SlideShare una empresa de Scribd logo
TAMAÑO DE MUESTRA ,[object Object]
 Desviación Estándar
 Tamaño De La Muestra
 Nivel De Confianza
 Calculo Del Tamaño De La Muestra
 Tamaño De La Muestra Óptimo
 Error  No Muestral,[object Object]
Ejemplo 2: Observa estos números: 3, 7, 5, 13, 20, 23, 39, 23, 40, 23, 14, 12, 56, 23, 29  = 330 La media es igual a 330 ÷ 15 = 22  El valor medio de los números de arriba es: 22 Números negativos ¿Qué hacemos con los números negativos? Sumar un número negativo es lo mismo que restarlo (quitándole el signo menos). Por ejemplo 3 + (-2) = 3-2 = 1. Sabiendo esto, vamos a hacer un ejemplo:  Ejemplo 3:  Calcula la media de estos números: 3, -7, 5, 13, -2 La suma de estos números es 3-7+5+13-2 = 12  Hay 5 números.  La media es igual a 12 ÷ 5 = 2.4  La media de los números de arriba es 2.4
Por ejemplo 4: Si en una habitación hay tres personas, la media de dinero que tienen en sus bolsillos sería el resultado de tomar todo el dinero de los tres y dividirlo a partes iguales entre cada uno de ellos.  Es decir, la media es una forma de resumir la información de una distribución (dinero en el bolsillo) suponiendo que cada observación (persona) tendría la misma cantidad de la variable.
2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos:       2.1.2 Desviación Estándar La desviación significa que tan lejos de lo normal. Desviación estándar (σ) mide cuánto se separan los datos.  La fórmula es fácil: es la raíz cuadrada de la varianza. La varianza (que es el cuadrado de la desviación estándar: σ2) se define así:Es la media de las diferencias con la media elevadas al cuadrado. En otras palabras, sigue estos pasos: 1. Calcula la media (el promedio de los números)2. Ahora, por cada número resta la media y eleva el resultado al cuadrado (la diferencia elevada al cuadrado). 3. Ahora calcula la media de esas diferencias al cuadrado. (¿Por qué a cuadrado?)
EJEMPLO Nosotras medimos las alturas de nuestros perros (en milímetros)  Las alturas (de los hombros) son: 600mm, 470mm, 170mm, 430mm y 300mm. Calcula la media, la varianza y la desviación estándar. 394 RESPUESTA 600 + 470 + 170 + 430 + 300  = 1970 = 394 Media  = 5 5
Así que la altura media es 394 mm. Se dibujar a esto en el gráfica: Ahora calculamos la diferencia de cada altura con la media:
Para calcular la varianza, toma cada diferencia, elévala al cuadrado, y haz la media: 108,520 =  21,704 2062 + 762 + (-224)2 + 362 + (-94)2  = Varianza: σ2 = 5 5 Así que la varianza es 21,704. Y la desviación estándar es la raíz de la varianza, así que: Desviación estándar: σ = √21,704 = 147 y lo bueno de la desviación estándar es que es útil: ahora veremos qué alturas están a distancia menos de la desviación estándar (147mm) de la media: 5 Así que usando la desviación estándar tenemos una manera "estándar" de saber qué es normal, o extra grande o extra pequeño.
¿POR QUÉ AL CUADRADO?  Elevar cada diferencia al cuadrado hace que todos los números sean positivos (para evitar que los números negativos reduzcan la varianza) Y también hacen que las diferencias grandes se destaquen. Por ejemplo 1002=10,000 es mucho más grande que 502=2,500. Pero elevarlas al cuadrado hace que la respuesta sea muy grande, así que lo deshacemos (con la raíz cuadrada) y así la desviación estándar es mucho más útil.
2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos:       2.1.3 Tamaño de la muestra Muestra Es el grupo de individuos que realmente se estudiarán,es un subconjunto de la población. Para que se puedangeneralizar a la población los resultados obtenidos en lamuestra, ésta ha de ser «representativa» de dichapoblación. Para ello, se han de definir con claridad loscriterios de inclusión y exclusión y, sobre todo, se han deutilizar las técnicas de muestreo apropiadas paragarantizar dicha representatividad.
2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos:       2.1.3 Tamaño de la muestra Individuo: Es cada uno de los integrantes de la población omuestra en los que se estudiarán las características deinterés determinadas por los objetivos del estudio. Normalmente, el número de individuos de la muestra serepresenta con la letra «n» y el número de sujetos de lapoblación por la «N».
2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos:       2.1.3 Tamaño de la muestra Tras la definición de las características de la población através de los criterios de inclusión y exclusión, se ha dedecidir si se estudia a toda la población o –en caso deque ésta sea demasiado grande– a un número desujetos representativo, que no han de ser ni pocos nidemasiados, sino simplemente los necesarios.
2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos:       2.1.3 Tamaño de la muestra Para determinar el tamaño de una muestra se deberán tomar en cuenta varios aspectos, relacionados con el parámetro y estimador, el sesgo, el error muestral, el nivel de confianza y la varianza poblacional.
2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos:       2.1.3 Tamaño de la muestra El parámetro se refiere a la característica de la población que es objeto de estudio y el estimador es la función de la muestra que se usa para medirlo. Ejemplo: Para evaluar la calidad de un grupo de estudiantes (parámetro) se mide a través de los promedios obtenidos (estimador).
2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos:       2.1.3 Tamaño de la muestra Un sesgo es un error que aparece en los resultados de un estudio debido a factores que dependen de la recolección, análisis, interpretación, publicación o revisión de los datos que pueden conducir a conclusiones que son sistemáticamente diferentes de la verdad o incorrectas acerca de los objetivos de una investigación.
2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos:       2.1.3 Tamaño de la muestra El error muestral siempre se comete ya que existe una pérdida de la representatividad al momento se escoger los elementos de la muestra. Sin embargo, la naturaleza de la investigación nos indicará hasta que grado se puede aceptar. El nivel de confianza, por su parte, es la probabilidad de que la estimación efectuada se ajuste a la realidad; es decir, que caiga dentro de un intervalo determinado basado en el estimador y que capte el valor verdadero del parámetro a medir.
2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos:       2.1.3 Tamaño de la muestra Varianza Poblacional. Cuando una población es más homogénea la varianza es menor y el número de entrevistas necesarias para construir un modelo reducido del universo, o de la población, será más pequeño. Generalmente es un valor desconocido y hay que estimarlo a partir de datos de estudios previos.
2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos:       2.1.3 Tamaño de la muestra El tamaño de la muestra depende de tres aspectos:  1) Error permitido  2) Nivel de confianza estimado  3) Carácter finito o infinito de la población.  Las fórmulas generales para determinar el tamaño de la muestra son las siguientes:  Para poblaciones infinitas (más de 100,000 habitantes)  Para poblaciones finitas (menos de 100,000 habitantes)
2.1 Distinguir los términos:       2.1.3 Tamaño de la muestra Nomenclatura:  n = Número de elementos de la muestra  N= Número de elementos de la población o universo  P/Q = Probabilidades con las que se presenta el fenómeno.  Z2 = Valor crítico correspondiente al nivel de confianza elegido; siempre se opera con valor zeta 2, luego Z = 2.  E = Margen de error permitido (determinado por el responsable del estudio).
2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos:       2.1.4 Nivel De Confianza 	La confianza o el porcentaje de confianza es el porcentaje de seguridad que existe para generalizar los resultados obtenidos. Esto quiere decir que un porcentaje del 100% equivale a decir que no existe ninguna duda para generalizar tales resultados, pero también implica estudiar a la totalidad de los casos de la población. 	Para evitar un costo muy alto para el estudio o debido a que en ocasiones llega a ser prácticamente imposible el estudio de todos los casos, entonces se busca un porcentaje de confianza menor. Comúnmente en las investigaciones sociales se busca un 95%.. Probabilidad de que la estimación efectuada se ajuste a la realidad
2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos  2.2 Calculo del tamaño de la muestra Para una población superior a 4500 El tamaño de la muestra debe tener en cuenta 3 factores   El riesgo de error aceptado: cuenta menor es el riesgo de error aceptado, mayor debe ser el tamaño de la muestra. En la practica el riesgo error aceptado es generalmente el 5%. La precisión deseada: a mayor precisión deseada, mayor debe ser el tamaño de la muestra.  La prevalencia esperada en la poblacion: A medida que la proporcion a poblacion que se presenta el factor que estudiamos se acerca al 50% mayor debe ser el tamaño de la muestra para una misma precisión.
2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos  2.2 Dificultades en el calculo del tamaño de la muestra Dificultades del tamaño de la muestra: ,[object Object]
 No hay accesibilidad de medios de comunicación (teléfono, internet)
 Falta de la disponibilidad de la población ,[object Object]

