados y la colocación de las armaduras. Que tenga curvaturas con el signo cambiado, y curvatura de Gauss
negativa, es otra cualidad que también la mejora frente a otras, ya que pasa a considerarse como estructura tensada
que puede ser utilizada en estructuras textiles.
El ingeniero Eduardo Torroja Miret (1899–1961) y el arquitecto Félix Candela Outeriño (1910–1997) son dos de las
figuras más destacadas dentro del mundo de las láminas de hormigón armado en el siglo XX.
Si bien Antoni Gaudí, para la construcción de paraboloides hiperbólicos, contaba solo con hiladas de ladrillo o piedra
sobre muros no paralelos en el espacio, Torroja y Candela ya tienen más medios a su alcance y consiguieron aprove-
char al máximo las virtudes del hormigón armado.
Félix Candela, años más tarde, también inició su carrera en el mundo de las láminas a través de modelos a escala. El
primero fue una lámina funicular que levantó en la Escuela Experimental de Ciudad Victoria en 1950 y fue, en 1953, en
la Colonia Vallejo cuando realizó el primer modelo de cubierta, a partir de trozos de paraboloide hiperbólico (hypar).
39
40
Las secciones rectas que se dan en un paraboloide hiperbólico pueden ser parábolas si son verticales, hipérbolas si
son horizontales o rectas si siguen la dirección de las generatrices. Esta aptitud para ser segmentado, llevó a Félix
Candela a reflexionar sobre la posibilidad de combinar diferentes trozos, para que trabajaran de manera conjunta,
siendo más eficaces que la superficie continua de un mismo hypar. Surgiendo lo que llamó “el paraguas” que admite
diversas formas, en voladizo con un apoyo central o apoyado en las cuatro esquinas.
*Son muchos los proyectos de Félix Candela que surgen de las diferentes:
*Combinaciones de porciones de hypar:
Con bordes rectos; va desde la estructura formada por una sola hoja de forma cuadrada, hasta la combinación de
varias hojas de formas romboidales. La inclinación respecto del eje vertical es otra de las variables que se pueden
introducir, para conseguir otros efectos, como en la iglesia de San José Obrero (1959).
En la cubierta de la Capilla de Cuernavaca (1958, Morelos, México) Candela enseñó las dos posibilidades de borde
curvo, la parábola en el espacio principal y la hipérbola en el contacto con el suelo.
Los ejemplos más famosos son el restaurante de Los Manantiales (1957) en Xochimilco y la nave de la destilería de
Bacardí (1960) en Cuautitlán.
41
En todo cálculo estructural uno de los objetivos primordiales es la obtención de un diseño óptimo. Tradicionalmente,
en el campo de las estructuras, un diseño óptimo es aquel que reduce al mínimo su propio peso, por lo que este ha
sido el fin de los grandes calculistas, pero no siempre es el factor determinante, o se prioriza sobre otras cualidades,
como el costo o la forma.
Las membranas son estructuras que minimizan la cantidad de material, ya que se evitan los esfuerzos de flexión y
cortante, con lo que el hormigón solo tiene que trabajar a compresión y, ayudado por el acero, a tracción.
Para que una superficie funcione como cáscara necesita formas curvas, cosa que dificulta su diseño, tanto a nivel grá-
fico como constructivo. La forma que tiene el paraboloide hiperbólico presenta las mejores cualidades como mem-
brana a nivel estructural.
a) Su doble curvatura hace que tenga la cualidad de estructura tensada por lo que cada línea de carga funciona a
compresión, cuando tiene su concavidad al interior; y a tracción cuando tiene la convexidad hacia el interior. Es decir,
hace simultáneamente la función arco y cable.Además dota de la suficiente rigidez a la superficie, no siendo necesa-
rias estructuras secundarias del tipo arcos fajones.
b) El modo de generarse a partir de dos familias de rectas permite poder definirla a partir de coordenadas cartesia-
nas, por medio de sencillas ecuaciones de primer grado, lo que facilita la distribución de las armaduras necesarias,
creando los nervios sobre las rectas generatrices.
c) Los bordes generados por las secciones de planos rectos permiten obtener rectas, parábolas o hipérbolas, que la
hace muy apta para enlazar bordes rectos con formas curvas o viceversa. Con esto, a partir de trozos de hypar se pue-
den generar infinitas formas.Además si los bordes se alejan de la dirección de una de las directrices, reparten mejor
los esfuerzos y se consigue liberar el borde, dando aspecto de liviandad a la estructura.
42

Más contenido relacionado

Similar a Jdhlzfa copia

Uso de mascarillas en la comunidad orientacion provisional mayo 2009
Uso de mascarillas en la comunidad orientacion provisional mayo 2009Uso de mascarillas en la comunidad orientacion provisional mayo 2009
Uso de mascarillas en la comunidad orientacion provisional mayo 2009
Ruth Vargas Gonzales
 
Advice on the use of masks spanish
Advice on the use of masks spanishAdvice on the use of masks spanish
Advice on the use of masks spanish
Ricardo Pantaleon
 

Similar a Jdhlzfa copia (20)

ENFERMERO
ENFERMEROENFERMERO
ENFERMERO
 
Riesgo quimico y biologico
Riesgo quimico y biologicoRiesgo quimico y biologico
Riesgo quimico y biologico
 
“Mascarillas y el virus SARS-CoV-2”
 “Mascarillas y el virus SARS-CoV-2”  “Mascarillas y el virus SARS-CoV-2”
“Mascarillas y el virus SARS-CoV-2”
 
Importancia de la circunferencia en la vida real
Importancia de la circunferencia en la vida realImportancia de la circunferencia en la vida real
Importancia de la circunferencia en la vida real
 
Lámina Final TP2020
Lámina Final TP2020Lámina Final TP2020
Lámina Final TP2020
 
Uso de mascarillas en la comunidad orientacion provisional mayo 2009
Uso de mascarillas en la comunidad orientacion provisional mayo 2009Uso de mascarillas en la comunidad orientacion provisional mayo 2009
Uso de mascarillas en la comunidad orientacion provisional mayo 2009
 
Advice on the use of masks spanish
Advice on the use of masks spanishAdvice on the use of masks spanish
Advice on the use of masks spanish
 
Kipho mascarilla k95 y 5 ply
Kipho mascarilla k95 y 5 plyKipho mascarilla k95 y 5 ply
Kipho mascarilla k95 y 5 ply
 
presentación MODULO 4 sobre bioseguridad
presentación MODULO 4 sobre bioseguridadpresentación MODULO 4 sobre bioseguridad
presentación MODULO 4 sobre bioseguridad
 
PROPUESTA DE INTERVENCION COVID-19
PROPUESTA DE INTERVENCION COVID-19PROPUESTA DE INTERVENCION COVID-19
PROPUESTA DE INTERVENCION COVID-19
 
Intubación endotraqueal
Intubación endotraquealIntubación endotraqueal
Intubación endotraqueal
 
Exposición respiratorio
Exposición respiratorioExposición respiratorio
Exposición respiratorio
 
Barreras de protección y lavado de manos
Barreras de protección y lavado de manosBarreras de protección y lavado de manos
Barreras de protección y lavado de manos
 
