SlideShare una empresa de Scribd logo
Mecanismos de Transferencia
Se denomina fluido a un tipo de medio continuo formado por alguna sustancia
entre cuyas moléculas sólo hay una fuerza de atracción débil. La propiedad
definitoria es que los fluidos pueden cambiar de forma sin que aparezcan en su
seno fuerzas restitutivas tendentes a recuperar la forma "original" (lo cual
constituye la principal diferencia con un sólido deformable, donde sí hay fuerzas
restitutivas).
Un fluido es un conjunto de partículas que se mantienen unidas entre si por
fuerzas cohesivas débiles y las paredes de un recipiente; el término engloba a los
líquidos y los gases. En el cambio de forma de un fluido la posición que toman sus
moléculas varía, ante una fuerza aplicada sobre ellos, pues justamente fluyen. Los
líquidos toman la forma del recipiente que los aloja, manteniendo su propio
volumen, mientras que los gases carecen tanto de volumen como de forma
propias. Las moléculas no cohesionadas se deslizan en los líquidos, y se mueven
con libertad en los gases. Los fluidos están conformados por los líquidos y los
gases, siendo los segundos mucho menos viscosos (casi fluidos ideales).

La viscosidad depende en gran medida de la temperatura en líquidos en que las
fuerzas cohesivas desempeñan un rol dominante.
 La viscosidad en líquidos disminuye cuando incrementa la temperatura. Se
representa con la ecuación de Andrade
 En el caso de un gas las colisiones moleculares proporcionan los esfuerzos
internos de modo que conforme la temperatura aumenta, dando por
resultado una actividad molecular mayor, la viscosidad se incrementa.
 Sin embargo el % de cambio de μ de un liquido es mucho mayor que en un
gas con la misma ∆T … μ= μ(T).
 Para un gas también dependerá de la presión ya que la densidad es
sensible a la presión.
Fluidos Newtonianos
Un fluido newtoniano es un fluido cuya viscosidad puede considerarse constante
en el tiempo. Los fluidos newtonianos son uno de los fluidos más sencillos de
describir. La curva que muestra la relación entre el esfuerzo o cizalla contra
su velocidad de deformación es lineal. El mejor ejemplo de este tipo de fluidos es
el agua en contraposición al pegamento, la miel o los geles y sangreque son
ejemplos de fluido no newtoniano.
Un buen número de fluidos comunes se comportan como fluidos newtonianos bajo
condiciones normales de presión y temperatura: el aire, el agua, la gasolina,
el vino y algunos aceites minerales.

Fluidos No Newtonianos
Un fluido no newtoniano es aquel fluido cuya viscosidad varía con la temperatura y
la tensión cortante que se le aplica. Como resultado, un fluido no newtoniano no
tiene un valor de viscosidad definido y constante, a diferencia de un fluido
newtoniano. Este fluido no cumple con la ecuación de viscosidad.
Aunque el concepto de viscosidad se usa habitualmente para caracterizar un
material, puede resultar inadecuado para describir el comportamiento mecánico de
algunas sustancias, en concreto, los fluidos no newtonianos. Estos fluidos se
pueden caracterizar mejor mediante otras propiedadesreológicas, propiedades
que tienen que ver con la relación entre el esfuerzo y los tensores de
tensiones bajo diferentes condiciones de flujo, tales como condiciones de esfuerzo
cortante oscilatorio.
Fluidos Laminares y Turbulentos
Es uno de los dos tipos principales de flujo en fluido. Se llama flujo
laminar o corriente laminar, al movimiento de un fluido cuando éste es ordenado,
estratificado, suave. En un flujo laminar el fluido se mueve en láminas paralelas sin
entremezclarse y cada partícula de fluido sigue una trayectoria suave,
llamada línea de corriente. En flujos laminares el mecanismo de transporte lateral
es exclusivamente molecular. Se puede presentar en las duchas eléctricas vemos
que tienen lineas paralelas
El flujo laminar es típico de fluidos a velocidades bajas o viscosidades altas,
mientras fluidos de viscosidad baja, velocidad alta o grandes caudales suelen ser
turbulentos. El número de Reynolds es un parámetro adimensional importante en
las ecuaciones que describen en que condiciones el flujo será laminar o
turbulento. En el caso de fluido que se mueve en un tubo de sección circular, el
flujo persistente será laminar por debajo de un número de Reynolds crítico de
aproximadamente 2040.1 Para números de Reynolds más altos el flujo
turbulento puede sostenerse de forma indefinida. Sin embargo, el número de
Reynolds que delimita flujo turbulento y laminar depende de la geometría del
sistema y además la transición de flujo laminar a turbulento es en general sensible
a ruido e imperfecciones en el sistema

Se llama flujo turbulento o corriente turbulenta al movimiento de un fluido que se
da en forma caótica, en que las partículas se mueven desordenadamente y las
trayectorias de las partículas se encuentran formando pequeños remolinos
aperiódicos, (no coordinados) como por ejemplo el agua en un canal de gran
pendiente. Debido a esto, la trayectoria de una partícula se puede predecir hasta
una cierta escala, a partir de la cual la trayectoria de la misma es impredecible,
más precisamente caótica.
Tipos de fluidos
Independientes del Tiempo