Más contenido relacionado

La actualidad más candente

Medidas de dispersion
Medidas de dispersionMedidas de dispersion
Medidas de dispersion
kactherinevg
 
Estadistica Muestreo
Estadistica MuestreoEstadistica Muestreo
Estadistica Muestreo
LuisaFernandaVelez
 
Medidas de dispersión calculo a mano
Medidas de dispersión calculo  a manoMedidas de dispersión calculo  a mano
Medidas de dispersión calculo a mano
GALILEO
 
130447032 inferencia-estadistica-unidad-ii (1)
130447032 inferencia-estadistica-unidad-ii (1)130447032 inferencia-estadistica-unidad-ii (1)
130447032 inferencia-estadistica-unidad-ii (1)
EstesoyyoEmanuel Gonzalez
 
Cuadro comparativo - Estadística Paramétrica y No Paramétrica
Cuadro comparativo - Estadística Paramétrica y No ParamétricaCuadro comparativo - Estadística Paramétrica y No Paramétrica
Cuadro comparativo - Estadística Paramétrica y No Paramétrica
ricardooberto
 
Tamaño de la muestra (física)
Tamaño de la muestra (física)Tamaño de la muestra (física)
Tamaño de la muestra (física)
Angie Hernandez
 
Pruebas no paramétricas
Pruebas no paramétricasPruebas no paramétricas
Pruebas no paramétricas
matildepeguero
 
Estadistica 8
Estadistica 8Estadistica 8
Estadistica 8
Carlos Cáceres
 
Hipótesis
HipótesisHipótesis
1.1 prueba de hipotesis
1.1 prueba de hipotesis1.1 prueba de hipotesis
1.1 prueba de hipotesis
Ing Claudia N
 
Veter. 11ava estimadores de medias y proporciones
Veter. 11ava estimadores de medias y proporcionesVeter. 11ava estimadores de medias y proporciones
Veter. 11ava estimadores de medias y proporciones
Univ Peruana Los Andes
 
Estimadores
EstimadoresEstimadores
Estimadores
sergionava6
 
Estadistica
EstadisticaEstadistica
Estadistica
antoniocarpinto
 
Tamaño+de..
Tamaño+de..Tamaño+de..
Tamaño+de..
gueste5eaac
 
Métodos de muestreo y el teorema de límite central
Métodos de muestreo y el teorema de límite centralMétodos de muestreo y el teorema de límite central
Métodos de muestreo y el teorema de límite central
Alejandro Ruiz
 
Prueba de hipotesis
Prueba de hipotesisPrueba de hipotesis
Prueba de hipotesis
LennysNJ
 
Intervalos de confianza 2
Intervalos de confianza 2Intervalos de confianza 2
Intervalos de confianza 2
Hector Funes
 
Taller intervalos de confianza
Taller intervalos de confianzaTaller intervalos de confianza
Taller intervalos de confianza
Yohana Bonilla Gutiérrez
 
Medidas de Tendencia Central
Medidas de Tendencia CentralMedidas de Tendencia Central
Medidas de Tendencia Central
Taimar Gamboa
 
estimacion
estimacionestimacion

La actualidad más candente (20)

Medidas de dispersion
Medidas de dispersionMedidas de dispersion
Medidas de dispersion
 
Estadistica Muestreo
Estadistica MuestreoEstadistica Muestreo
Estadistica Muestreo
 
Medidas de dispersión calculo a mano
Medidas de dispersión calculo  a manoMedidas de dispersión calculo  a mano
Medidas de dispersión calculo a mano
 
130447032 inferencia-estadistica-unidad-ii (1)
130447032 inferencia-estadistica-unidad-ii (1)130447032 inferencia-estadistica-unidad-ii (1)
130447032 inferencia-estadistica-unidad-ii (1)
 
Cuadro comparativo - Estadística Paramétrica y No Paramétrica
Cuadro comparativo - Estadística Paramétrica y No ParamétricaCuadro comparativo - Estadística Paramétrica y No Paramétrica
Cuadro comparativo - Estadística Paramétrica y No Paramétrica
 
Tamaño de la muestra (física)
Tamaño de la muestra (física)Tamaño de la muestra (física)
Tamaño de la muestra (física)
 
Pruebas no paramétricas
Pruebas no paramétricasPruebas no paramétricas
Pruebas no paramétricas
 
Estadistica 8
Estadistica 8Estadistica 8
Estadistica 8
 
Hipótesis
HipótesisHipótesis
Hipótesis
 
1.1 prueba de hipotesis
1.1 prueba de hipotesis1.1 prueba de hipotesis
1.1 prueba de hipotesis
 
Veter. 11ava estimadores de medias y proporciones
Veter. 11ava estimadores de medias y proporcionesVeter. 11ava estimadores de medias y proporciones
Veter. 11ava estimadores de medias y proporciones
 
Estimadores
EstimadoresEstimadores
Estimadores
 
Estadistica
EstadisticaEstadistica
Estadistica
 
Tamaño+de..
Tamaño+de..Tamaño+de..
Tamaño+de..
 