Anexo 1 mascarilla casera de tela
Anexo 1 mascarilla casera de telaAnexo 1 mascarilla casera de tela
Anexo 1 mascarilla casera de tela
 
Anexo 1 mascarilla casera de tela
Anexo 1 mascarilla casera de telaAnexo 1 mascarilla casera de tela
Anexo 1 mascarilla casera de tela
 
Anexo 1 mascarilla casera de tela
Anexo 1 mascarilla casera de telaAnexo 1 mascarilla casera de tela
Anexo 1 mascarilla casera de tela
 
Equipo de protección personal
Equipo de protección personalEquipo de protección personal
Equipo de protección personal
 
Equipo de proteccion personal de la OMS
Equipo de proteccion personal de la OMSEquipo de proteccion personal de la OMS
Equipo de proteccion personal de la OMS
 
Seis Sombreros Para Pensar
Seis Sombreros Para PensarSeis Sombreros Para Pensar
Seis Sombreros Para Pensar
 
PW-HSEQ-M-03 Manual de Charlas de Seguridad V1.pdf
PW-HSEQ-M-03 Manual de Charlas de Seguridad V1.pdfPW-HSEQ-M-03 Manual de Charlas de Seguridad V1.pdf
PW-HSEQ-M-03 Manual de Charlas de Seguridad V1.pdf
 

Más de JosefaCarrozaDaz (19)

Laminasfinales
LaminasfinalesLaminasfinales
Laminasfinales
 
Planimetriafran
PlanimetriafranPlanimetriafran
Planimetriafran
 
Investigacion
InvestigacionInvestigacion
Investigacion
 
Bitacoratopologicofinal
BitacoratopologicofinalBitacoratopologicofinal
Bitacoratopologicofinal
 
Final.final
Final.finalFinal.final
Final.final
 
Lamina.final.proce.jvcd
Lamina.final.proce.jvcdLamina.final.proce.jvcd
Lamina.final.proce.jvcd
 
Ttm.lamina.final.jvcd
Ttm.lamina.final.jvcdTtm.lamina.final.jvcd
Ttm.lamina.final.jvcd
 
Jvcd.planimetria.final
Jvcd.planimetria.finalJvcd.planimetria.final
Jvcd.planimetria.final
 
Planimetria.final.jvcd
Planimetria.final.jvcdPlanimetria.final.jvcd
Planimetria.final.jvcd
 
3 final
3 final3 final
3 final
 
Finallll2
Finallll2Finallll2
Finallll2
 
Jdhlzfa copia 1
Jdhlzfa copia 1Jdhlzfa copia 1
Jdhlzfa copia 1
 
Recopilacion.jvcd
Recopilacion.jvcdRecopilacion.jvcd
Recopilacion.jvcd
 
Jvcd.lf
Jvcd.lfJvcd.lf
Jvcd.lf
 
Jvcd.lf4
Jvcd.lf4Jvcd.lf4
Jvcd.lf4
 
Jvcd.lf2
Jvcd.lf2Jvcd.lf2
Jvcd.lf2
 
Jvcd.lf3
Jvcd.lf3Jvcd.lf3
Jvcd.lf3
 
Jvcd.lf1
Jvcd.lf1Jvcd.lf1
Jvcd.lf1
 
Josefa Carroza entrega final Producción Gráfica 2020
Josefa Carroza entrega final Producción Gráfica 2020Josefa Carroza entrega final Producción Gráfica 2020
Josefa Carroza entrega final Producción Gráfica 2020
 

Último

7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...
7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...
7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...
jose880240
 
Induccion Personal Mision S&A (nueva).pdf
Induccion Personal Mision S&A (nueva).pdfInduccion Personal Mision S&A (nueva).pdf
Induccion Personal Mision S&A (nueva).pdf
stefatoro1392
 

Último (9)

Metodo-cuadricula-HyST para medicion con luxometro
Metodo-cuadricula-HyST para medicion con luxometroMetodo-cuadricula-HyST para medicion con luxometro
Metodo-cuadricula-HyST para medicion con luxometro
 
7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...
7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...
7.2 -La guerra civil. Evolución de los bandos y consecuencias-Marta y Elena (...
 
LA NEUROARQUITECTURA COMO ESTRATEGIA DE DISEŇO PARA LA SALUD MENTAL
LA NEUROARQUITECTURA COMO ESTRATEGIA DE DISEŇO PARA LA SALUD MENTALLA NEUROARQUITECTURA COMO ESTRATEGIA DE DISEŇO PARA LA SALUD MENTAL
LA NEUROARQUITECTURA COMO ESTRATEGIA DE DISEŇO PARA LA SALUD MENTAL
 
word-ejercicios-tabulaciones-taller..doc
word-ejercicios-tabulaciones-taller..docword-ejercicios-tabulaciones-taller..doc
word-ejercicios-tabulaciones-taller..doc
 
Planos seriados, conceptos, caracterización y aplicaciones
Planos seriados, conceptos, caracterización y aplicacionesPlanos seriados, conceptos, caracterización y aplicaciones
Planos seriados, conceptos, caracterización y aplicaciones
 
Induccion Personal Mision S&A (nueva).pdf
Induccion Personal Mision S&A (nueva).pdfInduccion Personal Mision S&A (nueva).pdf
Induccion Personal Mision S&A (nueva).pdf
 
Blue_Aesthetic_Mood_Board_Brand_Inspiration_Poster.pdf
Blue_Aesthetic_Mood_Board_Brand_Inspiration_Poster.pdfBlue_Aesthetic_Mood_Board_Brand_Inspiration_Poster.pdf
Blue_Aesthetic_Mood_Board_Brand_Inspiration_Poster.pdf
 
TECNOLOGIA ARQUITECTONICA - CASO IQUITOS - PERU
TECNOLOGIA ARQUITECTONICA - CASO IQUITOS - PERUTECNOLOGIA ARQUITECTONICA - CASO IQUITOS - PERU
TECNOLOGIA ARQUITECTONICA - CASO IQUITOS - PERU
 
La Bauhaus y la nueva tipografía en el diseño gráfico
La Bauhaus y la nueva tipografía en el diseño gráficoLa Bauhaus y la nueva tipografía en el diseño gráfico
La Bauhaus y la nueva tipografía en el diseño gráfico
 

