SlideShare una empresa de Scribd logo
1 de 14
Teorema de Thales




      Profesora Srta. Yanira Castro Lizana
Teorema de Thales

         Nació : alrededor del año 640 AC
         en Mileto, Asia Menor (ahora
         Turquía)

         Thales era un hombre que se
         destacó   en   varia   áreas    :
         comerciante, hábil en ingeniería,
         astrónomo, geómetra


          Thales era considerado uno
          de los siete sabios de Grecia
Sobresale especialmente por:
      Que en sus teoremas geométricos aparecen los inicios del
      concepto de demostración y se podría decir que son el punto
      de partida en el proceso de organización racional de las
      matemática.




    Una anécdota contada por Platón

   una noche Thales estaba observando el cielo y
    tropezó. Un sirviente lo Levantó y Le dijo: cómo
    pretendes entender lo que pasa en el cielo, si no
    puedes ver lo que está a tus pies.
Cuenta la historia que
  comparando la sombra
  de un bastón y la
  sombra        de       las
  pirámides, Thales midió,
  por    semejanza,     sus
  alturas respectivas. La
  proporcionalidad entre
  los segmentos que las
  rectas          paralelas
  determinan     en   otras
  rectas dio lugar a lo que
  hoy se conoce como el
  teorema de Thales.
Puesto que los rayos del Sol inciden paralelamente sobre la
           Tierra
          los triángulos rectángulos determinados por la
          altura de la pirámide y su sombra
         y el determinado por la altura del bastón y la suya son
         semejantes
                                                    Rayos solares
         Podemos, por tanto, establecer la proporción



      H =h
      S s
De donde
               h•S
             H= s                                     H(altura de la pirámide)
                                               Pirámide

             h (altura de bastón)
                                S   (sombra)
s (sombra)
Ahora
        El famoso
         teorema
"Si tres o más rectas paralelas son intersecadas por
      dos       transversales,      los    segmentos      de las
      transversales determinados por las paralelas, son
      proporcionales
    En el dibujo: Si L1 // L2 // L3   , T y S transversales,
            los segmentos a, b, c y d son proporcionales

Es decir:                       T        S
                                                           L1
a = c                       a                 c
b   d                                                      L2
                        b                         d
     ¿DE
  ACUERDO?                                                      L3
Un ejemplo:
          En la figura L1 // L2 // L3 , T y S transversales, calcula la
          medida del                                  L1
          trazo x
                                                           L2
  Ordenamos los datos en                 T
                                                    x
  la proporción, de acuerdo
                                                           15
  al teorema de Thales                                             L3
                                    S

 Es decir:
             8    X                  8
             24 = 15
Y resolvemos la proporción               24

    24 • x = 8 • 15

         X =8 • 15
             24              Fácil
             X=5
Otro ejemplo:                                        L3
        en la figura L1 // L2 // L3 , T y S son L2
        transversales, calcula x y el trazo CD                    T
Formamos la proporción          L1                     x+1
        3       x+4                            D
        2   =   x+1
                                         x+4
Resolvemos la proporción
  3(x + 1) = 2(x + 4)
                              C
   3x + 3 = 2x + 8
   3x - 2x= 8 - 3

       X=5
                                                             S
 Luego, como CD = x + 4              3             2
             CD= 5 + 4 = 9
TRIÁNGULOS DE THALES

          Y nuevamente pensando en la
          pirámide…..
                  Dos triángulos se dicen de Thales o que
                  están en posición de Thales, cuando:
                  Tienen un ángulo común y los lados
                  opuestos a dicho          ángulo son
                  paralelos.
Podemos ver esto si trasladamos el triángulo
formado por el bastón, su sombra y los rayos
solares hacia el formado por la pirámide                    H(altura de la pirámide

              h (altura de bastón)
s (sombra)
                                     S   (sombra)
Triángulos de Thales
            En dos triángulos de Thales, sus lados,
              tienen la misma razón de semejanza
                                                          A

        De acuerdo a esto, en la figura BC// ED,
        entonces, con los lados de los triángulos AED y
        ABC ocurre:

   AE ED
     =
   AB BC                                                  D
                                        E

O también

 AE = AB
                              B                               C
 ED   BC
                               A esta forma de
                            tomar los trazos, se
                           le llama “la doble L”
Aplicaciones de esta idea
          Calcula la altura del siguiente edificio

Escribimos la proporción

                    Por que 3+12=15

      3 = 15
      5    x
                                                     x
Y resolvemos la proporción

  3 • x = 5 • 15
     x = 75
                                           5
          3
      X = 25                         3         12
Otro ejercicio

 En el triángulo ABC, DE//BC , calcule x y el trazo AE

 Formamos la proporción
                                Por que
     8     12                 x+3+x = 2x+3            C
        =
    X+3   2x+3

                                                 D                 12
Resolvemos la proporción
                                                          8
 8(2x + 3) = 12( x + 3)
 16x + 24 = 12x + 36
16x – 12x = 36 – 24                                                         B
                                            A         x+3           E   x
     4x = 12

      X = 12 = 3
           4           Por lo tanto, si AE = x + 3 = 3 + 3 =   6
   Tarea
   Investigar un ejemplo cotidiano
    donde puedas aplicar el Teorema de
    Thales.