Métodos de muestreo y el teorema de límite central
Métodos de muestreo y el teorema de límite centralMétodos de muestreo y el teorema de límite central
Métodos de muestreo y el teorema de límite central
 
Prueba de hipotesis
Prueba de hipotesisPrueba de hipotesis
Prueba de hipotesis
 
Intervalos de confianza 2
Intervalos de confianza 2Intervalos de confianza 2
Intervalos de confianza 2
 
Taller intervalos de confianza
Taller intervalos de confianzaTaller intervalos de confianza
Taller intervalos de confianza
 
Medidas de Tendencia Central
Medidas de Tendencia CentralMedidas de Tendencia Central
Medidas de Tendencia Central
 
estimacion
estimacionestimacion
estimacion
 

Destacado

Estad uma 01
Estad uma 01Estad uma 01
Estad uma 01
Xavier Sol Solares
 
TAMAÑO DE LA MUESTRA
TAMAÑO DE LA MUESTRATAMAÑO DE LA MUESTRA
TAMAÑO DE LA MUESTRA
guest8a3c19
 
Cálculo del tamaño de muestra (con ejemplos)
Cálculo del tamaño de muestra  (con ejemplos)Cálculo del tamaño de muestra  (con ejemplos)
Cálculo del tamaño de muestra (con ejemplos)
Filomeno Carvajal
 
Nociones de estadística
Nociones de estadística Nociones de estadística
Nociones de estadística
Juan Carlos Venitez
 
Tamaño de muestra
Tamaño de muestraTamaño de muestra
Tamaño de muestra
aguilas2013
 
Nociones básicas de estadística
Nociones básicas de estadísticaNociones básicas de estadística
Nociones básicas de estadística
Patricia Iglesias
 
Presentacion Muestra
Presentacion MuestraPresentacion Muestra
Presentacion Muestra
robertv9
 
Muestreo
MuestreoMuestreo
Muestreo
yalide
 
Tipos de muestreo
Tipos de muestreoTipos de muestreo
Tipos de muestreo
Mildred Hernandez
 
Problemas de determinación de tamaño de la muestra (9)
Problemas de determinación de tamaño de la muestra (9)Problemas de determinación de tamaño de la muestra (9)
Problemas de determinación de tamaño de la muestra (9)
Luz Hernández
 
Operacionalizacion
OperacionalizacionOperacionalizacion
Operacionalizacion
Grupo 1
 
Descripción cuantitativa de enfermedades de las plantas
Descripción cuantitativa de enfermedades de las plantasDescripción cuantitativa de enfermedades de las plantas
Descripción cuantitativa de enfermedades de las plantas
Carina Caceres
 
Taller De Tesis Miam 1 De 3
Taller De Tesis Miam 1 De 3Taller De Tesis Miam 1 De 3
Taller De Tesis Miam 1 De 3
Cesar Funes
 
epidemilogia
epidemilogiaepidemilogia
epidemilogia
shamikito moron rojas
 
Tema 6
Tema 6Tema 6
Tipos de errores
Tipos de erroresTipos de errores
Tipos de errores
Universidad de Colima
 
Presentación
PresentaciónPresentación
Presentación
Marayta
 
Introducion al muestreo y tipos de muestreo
Introducion al muestreo y tipos de muestreoIntroducion al muestreo y tipos de muestreo
Introducion al muestreo y tipos de muestreo
Dj RECORDS PACHOSKY STYLE
 
Incidencia, diagnóstico, comportamiento y alternativas de manejo de la marchi...
Incidencia, diagnóstico, comportamiento y alternativas de manejo de la marchi...Incidencia, diagnóstico, comportamiento y alternativas de manejo de la marchi...
Incidencia, diagnóstico, comportamiento y alternativas de manejo de la marchi...
corpoaguacate
 
Media, varianza y desviación estandar
Media, varianza y desviación estandarMedia, varianza y desviación estandar
Media, varianza y desviación estandar
criollitoyque
 

Destacado (20)

Estad uma 01
Estad uma 01Estad uma 01
Estad uma 01
 
TAMAÑO DE LA MUESTRA
TAMAÑO DE LA MUESTRATAMAÑO DE LA MUESTRA
TAMAÑO DE LA MUESTRA
 
Cálculo del tamaño de muestra (con ejemplos)
Cálculo del tamaño de muestra  (con ejemplos)Cálculo del tamaño de muestra  (con ejemplos)
Cálculo del tamaño de muestra (con ejemplos)
 
Nociones de estadística
Nociones de estadística Nociones de estadística
Nociones de estadística
 
Tamaño de muestra
Tamaño de muestraTamaño de muestra
Tamaño de muestra
 
Nociones básicas de estadística
Nociones básicas de estadísticaNociones básicas de estadística
Nociones básicas de estadística
 
Presentacion Muestra
Presentacion MuestraPresentacion Muestra
Presentacion Muestra
 
Muestreo
MuestreoMuestreo
Muestreo
 
Tipos de muestreo
Tipos de muestreoTipos de muestreo
Tipos de muestreo
 
Problemas de determinación de tamaño de la muestra (9)
Problemas de determinación de tamaño de la muestra (9)Problemas de determinación de tamaño de la muestra (9)
Problemas de determinación de tamaño de la muestra (9)
 
Operacionalizacion
OperacionalizacionOperacionalizacion
Operacionalizacion
 
Descripción cuantitativa de enfermedades de las plantas
Descripción cuantitativa de enfermedades de las plantasDescripción cuantitativa de enfermedades de las plantas
Descripción cuantitativa de enfermedades de las plantas
 
Taller De Tesis Miam 1 De 3
Taller De Tesis Miam 1 De 3Taller De Tesis Miam 1 De 3
Taller De Tesis Miam 1 De 3
 
epidemilogia
epidemilogiaepidemilogia
epidemilogia
 
Tema 6
Tema 6Tema 6
Tema 6
 
Tipos de errores
Tipos de erroresTipos de errores
Tipos de errores
 
Presentación
PresentaciónPresentación
Presentación
 
Introducion al muestreo y tipos de muestreo
Introducion al muestreo y tipos de muestreoIntroducion al muestreo y tipos de muestreo
Introducion al muestreo y tipos de muestreo
 
Incidencia, diagnóstico, comportamiento y alternativas de manejo de la marchi...
Incidencia, diagnóstico, comportamiento y alternativas de manejo de la marchi...Incidencia, diagnóstico, comportamiento y alternativas de manejo de la marchi...
Incidencia, diagnóstico, comportamiento y alternativas de manejo de la marchi...
 