Jdhlzfa copia

  • 1. Lo primero que nos llama la atención es lo pequeña que parecer nuestra nariz y es precisamente este órgano, el que hace, en gran parte, que nuestro rostro sea nuestro rostro. Que contenga el gesto que nos hace ser lo que somos. Estudios sobre el rostro Primeramente para lograr entender la estructuración de superficies curvas y paraboloideales se comenzó a estudiar el rostro, reconociéndolo con el tacto y dibujándolo de manera tridimensional con algún tipo de papel. Al poder encontrarnos con las líneas que rigen estas superficies menores podremos tener las herramientas suficientes para enfrentar un problema mayor, como grandes superficies tensadas. Abstracción en papel aluminio Abstracción en papel blanco Abstracción en yeso 3
  • 2. 4 Proporciones del rostro Para dibujar un rostro hay una serie de medidas y proporciones que se mantienen más o menos fijas independiente- mente de las características particulares de cada uno. Digamos que existen unas proporciones por tener cráneo un cráneo humano que se mantienen y nos diferencian por ejemplo de otro animal como un mono o gato. El rostro humano está proporcionado, todos tenemos un armazón o esqueleto similar que viene determinado por la anatomía: cráneo, nariz, ojos, boca, etc. Sin embargo, estas proporciones no son absolutas ni idénticas en cada perso- na. Existen unas proporciones básicas que, con pequeñas variaciones, son semejantes en todas las personas, aunque las dimensiones varían de unas a otras. Precisamente lo que diferencia los rasgos distintivos entre unos y otros y permite que seamos únicos y diferentes son las pequeñas desproporciones personales. Conocer estas proporciones básicas te ayudan a dibujar correctamente una cara proporcionada y te sirven de guía aunque, al momento de realizar un retrato, hay que estudiar las variaciones personales del esquema general para adaptar el dibujo al modelo retratado.
  • 3. 5 Proporciones del rostro Si dividimos la cabeza en cuatro partes iguales en sentido vertical observaremos lo siguiente: Y si lo hacemos en sentido horizontal podemos dividirla en cinco partes iguales: La línea de los ojos divide al óvalo en dos partes iguales. El volumen del pelo no forma parte de las proporciones del rostro puesto que varía en cada persona, por lo tanto, este se debe dibujar al final, cuando se tenga correctamen- te distribuidos todos los rasgos faciales. La anchura de la nariz viene a ser una quinta parte del ancho de la cara. Los ojos ocupan aproximadamente los espacios contiguos a ésta por lo que la separación entre ambos suele ser igual al ancho de la nariz.
  • 4. Topología del rostro Líneas esenciales del rosto Construcción de cabeza y rostro completo Seguidamente se llevó a cabo la construcción de un rostro y cabeza en facetas o planos de papel sin estructura interior. La decisión de dónde se juntaron los planos unos con otro (aristas) fue primordial, ya que estas son las que le entregaron la estructura esencial al rostro. Esas líneas de aristas se basan en dibujos realizados y en los métodos físicos para la reproducción del rostro. 6
  • 5. Mascarillas y escudos faciales ¿Qué es una mascarilla? Se denomina máscara quirúrgica, mascarilla quirúrgica, barbijo, cubrebocas o tapabocas a un tipo de máscara auto- filtrante o mascarilla que cubre parcialmente el rostro y es utilizada por personal médico y sanitario para contener bacterias y virus provenientes de la nariz y la boca del portador de la misma. Las mascarillas quirúrgicas también las utilizan civiles en espacios públicos ante brotes o epidemias de enfermedades transmitidas por vía respiratoria, o bien cuando el aire de un determinado lugar está contaminado. *Mascarilla quirúrjica simple o barbijo Efectividad Las máscaras quirúrgicas simples protegen al usuario de ser salpicado en la boca con fluidos corporales así como de salpicar y contagiar a sus pacientes. También le impiden tocarse la nariz y la boca, acción que podría provocar transferencias de virus y bacterias habiendo tenido contacto con una superficie contaminada y luego contaminar al pa- ciente por contacto. Por tanto reducen el esparcimiento de partículas portadoras de bacterias o virus generadas al estornudar o toser. Sin embargo, no están diseñadas para proteger al usuario de inhalar estas partículas; pueden atrapar algunas pero son poco efectivas para ello, ya que no están diseñadas para este propósito. *Las máscaras quirúrgicas de protección especial (mascarilla FFP2 y mascarilla FFP3) o respiradores protegen de posibles contagios así como evitan al portador contagiar. 7 *Mascarilla protectora de tipo FFP2 rusa, filtrante del 92% de partículas.
  • 6. Mascarillas con filtro Los mascarillas con filtro -Filtro Protección Personal (FPP)- protegen de ‘fuera hacia dentro’, ya que están diseñadas para filtrar las partículas, aerosoles líquidos y patógenos presentes en el medio ambiente, impidiendo que sean inha- ladas. No protegen frente a gases o vapores. Para ello, existen otro tipo de máscaras con filtros específicos para esos casos. *Las mascarillas autofiltrantes se rigen bajo la normativa europea UNE-EN 149 y se clasifican en base a su rendimiento en: Mascarillas FFP1: Tienen un 78% de eficacia de filtración mínima, 22% de fuga hacia el exterior. Protege de residuos no tóxicos y no fibrogénicos de polvo o aerosoles. Impide que se inhalen estos y los olores molestos. Mascarillas FFP2: 92% de eficacia de filtración mínima, 8% de fuga hacia el exterior. Igual que la anterior ofrece protec- ción frente a residuos no tóxicos, sí frente a elementos fibrogénicos. De esta manera, impide que inhalemos fluidos tóxicos de polvo, aerosoles y humos. Mascarillas FFP3: 98% de eficacia de filtración mínima, 2% de fuga hacia el exterior.Actúa contra distintos tipos vene- nosos y tóxicos de polvo, humo y aerosoles. Es eficaz contra bacterias,virus y esporas de hongos. Este tipo de mascarillas pueden tener válvula de exhalación que facilita la respiración y evita la condensación. Este tipo se recomiendan si se van a usar durante un periodo largo de tiempo. Sin embargo, no son aconsejables en pa- cientes con procesos respiratorios. Tipos de mascarilla Existen diferentes tipos de mascarillas o cubre bocas. Las mascarillas con filtro o las quirúrgicas serían las más acon- sejables para protegernos frente al coronavirus. 8 *Mascarilla FFP1 *Mascarilla FFP3
  • 7. Respuestas ante la escasez de mascarillas por COVID-19 Durante la pandemia de enfermedad por coronavirus de 2019-2020 (COVID-19) y su extensión a prácticamente to- dos los países del mundo, se produjo una escasez generalizada de mascarillas ante la necesidad de su uso para evitar contagiar y ser contagiado.Ante esta situación surgieron propuestas individuales, empresariales y estatales para la confección de las denominadas como mascarillas higiénicas, que sin cumplir las normas exigidas para las mascarillas quirúrgicas y de protección (FFP2 y FFP3) podían cumplír una función higiénica y evitar tanto contagiar y como ser contagiado. Escudos Faciales Los protectores faciales forman parte del equipo esencial en muchos de los procedimientos que se realizan en hospi- tales. Los médicos y las enfermeras los usan cuando intuban a pacientes con COVID-19 y durante los procedimientos quirúrgicos que pueden hacer que vuelen fragmentos de sangre y huesos. Un estudio de simulación de tos en 2014 sugirió que un protector de rostro completo podría reducir la exposición viral de un usuario en un 96 por ciento, cuando se usa a menos de 45 centímetros de alguien que tose. *Lo bueno de los protectores es que el usuario puede volver a esterilizarlos y limpiarlos, por lo que pueden reutilizar- se de manera indefinida hasta que algunos componentes se rompan o agrieten. Los escudos de plástico transparente pueden ser más fáciles de usar, desinfectar y reutilizar que las mascarillas de tela o quirúrgicas, aunque no las rempla- zan por completo. 9