Más contenido relacionado

La actualidad más candente

05 prueba linea recta
05 prueba linea recta05 prueba linea recta
05 prueba linea recta
Luis SP
 
teorema de pitágoras demostraciones
teorema de pitágoras demostracionesteorema de pitágoras demostraciones
teorema de pitágoras demostraciones
Myrhella Elhyzabeth
 
Teorema de tales
Teorema de talesTeorema de tales
Teorema de tales
Ana Casado
 
Matematica4 semana 7 guía de estudio prisma y piramide ccesa007
Matematica4  semana 7  guía de  estudio  prisma y piramide ccesa007Matematica4  semana 7  guía de  estudio  prisma y piramide ccesa007
Matematica4 semana 7 guía de estudio prisma y piramide ccesa007
Demetrio Ccesa Rayme
 
Teoría: Método Deductivo
Teoría: Método DeductivoTeoría: Método Deductivo
Teoría: Método Deductivo
aldomat07
 
Ecuacion De Segundo Grado
Ecuacion De Segundo GradoEcuacion De Segundo Grado
Ecuacion De Segundo Grado
repc1982
 
Razones Trigonometricas
Razones TrigonometricasRazones Trigonometricas
Razones Trigonometricas
memolibre
 

La actualidad más candente (20)

Teorema De Thales
Teorema De ThalesTeorema De Thales
Teorema De Thales
 
Aduni repaso fisica 1
Aduni repaso fisica 1Aduni repaso fisica 1
Aduni repaso fisica 1
 
PROPORCIONALIDAD Y SEMEJANZA DE TRIÁNGULOS
PROPORCIONALIDAD Y SEMEJANZA DE TRIÁNGULOS PROPORCIONALIDAD Y SEMEJANZA DE TRIÁNGULOS
PROPORCIONALIDAD Y SEMEJANZA DE TRIÁNGULOS
 
Congruencia de Triàngulos
Congruencia de TriàngulosCongruencia de Triàngulos
Congruencia de Triàngulos
 
Trigonometria 15
Trigonometria  15Trigonometria  15
Trigonometria 15
 
Teorema de Thales
Teorema de ThalesTeorema de Thales
Teorema de Thales
 
05 prueba linea recta
05 prueba linea recta05 prueba linea recta
05 prueba linea recta
 
Algeplano guia
Algeplano guiaAlgeplano guia
Algeplano guia
 
teorema de pitágoras demostraciones
teorema de pitágoras demostracionesteorema de pitágoras demostraciones
teorema de pitágoras demostraciones
 
Teorema de tales
Teorema de talesTeorema de tales
Teorema de tales
 
Pitagoras ppt
Pitagoras pptPitagoras ppt
Pitagoras ppt
 
Matematica4 semana 7 guía de estudio prisma y piramide ccesa007
Matematica4  semana 7  guía de  estudio  prisma y piramide ccesa007Matematica4  semana 7  guía de  estudio  prisma y piramide ccesa007
Matematica4 semana 7 guía de estudio prisma y piramide ccesa007
 
Teorema de Thales
Teorema de ThalesTeorema de Thales
Teorema de Thales
 
Teoría: Método Deductivo
Teoría: Método DeductivoTeoría: Método Deductivo
Teoría: Método Deductivo
 
Teorema de tales
Teorema de talesTeorema de tales
Teorema de tales
 
Ecuacion de primer grado
Ecuacion de primer gradoEcuacion de primer grado
Ecuacion de primer grado
 
Ecuacion De Segundo Grado
Ecuacion De Segundo GradoEcuacion De Segundo Grado
Ecuacion De Segundo Grado
 
Teorema De Thales
Teorema De ThalesTeorema De Thales
Teorema De Thales
 
Razones Trigonometricas
Razones TrigonometricasRazones Trigonometricas
Razones Trigonometricas
 
Problemas resueltos de pitagoras
Problemas resueltos de pitagorasProblemas resueltos de pitagoras
Problemas resueltos de pitagoras
 