Tipo de Fluido

Definición

Fluido de
Bingham

El Fluido que se comporta como
un sólido hasta que se excede un
esfuerzo de deformación mínimo y
exhibe subsecuentemente una
relación lineal entre el esfuerzo y
la relación de deformación.
Pseudoplasticos No tienen una tensión de fluencia
para
que
comiencen
a
deformarse, este tipo de fluidos
se
caracterizan
por
una
disminución de su viscosidad, y
de su esfuerzo cortante, con la
velocidad de deformación.
Dilantate
Son suspensiones en las que se
produce un aumento de la
viscosidad con la velocidad de
deformación, es decir, un aumento
del esfuerzo cortante con dicha
velocidad

Ejemplo
Catsup, pasta de dientes.

Algunas
pinturas,
arcilla.

clases
acuosas

de
de

Harina de maíz mezclada
con
agua
(maicena),
disoluciones de almidón
muy concentradas, arena
mojada.

Dependientes del Tiempo

Tipo de Fluido
Reopectico

Tixotropicos

Definición

Ejemplo

Variaciones dependientes con el Clara de huevo
tiempo de su viscocidad así,
cuanto más tiempo se encuentra
el fluido en cuestión bajo la
influencia
de esfuerzos,
cortantes,mayor
es
su
viscosidad.
Su viscosidad disminuye al Aceites
del
petróleo,
aumentar el tiempo de aplicación Yougurt, Nylon.
del
esfuerzo
cortante,
recuperando su estado inicial
después
de
un
reposo
prolongado.
Tipo de Fluido
Viscoelasticos

Definicion

Ejemplo

Tipo de comportamiento Gelatina.
reologico que presentan
ciertos materiales que
exhiben
tanto
propiedades
viscosas
como
propiedades
elásticas
cuando
se
deforman.

Aplicaciones de Fluidos no Newtonianos:
Yeso utilizado en construcción, chaleco antibalas, barro, cemento, plastilina,
amortiguadores, equipo de protección para deportes.

Más contenido relacionado

La actualidad más candente

TERMODINAMICA 3: FUGACIDAD Y SOLUCIONES REALES
TERMODINAMICA 3:  FUGACIDAD Y SOLUCIONES REALESTERMODINAMICA 3:  FUGACIDAD Y SOLUCIONES REALES
TERMODINAMICA 3: FUGACIDAD Y SOLUCIONES REALES
Domenico Venezia
 
04. transferencia de masa interfacial
04. transferencia de masa interfacial04. transferencia de masa interfacial
04. transferencia de masa interfacial
alvis19
 
Tratamiento Aguas residuales wiki 4
Tratamiento Aguas residuales wiki 4Tratamiento Aguas residuales wiki 4
Tratamiento Aguas residuales wiki 4
Giovanni Manzano
 
Números adimensionales de importancia en ingeniería
Números adimensionales de importancia en ingenieríaNúmeros adimensionales de importancia en ingeniería
Números adimensionales de importancia en ingeniería
andreswill
 
1.2. Propiedades parciales molares de mezclas binarias.pptx
1.2. Propiedades parciales molares de mezclas binarias.pptx1.2. Propiedades parciales molares de mezclas binarias.pptx
1.2. Propiedades parciales molares de mezclas binarias.pptx
PriscilaIzazagaGonzl
 
Transferencia de-masa-art
Transferencia de-masa-artTransferencia de-masa-art
Transferencia de-masa-artNorman Rivera
 
Formulario de termodinamica 2
Formulario de termodinamica 2Formulario de termodinamica 2
Formulario de termodinamica 2
Universidad Católica San Pablo
 
Mecànica de los fluìdos(presion)
Mecànica de los fluìdos(presion)Mecànica de los fluìdos(presion)
Mecànica de los fluìdos(presion)
Edison Herrera Núñez
 
Ecuación de estado de Redlich-Kwong.
Ecuación de estado de Redlich-Kwong.Ecuación de estado de Redlich-Kwong.
Ecuación de estado de Redlich-Kwong.
Jag Är Omxr
 
Presión manométrica, de vacío y absoluta
Presión manométrica, de vacío y absolutaPresión manométrica, de vacío y absoluta
Presión manométrica, de vacío y absolutaDaniel Gonzzalezz
 
Practica 3 Puntos de inundacion y porosidad en lechos empacados
Practica 3 Puntos de inundacion y porosidad en lechos empacadosPractica 3 Puntos de inundacion y porosidad en lechos empacados
Practica 3 Puntos de inundacion y porosidad en lechos empacados
Lucero Gallegos González
 
Caudalímetros de Presión Diferencial
Caudalímetros de Presión DiferencialCaudalímetros de Presión Diferencial
Caudalímetros de Presión Diferencial
marco calderon layme
 
Mys factor de_compresibilidad_y_factor_acéntrico
Mys factor de_compresibilidad_y_factor_acéntricoMys factor de_compresibilidad_y_factor_acéntrico
Mys factor de_compresibilidad_y_factor_acéntrico
Eduardo Xavier Martinez
 