  • 8. Prototipo de FabLab Universidad de Chile Hace un par de semanas, el Laboratorio de Fabricación Digital (Fablab) de la Facultad de Ciencias Físicas y Mate- máticas de la Universidad de Chile anunció la creación de un escudo facial imprimible en 3D, compostable, de uso abierto y de bajo costo. Esta iniciativa para enfrentar la pandemia fue impulsada en coordinación con una red de 300 productores y profesionales para proveer de este equipo al personal médico en distintas partes del país.Ahora, el proyecto avanza hacia una segunda etapa de fabricación masiva para que cualquier persona con impresora 3D, en cualquier parte de Chile o el mundo, pueda descargar el diseño de la máscara y producirla de manera correcta. 10
  • 9. Problemática de los escudos faciales La propuesta que existe es una especie de cintillo, con un superficie que cubre la parte frontal de la cabeza.Ya no bas- ta con la mascarilla, sino que se requiere de una protección de los ojos, la nariz, la boca; pero que aún te permita mirar. Comparando el valor económico y temporal de producción de un elemento impreso en 3D; el valor económico y temporal del papel plegado, observamos cierta ventaja, el plegado de una lámina de papel tiene un nivel de requeri- mientos tecnológicos, económicos y temporales mucho menores. *El gran problema de los escudos faciales que se han desarrollado, es que quedan abiertos; frente a este problema, es que a través del plegado se puede generar una forma de envolver una mayor área de la cabeza, disminuyendo el espacio que queda entre la mascarilla y el rostro. La construcción del rostro por medio de la estructuración del papel y observación cómo en este momento se están desarrollando múltiples propuestas con el objetivo de proteger las vías respiratorias, llegando incluso a aparecer un nuevo concepto, el de cobertores o escudos faciales, donde desde el diseño han desarrollado una serie de propues- tas de código abierto que se están construyendo de manera 3D. Mascarillas de papel 11
  • 10. Planimetrías de mascarillas 12 Las siguientes planimetrías pueden ser replicadas en papel, utilizando el plegado y las técnicas de origami
  • 11. Técnicas de plegado Origami El origami o papiroflexia es un arte que consiste en el plegado de papel sin usar tijeras ni pegamento para obte- ner figuras de formas variadas, muchas de las cuales podrían considerarse como esculturas de papel. En un sentido específico, el origami es un tipo de papiroflexia de origen japonés que incluye ciertas restricciones, (por ejemplo, no admite cortes en el papel y se parte desde ciertas bases) con lo que el origami es papiroflexia pero no toda la papiro- flexia es origami. *La particularidad de esta técnica es la transformación del papel en formas de distintos tamaños partiendo de una base inicial cuadrada o rectangular que pueden ir desde sencillos modelos hasta plegados de gran complejidad. Origen El arte de doblar papel se originó en China alrededor del siglo I o II d. C., llegó a Japón en el s.VI y se integró en la tra- dición japonesa. En el periodo Heian, desde 794 hasta 1185, el origami formó parte importante en las ceremonias de la nobleza, pues doblar papel era un lujo que solo podían darse personas de posición económica acomodada. Entre 1338 y 1573 del periodo Muromachi, el papel se volvió lo suficientemente barato para todos, y el estilo de origami servía para distinguir un estrato social de otro, por ejemplo, entre un samurái aristócrata y un campesino. La total democratización del arte solo ocurre entre 1603 y 1867, periodo Tokugawa, en donde se documenta la base del pájaro y la base de la rana en el libro Senbazuru Orikata en el año 1797. 13 *Primer libro de origami de 1797
  • 12. Tipos de origami Origami de acción El origami no sólo representa figuras inmóviles, también existen objetos móviles donde las figuras pueden moverse de maneras ingeniosas. El origami de acción incluye modelos que vuelan, que requieren ser inflados para completar- los o que presionando o tirando de cierta región del modelo se consigue que la figura mueva un miembro.Algunos sostienen que, en realidad, solo este último es realmente “reconocido” como origami de acción. El origami de acción, habiendo aparecido primero con el pájaro aleteador japonés tradicional, es bastante común. Un ejemplo son los instrumentalistas de Robert Lang; cuando se hallan las cabezas de las figuras en sentido contrario a sus cuerpos, sus manos se moverán, asemejándose a la acción de tocar música. Origami modular (Kusudama) El origami modular consiste en poner una cantidad de piezas idénticas juntas para formar un modelo completo. Las piezas son normalmente simples pero el conjunto final puede ser complicado. Muchos de los modelos modulares de origami son bolas decorativas como el kusudama, sin embargo la técnica difiere en que el kusudama permite que las piezas sean puestas juntas usando hilo o pegamento. 14 *Ejemplo de origami modular: Esfera * Ejemplo origami de acción: Sapo saltarín
  • 13. Plegado en húmedo El plegado en húmedo es una técnica de origami para producir modelos con curvas finas en vez de pliegues geomé- tricos rectos y superficies planas. Consiste en humedecer el papel para que pueda ser moldeado fácilmente. El modelo final mantiene su forma cuando se seca. Puede ser utilizado por ejemplo para producir modelos de animales de apariencia muy natural. Existe otra forma de realizar plegado en húmedo, se trata de colocar una capa de metilce- lulosa al papel y esperar que esta seque. Una vez finalizado el modelo se humedece con agua para dar la forma final. En variantes se pliega sin tratamiento y con el modelo finalizado se trata con metilcelulosa para acercar las capas de papel en especial es extremidades de la figura. Origami pureland Se trata de un estilo en el que se necesita mucho cuidado y técnica en el cual solamente se puede hacer un pliegue a la vez y no se permiten pliegues más complejos, como los invertidos. Todos los pliegues deben tener localizaciones directas. Fue desarrollado por John Smith en los años 70 para ayudar a plegadores novatos o a aquellos con habi- lidades motoras limitadas.A algunos diseñadores también les gusta el desafío de crear buenos modelos dentro de límites tan estrictos. Tipos de origami *Ejemplo plegado en húmedo: Toro 15
  • 14. 16 Tipos de origami Teselados o teselaciones Esta rama del origami ha crecido recientemente en popularidad, pero tiene una historia extensa. Un teselado es una regularidad o patrón de figuras que cubre o pavimenta completamente una superficie plana sin dejar huecos ni su- perponer las figuras. Los teselados de origami se hacen normalmente con papel pero se pueden utilizar otros mate- riales que retengan el pliegue. La historia del vestir incluye teselados hechos en tela que han sido registrados desde la época de los egipcios. *Fujimoto, uno de los primeros maestros japoneses del origami, publicó libros que incluían teselados y en los años 60 hubo una gran exploración de los teselados por Ron Resch. Chris Palmer es un artista que también ha trabajado ex- tensivamente con los teselados y ha encontrado maneras de crear teselados de origami detallados a partir de la seda. Robert Lang y Alex Bateman son dos diseñadores que utilizan programas de computadora para diseñar teselados de origami. El primer libro estadounidense sobre el tema fue publicado por Eric Gjerde y la primera convención interna- cional fue realizada en Brasilia (Brasil), en 2006. * Ejemplo teselado: Teselación del remolino de Eric Gjerde