Media, varianza y desviación estandar
Media, varianza y desviación estandarMedia, varianza y desviación estandar
Media, varianza y desviación estandar
 

Similar a TamañO De La Muestra

Medidas de dispersión empleando excel
Medidas de dispersión empleando excelMedidas de dispersión empleando excel
Medidas de dispersión empleando excel
victor rojas rojas
 
Proyecto individual karen rdz
Proyecto individual   karen rdzProyecto individual   karen rdz
Proyecto individual karen rdz
Karen Rodriquez
 
Intervalos de confianza-1
Intervalos de confianza-1Intervalos de confianza-1
Intervalos de confianza-1
Hector Funes
 
document (1).pdf
document (1).pdfdocument (1).pdf
document (1).pdf
MoisesRequenaCordova
 
Tarea7 intervalosdeconfianza-10
Tarea7 intervalosdeconfianza-10Tarea7 intervalosdeconfianza-10
Tarea7 intervalosdeconfianza-10
CUR
 
Medidas de tendencia central posicion y dispercion gabriel
Medidas de tendencia central posicion y dispercion gabrielMedidas de tendencia central posicion y dispercion gabriel
Medidas de tendencia central posicion y dispercion gabriel
gabrielliendo2222222
 
2. errores en las mediciones
2. errores en las mediciones2. errores en las mediciones
2. errores en las mediciones
mjrunah
 
Ejercicios intervalos de confianza
Ejercicios intervalos de confianzaEjercicios intervalos de confianza
Ejercicios intervalos de confianza
alimacni
 
Ejercicios intervalos de confianza
Ejercicios intervalos de confianzaEjercicios intervalos de confianza
Ejercicios intervalos de confianza
alimacni
 
ESTADISTICA II clase17.pdf
ESTADISTICA II clase17.pdfESTADISTICA II clase17.pdf
ESTADISTICA II clase17.pdf
LaskaviaMerubiaBejar
 
METODOS ESTADÍSTICOS I, SEGUNDA Y TERCERA clase.pptx
METODOS ESTADÍSTICOS I, SEGUNDA Y TERCERA clase.pptxMETODOS ESTADÍSTICOS I, SEGUNDA Y TERCERA clase.pptx
METODOS ESTADÍSTICOS I, SEGUNDA Y TERCERA clase.pptx
franciscocuevas2190
 
Mic sesión 6
Mic sesión 6Mic sesión 6
Mic sesión 6
Metodos_Cuantitativos
 
Varianza y desviación estándar
Varianza y desviación estándarVarianza y desviación estándar
Varianza y desviación estándar
UNIVERSIDAD METROPOLITANA
 
Estimación de parametro su31
Estimación de parametro su31Estimación de parametro su31
Estimación de parametro su31
Instruccional
 
Clase 4 medidas de tendencia no central
Clase 4 medidas de tendencia no centralClase 4 medidas de tendencia no central
Clase 4 medidas de tendencia no central
LUZ ELENA GARCIA
 
Intervalos de confianza 2018
Intervalos de confianza 2018Intervalos de confianza 2018
Intervalos de confianza 2018
franciscoe71
 
Tamaño de la muestra
Tamaño de la muestraTamaño de la muestra
Tamaño de la muestra
AGENCIAS2
 
Tamaño de la muestra
Tamaño de la muestraTamaño de la muestra
Tamaño de la muestra
AGENCIAS2
 
Tamaño de la muestra original
Tamaño de la muestra originalTamaño de la muestra original
Tamaño de la muestra original
laura ochoa
 
Tamaño de la muestra original
Tamaño de la muestra originalTamaño de la muestra original
Tamaño de la muestra original
laura ochoa
 

Similar a TamañO De La Muestra (20)

Medidas de dispersión empleando excel
Medidas de dispersión empleando excelMedidas de dispersión empleando excel
Medidas de dispersión empleando excel
 
Proyecto individual karen rdz
Proyecto individual   karen rdzProyecto individual   karen rdz
Proyecto individual karen rdz
 
Intervalos de confianza-1
Intervalos de confianza-1Intervalos de confianza-1
Intervalos de confianza-1
 
document (1).pdf
document (1).pdfdocument (1).pdf
document (1).pdf
 
Tarea7 intervalosdeconfianza-10
Tarea7 intervalosdeconfianza-10Tarea7 intervalosdeconfianza-10
Tarea7 intervalosdeconfianza-10
 
Medidas de tendencia central posicion y dispercion gabriel
Medidas de tendencia central posicion y dispercion gabrielMedidas de tendencia central posicion y dispercion gabriel
Medidas de tendencia central posicion y dispercion gabriel
 
2. errores en las mediciones
2. errores en las mediciones2. errores en las mediciones
2. errores en las mediciones
 
Ejercicios intervalos de confianza
Ejercicios intervalos de confianzaEjercicios intervalos de confianza
Ejercicios intervalos de confianza
 
Ejercicios intervalos de confianza
Ejercicios intervalos de confianzaEjercicios intervalos de confianza
Ejercicios intervalos de confianza
 
ESTADISTICA II clase17.pdf
ESTADISTICA II clase17.pdfESTADISTICA II clase17.pdf
ESTADISTICA II clase17.pdf
 
METODOS ESTADÍSTICOS I, SEGUNDA Y TERCERA clase.pptx
METODOS ESTADÍSTICOS I, SEGUNDA Y TERCERA clase.pptxMETODOS ESTADÍSTICOS I, SEGUNDA Y TERCERA clase.pptx
METODOS ESTADÍSTICOS I, SEGUNDA Y TERCERA clase.pptx
 