Extraccion liquido liquido vicky
Extraccion  liquido  liquido  vickyExtraccion  liquido  liquido  vicky
Extraccion liquido liquido vickyAlfredo Pedroza
 
Eficiencia en superficies extendidas
Eficiencia en superficies extendidas Eficiencia en superficies extendidas
Eficiencia en superficies extendidas Karen M. Guillén
 
Caida de presion en valvulas de control
Caida de presion en valvulas de controlCaida de presion en valvulas de control
Caida de presion en valvulas de control
ernsestojose
 
Presentación diseño de compresores
Presentación diseño de compresoresPresentación diseño de compresores
Presentación diseño de compresores
Amaury Cabrera Cruz
 

La actualidad más candente (20)

TERMODINAMICA 3: FUGACIDAD Y SOLUCIONES REALES
TERMODINAMICA 3:  FUGACIDAD Y SOLUCIONES REALESTERMODINAMICA 3:  FUGACIDAD Y SOLUCIONES REALES
TERMODINAMICA 3: FUGACIDAD Y SOLUCIONES REALES
 
Reología de líquidos viscosos
Reología de líquidos viscososReología de líquidos viscosos
Reología de líquidos viscosos
 
04. transferencia de masa interfacial
04. transferencia de masa interfacial04. transferencia de masa interfacial
04. transferencia de masa interfacial
 
Tratamiento Aguas residuales wiki 4
Tratamiento Aguas residuales wiki 4Tratamiento Aguas residuales wiki 4
Tratamiento Aguas residuales wiki 4
 
Números adimensionales de importancia en ingeniería
Números adimensionales de importancia en ingenieríaNúmeros adimensionales de importancia en ingeniería
Números adimensionales de importancia en ingeniería
 
1.2. Propiedades parciales molares de mezclas binarias.pptx
1.2. Propiedades parciales molares de mezclas binarias.pptx1.2. Propiedades parciales molares de mezclas binarias.pptx
1.2. Propiedades parciales molares de mezclas binarias.pptx
 
Transferencia de-masa-art
Transferencia de-masa-artTransferencia de-masa-art
Transferencia de-masa-art
 
Formulario de termodinamica 2
Formulario de termodinamica 2Formulario de termodinamica 2
Formulario de termodinamica 2
 
Mecànica de los fluìdos(presion)
Mecànica de los fluìdos(presion)Mecànica de los fluìdos(presion)
Mecànica de los fluìdos(presion)
 
Diseño y calculo de intercambiadores de calor
Diseño y calculo de intercambiadores de calorDiseño y calculo de intercambiadores de calor
Diseño y calculo de intercambiadores de calor
 
Ecuación de estado de Redlich-Kwong.
Ecuación de estado de Redlich-Kwong.Ecuación de estado de Redlich-Kwong.
Ecuación de estado de Redlich-Kwong.
 
Presión manométrica, de vacío y absoluta
Presión manométrica, de vacío y absolutaPresión manométrica, de vacío y absoluta
Presión manométrica, de vacío y absoluta
 
Practica 3 Puntos de inundacion y porosidad en lechos empacados
Practica 3 Puntos de inundacion y porosidad en lechos empacadosPractica 3 Puntos de inundacion y porosidad en lechos empacados
Practica 3 Puntos de inundacion y porosidad en lechos empacados
 
CONDENSADORES DE VAPOR
CONDENSADORES DE VAPORCONDENSADORES DE VAPOR
CONDENSADORES DE VAPOR
 
Caudalímetros de Presión Diferencial
Caudalímetros de Presión DiferencialCaudalímetros de Presión Diferencial
Caudalímetros de Presión Diferencial
 
Mys factor de_compresibilidad_y_factor_acéntrico
Mys factor de_compresibilidad_y_factor_acéntricoMys factor de_compresibilidad_y_factor_acéntrico
Mys factor de_compresibilidad_y_factor_acéntrico
 
Extraccion liquido liquido vicky
Extraccion  liquido  liquido  vickyExtraccion  liquido  liquido  vicky
Extraccion liquido liquido vicky
 
Eficiencia en superficies extendidas
Eficiencia en superficies extendidas Eficiencia en superficies extendidas
Eficiencia en superficies extendidas
 
Caida de presion en valvulas de control
Caida de presion en valvulas de controlCaida de presion en valvulas de control
Caida de presion en valvulas de control
 
Presentación diseño de compresores
Presentación diseño de compresoresPresentación diseño de compresores
Presentación diseño de compresores
 

Destacado

Guia nueva centrales térmicas a vapor generacion de potencia
Guia nueva centrales térmicas a vapor generacion de potenciaGuia nueva centrales térmicas a vapor generacion de potencia
Guia nueva centrales térmicas a vapor generacion de potenciaUNEFM
 
Cuadro de grupos especificos de alimentos (microbiologia agroindustrial) norm...
Cuadro de grupos especificos de alimentos (microbiologia agroindustrial) norm...Cuadro de grupos especificos de alimentos (microbiologia agroindustrial) norm...
Cuadro de grupos especificos de alimentos (microbiologia agroindustrial) norm...
gabriel mercado
 