  • 15. Origami clásico *Consiste en obtener figuras a partir de una hoja cuadrada de papel, sin uso de tijeras ni pegamento. Dobleces doblez valle doblez monte Doblar y desdoblar valle volver y línea invisible Una figura está formada por dobleces de dos tipos, visto desde arriba: *Valles: son dobleces que se hunden en la hoja *Montes: son dobleces que parecen una montaña, una arista entre vértices que se proyecta hacia el observador Un conjunto de valles y montes generado al desdoblar una figura terminada se denomina CP (Crease pattern). Es ha- bitual que se diseñe el CP y posteriormente se realicen las instrucciones paso a paso para la figura doblada final. 17
  • 16. 18 Bases del origami Tradicionalmente las bases clásicas son cuatro. Se realizan co- menzando con una hoja cuadrada de papel: *La base del cometa: de donde se origina la figura del cisne. *La base del pez: de ella surge un pez. *La base del pájaro: la grulla es un ejemplo que la ocupa. *La base de la rana: que resulta en la rana. A estas se añaden otras dos bases sencillas: *La base bomba de agua: de ella resulta el globo de papel que requiere ser inflado. *El doblez preliminar del inglés Preliminar fold. En la década de 1970 aparecieron varios nombres de bases nuevas, que solamente eran modificaciones de las antiguas. Hay poco consenso respecto de cuales son las bases del origami, pero al menos se reconocen las primeras cuatro mencionadas. Actualmente hay tantas bases como figuras, ya que la tendencia actual es a diseñar una base para cada figura, por lo tanto existen miles de bases. En el diseño, las seis bases mencionadas pueden emplearse para crear extremidades extra en los diseños más complejos. La base del pájaro se ocupa generalmente para crear aves porque da origen a 4 solapas que pueden transformarse en una cabeza, una cola y dos alas, aunque ciertas figuras, como el caracol, también parten de esta base.
  • 17. Todas las técnicas de diseño enfocan el diseño de la figura pensando en la figura desdoblada, una hoja cuadrada con todos los dobleces valles y montes en ella, lo que se denomina como crease pattern o patrón de doblado (uno de ellos se puede ver en la figura de los teoremas y axiomas del origami) Existen muchas técnicas de diseño, la mayoría inventadas en los últimos 50 años, entre las cuales Robert Lang clasifica en: *División de puntas: Del inglés splitting points. Consiste en dividir una solapa en dos o más solapas dividiendo un punto. La desventaja es que las solapas finales son más cortas que la original. Es muy útil para crear dedos en patas o manos de seres vivos. *Injerto: Del inglés grafting. Consiste en ampliar las características de una base añadiéndole otras.A partir de un cua- drado principal, añadimos cuadrados más pequeños en las esquinas, como la figura resultante no es práctica, se toma un cuadrado de papel que los contiene a todos. El cuadrado principal será una base principal, los demás serán bases secundarias. El resultado es una base final más compleja que añade características adicionales al diseño básico. Por lo general la técnica produce desperdicio de papel. *Injerto de patrones: Del inglés pattern Grafting.A un modelo básico se le añade un patrón regular, un doblez típico repetido muchas veces que da un efecto profesional. por ejemplo escamas en peces, dragones y caparazones en tortugas. *Mosaico: Del inglés tiling. Consiste en observar la figura a diseñar y descomponerla en sus bloques más básicos (baldosas) compuestos generalmente por triángulos con dobleces internos. El punto de vista al abordar el proble- ma de diseño es que la hoja de papel no es una sola unidad sino varias unidades flexibles, triángulos que pueden ser separados, rectángulos o ríos que pueden injertarse. Una forma de abordar el problema es imaginar la figura final con un diagrama de palos o segmentos. Después dibujar en el cuadrado los círculos y los ríos (se denominan así porque parecen ríos de papel sin doblar, en medio de los círculos y semicírculos). Posteriormente estudiar el doblado de cada “baldosa” del mosaico para que calce con las otras y dé origen a una secuencia de doblado exitosa. *Ejemplo Origami Mosaico Tipos de diseño en el origami 19
  • 18. *Empaquetamiento de círculos: Del inglés circle packing. Cuando se desea construir una nueva figura, lo primero que se debe hacer es contar el número de solapas que tendrá, por ejemplo si se quisiera diseñar un perro, este tiene una cabeza, una cola y cuatro patas, por lo tanto la figura debe tener 6 solapas. Cada solapa tiene un largo del radio de un círculo. En el inicio del diseño, en el papel cuadrado se dibujan estos 6 círculos con la restricción de que sus centros siempre queden dentro del papel y que no se superponga un círculo con otro (ver figura). Después se conectan los centros de los círculos contiguos con un doblez. Posteriormente se añaden dobleces secundarios. Finalmente se en- cuentra una secuencia de doblado que origine el patrón de dobleces. Se consigue así una base para la figura, quedan- do por añadir tan sólo los detalles. *Moléculas: Del inglés molecules. La moléculas son polígonos, triángulos, cuadrilateros o pentágonos, los cuales si se juntan aseguran que la figura podrá doblarse y colapsarse, dando origen a la figura final. Si se diseñó por empaqueta- miento de círculos, las moléculas son la solución para establecer un patrón de doblado de valles y montes. *Teoría del árbol: Del inglés tree theory. Se basa en enfocar el diseño dibujando la figura final como un árbol con ramas, en que cada rama es una solapa. Posteriormente esto dará origen a círculos y ríos en la hoja de papel o bien a polígonos y ríos. *Pliegue en grilla cuadriculada: Del inglés box pleating. Consiste en empaquetar cuadrados y rectángulos dentro del papel. El CP se ve repleto de líneas verticales y horizontales, las cuales solo pueden tener ángulos de 45° y 90°. Su diseño es muy popular hoy en día porque ha permitido un diseño más sencillo, pero es más ineficiente en el uso del papel que el empaquetado por círculos. La gran mayoría de los insectos y personajes humanos usan esta técnica en solitario o complementada con otras. *Pliegue en grilla hexagonal: Del inglés Hex pleating. Técnica de plegado de hexágonos. Intenta lograr lo mejor de dos mundos: el empaquetamiento de círculos y el de rectángulos. Los ángulos de los pliegues son siempre múltiplos de 30°. No hay un descubridor definido, dado que ha aparecido de forma natural en las convenciones Origami Usa y Japan Origami Academic Association. *Ejemplo Origami empaquetamiento de círculos 20