Similar a Teorema de thales

Presentacion de teorema de tales 2
Presentacion de teorema de tales 2Presentacion de teorema de tales 2
Presentacion de teorema de tales 2
mecho1022
 
Teorema de thales
Teorema de thalesTeorema de thales
Teorema de thales
sitayanis
 
Teorema de thales nuevo
Teorema de thales nuevoTeorema de thales nuevo
Teorema de thales nuevo
marinaigj
 
Teorema de Thales
Teorema de ThalesTeorema de Thales
Teorema de Thales
ajrespina
 
Teorema De Thales Trabajo2
Teorema De Thales Trabajo2Teorema De Thales Trabajo2
Teorema De Thales Trabajo2
mmsq
 
teoremadethales-ppt-130628110815-phpapp01.pptx
teoremadethales-ppt-130628110815-phpapp01.pptxteoremadethales-ppt-130628110815-phpapp01.pptx
teoremadethales-ppt-130628110815-phpapp01.pptx
acanales68
 
Teorema de thales
Teorema de thalesTeorema de thales
Teorema de thales
Sita Yani's
 

Similar a Teorema de thales (20)

Presentacion de teorema de tales 2
Presentacion de teorema de tales 2Presentacion de teorema de tales 2
Presentacion de teorema de tales 2
 
Tales power point
Tales power pointTales power point
Tales power point
 
Teorema de thales1240219369196
Teorema de thales1240219369196Teorema de thales1240219369196
Teorema de thales1240219369196
 
Teorema de thales 2010
Teorema de thales 2010Teorema de thales 2010
Teorema de thales 2010
 
Teorema de tales
Teorema de talesTeorema de tales
Teorema de tales
 
Teorema de tales
Teorema de talesTeorema de tales
Teorema de tales
 
Teorema De Thales
Teorema De ThalesTeorema De Thales
Teorema De Thales
 
Teorema De Thales
Teorema De ThalesTeorema De Thales
Teorema De Thales
 
Teorema De Thales
Teorema De ThalesTeorema De Thales
Teorema De Thales
 
Teorema de thales1240219369196
Teorema de thales1240219369196Teorema de thales1240219369196
Teorema de thales1240219369196
 
Teorema de thales
Teorema de thalesTeorema de thales
Teorema de thales
 
Teorema de thales nuevo
Teorema de thales nuevoTeorema de thales nuevo
Teorema de thales nuevo
 
Teorema de Thales
Teorema de ThalesTeorema de Thales
Teorema de Thales
 
Teo de thales
Teo de thalesTeo de thales
Teo de thales
 
Teorema De Thales Trabajo2
Teorema De Thales Trabajo2Teorema De Thales Trabajo2
Teorema De Thales Trabajo2
 
teoremadethales-ppt-130628110815-phpapp01.pptx
teoremadethales-ppt-130628110815-phpapp01.pptxteoremadethales-ppt-130628110815-phpapp01.pptx
teoremadethales-ppt-130628110815-phpapp01.pptx
 
Teoremadethales presentacion
Teoremadethales presentacionTeoremadethales presentacion
Teoremadethales presentacion
 
Teorema de thales
Teorema de thalesTeorema de thales
Teorema de thales
 
teoremadethales-090417151118-phpapp02.pdf
teoremadethales-090417151118-phpapp02.pdfteoremadethales-090417151118-phpapp02.pdf
teoremadethales-090417151118-phpapp02.pdf
 
Thales
ThalesThales
Thales
 

Más de sitayanis

Guia complementaria trigonometria teorema del seno
Guia complementaria trigonometria teorema del senoGuia complementaria trigonometria teorema del seno
Guia complementaria trigonometria teorema del seno
sitayanis
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
sitayanis
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
sitayanis
 
Estadistica cuarto medio
Estadistica cuarto medioEstadistica cuarto medio
Estadistica cuarto medio
sitayanis
 
31509945 ejercicios-de-poliedros
31509945 ejercicios-de-poliedros31509945 ejercicios-de-poliedros
31509945 ejercicios-de-poliedros
sitayanis
 
Poliedros cuarto medio
Poliedros cuarto medioPoliedros cuarto medio
Poliedros cuarto medio
sitayanis
 
Elementos de estadistica descriptiva
Elementos de estadistica descriptivaElementos de estadistica descriptiva
Elementos de estadistica descriptiva
sitayanis
 
Sistema de ecuaciones 1
Sistema de ecuaciones 1Sistema de ecuaciones 1
Sistema de ecuaciones 1
sitayanis
 