Sistemas de enfriamiento (cuadro comparativo de equipo)
Sistemas de enfriamiento (cuadro comparativo de equipo)Sistemas de enfriamiento (cuadro comparativo de equipo)
Sistemas de enfriamiento (cuadro comparativo de equipo)Né Obed
 
Transferencia de calor cuadro comparativo
Transferencia de calor cuadro comparativoTransferencia de calor cuadro comparativo
Transferencia de calor cuadro comparativo
Oscar Astorga
 
Diagnosis y averias mas frecuentes en el sistema de frenado
Diagnosis y averias mas frecuentes en el sistema de frenadoDiagnosis y averias mas frecuentes en el sistema de frenado
Diagnosis y averias mas frecuentes en el sistema de frenadoJavier Sabonis
 
Refrigeración por Compresión de vapor y Método por absorción de amoniaco
Refrigeración por Compresión de vapor y Método  por absorción de amoniacoRefrigeración por Compresión de vapor y Método  por absorción de amoniaco
Refrigeración por Compresión de vapor y Método por absorción de amoniaco
Cristian Escalona
 
Automotriz
Automotriz Automotriz
Automotriz
David Fernandez
 
Diseño y mecánica automotriz tec
Diseño y mecánica automotriz tecDiseño y mecánica automotriz tec
Diseño y mecánica automotriz tec
Secundariia
 
Tipos de Fluidos
Tipos de FluidosTipos de Fluidos
Tipos de Fluidos
chicocerrato
 
Manual nissan tsuru, B13
Manual nissan tsuru, B13Manual nissan tsuru, B13
Manual nissan tsuru, B13
Universidad Tecnológica
 
Tipos de fluidos
Tipos de fluidosTipos de fluidos
Tipos de fluidosMike Coral
 
clasificacion de fluidos
clasificacion de fluidos clasificacion de fluidos
clasificacion de fluidos
Eder Yair Nolasco Terrón
 

Destacado (15)

Energia solar
Energia solarEnergia solar
Energia solar
 
Guia nueva centrales térmicas a vapor generacion de potencia
Guia nueva centrales térmicas a vapor generacion de potenciaGuia nueva centrales térmicas a vapor generacion de potencia
Guia nueva centrales térmicas a vapor generacion de potencia
 
Cuadro de grupos especificos de alimentos (microbiologia agroindustrial) norm...
Cuadro de grupos especificos de alimentos (microbiologia agroindustrial) norm...Cuadro de grupos especificos de alimentos (microbiologia agroindustrial) norm...
Cuadro de grupos especificos de alimentos (microbiologia agroindustrial) norm...
 
Sistemas de enfriamiento (cuadro comparativo de equipo)
Sistemas de enfriamiento (cuadro comparativo de equipo)Sistemas de enfriamiento (cuadro comparativo de equipo)
Sistemas de enfriamiento (cuadro comparativo de equipo)
 
Camara de-refrigeracion-para-papas
Camara de-refrigeracion-para-papasCamara de-refrigeracion-para-papas
Camara de-refrigeracion-para-papas
 
Mapa conceptual
Mapa conceptualMapa conceptual
Mapa conceptual
 
Transferencia de calor cuadro comparativo
Transferencia de calor cuadro comparativoTransferencia de calor cuadro comparativo
Transferencia de calor cuadro comparativo
 
Diagnosis y averias mas frecuentes en el sistema de frenado
Diagnosis y averias mas frecuentes en el sistema de frenadoDiagnosis y averias mas frecuentes en el sistema de frenado
Diagnosis y averias mas frecuentes en el sistema de frenado
 
Refrigeración por Compresión de vapor y Método por absorción de amoniaco
Refrigeración por Compresión de vapor y Método  por absorción de amoniacoRefrigeración por Compresión de vapor y Método  por absorción de amoniaco
Refrigeración por Compresión de vapor y Método por absorción de amoniaco
 
Automotriz
Automotriz Automotriz
Automotriz
 
Diseño y mecánica automotriz tec
Diseño y mecánica automotriz tecDiseño y mecánica automotriz tec
Diseño y mecánica automotriz tec
 
Tipos de Fluidos
Tipos de FluidosTipos de Fluidos
Tipos de Fluidos
 
Manual nissan tsuru, B13
Manual nissan tsuru, B13Manual nissan tsuru, B13
Manual nissan tsuru, B13
 
Tipos de fluidos
Tipos de fluidosTipos de fluidos
Tipos de fluidos
 
clasificacion de fluidos
clasificacion de fluidos clasificacion de fluidos
clasificacion de fluidos
 

Similar a Mecanismos de Transferencia Unidad 3

Flujo laminar y flujo turbulento
Flujo laminar y flujo turbulentoFlujo laminar y flujo turbulento
Flujo laminar y flujo turbulento
Susan Robles Mendoza
 