  • 19. 21 Tipos de papel para origami Casi todos los papeles más valorados y que resisten más dobleces, suelen tener fibras largas, esto de nota al romper el papel mientras más largas las fibras mejor será para doblar. Otro criterios son los gramos por metro del papel, figuras con muchas capas y dobleces son muy difíciles de doblar con gramos mayores a 20 gr. Papeles gruesos 40 suelen ser útiles para plegado en húmedo. *Origamido: Es una marca de papel fabricado en Origamido Studio a cargo de Richard Ale y Michael Lafosse. Es un pa- pel muy caro, hecho a pedido por un artista, el cual participa en el proceso de fabricación de acuerdo a requerimien- tos muy específicos. También puede adquirirse en una sola tienda en Internet a aproximadamente 11 dólares la hoja. Este papel ocupa distintos tipos de fibras y es teñido con pigmentos naturales.25 Uno de los creadores del estudio, señala en su libro, que las fibras principales de su papel son el cáñamo (cannabis sativa) y una planta brazileña abaca. Para los insectos robert lang pidió papel 60% abaca y 40% cáñamo. Kamiya en cambio prefiere 50% abaca y 50% cáñamo. Otras combinaciones ocupan 80 % abaca y 20% algodón. *O-gami: Es una marca de papel artesanal, basado en los típicos componentes que han demostrado tener excelentes características al doblar, abacá y cáñamo. Ha adquirido bastante notoriedad últimamente, ya que antes origamido era el único lugar donde encontrar papel para las complejas figuras actuales. Podría considerarse una alternativa al origamido. * Figura polilla en origamido*Papel Origamido
  • 20. 22 *Tant: Es una marca de papel, de varias gamas de colores, no libre de ácido. Usado a veces en plegado en húmedo. Ligeramente grueso *Washi: Es una palabra para denominar al papel japonés hecho de forma tradicional, en el cual se ocupa la corteza de arbustos como el kozo, gampi y Mitsumata. *Lokta: Papel elaborado artesanalmente en Nepal. *Papel sandwitch: Es un papel fabricado artesanalmente con papel seda en una cara, una hoja de aluminio al medio, y en la otra papel seda. *Papel de envolver: Es aquel papel que se usa para envolver zapatos, camisas, y que a veces se ocupa en embalaje. Sue- le tener color blanco. Ha demostrado que es útil para hacer figuras complejas dado sus 20 gramos por metro y gran resistencia *Papel Kraft: También es muy resistente al doblado por sus fibras largas y quienes usan lo ocupan para practicar. Tipos de papel para origami * Papel Washi
  • 21. 23 Dibujo técnico ¿Qué es el dibujo técnico? El dibujo técnico es un sistema de representación gráfica de diversos tipos de objetos, con el propósito de propor- cionar información suficiente para facilitar su análisis, ayudar a elaborar su diseño y posibilitar su futura construcción y mantenimiento. Suele realizarse con el auxilio de medios informatizados o, directamente, sobre el papel u otros soportes planos. La representación gráfica se basa en la geometría descriptiva y utiliza las proyecciones ortogonales para dibujar las distintas vistas de un objeto. Los objetos, piezas, máquinas, edificios, planos urbanos, entre otros , se suelen representar en planta (vista superior, vista de techo, planta de piso, cubierta, entre otros ), alzado (vista frontal o anterior) y lateral (acotaciones); son nece- sarias un mínimo de dos proyecciones (vistas del objeto) para aportar información útil del objeto, dependiendo esto de la complejidad del mismo. Las vistas mencionadas de acuerdo al sistema ortogonal se llaman fundamentales por pertenecer al triedro fundamental, este triedro lo conforman el plano anterior, superior y lateral. *Dibujo técnico del símbolo monetario del euro.
  • 22. 24 El dibujo arquitectónico es aquel que se caracteriza por representar arquitectura, sea esta como detalle arquitectóni- co o como espacio arquitectónico. Puede ser expresado en planta, alzado, sección, perspectiva o perspectiva axo- nométrica. A este tipo de dibujo se le confiere una responsabilidad, pues tiene que ser realizado pensando en las personas que habitarán esa arquitectura, sus medidas (antropometría) y los medios para su construcción. Otros aspectos, como la distribución de espacios, el color y el trabajo conceptual, se relacionan con el diseño arquitectónico. Dibujo arquitectónico *Vistas estándar usadas en el dibujo arquitectónico.
  • 23. 25 Sistemas de proyección *Sistema Europeo: El objeto se encuentra entre el observa- dor y el plano de proyecciones. Sistema utilizado en una gran cantidad de países, que además han adoptado el sistema métrico decimal como sistema de medida, (metro, cms, mm). *Sistema Americano: El plano de proyección se encuentra entre el observador y el objeto. Una vez realizadas las seis proyecciones ortogonales sobre las caras del cubo, y manteniendo fija la cara de la proyec- ción de la vista Frontal (A), se procede a obtener el desarrollo del cubo, que como puede apreciarse en las figuras, es diferente según el sistema utilizado. SISTEMA ISO (EUROPEO), SISTEMA ASA (AMERICANO).
  • 25. *Ancho: es la distancia horizontal derecha o izquierda entre dos puntos medida sobre la perpendicular a dos planos laterales que los contienen. *Altura: es la diferencia de elevación entre dos puntos medidos perpendicularmente entre dos planos horizontales que los contiene, el movimiento perpendicular es descrito como arriba o abajo. *Profundidad: es la distancia horizontal entre dos puntos medidos sobre la perpendicular a dos planos frontales que los contiene. Dimensiones principales de un volumen *Vista frontal: es la proyección del objeto obtenida en un plano de proyección vertical, ubicado detrás del objeto. Se proyectan las dimensiones alto y ancho. *Vista horizontal: es la proyección del objeto obtenida en el plano de proyección horizontal, ubicado debajo del objeto. Se proyectan las dimensiones ancho y profundidad. *Vista lateral izquierda o derecha: es la proyección del objeto obtenida en un plano de proyección vertical, ubicado a la de- recha o a la izquierda del objeto respectivamente. Se proyec- tan las dimensiones profundidad y alto. Vistas principales 27
  • 26. Tipos de proyecciones tridimensionales *Perspectiva Isométrica : Este tipo de perspectiva se utiliza en cualquier representación, siendo una de las más utilizadas ya que permite conocer las vistas, dando la misma importancia a cada una de ellas y se logra colocando ángulos de 30º en los planos frontal y lateral. *Perspectiva militar : Este tipo de perspectiva se utiliza cuando se requiera conocer más a fondo la vista del plano superior, por lo tanto estará inclinada más hacia este plano, se pueden utilizar distintos ángulos: 45º - 45º, 30º - 60º, 60º - 60º, 15º - 75º. *Perspectiva caballera : Este tipo de perspectiva se utiliza cuando se requiera conocer mas a fondo la vista del plano frontal, por lo tanto el plano frontal estará perpendicular representando su verdeara magnitud (largo X largo), y la profundidad se logrará representado los planos laterales a 45º. 28
  • 27. La planimetría es la parte de la topografía que estudia el conjunto de métodos y procedimientos que tienden a conseguir la representación a escala de todos los detalles interesantes del terreno sobre una superficie plana (plano geometría), prescindiendo de su relieve y se representa en una proyección horizontal. Planimetría 29