Circunferencia y circulos
Circunferencia y circulosCircunferencia y circulos
Circunferencia y circulos
sitayanis
 
Ejercicios area y volumen
Ejercicios area y volumenEjercicios area y volumen
Ejercicios area y volumen
sitayanis
 
Ficha de inscripción concurso canino pitrufquén
Ficha de inscripción concurso canino pitrufquénFicha de inscripción concurso canino pitrufquén
Ficha de inscripción concurso canino pitrufquén
sitayanis
 
Factorizacion de-polinomios
Factorizacion de-polinomiosFactorizacion de-polinomios
Factorizacion de-polinomios
sitayanis
 
Calculo de áreas y perímetro en figuras achuradas
Calculo de áreas y perímetro en figuras achuradasCalculo de áreas y perímetro en figuras achuradas
Calculo de áreas y perímetro en figuras achuradas
sitayanis
 
Factorización Primero Medio
Factorización Primero MedioFactorización Primero Medio
Factorización Primero Medio
sitayanis
 
Geometria area perimetro
Geometria area perimetroGeometria area perimetro
Geometria area perimetro
sitayanis
 
El teorema de pitágoras con papel y tijeras
El teorema de pitágoras con papel y tijerasEl teorema de pitágoras con papel y tijeras
El teorema de pitágoras con papel y tijeras
sitayanis
 
Tercero medio actividad rompecabeza
Tercero medio actividad rompecabezaTercero medio actividad rompecabeza
Tercero medio actividad rompecabeza
sitayanis
 
Tercero medio detalle actividad puzzle
Tercero medio detalle actividad puzzleTercero medio detalle actividad puzzle
Tercero medio detalle actividad puzzle
sitayanis
 
Guia cuarto medio cuadriláteros
Guia cuarto medio cuadriláteros Guia cuarto medio cuadriláteros
Guia cuarto medio cuadriláteros
sitayanis
 
Guía de octavo área achurada
Guía de octavo área achuradaGuía de octavo área achurada
Guía de octavo área achurada
sitayanis
 

Más de sitayanis (20)

Guia complementaria trigonometria teorema del seno
Guia complementaria trigonometria teorema del senoGuia complementaria trigonometria teorema del seno
Guia complementaria trigonometria teorema del seno
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Estadistica cuarto medio
Estadistica cuarto medioEstadistica cuarto medio
Estadistica cuarto medio
 
31509945 ejercicios-de-poliedros
31509945 ejercicios-de-poliedros31509945 ejercicios-de-poliedros
31509945 ejercicios-de-poliedros
 
Poliedros cuarto medio
Poliedros cuarto medioPoliedros cuarto medio
Poliedros cuarto medio
 
Elementos de estadistica descriptiva
Elementos de estadistica descriptivaElementos de estadistica descriptiva
Elementos de estadistica descriptiva
 
Sistema de ecuaciones 1
Sistema de ecuaciones 1Sistema de ecuaciones 1
Sistema de ecuaciones 1
 
Circunferencia y circulos
Circunferencia y circulosCircunferencia y circulos
Circunferencia y circulos
 
Ejercicios area y volumen
Ejercicios area y volumenEjercicios area y volumen
Ejercicios area y volumen
 
Ficha de inscripción concurso canino pitrufquén
Ficha de inscripción concurso canino pitrufquénFicha de inscripción concurso canino pitrufquén
Ficha de inscripción concurso canino pitrufquén
 
Factorizacion de-polinomios
Factorizacion de-polinomiosFactorizacion de-polinomios
Factorizacion de-polinomios
 
Calculo de áreas y perímetro en figuras achuradas
Calculo de áreas y perímetro en figuras achuradasCalculo de áreas y perímetro en figuras achuradas
Calculo de áreas y perímetro en figuras achuradas
 
Factorización Primero Medio
Factorización Primero MedioFactorización Primero Medio
Factorización Primero Medio
 
Geometria area perimetro
Geometria area perimetroGeometria area perimetro
Geometria area perimetro
 
El teorema de pitágoras con papel y tijeras
El teorema de pitágoras con papel y tijerasEl teorema de pitágoras con papel y tijeras
El teorema de pitágoras con papel y tijeras
 
Tercero medio actividad rompecabeza
Tercero medio actividad rompecabezaTercero medio actividad rompecabeza
Tercero medio actividad rompecabeza
 
Tercero medio detalle actividad puzzle
Tercero medio detalle actividad puzzleTercero medio detalle actividad puzzle
Tercero medio detalle actividad puzzle
 
Guia cuarto medio cuadriláteros
Guia cuarto medio cuadriláteros Guia cuarto medio cuadriláteros
Guia cuarto medio cuadriláteros
 