Sistemas de circuitos de fluidos
Sistemas de circuitos de fluidosSistemas de circuitos de fluidos
Sistemas de circuitos de fluidos
Sol Jß Pimentel
 
Presentacion mecanismos de tranferecia
Presentacion mecanismos de tranfereciaPresentacion mecanismos de tranferecia
Presentacion mecanismos de tranfereciaenrique alaniz
 
Unidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoUnidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoKaren M. Guillén
 
Todo acerca de Fluidos
Todo acerca de FluidosTodo acerca de Fluidos
Todo acerca de Fluidosomhar100894
 
Unidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoUnidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimiento
Karen M. Guillén
 
Estaticafluidos
EstaticafluidosEstaticafluidos
Estaticafluidos
Jairo Moreno Montagut
 
Resumen mecanismos de transferencia unidad III
Resumen mecanismos de transferencia unidad IIIResumen mecanismos de transferencia unidad III
Resumen mecanismos de transferencia unidad IIIJose Luis Rubio Martinez
 
Flujo lamnar y turbulento
Flujo lamnar y turbulentoFlujo lamnar y turbulento
Flujo lamnar y turbulento
Miroslava Moreno
 
Revista cientifica mecanica de fluidos
Revista cientifica mecanica de fluidosRevista cientifica mecanica de fluidos
Revista cientifica mecanica de fluidos
barbaraquintana5
 
Propiedades de los fluidos jose arreaza ci 19782280
Propiedades de los fluidos jose arreaza ci 19782280Propiedades de los fluidos jose arreaza ci 19782280
Propiedades de los fluidos jose arreaza ci 19782280
jose arreaza
 
Flujo a Presión en Tuberías
Flujo a Presión en Tuberías  Flujo a Presión en Tuberías
Flujo a Presión en Tuberías
CARLOS DANIEL RODRIGUEZ
 
Unidad 3
Unidad 3Unidad 3
Unidad 3
issacbridge
 
Instituto tecnológico de mexicali
Instituto tecnológico de mexicaliInstituto tecnológico de mexicali
Instituto tecnológico de mexicaliStephanyvm
 
Fisica. fluidos
Fisica. fluidosFisica. fluidos
Fisica. fluidos
Maritza Franco
 
Tarea unidad 3 investigacion blog
Tarea unidad 3 investigacion blogTarea unidad 3 investigacion blog
Tarea unidad 3 investigacion blog
Clarisa Corella Flores
 
Viscosidad y Número de Reynolds por Carlos Taco
Viscosidad y Número de Reynolds por Carlos TacoViscosidad y Número de Reynolds por Carlos Taco
Viscosidad y Número de Reynolds por Carlos Taco
CarlosTacoGuaman
 

Similar a Mecanismos de Transferencia Unidad 3 (20)

Flujo laminar y flujo turbulento
Flujo laminar y flujo turbulentoFlujo laminar y flujo turbulento
Flujo laminar y flujo turbulento
 
Sistemas de circuitos de fluidos
Sistemas de circuitos de fluidosSistemas de circuitos de fluidos
Sistemas de circuitos de fluidos
 
Viscosidad charito
Viscosidad charitoViscosidad charito
Viscosidad charito
 
Cuadro de la semana
Cuadro de la semanaCuadro de la semana
Cuadro de la semana
 
Presentacion mecanismos de tranferecia
Presentacion mecanismos de tranfereciaPresentacion mecanismos de tranferecia
Presentacion mecanismos de tranferecia
 
Unidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoUnidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimiento
 
Todo acerca de Fluidos
Todo acerca de FluidosTodo acerca de Fluidos
Todo acerca de Fluidos
 
Unidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimientoUnidad III Transferencia de cantidad de movimiento
Unidad III Transferencia de cantidad de movimiento
 
Estaticafluidos
EstaticafluidosEstaticafluidos
Estaticafluidos
 
Resumen mecanismos de transferencia unidad III
Resumen mecanismos de transferencia unidad IIIResumen mecanismos de transferencia unidad III
Resumen mecanismos de transferencia unidad III
 
Flujo lamnar y turbulento
Flujo lamnar y turbulentoFlujo lamnar y turbulento
Flujo lamnar y turbulento
 
Revista cientifica mecanica de fluidos
Revista cientifica mecanica de fluidosRevista cientifica mecanica de fluidos
Revista cientifica mecanica de fluidos
 
Propiedades de los fluidos jose arreaza ci 19782280
Propiedades de los fluidos jose arreaza ci 19782280Propiedades de los fluidos jose arreaza ci 19782280
Propiedades de los fluidos jose arreaza ci 19782280
 
Flujo a Presión en Tuberías
Flujo a Presión en Tuberías  Flujo a Presión en Tuberías
Flujo a Presión en Tuberías
 
Unidad 3
Unidad 3Unidad 3
Unidad 3
 
Instituto tecnológico de mexicali
Instituto tecnológico de mexicaliInstituto tecnológico de mexicali
Instituto tecnológico de mexicali
 