  • 28. Patronajes arquitectónicos Los patrones arquitectónicos, o patrones de arquitectura, también llamados arquetipos ofrecen soluciones a pro- blemas de arquitectura de software en ingeniería de software. Dan una descripción de los elementos y el tipo de relación que tienen junto con un conjunto de restricciones sobre cómo pueden ser usados. Un patrón arquitectónico expresa un esquema de organización estructural esencial para un sistema de software, que consta de subsistemas, sus responsabilidades e interrelaciones. En comparación con los patrones de diseño, los patrones arquitectónicos tienen un nivel de abstracción mayor. Aunque un patrón arquitectónico comunica una imagen de un sistema, no es una arquitectura como tal. Un patrón arquitectónico es más un concepto que captura elementos esenciales de una arquitectura de software. Muchas arquitecturas diferentes pueden implementar el mismo patrón y por lo tanto compartir las mismas características. Además, los patrones son a menudo definidos como una cosa estrictamente descrita y comúnmente disponible. Por ejemplo, la arquitectura en capas es un estilo de llamamiento-y-regreso, cuando define uno un estilo general para interaccionar. Cuando esto es descrito estrictamente y comúnmente disponible, es un patrón. 30 *Patronajes de figuras geométricas
  • 29. 31 Mapa Dymaxion El mapa Dymaxion o proyección de Fuller de la Tierra es una proyección de un mapamundi en la superficie de un po- liedro que puede desplegarse en una red de muchas formas diferentes y aplanarse para formar un mapa bidimensio- nal que retiene la mayor parte de la integridad proporcional relativa del mapa del globo. Fue creado por Buckminster Fuller, quien lo patentó en 1946. En la patente la proyección mostrada es sobre un cuboctaedro. La versión de 1954 publicada por Fuller con el título The AirOcean World Map empleaba un icosaedro ligeramente modificado pero casi completamente regular como base para la proyección,versión más conocida en la actualidad. El nombre Dymaxion se aplicó a muchas invenciones de Fuller. *A diferencia de la mayoría de proyecciones, el Dymaxion está concebido sólo para representar el globo entero.
  • 30. 32 Fuller aseguró que su mapa tenía muchas ventajas sobre otras proyecciones de superficies geográficas. Tiene menos distorsión del tamaño relativo de las regiones, especialmente si se lo compara con la proyección de Mercator y menos distorsión de las formas, particularmente cuando se lo compara con la proyección Gall-Peters. Un rasgo distintivo del Dymaxion es que no tiene una dirección que vaya arriba. Fuller dijo frecuentemente que en el universo no hay «arriba» y «abajo» ni «norte» y «sur»: sólo «dentro» y «fuera». Las fuerzas gravitacionales de las estrellas y los planetas crean «dentro», que significa «hacia el centro gravitacional» y «fuera» que significa «lejos del centro gravitacional».Asoció la representación de los mapas habituales con el norte arriba y el sur abajo al sesgo cultural. Hay que destacar que hay otras proyecciones geométricas que no tienen el norte arriba. No hay una orientación «correcta» del mapa Dymaxion. Desplegar las caras triangulares del icosaedro resulta en una red que muestra masas de tierra casi contiguas que comprenden los continentes de la tierra, y no grupos de conti- nentes divididos por océanos. Si se despliega de otra forma se muestra el mundo dominado por una masa de agua conexa rodeada de tierra. Propiedades del mapa Dymaxion
  • 31. 33 Paraboloide Hiperbólico El paraboloide hiperbólico es una superficie doblemente reglada por lo que se puede construir a partir de rectas. Por su apariencia, también se lo denomina superficie de silla de montar. El paraboloide hiperbólico es una lámina de curvatura doble, anticlástica. Se puede definir desde dos puntos de vista diferentes: (I) a partir de dos curvas o (II) de dos familias de rectas. La superficie se genera trasladando una parábola paralela a sí misma sobre otra de curvatura inversa, si las parábolas se encuentran en dos planos que forman 90º el paraboloide hiperbólico se denomina equilátero, si no se denomina no equilátero. Expresado desde el punto de vista de una superficie reglada se define el paraboloide hiperbólico a través de dos familias de rectas, una familia - las asíntotas de las hipérbolas, generatrices- que se desplaza de manera paralela, apoyándose sobre otra formada por dos rectas - directrices- que se cruzan, de inclinaciones diferentes y separadas una determinada distancia.
  • 32. 3434 Catenaria Para el sistema de electrificación de alta potencia de los ferrocarriles,véase Catenaria (ferrocarril). Una catenaria es una curva ideal que representa físicamente la curva generada por una cadena, cuerda o cable sin ri- gidez flexional, suspendida de sus dos extremos y sometida a un campo gravitatorio uniforme. Esta palabra proviene del latín catēnarĭus (‘propio de la cadena’). La evoluta de una tractriz es una catenaria. Historia El problema de la catenaria, planteado durante el siglo XVII, consistía en determinar la forma que adoptaba una ca- dena o cuerda (sin rigidez flexional) dentro de un campo gravitatorio uniforme. Es decir, cuando sobre un segmento de cuerda actuaba el propio peso de la cuerda verticalmente y era sostenido simultáneamente por las tensiones en sus extremos, en direcciones tangentes a un segmento de curva en sus extremos. Los primeros físicos y matemáticos que abordaron el problema supusieron que la curva era una parábola, porque empíricamente la forma de la cuerda se parece mucho a una parábola, especialmente si se consideran longitudes pequeñas de cuerda. Pero fue Christiaan Huygens, a los 17 años, quien demostró que la curva no era realmente una parábola, sino sólo una curva parecida, aunque no encontró la ecuación de la catenaria. La ecuación fue obtenida por Gottfried Leibniz, Christiaan Huygens y Johann Bernoulli en 1691, en respuesta al desafío planteado por Jakob Bernoulli. Huygens fue el primero en utilizar el término catenaria en una carta dirigida a Leibniz en 1690 y David Gregory escribió, ese mismo año, un tratado sobre la curva.
  • 33. 35 Superficies de doble curvatura Las cubiertas formadas por paraboloides hiperbólicos se encuentran dentro de las llamadas estructuras laminares, este tipo de estructuras se viene estudiando y construyendo de manera regular desde la primera mitad del siglo XX, para su desarrollo fue necesaria la investigación desde distintas disciplinas: la geometría, el cálculo, los materiales y la construcción. Antoni Gaudí fue consciente de que el arco de la catenaria es la forma mas perfecta que la mecánica proporciona para llevar las cargas al terreno evitando las flexiones, y aportó las primeras estructuras laminares con forma de superficies alabeadas. Dado un elemento lineal sometido solo a cargas verticales, la forma catenaria es precisamente la forma del eje ba- ricéntrico que minimiza las tensiones. Esa propiedad puede aprovecharse para el diseño de arcos. De este modo un arco en forma de catenaria invertida es precisamente la forma en la que se evita la aparición de esfuerzos distintos de los de compresión, como son los esfuerzos cortantes o los flectores. *Por esa razón, una curva catenaria invertida es un trazado útil para un arco en la arquitectura, forma que fue aplicada, entre otros y fundamentalmente, por Antoni Gaudí. *Las columnas de la Sagrada Familia de Barcelona siguen una catenaria. * Puente de hormigón sobre el río Ulla, en Vedra, Galicia, España. El arco principal tiene forma de catenaria.
  • 34. 36 Estas formas, cuyas definiciones y ecuaciones pueden resultar complejas, se encuentran en la Natura- leza de manera más habitual de lo que se puede pensar, de lo que se puede deducir que son eficientes y rentables. Además, según Gaudí, la Naturaleza crea formas que son útiles y hermosas al mismo tiempo, por lo que, quizá, deberían ser más utilizadas que otras mas comunes en arquitectura, como la esfera o el cubo.