Mic sesión 6
Mic sesión 6Mic sesión 6
Mic sesión 6
 
Varianza y desviación estándar
Varianza y desviación estándarVarianza y desviación estándar
Varianza y desviación estándar
 
Estimación de parametro su31
Estimación de parametro su31Estimación de parametro su31
Estimación de parametro su31
 
Clase 4 medidas de tendencia no central
Clase 4 medidas de tendencia no centralClase 4 medidas de tendencia no central
Clase 4 medidas de tendencia no central
 
Intervalos de confianza 2018
Intervalos de confianza 2018Intervalos de confianza 2018
Intervalos de confianza 2018
 
Tamaño de la muestra
Tamaño de la muestraTamaño de la muestra
Tamaño de la muestra
 
Tamaño de la muestra
Tamaño de la muestraTamaño de la muestra
Tamaño de la muestra
 
Tamaño de la muestra original
Tamaño de la muestra originalTamaño de la muestra original
Tamaño de la muestra original
 
Tamaño de la muestra original
Tamaño de la muestra originalTamaño de la muestra original
Tamaño de la muestra original
 

Más de Ana kristell

Admon De Ventas
Admon  De VentasAdmon  De Ventas
Admon De Ventas
Ana kristell
 
Modelo De Conducta De Compra Organizacional
Modelo De Conducta De Compra OrganizacionalModelo De Conducta De Compra Organizacional
Modelo De Conducta De Compra Organizacional
Ana kristell
 
Logisticade DistribucióN
Logisticade DistribucióNLogisticade DistribucióN
Logisticade DistribucióN
Ana kristell
 
Decisiones Organizacionales Dentro De La Mercadotecnia
Decisiones Organizacionales Dentro De La MercadotecniaDecisiones Organizacionales Dentro De La Mercadotecnia
Decisiones Organizacionales Dentro De La Mercadotecnia
Ana kristell
 
Entrevista De Profundidad
Entrevista De ProfundidadEntrevista De Profundidad
Entrevista De Profundidad
Ana kristell
 
Procesamiento De Datos
Procesamiento De DatosProcesamiento De Datos
Procesamiento De Datos
Ana kristell
 
Fundamentos De Muestreo
Fundamentos De MuestreoFundamentos De Muestreo
Fundamentos De Muestreo
Ana kristell
 
Trabajo En Equipo
Trabajo En EquipoTrabajo En Equipo
Trabajo En Equipo
Ana kristell
 
InnovacióN De Los Productos
InnovacióN De Los ProductosInnovacióN De Los Productos
InnovacióN De Los Productos
Ana kristell
 
Grupo
GrupoGrupo
Hipotesis
HipotesisHipotesis
Hipotesis
Ana kristell
 
Objetivo De La Investigacion
Objetivo De La InvestigacionObjetivo De La Investigacion
Objetivo De La Investigacion
Ana kristell
 
Tipo De Aspectos Metodologicos
Tipo De Aspectos MetodologicosTipo De Aspectos Metodologicos
Tipo De Aspectos Metodologicos
Ana kristell
 
Tipos De Metodos De Investigacion
Tipos De Metodos De InvestigacionTipos De Metodos De Investigacion
Tipos De Metodos De Investigacion
Ana kristell
 
Tipos De Estudios
Tipos De EstudiosTipos De Estudios
Tipos De Estudios
Ana kristell
 
MéTodos De RecoleccióN De Datos
MéTodos De RecoleccióN De DatosMéTodos De RecoleccióN De Datos
MéTodos De RecoleccióN De Datos
Ana kristell
 
Adaptadores De Red
Adaptadores De RedAdaptadores De Red
Adaptadores De Red
Ana kristell
 
Justificacion De La Investigacion
Justificacion De La InvestigacionJustificacion De La Investigacion
Justificacion De La Investigacion
Ana kristell
 
La Calidad Y El Mundo Lobalizado Del Software
La Calidad Y El Mundo Lobalizado Del SoftwareLa Calidad Y El Mundo Lobalizado Del Software
La Calidad Y El Mundo Lobalizado Del Software
Ana kristell
 

Más de Ana kristell (19)

Admon De Ventas
Admon  De VentasAdmon  De Ventas
Admon De Ventas
 
Modelo De Conducta De Compra Organizacional
Modelo De Conducta De Compra OrganizacionalModelo De Conducta De Compra Organizacional
Modelo De Conducta De Compra Organizacional
 
Logisticade DistribucióN
Logisticade DistribucióNLogisticade DistribucióN
Logisticade DistribucióN
 
Decisiones Organizacionales Dentro De La Mercadotecnia
Decisiones Organizacionales Dentro De La MercadotecniaDecisiones Organizacionales Dentro De La Mercadotecnia
Decisiones Organizacionales Dentro De La Mercadotecnia
 
Entrevista De Profundidad
Entrevista De ProfundidadEntrevista De Profundidad
Entrevista De Profundidad
 
Procesamiento De Datos
Procesamiento De DatosProcesamiento De Datos
Procesamiento De Datos
 
Fundamentos De Muestreo
Fundamentos De MuestreoFundamentos De Muestreo
Fundamentos De Muestreo
 
Trabajo En Equipo
Trabajo En EquipoTrabajo En Equipo
Trabajo En Equipo
 
InnovacióN De Los Productos
InnovacióN De Los ProductosInnovacióN De Los Productos
InnovacióN De Los Productos
 
Grupo
GrupoGrupo
Grupo
 
Hipotesis
HipotesisHipotesis
Hipotesis
 
Objetivo De La Investigacion
Objetivo De La InvestigacionObjetivo De La Investigacion
Objetivo De La Investigacion
 
Tipo De Aspectos Metodologicos
Tipo De Aspectos MetodologicosTipo De Aspectos Metodologicos
Tipo De Aspectos Metodologicos
 
Tipos De Metodos De Investigacion
Tipos De Metodos De InvestigacionTipos De Metodos De Investigacion
Tipos De Metodos De Investigacion
 
Tipos De Estudios
Tipos De EstudiosTipos De Estudios
Tipos De Estudios
 
MéTodos De RecoleccióN De Datos
MéTodos De RecoleccióN De DatosMéTodos De RecoleccióN De Datos
MéTodos De RecoleccióN De Datos
 
Adaptadores De Red
Adaptadores De RedAdaptadores De Red
Adaptadores De Red
 
Justificacion De La Investigacion
Justificacion De La InvestigacionJustificacion De La Investigacion
Justificacion De La Investigacion
 