Fisica. fluidos
Fisica. fluidosFisica. fluidos
Fisica. fluidos
 
Trabajo 1 jose
Trabajo 1   joseTrabajo 1   jose
Trabajo 1 jose
 
Tarea unidad 3 investigacion blog
Tarea unidad 3 investigacion blogTarea unidad 3 investigacion blog
Tarea unidad 3 investigacion blog
 
Viscosidad y Número de Reynolds por Carlos Taco
Viscosidad y Número de Reynolds por Carlos TacoViscosidad y Número de Reynolds por Carlos Taco
Viscosidad y Número de Reynolds por Carlos Taco
 

Más de kevinomm

Otras formas de aprovechar la energía solar
Otras formas de aprovechar la energía solarOtras formas de aprovechar la energía solar
Otras formas de aprovechar la energía solar
kevinomm
 
Cuadro comparativo practica fourier
Cuadro comparativo practica fourierCuadro comparativo practica fourier
Cuadro comparativo practica fourier
kevinomm
 
Reporte practica fourier
Reporte practica fourierReporte practica fourier
Reporte practica fourier
kevinomm
 
Superficies extendidas
Superficies extendidasSuperficies extendidas
Superficies extendidas
kevinomm
 
Calculo de h por Nusselt, Prandtl y Reynolds
Calculo de h por Nusselt, Prandtl y ReynoldsCalculo de h por Nusselt, Prandtl y Reynolds
Calculo de h por Nusselt, Prandtl y Reynolds
kevinomm
 
Equivalente mecánico de calor
Equivalente mecánico de calorEquivalente mecánico de calor
Equivalente mecánico de calor
kevinomm
 
Vientos solares
Vientos solaresVientos solares
Vientos solares
kevinomm
 
Conductividad térmica
Conductividad térmicaConductividad térmica
Conductividad térmica
kevinomm
 
Comentario Acerca del Articulo "Particularidades de la conducción del calor e...
Comentario Acerca del Articulo "Particularidades de la conducción del calor e...Comentario Acerca del Articulo "Particularidades de la conducción del calor e...
Comentario Acerca del Articulo "Particularidades de la conducción del calor e...
kevinomm
 
Resumen Unidad 5 Mecanismos de Transferencia
Resumen Unidad 5 Mecanismos de TransferenciaResumen Unidad 5 Mecanismos de Transferencia
Resumen Unidad 5 Mecanismos de Transferencia
kevinomm
 
Relacion entre Ley de Fick y Ley de Graham
Relacion entre Ley de Fick y Ley de GrahamRelacion entre Ley de Fick y Ley de Graham
Relacion entre Ley de Fick y Ley de Grahamkevinomm
 
Adimensionalizacion de ecuaciones
Adimensionalizacion de ecuacionesAdimensionalizacion de ecuaciones
Adimensionalizacion de ecuacioneskevinomm
 

Más de kevinomm (13)

Otras formas de aprovechar la energía solar
Otras formas de aprovechar la energía solarOtras formas de aprovechar la energía solar
Otras formas de aprovechar la energía solar
 
Cuadro comparativo practica fourier
Cuadro comparativo practica fourierCuadro comparativo practica fourier
Cuadro comparativo practica fourier
 
Reporte practica fourier
Reporte practica fourierReporte practica fourier
Reporte practica fourier
 
Superficies extendidas
Superficies extendidasSuperficies extendidas
Superficies extendidas
 
Calculo de h por Nusselt, Prandtl y Reynolds
Calculo de h por Nusselt, Prandtl y ReynoldsCalculo de h por Nusselt, Prandtl y Reynolds
Calculo de h por Nusselt, Prandtl y Reynolds
 
Equivalente mecánico de calor
Equivalente mecánico de calorEquivalente mecánico de calor
Equivalente mecánico de calor
 
Vientos solares
Vientos solaresVientos solares
Vientos solares
 
Conductividad térmica
Conductividad térmicaConductividad térmica
Conductividad térmica
 
Comentario Acerca del Articulo "Particularidades de la conducción del calor e...
Comentario Acerca del Articulo "Particularidades de la conducción del calor e...Comentario Acerca del Articulo "Particularidades de la conducción del calor e...
Comentario Acerca del Articulo "Particularidades de la conducción del calor e...
 
Resumen Unidad 5 Mecanismos de Transferencia
Resumen Unidad 5 Mecanismos de TransferenciaResumen Unidad 5 Mecanismos de Transferencia
Resumen Unidad 5 Mecanismos de Transferencia
 
Relacion entre Ley de Fick y Ley de Graham
Relacion entre Ley de Fick y Ley de GrahamRelacion entre Ley de Fick y Ley de Graham
Relacion entre Ley de Fick y Ley de Graham
 
Adimensionalizacion de ecuaciones
Adimensionalizacion de ecuacionesAdimensionalizacion de ecuaciones
Adimensionalizacion de ecuaciones
 
Diagrama
DiagramaDiagrama
Diagrama
 

Último

Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdfAsistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Demetrio Ccesa Rayme
 
Portafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPNPortafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPN
jmorales40
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
https://gramadal.wordpress.com/
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
auxsoporte
 
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIALCUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
DivinoNioJess885
 
