TRIGONOMETRIA

    TELLER DE REFUERZO



PRESENTADO POR
    BAIRON ANDRES LOPEZ
        MELISA CRUZ
       INGRID ORTEGA
trigonometría
Trigonometría, rama de las matemáticas que estudia las
relaciones entre los lados y los ángulos de los triángulos.
Etimológicamente significa ‘medida de triángulos’. Las
primeras aplicaciones de la trigonometría se hicieron en
los campos de la navegación, la geodesia y la astronomía,
en los que el principal problema era determinar una
distancia inaccesible, es decir, una distancia que no podía
ser medida de forma directa, como la distancia entre la
Tierra y la Luna. Se encuentran notables aplicaciones de
las funciones trigonométricas en la física y en casi todas
las ramas de la ingeniería, sobre todo en el estudio de
fenómenos periódicos, como el flujo de corriente alterna.
Las dos ramas fundamentales de la trigonometría son la
trigonometría plana y la trigonometría esférica.
Razones trigonométricas de
 un triangulo rectángulo.
 Para establecer las razones trigonométricas, en
    cualquier triángulo rectángulo, es necesario
                         conocer sus elementos.
                          hipotenusa
                           Cateto opuesto
                            adyacente
Los triángulos rectángulos cumplen una
  serie de relaciones métricas importantes
        entre sus lados. Los lados de un
       triángulo rectángulo que forman
 el ángulo recto, B y C, se llaman catetos y el
tercer lado, A, (opuesto al ángulo recto) es la
     hipotenusa. Los ángulos con vértice
 en A y B son ángulos agudos, el ángulo con
     vértice en C es recto. En un triangulo
 rectángulo, las razones trigonométricas del
         Angulo α con vértice en A son:
Seno
En un triángulo rectángulo, el seno de un ángulo
 agudo α, que se designa por sen α, es igual a la
  longitud del cateto opuesto al ángulo dividida
     por la longitud de la hipotenusa. la razón
  trigonométrica es entre el cateto opuesto y la
                    hipotenusa.
                          cateto opuesto
                           hipotenusa
Coseno
   En un triángulo rectángulo, el coseno de un
  ángulo agudo α, que se designa por cos α, es
igual a la longitud del cateto adyacente al ángulo
    dividida por la longitud de la hipotenusa.
    la razón trigonométrica es entre el cateto
             adyacente y la hipotenusa.
                         adyacente
                         hipotenusa
Tangente
 En un triángulo rectángulo, la tangente de un
 ángulo agudo α, que se designa por tang α, es
igual a la longitud del cateto opuesto al ángulo
 dividida por la longitud del cateto adyacente.
        la razón trigonométrica es entre
           cateto opuesto y adyacente.
                        cateto opuesto
                        cateto adyacente
Razones trigonométricas
      reciprocas
A partir de las razones trigonométricas sen, cos
y tang se definen la cosecante (cosec), la secante
      (sec) y la cotangente (cot) A cada razón
        fundamental corresponde una razón
  recíproca, llamadas así por que cada una es la
                    inversa de otra.
   Las tres siguientes son las razones recíprocas
   que se pueden establecer respecto al mismo
                        ángulo.
cosecante
 es la razón entre la hipotenusa y el cateto
opuesto al ángulo, y como es la recíproca del
     seno de α se puede expresar como.
secante
   es la razón entre la hipotenusa y el cateto
adyacente al ángulo, y como es la reciproca del
     coseno de α se puede expresar como.
cotangente
 es la razón entre el cateto adyacente al ángulo y
el cateto puesto al mismo, y como es la recíproca
   de la tangente de α se puede expresar como.
APLICACIONES EN LAS FUNCIONES
      TRIGONOMETRICAS

                Hallar la longitud de
                una escalera recargada
                en una pared de
                4,33m de altura que
                forma un Angulo de 60
                grados con respecto al
                piso.
procedimiento
a) Trazar el triangulo rectángulo anotando los
datos e indicando, con una letra, el lado que se
desea calcular.
b) Seleccionar una razón trigonométrica que
relacione al ángulo y lado conocidos con el lado
que se desea calcular.
c) Despejar algebraicamente la letra que
representa el lado que se desea calcular.