La Calidad Y El Mundo Lobalizado Del Software
La Calidad Y El Mundo Lobalizado Del SoftwareLa Calidad Y El Mundo Lobalizado Del Software
La Calidad Y El Mundo Lobalizado Del Software
 

Último

La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptxLa orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
PaolaAlejandraCarmon1
 
Clasificación de los animales vertebrados
Clasificación de los animales vertebradosClasificación de los animales vertebrados
Clasificación de los animales vertebrados
DianaLopez859290
 
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdfCarnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
EleNoguera
 
Programación de la XI semana cultural del CEIP Alfares
Programación de la XI semana cultural del CEIP AlfaresProgramación de la XI semana cultural del CEIP Alfares
Programación de la XI semana cultural del CEIP Alfares
Alfaresbilingual
 
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
MiNeyi1
 
Gui_a para el uso de IA generativa en educacio_n e investigacio_n - UNESCO.pdf
Gui_a para el uso de IA generativa en educacio_n e investigacio_n - UNESCO.pdfGui_a para el uso de IA generativa en educacio_n e investigacio_n - UNESCO.pdf
Gui_a para el uso de IA generativa en educacio_n e investigacio_n - UNESCO.pdf
FRANCISCO PAVON RABASCO
 
Mi Comunidad En El Sector Monterrey-Poste Blanco
Mi Comunidad En El Sector Monterrey-Poste BlancoMi Comunidad En El Sector Monterrey-Poste Blanco
Mi Comunidad En El Sector Monterrey-Poste Blanco
Ruth Noemí Soto Villegas
 
2.- DIARIO -MANIFESTACIONES-LECTURA...pdf
2.- DIARIO -MANIFESTACIONES-LECTURA...pdf2.- DIARIO -MANIFESTACIONES-LECTURA...pdf
2.- DIARIO -MANIFESTACIONES-LECTURA...pdf
MiNeyi1
 
TRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDA
TRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDATRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDA
TRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDA
ARIANAANABELVINUEZAZ
 
Elmer crizologo rojas.pdf aplicaciones en internet
Elmer crizologo rojas.pdf aplicaciones en internetElmer crizologo rojas.pdf aplicaciones en internet
Elmer crizologo rojas.pdf aplicaciones en internet
Elmer Crizologo Rojas
 
Business Plan -rAIces - Agro Business Tech
Business Plan -rAIces - Agro Business TechBusiness Plan -rAIces - Agro Business Tech
Business Plan -rAIces - Agro Business Tech
johnyamg20
 
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdfEvaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
EfranMartnez8
 
PPT: Los acontecimientos finales de la tierra
PPT: Los acontecimientos finales de la tierraPPT: Los acontecimientos finales de la tierra
PPT: Los acontecimientos finales de la tierra
https://gramadal.wordpress.com/
 
Ejercicios propuestos (if , switch).docx
Ejercicios propuestos (if , switch).docxEjercicios propuestos (if , switch).docx
Ejercicios propuestos (if , switch).docx
sebastianjacome1808
 
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsadUrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
JorgeVillota6
 
UESJLS Robótica Clase 19 - Dibujo de un polígono sobre otro
UESJLS Robótica Clase 19 - Dibujo de un  polígono sobre otroUESJLS Robótica Clase 19 - Dibujo de un  polígono sobre otro
UESJLS Robótica Clase 19 - Dibujo de un polígono sobre otro
Docente Informático
 
Los acontecimientos finales de la tierra.pdf
Los acontecimientos finales de la tierra.pdfLos acontecimientos finales de la tierra.pdf
Los acontecimientos finales de la tierra.pdf
Alejandrino Halire Ccahuana
 
FRASE CÉLEBRE OLÍMPICA EN ROMPECABEZAS. Por JAVIER SOLIS NOYOLA
FRASE CÉLEBRE OLÍMPICA EN ROMPECABEZAS. Por JAVIER SOLIS NOYOLAFRASE CÉLEBRE OLÍMPICA EN ROMPECABEZAS. Por JAVIER SOLIS NOYOLA
FRASE CÉLEBRE OLÍMPICA EN ROMPECABEZAS. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
ROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdfPRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
christianMuoz756105
 

Último (20)

La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptxLa orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
 
Clasificación de los animales vertebrados
Clasificación de los animales vertebradosClasificación de los animales vertebrados
Clasificación de los animales vertebrados
 
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdfCarnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
Carnavision: anticipa y aprovecha - hackathon Pasto2024 .pdf
 
Programación de la XI semana cultural del CEIP Alfares
Programación de la XI semana cultural del CEIP AlfaresProgramación de la XI semana cultural del CEIP Alfares
Programación de la XI semana cultural del CEIP Alfares
 
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
 
Gui_a para el uso de IA generativa en educacio_n e investigacio_n - UNESCO.pdf
Gui_a para el uso de IA generativa en educacio_n e investigacio_n - UNESCO.pdfGui_a para el uso de IA generativa en educacio_n e investigacio_n - UNESCO.pdf
Gui_a para el uso de IA generativa en educacio_n e investigacio_n - UNESCO.pdf
 
Mi Comunidad En El Sector Monterrey-Poste Blanco
Mi Comunidad En El Sector Monterrey-Poste BlancoMi Comunidad En El Sector Monterrey-Poste Blanco
Mi Comunidad En El Sector Monterrey-Poste Blanco
 
2.- DIARIO -MANIFESTACIONES-LECTURA...pdf
2.- DIARIO -MANIFESTACIONES-LECTURA...pdf2.- DIARIO -MANIFESTACIONES-LECTURA...pdf
2.- DIARIO -MANIFESTACIONES-LECTURA...pdf
 
TRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDA
TRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDATRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDA
TRABAJO EXPERIMENTAL DE ENFOQUES DE LA CALIDAD DE VIDA
 
Elmer crizologo rojas.pdf aplicaciones en internet
Elmer crizologo rojas.pdf aplicaciones en internetElmer crizologo rojas.pdf aplicaciones en internet
Elmer crizologo rojas.pdf aplicaciones en internet
 
Business Plan -rAIces - Agro Business Tech
Business Plan -rAIces - Agro Business TechBusiness Plan -rAIces - Agro Business Tech
Business Plan -rAIces - Agro Business Tech
 
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdfEvaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
 
PPT: Los acontecimientos finales de la tierra
PPT: Los acontecimientos finales de la tierraPPT: Los acontecimientos finales de la tierra
PPT: Los acontecimientos finales de la tierra
 