  • 35. Estructuras laminares Las estructuras laminares son elementos que cubren espacios en los que predominan las dimensiones de la planta frente al espesor de la lámina. Su forma y continuidad estructural es lo que las hace funcionar, para ello tienen que ser lo suficientemente delgadas para no desarrollar importantes tensiones de flexión, corte o torsión. Toda su labor se basa en que todos los esfuerzos internos sean normales, de tracción o compresión, y tangenciales . *La carga debe estar, preferiblemente, uniformemente distribuida y no presentar variaciones bruscas ni cargas pun- tuales. Esto indica que el apoyo de linternas o elementos puntuales sobre estas cubiertas complica su resolución. La forma es la característica fundamental que la hace resistir, debe variar sus radios de curvatura sobre la superficie de manera continua, el espesor se ha de relacionar de manera directa con el radio de curvatura. Las condiciones de borde tienen que ser tales que estén libres de flexiones como el resto de la superficie. Las genera- trices del contorno pueden estar libres o unidas. 37
  • 36. Las estructuras laminares de manera general se clasifican en tres grupos: I)   el grupo de las superficies sin curvatura en el que se encuentran las láminas plegadas. En estas predomina el esta- do de flexión frente al de membrana. II)  las superficies de curvatura simple, son las que tienen forma cilíndrica o cónica, en estas superficies también con- viven los dos estados, pero en este caso el de membrana predomina sobre la flexión. III)  las superficies de doble curvatura, dentro de las que se encuentra el paraboloide hiperbólico y son las que están en estado de membrana puro. Las superficies de doble curvatura pueden ser de curvatura de Gauss positiva o sinclás- ticas, a este grupo pertenecen los casquetes o los paraboloides elípticos. O de curvatura de Gauss negativa o anticlás- ticas, en el que se encuentran el paraboloide hiperbólico y el hiperboloide. Clasificación de estructuras laminares * La estructura laminar del TWA Flight Center del Aeropuerto Internacional John F. Kennedy de Nueva York, diseñado por Eero Saarinen. 38
  • 37. Diferencias entre curvaturas simples y doble curvatura Las primeras son figuras desarrollables, con curvatura de Gauss nula, y se pueden realizar a partir de figuras planas, lo que facilita una primera aproximación al diseño y posterior construcción. El paraboloide hiperbólico presenta una gran ventaja frente a las formas desarrollables y a las otras formas de doble curvatura, que se genera a partir de una familia de rectas que se va apoyando sobre otras dos rectas, lo que significa que es una superficie con dos sistemas de generatrices y directrices rectilíneas que facilitan su adaptación a plantas de carácter ortogonal típicas de la arquitectura moderna y favorecen su construcción en cuanto a la elaboración de los encofrados y la colocación de las armaduras. Que tenga curvaturas con el signo cambiado, y curvatura de Gauss negativa, es otra cualidad que también la mejora frente a otras, ya que pasa a considerarse como estructura tensada que puede ser utilizada en estructuras textiles. El ingeniero Eduardo Torroja Miret (1899–1961) y el arquitecto Félix Candela Outeriño (1910–1997) son dos de las figuras más destacadas dentro del mundo de las láminas de hormigón armado en el siglo XX. Si bien Antoni Gaudí, para la construcción de paraboloides hiperbólicos, contaba solo con hiladas de ladrillo o piedra sobre muros no paralelos en el espacio, Torroja y Candela ya tienen más medios a su alcance y consiguieron aprove- char al máximo las virtudes del hormigón armado. Félix Candela, años más tarde, también inició su carrera en el mundo de las láminas a través de modelos a escala. El primero fue una lámina funicular que levantó en la Escuela Experimental de Ciudad Victoria en 1950 y fue, en 1953, en la Colonia Vallejo cuando realizó el primer modelo de cubierta, a partir de trozos de paraboloide hiperbólico (hypar). 39
  • 38. 40 Las secciones rectas que se dan en un paraboloide hiperbólico pueden ser parábolas si son verticales, hipérbolas si son horizontales o rectas si siguen la dirección de las generatrices. Esta aptitud para ser segmentado, llevó a Félix Candela a reflexionar sobre la posibilidad de combinar diferentes trozos, para que trabajaran de manera conjunta, siendo más eficaces que la superficie continua de un mismo hypar. Surgiendo lo que llamó “el paraguas” que admite diversas formas, en voladizo con un apoyo central o apoyado en las cuatro esquinas. *Son muchos los proyectos de Félix Candela que surgen de las diferentes: *Combinaciones de porciones de hypar: Con bordes rectos; va desde la estructura formada por una sola hoja de forma cuadrada, hasta la combinación de varias hojas de formas romboidales. La inclinación respecto del eje vertical es otra de las variables que se pueden introducir, para conseguir otros efectos, como en la iglesia de San José Obrero (1959).
  • 39. En la cubierta de la Capilla de Cuernavaca (1958, Morelos, México) Candela enseñó las dos posibilidades de borde curvo, la parábola en el espacio principal y la hipérbola en el contacto con el suelo. Los ejemplos más famosos son el restaurante de Los Manantiales (1957) en Xochimilco y la nave de la destilería de Bacardí (1960) en Cuautitlán. 41
  • 40. En todo cálculo estructural uno de los objetivos primordiales es la obtención de un diseño óptimo. Tradicionalmente, en el campo de las estructuras, un diseño óptimo es aquel que reduce al mínimo su propio peso, por lo que este ha sido el fin de los grandes calculistas, pero no siempre es el factor determinante, o se prioriza sobre otras cualidades, como el costo o la forma. Las membranas son estructuras que minimizan la cantidad de material, ya que se evitan los esfuerzos de flexión y cortante, con lo que el hormigón solo tiene que trabajar a compresión y, ayudado por el acero, a tracción. Para que una superficie funcione como cáscara necesita formas curvas, cosa que dificulta su diseño, tanto a nivel grá- fico como constructivo. La forma que tiene el paraboloide hiperbólico presenta las mejores cualidades como mem- brana a nivel estructural. a) Su doble curvatura hace que tenga la cualidad de estructura tensada por lo que cada línea de carga funciona a compresión, cuando tiene su concavidad al interior; y a tracción cuando tiene la convexidad hacia el interior. Es decir, hace simultáneamente la función arco y cable.Además dota de la suficiente rigidez a la superficie, no siendo necesa- rias estructuras secundarias del tipo arcos fajones. b) El modo de generarse a partir de dos familias de rectas permite poder definirla a partir de coordenadas cartesia- nas, por medio de sencillas ecuaciones de primer grado, lo que facilita la distribución de las armaduras necesarias, creando los nervios sobre las rectas generatrices. c) Los bordes generados por las secciones de planos rectos permiten obtener rectas, parábolas o hipérbolas, que la hace muy apta para enlazar bordes rectos con formas curvas o viceversa. Con esto, a partir de trozos de hypar se pue- den generar infinitas formas.Además si los bordes se alejan de la dirección de una de las directrices, reparten mejor los esfuerzos y se consigue liberar el borde, dando aspecto de liviandad a la estructura. 42