d) Sustituir las literales por sus valores
numéricos de acuerdo con los datos.
e) Obtener el valor natural del Angulo por medio
de las tablas trigonométricas o de la calculadora
y efectuar las operaciones.




f) Dar solución al problema

c = longitud de la escalera

                  c=5m
2. -problema
       Hallar los ángulos de
       elevación de N y M, si
       estoy en una posición
       de 12m del árbol con la
       mirada angular de 60º
       y la altura del árbol de
       13,795497548672m.
Triangulo oblicuángulos
Los teoremas del seno y del coseno permiten
resolver triángulos oblicuángulos. Por ejemplo,
si se quiere conocer el lado c de un triángulo del
que se conocen los otros dos lados a y b, y el
ángulo, C, opuesto al lado desconocido, el
teorema del coseno permite calcularlo:
            c2 = a2 + b2 – 2ab·cos C
problemas
1. -De un triángulo sabemos que: a = 6 m, B =
   45° y C = 105°. Calcula los restantes
   elementos.
A: Suma de los ángulos de un triangulo
             A+B+C=180
b: teorema del seno: b/sin(B)= a/sin(A)
c: teorema del seno: c/sin(C)= a/sin(A)
               Ángulos
SEN A=180º-(45º+105º)
SEN A=180º-150º
SEN A=30º
                   LADOS
b:
c:
2. -De un triángulo sabemos que: a = 10 m,
b = 7 m y C = 30°. Calcula los restantes
elementos
ángulos
A:
B:
     LADOS
c:
3. -Resuelve el triángulo de datos: A = 30°,
              a = 3 m y b = 6 m.
ángulos
B: 90
C: 60
         LADOS
c:
4. -Resuelve el triángulo de datos: A = 60°,
             a = 8 m y b = 4 m.
ángulos
B:
C:
     lados
c:
5. -Resuelve el triángulo de datos: a = 15 m,
           b = 22 m y c = 17 m.
Ángulos
A:
B:
C:

Trigonometria

  • 1.
    TRIGONOMETRIA TELLER DE REFUERZO PRESENTADO POR BAIRON ANDRES LOPEZ MELISA CRUZ INGRID ORTEGA
  • 2.
    trigonometría Trigonometría, rama delas matemáticas que estudia las relaciones entre los lados y los ángulos de los triángulos. Etimológicamente significa ‘medida de triángulos’. Las primeras aplicaciones de la trigonometría se hicieron en los campos de la navegación, la geodesia y la astronomía, en los que el principal problema era determinar una distancia inaccesible, es decir, una distancia que no podía ser medida de forma directa, como la distancia entre la Tierra y la Luna. Se encuentran notables aplicaciones de las funciones trigonométricas en la física y en casi todas las ramas de la ingeniería, sobre todo en el estudio de fenómenos periódicos, como el flujo de corriente alterna. Las dos ramas fundamentales de la trigonometría son la trigonometría plana y la trigonometría esférica.
  • 3.
    Razones trigonométricas de un triangulo rectángulo. Para establecer las razones trigonométricas, en cualquier triángulo rectángulo, es necesario conocer sus elementos. hipotenusa Cateto opuesto adyacente
  • 4.
    Los triángulos rectánguloscumplen una serie de relaciones métricas importantes entre sus lados. Los lados de un triángulo rectángulo que forman el ángulo recto, B y C, se llaman catetos y el tercer lado, A, (opuesto al ángulo recto) es la hipotenusa. Los ángulos con vértice en A y B son ángulos agudos, el ángulo con vértice en C es recto. En un triangulo rectángulo, las razones trigonométricas del Angulo α con vértice en A son:
  • 5.
    Seno En un triángulorectángulo, el seno de un ángulo agudo α, que se designa por sen α, es igual a la longitud del cateto opuesto al ángulo dividida por la longitud de la hipotenusa. la razón trigonométrica es entre el cateto opuesto y la hipotenusa. cateto opuesto hipotenusa
  • 6.
    Coseno En un triángulo rectángulo, el coseno de un ángulo agudo α, que se designa por cos α, es igual a la longitud del cateto adyacente al ángulo dividida por la longitud de la hipotenusa. la razón trigonométrica es entre el cateto adyacente y la hipotenusa. adyacente hipotenusa
  • 7.
    Tangente En untriángulo rectángulo, la tangente de un ángulo agudo α, que se designa por tang α, es igual a la longitud del cateto opuesto al ángulo dividida por la longitud del cateto adyacente. la razón trigonométrica es entre cateto opuesto y adyacente. cateto opuesto cateto adyacente
  • 8.
  • 9.
    A partir delas razones trigonométricas sen, cos y tang se definen la cosecante (cosec), la secante (sec) y la cotangente (cot) A cada razón fundamental corresponde una razón recíproca, llamadas así por que cada una es la inversa de otra. Las tres siguientes son las razones recíprocas que se pueden establecer respecto al mismo ángulo.
  • 10.
    cosecante es larazón entre la hipotenusa y el cateto opuesto al ángulo, y como es la recíproca del seno de α se puede expresar como.
  • 11.
    secante es la razón entre la hipotenusa y el cateto adyacente al ángulo, y como es la reciproca del coseno de α se puede expresar como.
  • 12.
    cotangente es larazón entre el cateto adyacente al ángulo y el cateto puesto al mismo, y como es la recíproca de la tangente de α se puede expresar como.
  • 13.
    APLICACIONES EN LASFUNCIONES TRIGONOMETRICAS Hallar la longitud de una escalera recargada en una pared de 4,33m de altura que forma un Angulo de 60 grados con respecto al piso.
  • 14.
    procedimiento a) Trazar eltriangulo rectángulo anotando los datos e indicando, con una letra, el lado que se desea calcular. b) Seleccionar una razón trigonométrica que relacione al ángulo y lado conocidos con el lado que se desea calcular.
  • 15.
    c) Despejar algebraicamentela letra que representa el lado que se desea calcular. d) Sustituir las literales por sus valores numéricos de acuerdo con los datos.
  • 16.
    e) Obtener elvalor natural del Angulo por medio de las tablas trigonométricas o de la calculadora y efectuar las operaciones. f) Dar solución al problema c = longitud de la escalera c=5m
  • 17.
    2. -problema Hallar los ángulos de elevación de N y M, si estoy en una posición de 12m del árbol con la mirada angular de 60º y la altura del árbol de 13,795497548672m.
  • 19.
    Triangulo oblicuángulos Los teoremasdel seno y del coseno permiten resolver triángulos oblicuángulos. Por ejemplo, si se quiere conocer el lado c de un triángulo del que se conocen los otros dos lados a y b, y el ángulo, C, opuesto al lado desconocido, el teorema del coseno permite calcularlo: c2 = a2 + b2 – 2ab·cos C
  • 20.
    problemas 1. -De untriángulo sabemos que: a = 6 m, B = 45° y C = 105°. Calcula los restantes elementos.
  • 21.
    A: Suma delos ángulos de un triangulo A+B+C=180 b: teorema del seno: b/sin(B)= a/sin(A) c: teorema del seno: c/sin(C)= a/sin(A) Ángulos SEN A=180º-(45º+105º) SEN A=180º-150º SEN A=30º LADOS b: c:
  • 22.
    2. -De untriángulo sabemos que: a = 10 m, b = 7 m y C = 30°. Calcula los restantes elementos
  • 23.
  • 24.
    3. -Resuelve eltriángulo de datos: A = 30°, a = 3 m y b = 6 m.
  • 25.
  • 26.
    4. -Resuelve eltriángulo de datos: A = 60°, a = 8 m y b = 4 m.
  • 27.
  • 28.
    5. -Resuelve eltriángulo de datos: a = 15 m, b = 22 m y c = 17 m.
  • 29.