Ejercicios propuestos (if , switch).docx
Ejercicios propuestos (if , switch).docxEjercicios propuestos (if , switch).docx
Ejercicios propuestos (if , switch).docx
 
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsadUrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
 
UESJLS Robótica Clase 19 - Dibujo de un polígono sobre otro
UESJLS Robótica Clase 19 - Dibujo de un  polígono sobre otroUESJLS Robótica Clase 19 - Dibujo de un  polígono sobre otro
UESJLS Robótica Clase 19 - Dibujo de un polígono sobre otro
 
Los acontecimientos finales de la tierra.pdf
Los acontecimientos finales de la tierra.pdfLos acontecimientos finales de la tierra.pdf
Los acontecimientos finales de la tierra.pdf
 
FRASE CÉLEBRE OLÍMPICA EN ROMPECABEZAS. Por JAVIER SOLIS NOYOLA
FRASE CÉLEBRE OLÍMPICA EN ROMPECABEZAS. Por JAVIER SOLIS NOYOLAFRASE CÉLEBRE OLÍMPICA EN ROMPECABEZAS. Por JAVIER SOLIS NOYOLA
FRASE CÉLEBRE OLÍMPICA EN ROMPECABEZAS. Por JAVIER SOLIS NOYOLA
 
ROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLAROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
ROMPECABEZAS DE COMPETENCIAS OLÍMPICAS. Por JAVIER SOLIS NOYOLA
 
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdfPRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
PRINCIPALES INNOVACIONES CURRICULARES 2024.pdf
 