Fase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría AnalíticaFase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría Analítica
YasneidyGonzalez
 
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
rosannatasaycoyactay
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
EdwardYumbato1
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
YasneidyGonzalez
 
El fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docxEl fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docx
Alejandrino Halire Ccahuana
 
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIACONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
BetzabePecheSalcedo1
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
ClaudiaAlcondeViadez
 
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdfTestimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Txema Gs
 
Mapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativaMapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativa
TatianaVanessaAltami
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
CESAR MIJAEL ESPINOZA SALAZAR
 
evalaución de reforzamiento de cuarto de secundaria de la competencia lee
evalaución de reforzamiento de cuarto de secundaria de la competencia leeevalaución de reforzamiento de cuarto de secundaria de la competencia lee
evalaución de reforzamiento de cuarto de secundaria de la competencia lee
MaribelGaitanRamosRa
 
SESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docx
SESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docxSESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docx
SESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docx
QuispeJimenezDyuy
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
YasneidyGonzalez
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
Edurne Navarro Bueno
 

Último (20)

Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdfAsistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
Asistencia Tecnica Cultura Escolar Inclusiva Ccesa007.pdf
 
Portafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPNPortafolio de servicios Centro de Educación Continua EPN
Portafolio de servicios Centro de Educación Continua EPN
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
 
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLAACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
ACERTIJO DE CARRERA OLÍMPICA DE SUMA DE LABERINTOS. Por JAVIER SOLIS NOYOLA
 
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIALCUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
 
Fase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría AnalíticaFase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría Analítica
 
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
 
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
UNIDAD DE APRENDIZAJE DEL MES  Junio 2024UNIDAD DE APRENDIZAJE DEL MES  Junio 2024
UNIDAD DE APRENDIZAJE DEL MES Junio 2024
 
Fase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcionalFase 1, Lenguaje algebraico y pensamiento funcional
Fase 1, Lenguaje algebraico y pensamiento funcional
 
El fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docxEl fundamento del gobierno de Dios. Lec. 09. docx
El fundamento del gobierno de Dios. Lec. 09. docx
 
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIACONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
 
Testimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdfTestimonio Paco Z PATRONATO_Valencia_24.pdf
Testimonio Paco Z PATRONATO_Valencia_24.pdf
 
Mapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativaMapa_Conceptual de los fundamentos de la evaluación educativa
Mapa_Conceptual de los fundamentos de la evaluación educativa
 
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNETPRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
PRESENTACION DE LA SEMANA NUMERO 8 EN APLICACIONES DE INTERNET
 
evalaución de reforzamiento de cuarto de secundaria de la competencia lee
evalaución de reforzamiento de cuarto de secundaria de la competencia leeevalaución de reforzamiento de cuarto de secundaria de la competencia lee
evalaución de reforzamiento de cuarto de secundaria de la competencia lee
 
SESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docx
SESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docxSESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docx
SESION ORDENAMOS NÚMEROS EN FORMA ASCENDENTE Y DESCENDENTE 20 DE MAYO.docx
 
Fase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometricoFase 2, Pensamiento variacional y trigonometrico
Fase 2, Pensamiento variacional y trigonometrico
 
Proceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de PamplonaProceso de admisiones en escuelas infantiles de Pamplona
Proceso de admisiones en escuelas infantiles de Pamplona
 