Guía de octavo área achurada
Guía de octavo área achuradaGuía de octavo área achurada
Guía de octavo área achurada
 

Teorema de thales

  • 1. Teorema de Thales Profesora Srta. Yanira Castro Lizana
  • 2. Teorema de Thales Nació : alrededor del año 640 AC en Mileto, Asia Menor (ahora Turquía) Thales era un hombre que se destacó en varia áreas : comerciante, hábil en ingeniería, astrónomo, geómetra Thales era considerado uno de los siete sabios de Grecia
  • 3. Sobresale especialmente por: Que en sus teoremas geométricos aparecen los inicios del concepto de demostración y se podría decir que son el punto de partida en el proceso de organización racional de las matemática. Una anécdota contada por Platón  una noche Thales estaba observando el cielo y tropezó. Un sirviente lo Levantó y Le dijo: cómo pretendes entender lo que pasa en el cielo, si no puedes ver lo que está a tus pies.
  • 4. Cuenta la historia que comparando la sombra de un bastón y la sombra de las pirámides, Thales midió, por semejanza, sus alturas respectivas. La proporcionalidad entre los segmentos que las rectas paralelas determinan en otras rectas dio lugar a lo que hoy se conoce como el teorema de Thales.
  • 5. Puesto que los rayos del Sol inciden paralelamente sobre la Tierra los triángulos rectángulos determinados por la altura de la pirámide y su sombra y el determinado por la altura del bastón y la suya son semejantes Rayos solares Podemos, por tanto, establecer la proporción H =h S s De donde h•S H= s H(altura de la pirámide) Pirámide h (altura de bastón) S (sombra) s (sombra)
  • 6. Ahora El famoso teorema
  • 7. "Si tres o más rectas paralelas son intersecadas por dos transversales, los segmentos de las transversales determinados por las paralelas, son proporcionales En el dibujo: Si L1 // L2 // L3 , T y S transversales, los segmentos a, b, c y d son proporcionales Es decir: T S L1 a = c a c b d L2 b d ¿DE ACUERDO? L3
  • 8. Un ejemplo: En la figura L1 // L2 // L3 , T y S transversales, calcula la medida del L1 trazo x L2 Ordenamos los datos en T x la proporción, de acuerdo 15 al teorema de Thales L3 S Es decir: 8 X 8 24 = 15 Y resolvemos la proporción 24 24 • x = 8 • 15 X =8 • 15 24 Fácil X=5
  • 9. Otro ejemplo: L3 en la figura L1 // L2 // L3 , T y S son L2 transversales, calcula x y el trazo CD T Formamos la proporción L1 x+1 3 x+4 D 2 = x+1 x+4 Resolvemos la proporción 3(x + 1) = 2(x + 4) C 3x + 3 = 2x + 8 3x - 2x= 8 - 3 X=5 S Luego, como CD = x + 4 3 2 CD= 5 + 4 = 9
  • 10. TRIÁNGULOS DE THALES Y nuevamente pensando en la pirámide….. Dos triángulos se dicen de Thales o que están en posición de Thales, cuando: Tienen un ángulo común y los lados opuestos a dicho ángulo son paralelos. Podemos ver esto si trasladamos el triángulo formado por el bastón, su sombra y los rayos solares hacia el formado por la pirámide H(altura de la pirámide h (altura de bastón) s (sombra) S (sombra)
  • 11. Triángulos de Thales En dos triángulos de Thales, sus lados, tienen la misma razón de semejanza A De acuerdo a esto, en la figura BC// ED, entonces, con los lados de los triángulos AED y ABC ocurre: AE ED = AB BC D E O también AE = AB B C ED BC A esta forma de tomar los trazos, se le llama “la doble L”
  • 12. Aplicaciones de esta idea Calcula la altura del siguiente edificio Escribimos la proporción Por que 3+12=15 3 = 15 5 x x Y resolvemos la proporción 3 • x = 5 • 15 x = 75 5 3 X = 25 3 12
  • 13. Otro ejercicio En el triángulo ABC, DE//BC , calcule x y el trazo AE Formamos la proporción Por que 8 12 x+3+x = 2x+3 C = X+3 2x+3 D 12 Resolvemos la proporción 8 8(2x + 3) = 12( x + 3) 16x + 24 = 12x + 36 16x – 12x = 36 – 24 B A x+3 E x 4x = 12 X = 12 = 3 4 Por lo tanto, si AE = x + 3 = 3 + 3 = 6
  • 14. Tarea  Investigar un ejemplo cotidiano donde puedas aplicar el Teorema de Thales.