TamañO De La Muestra

  • 1.
  • 3. Tamaño De La Muestra
  • 4. Nivel De Confianza
  • 5. Calculo Del Tamaño De La Muestra
  • 6. Tamaño De La Muestra Óptimo
  • 7.
  • 8. Ejemplo 2: Observa estos números: 3, 7, 5, 13, 20, 23, 39, 23, 40, 23, 14, 12, 56, 23, 29 = 330 La media es igual a 330 ÷ 15 = 22 El valor medio de los números de arriba es: 22 Números negativos ¿Qué hacemos con los números negativos? Sumar un número negativo es lo mismo que restarlo (quitándole el signo menos). Por ejemplo 3 + (-2) = 3-2 = 1. Sabiendo esto, vamos a hacer un ejemplo: Ejemplo 3: Calcula la media de estos números: 3, -7, 5, 13, -2 La suma de estos números es 3-7+5+13-2 = 12 Hay 5 números. La media es igual a 12 ÷ 5 = 2.4 La media de los números de arriba es 2.4
  • 9. Por ejemplo 4: Si en una habitación hay tres personas, la media de dinero que tienen en sus bolsillos sería el resultado de tomar todo el dinero de los tres y dividirlo a partes iguales entre cada uno de ellos. Es decir, la media es una forma de resumir la información de una distribución (dinero en el bolsillo) suponiendo que cada observación (persona) tendría la misma cantidad de la variable.
  • 10. 2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos: 2.1.2 Desviación Estándar La desviación significa que tan lejos de lo normal. Desviación estándar (σ) mide cuánto se separan los datos. La fórmula es fácil: es la raíz cuadrada de la varianza. La varianza (que es el cuadrado de la desviación estándar: σ2) se define así:Es la media de las diferencias con la media elevadas al cuadrado. En otras palabras, sigue estos pasos: 1. Calcula la media (el promedio de los números)2. Ahora, por cada número resta la media y eleva el resultado al cuadrado (la diferencia elevada al cuadrado). 3. Ahora calcula la media de esas diferencias al cuadrado. (¿Por qué a cuadrado?)
  • 11. EJEMPLO Nosotras medimos las alturas de nuestros perros (en milímetros) Las alturas (de los hombros) son: 600mm, 470mm, 170mm, 430mm y 300mm. Calcula la media, la varianza y la desviación estándar. 394 RESPUESTA 600 + 470 + 170 + 430 + 300 = 1970 = 394 Media = 5 5
  • 12. Así que la altura media es 394 mm. Se dibujar a esto en el gráfica: Ahora calculamos la diferencia de cada altura con la media:
  • 13. Para calcular la varianza, toma cada diferencia, elévala al cuadrado, y haz la media: 108,520 = 21,704 2062 + 762 + (-224)2 + 362 + (-94)2 = Varianza: σ2 = 5 5 Así que la varianza es 21,704. Y la desviación estándar es la raíz de la varianza, así que: Desviación estándar: σ = √21,704 = 147 y lo bueno de la desviación estándar es que es útil: ahora veremos qué alturas están a distancia menos de la desviación estándar (147mm) de la media: 5 Así que usando la desviación estándar tenemos una manera "estándar" de saber qué es normal, o extra grande o extra pequeño.
  • 14. ¿POR QUÉ AL CUADRADO? Elevar cada diferencia al cuadrado hace que todos los números sean positivos (para evitar que los números negativos reduzcan la varianza) Y también hacen que las diferencias grandes se destaquen. Por ejemplo 1002=10,000 es mucho más grande que 502=2,500. Pero elevarlas al cuadrado hace que la respuesta sea muy grande, así que lo deshacemos (con la raíz cuadrada) y así la desviación estándar es mucho más útil.
  • 15. 2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos: 2.1.3 Tamaño de la muestra Muestra Es el grupo de individuos que realmente se estudiarán,es un subconjunto de la población. Para que se puedangeneralizar a la población los resultados obtenidos en lamuestra, ésta ha de ser «representativa» de dichapoblación. Para ello, se han de definir con claridad loscriterios de inclusión y exclusión y, sobre todo, se han deutilizar las técnicas de muestreo apropiadas paragarantizar dicha representatividad.
  • 16. 2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos: 2.1.3 Tamaño de la muestra Individuo: Es cada uno de los integrantes de la población omuestra en los que se estudiarán las características deinterés determinadas por los objetivos del estudio. Normalmente, el número de individuos de la muestra serepresenta con la letra «n» y el número de sujetos de lapoblación por la «N».
  • 17. 2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos: 2.1.3 Tamaño de la muestra Tras la definición de las características de la población através de los criterios de inclusión y exclusión, se ha dedecidir si se estudia a toda la población o –en caso deque ésta sea demasiado grande– a un número desujetos representativo, que no han de ser ni pocos nidemasiados, sino simplemente los necesarios.
  • 18. 2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos: 2.1.3 Tamaño de la muestra Para determinar el tamaño de una muestra se deberán tomar en cuenta varios aspectos, relacionados con el parámetro y estimador, el sesgo, el error muestral, el nivel de confianza y la varianza poblacional.
  • 19. 2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos: 2.1.3 Tamaño de la muestra El parámetro se refiere a la característica de la población que es objeto de estudio y el estimador es la función de la muestra que se usa para medirlo. Ejemplo: Para evaluar la calidad de un grupo de estudiantes (parámetro) se mide a través de los promedios obtenidos (estimador).
  • 20. 2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos: 2.1.3 Tamaño de la muestra Un sesgo es un error que aparece en los resultados de un estudio debido a factores que dependen de la recolección, análisis, interpretación, publicación o revisión de los datos que pueden conducir a conclusiones que son sistemáticamente diferentes de la verdad o incorrectas acerca de los objetivos de una investigación.
  • 21. 2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos: 2.1.3 Tamaño de la muestra El error muestral siempre se comete ya que existe una pérdida de la representatividad al momento se escoger los elementos de la muestra. Sin embargo, la naturaleza de la investigación nos indicará hasta que grado se puede aceptar. El nivel de confianza, por su parte, es la probabilidad de que la estimación efectuada se ajuste a la realidad; es decir, que caiga dentro de un intervalo determinado basado en el estimador y que capte el valor verdadero del parámetro a medir.
  • 22. 2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos: 2.1.3 Tamaño de la muestra Varianza Poblacional. Cuando una población es más homogénea la varianza es menor y el número de entrevistas necesarias para construir un modelo reducido del universo, o de la población, será más pequeño. Generalmente es un valor desconocido y hay que estimarlo a partir de datos de estudios previos.
  • 23. 2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos: 2.1.3 Tamaño de la muestra El tamaño de la muestra depende de tres aspectos: 1) Error permitido 2) Nivel de confianza estimado 3) Carácter finito o infinito de la población. Las fórmulas generales para determinar el tamaño de la muestra son las siguientes: Para poblaciones infinitas (más de 100,000 habitantes) Para poblaciones finitas (menos de 100,000 habitantes)
  • 24. 2.1 Distinguir los términos: 2.1.3 Tamaño de la muestra Nomenclatura: n = Número de elementos de la muestra N= Número de elementos de la población o universo P/Q = Probabilidades con las que se presenta el fenómeno. Z2 = Valor crítico correspondiente al nivel de confianza elegido; siempre se opera con valor zeta 2, luego Z = 2. E = Margen de error permitido (determinado por el responsable del estudio).
  • 25. 2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos: 2.1.4 Nivel De Confianza La confianza o el porcentaje de confianza es el porcentaje de seguridad que existe para generalizar los resultados obtenidos. Esto quiere decir que un porcentaje del 100% equivale a decir que no existe ninguna duda para generalizar tales resultados, pero también implica estudiar a la totalidad de los casos de la población. Para evitar un costo muy alto para el estudio o debido a que en ocasiones llega a ser prácticamente imposible el estudio de todos los casos, entonces se busca un porcentaje de confianza menor. Comúnmente en las investigaciones sociales se busca un 95%.. Probabilidad de que la estimación efectuada se ajuste a la realidad
  • 26. 2.TAMAÑO DE MUESTRA 2.1 Distinguir los términos 2.2 Calculo del tamaño de la muestra Para una población superior a 4500 El tamaño de la muestra debe tener en cuenta 3 factores El riesgo de error aceptado: cuenta menor es el riesgo de error aceptado, mayor debe ser el tamaño de la muestra. En la practica el riesgo error aceptado es generalmente el 5%. La precisión deseada: a mayor precisión deseada, mayor debe ser el tamaño de la muestra. La prevalencia esperada en la poblacion: A medida que la proporcion a poblacion que se presenta el factor que estudiamos se acerca al 50% mayor debe ser el tamaño de la muestra para una misma precisión.
  • 27.
  • 28. No hay accesibilidad de medios de comunicación (teléfono, internet)
  • 29.
  • 30. 2.TAMAÑO DE MUESTRA 2.3 Distinguir los métodos para obtener el tamaño de la muestra optimo Descripción:n = Tamaño de la muestra requeridot = Nivel de fiabilidad de 95% (valor estándar de 1,96)p = Prevalencia estimada de la malnutrición en la zona del proyectom = Margen de error de 5% (valor estándar de 0,05) n= t² x p(1-p) m²
  • 31. Ejemplo En el proyecto de Al Haouz en Marruecos, se ha calculado que cerca del 30% (0,3) de los niños de la zona del proyecto padecen de malnutrición crónica. Este dato se basa en estadísticas nacionales sobre malnutrición en las zonas rurales. Utilizando los valores estándar indicados supra se efectúa el cálculo siguiente: Cálculo:
  • 32. Para estimar el tamaño de muestra necesario para realizar una encuesta epidemiológica se debe de aplicar la siguiente fórmula: Para estimar el tamaño de muestra necesario para realizar una encuesta epidemiológica se debe de aplicar la siguiente fórmula: Para estimar el tamaño de muestra necesario para realizar una encuesta epidemiológica sedebe de aplicar la siguiente fórmula: Donde n= Tamaño de la muestra, z= 1,96 para el 95% de confianza, 2,56 para el 99% p= Frecuencia esperada del factor a estudiar q= 1- p B= Precisión o error admitido
  • 33. Ejemplo: Supongamos que se desea realizar una encuesta sobre la brucelosis ovina. Seestima una prevalencia del 15% y se requiere un 5% de precisión sobre una población de2.000.000 de cabezas. El nivel de confianza se fija en el 95%. El tamaño de la muestra necesario para dicha encuesta según la fórmula sería: Por tanto, deberemos seleccionar aleatoriamente 196 animales del total de la población.
  • 34. Supongamos que trabajamos con un α de riesgo del 5%. En tal caso, nuestro Z de confianza (1-α)del 95% sería igual a 1.96. Si sabemos, o al menos suponemos, que la desviación estándarproporcional a la media, STM, es 50% (0.5), y además esperamos un margen de error de 10%,entonces podemos encontrar el número de encuestados: Es decir que con confianza del 95% y un margen de error de ±10%, encontramos que el número deencuestados es 96 personas. Si queremos reducir el margen de error a ±5%, tenemos el siguiente número de encuestados:
  • 35.
  • 36. Codificación y corrección cuidadosa.
  • 37. Respeto por la cooperación y buena voluntad de los informantes.