Mecanismos de Transferencia Unidad 3

  • 1. Mecanismos de Transferencia Se denomina fluido a un tipo de medio continuo formado por alguna sustancia entre cuyas moléculas sólo hay una fuerza de atracción débil. La propiedad definitoria es que los fluidos pueden cambiar de forma sin que aparezcan en su seno fuerzas restitutivas tendentes a recuperar la forma "original" (lo cual constituye la principal diferencia con un sólido deformable, donde sí hay fuerzas restitutivas). Un fluido es un conjunto de partículas que se mantienen unidas entre si por fuerzas cohesivas débiles y las paredes de un recipiente; el término engloba a los líquidos y los gases. En el cambio de forma de un fluido la posición que toman sus moléculas varía, ante una fuerza aplicada sobre ellos, pues justamente fluyen. Los líquidos toman la forma del recipiente que los aloja, manteniendo su propio volumen, mientras que los gases carecen tanto de volumen como de forma propias. Las moléculas no cohesionadas se deslizan en los líquidos, y se mueven con libertad en los gases. Los fluidos están conformados por los líquidos y los gases, siendo los segundos mucho menos viscosos (casi fluidos ideales). La viscosidad depende en gran medida de la temperatura en líquidos en que las fuerzas cohesivas desempeñan un rol dominante.  La viscosidad en líquidos disminuye cuando incrementa la temperatura. Se representa con la ecuación de Andrade  En el caso de un gas las colisiones moleculares proporcionan los esfuerzos internos de modo que conforme la temperatura aumenta, dando por resultado una actividad molecular mayor, la viscosidad se incrementa.  Sin embargo el % de cambio de μ de un liquido es mucho mayor que en un gas con la misma ∆T … μ= μ(T).  Para un gas también dependerá de la presión ya que la densidad es sensible a la presión.
  • 2. Fluidos Newtonianos Un fluido newtoniano es un fluido cuya viscosidad puede considerarse constante en el tiempo. Los fluidos newtonianos son uno de los fluidos más sencillos de describir. La curva que muestra la relación entre el esfuerzo o cizalla contra su velocidad de deformación es lineal. El mejor ejemplo de este tipo de fluidos es el agua en contraposición al pegamento, la miel o los geles y sangreque son ejemplos de fluido no newtoniano. Un buen número de fluidos comunes se comportan como fluidos newtonianos bajo condiciones normales de presión y temperatura: el aire, el agua, la gasolina, el vino y algunos aceites minerales. Fluidos No Newtonianos Un fluido no newtoniano es aquel fluido cuya viscosidad varía con la temperatura y la tensión cortante que se le aplica. Como resultado, un fluido no newtoniano no tiene un valor de viscosidad definido y constante, a diferencia de un fluido newtoniano. Este fluido no cumple con la ecuación de viscosidad. Aunque el concepto de viscosidad se usa habitualmente para caracterizar un material, puede resultar inadecuado para describir el comportamiento mecánico de algunas sustancias, en concreto, los fluidos no newtonianos. Estos fluidos se pueden caracterizar mejor mediante otras propiedadesreológicas, propiedades que tienen que ver con la relación entre el esfuerzo y los tensores de tensiones bajo diferentes condiciones de flujo, tales como condiciones de esfuerzo cortante oscilatorio. Fluidos Laminares y Turbulentos Es uno de los dos tipos principales de flujo en fluido. Se llama flujo laminar o corriente laminar, al movimiento de un fluido cuando éste es ordenado, estratificado, suave. En un flujo laminar el fluido se mueve en láminas paralelas sin entremezclarse y cada partícula de fluido sigue una trayectoria suave, llamada línea de corriente. En flujos laminares el mecanismo de transporte lateral es exclusivamente molecular. Se puede presentar en las duchas eléctricas vemos que tienen lineas paralelas El flujo laminar es típico de fluidos a velocidades bajas o viscosidades altas, mientras fluidos de viscosidad baja, velocidad alta o grandes caudales suelen ser turbulentos. El número de Reynolds es un parámetro adimensional importante en las ecuaciones que describen en que condiciones el flujo será laminar o turbulento. En el caso de fluido que se mueve en un tubo de sección circular, el flujo persistente será laminar por debajo de un número de Reynolds crítico de aproximadamente 2040.1 Para números de Reynolds más altos el flujo
  • 3. turbulento puede sostenerse de forma indefinida. Sin embargo, el número de Reynolds que delimita flujo turbulento y laminar depende de la geometría del sistema y además la transición de flujo laminar a turbulento es en general sensible a ruido e imperfecciones en el sistema Se llama flujo turbulento o corriente turbulenta al movimiento de un fluido que se da en forma caótica, en que las partículas se mueven desordenadamente y las trayectorias de las partículas se encuentran formando pequeños remolinos aperiódicos, (no coordinados) como por ejemplo el agua en un canal de gran pendiente. Debido a esto, la trayectoria de una partícula se puede predecir hasta una cierta escala, a partir de la cual la trayectoria de la misma es impredecible, más precisamente caótica.
  • 4. Tipos de fluidos Independientes del Tiempo Tipo de Fluido Definición Fluido de Bingham El Fluido que se comporta como un sólido hasta que se excede un esfuerzo de deformación mínimo y exhibe subsecuentemente una relación lineal entre el esfuerzo y la relación de deformación. Pseudoplasticos No tienen una tensión de fluencia para que comiencen a deformarse, este tipo de fluidos se caracterizan por una disminución de su viscosidad, y de su esfuerzo cortante, con la velocidad de deformación. Dilantate Son suspensiones en las que se produce un aumento de la viscosidad con la velocidad de deformación, es decir, un aumento del esfuerzo cortante con dicha velocidad Ejemplo Catsup, pasta de dientes. Algunas pinturas, arcilla. clases acuosas de de Harina de maíz mezclada con agua (maicena), disoluciones de almidón muy concentradas, arena mojada. Dependientes del Tiempo Tipo de Fluido Reopectico Tixotropicos Definición Ejemplo Variaciones dependientes con el Clara de huevo tiempo de su viscocidad así, cuanto más tiempo se encuentra el fluido en cuestión bajo la influencia de esfuerzos, cortantes,mayor es su viscosidad. Su viscosidad disminuye al Aceites del petróleo, aumentar el tiempo de aplicación Yougurt, Nylon. del esfuerzo cortante, recuperando su estado inicial después de un reposo prolongado.
  • 5. Tipo de Fluido Viscoelasticos Definicion Ejemplo Tipo de comportamiento Gelatina. reologico que presentan ciertos materiales que exhiben tanto propiedades viscosas como propiedades elásticas cuando se deforman. Aplicaciones de Fluidos no Newtonianos: Yeso utilizado en construcción, chaleco antibalas, barro, cemento, plastilina, amortiguadores, equipo de protección para deportes.