SlideShare una empresa de Scribd logo
1 de 10
MODELO ECONOMETRICOS CON VARIABLES RETARDADAS
tktktttt uXXXXY +++++= −−− ββββα ....22110
ttttt uXXXY +++++= −− ....22110 βββα
Los modelos econométricos con variables retardadas son aquellos que contiene valores no solo del
periodo sino también valores rezagados (pasados).
Existen dos tipos de modelos: modelo de rezagos distribidos y modelo autoregresivo
Modelo de rezago finito
Modelo de rezago infinito
Modelo de rezagos distribuidos
Cuando la variable explicativa presenta rezagos
La longitud del rezago es la distancia entre el periodo t-k y el periodo t
plazocortodeoimpactodedormultiplicaeles0β
plazoolderezagosdedormultiplicaeles
k
i
i arg
0
∑=
= ββ
Modelo autoregresivo o dinámico
Cuando la variable explicada presenta rezagos
tttt uYXY +++= −1ϕβα
ttttt uXXXY +++++= −− ....22110 βββα
Metodo de KOYCK para modelo de rezagos distribuidos infinitos
KOYCK plantea que: ,....2,1,00 == kdondek
k λββ
ttttt uXXXY +++++= −− ....2
2
01
1
00 λβλββα
13
3
02
2
0101 .... −−−−− +++++= ttttt uXXXY λλβλβλβλαλ
Multiplicando por λ y rezagando un periodo tenemos
Restando miembro a miembro:
101 )1( −− −++−=− ttttt uuXYY λβαλλ Ordenando los términos
110)1( −− −+++−= ttttt uuYXY λλβαλ Se tiene un modelo autoregresivo
1−−= ttt uuv λ Se llama MEDIA MOVIL de orden 1 MA(1)
tttt vYXY +++−= −10)1( λβαλ
La longitud del rezago de la variabla Y es 1, como es autoregresivo se denomina AR(1)
El multiplicador de largo plazo, se puede determinar
como:
........ 2
000210
0
+++=+++== ∑
∞
=
λβλβββββββ
i
i
λ
ββ
−
=
1
1
0
λLog
Log
rezagoslosdeMediana
2
−=
λ
λ
−
=
1
Re Mediozago
Por otra parte, los otros indicadores está dados por:
Modelo de KOYCK
El archivo Consumo.wf1 recoge datos del periodo 1964-1998 del consumo privado nacional (CPN80) y de
la renta nacional disponible de las familias (RNDFAM80) en pesos constantes de 1980. Utilizando el
modelo de Koyck, estimar la propensión marginal a consumir a corto y a largo plazo.
ttttt uYYYCP +++++= −− ....22110 βββαSolución: El modelo es:
Realizando la transformación
tttt vCPYCP +++−= −10)1( λβαλY simplificando el modelo queda como:
k
k λββ 0=
Donde CP= Consumo
Y = Renta disponible
Realizando la regresion MCO queda:
β0 =β0λ
0
= 0,600705
β1 =β0λ
1
= 0,22587229
β2 =β0λ
2
= 0,08493069
β3 =β0λ
3
= 0,03193496
β4 =β0λ
4
= 0,01200793
7086.0
2
=−=
λLog
Log
rezagoslosdeMediana
9627,0
1
1
0 =
−
=
λ
ββ
En el modelo de Koyc
El modelo de Koyck empieza como un modelo de rezagos distribuidos y termina como un modelo
autoregresivo
En el modelo, es probable que Yt-1cree un problema estadístico porque es una variable estocástica y es
posible que tenga algun relacionamiento con e termino de perturbación.
En el modelo ut – λut-1presenta un problema de autocorrelacion serial
La Prueba d de Durbin Watson no se puede utilizar para la detección de autocorrelacion sino que se
utiliza la prueba h de Durbin
∧
∧
−
=
)var(1 λ
ρ
n
n
h
2
1
d
−=
∧
ρ
Donde: V(λ) es la varianzade la variable Y
rezagada
Y el coeficiente de correlacion muestral es: Donde: d es la Durbin Watson
∧
∧
−
=
)var(1 α
ρ
n
n
h
Prueba h de Durbin para autocorrelacion
522105,0
2
95579,0
1
2
1 =−=−=
∧ d
ρ
H0: No existe autocorrelacion
616687,4
125626,0351
35
522105,0
)var(1
2
=
−
=
−
= ∧
∧
xn
n
h
α
ρ
Z al 5% de significacion = 1,96
H es mayor a la Z de tabla por tanto rechazamos la hipotesis nula. Existe AUTOCORRELACION
El modelo de expectativas adaptativas
)1(*
10 ttt uXY ++= ββ
Y = Variable dependiente
X* = Valor esperado de la variable X
Supuesto:
)2()( *
1
*
1
*
−− −=− tttt XXXX γ
Coeficiente de expectativas adaptativas o de aprendizaje por error
10 ≤≤ γ
=γ
X es el valor observado
)1()1()2( *
1
*
endoreemplazanXXXde ttt −−+= γγ
)1()1()1()1( 1
*
1101 γγβγβγ −+−+−=− −−− ttt uXY
tttt uXXY +−++= −
*
1110 )1( γβγββ
La Ec (1) rezagando un
periodo y multiplicando por:
)1( γ−
Restando Ec(a) – Ec(b) y simplificando tenemos:
tttt vYXY +−++= −110 )1( γγβγβ 1)1( −−−= ttt uuvdonde γ
Nuevamente tenemos un modelo autoregresivo
Modelos derivados de KOYCK
El modelo de ajuste parcial de existencias
)1(10
*
ttt uXY ++= ββ
Y* = Variable dependiente (Valor deseado de Y)
X = Valor de la variable X
Supuesto: )2()( 1
*
1 −− −=− tttt YYYY δ
Coeficiente de ajuste
10 ≤≤ δ
=δ
De la ecuacion (2) se tiene: 1
*
)1( −−+= ttt YYY δδ
Sustituyendo la Ec (1) en la anterior se tiene:
tttt uYXY δδδβδβ +−++= −110 )1(
Nuevamente tenemos un modelo autoregresivo
Modelos derivados de KOYCK
observadoCambioYY tt =− −1 deseadoCambioYY tt =− −1
*
Nota: Si en los modelos de Koyc y de expectativas adaptativas no se puede utilizar directamente el MCO
porque las ui esta correlacionadas con Yt-1, se deben utilizar tecnicas alternativas para estimar los
parametros. Una tecnica alternativa es el de la introduccion de variables instrumentales.
En este modelo, si ut satisface las condiciones que se exige para los MCO entonces, la uɗ t tambien los
hara por tanto es posible utilizar los MCO para estimar los parametros.
Considerese el modelo: tu
ttt eYRM 21
0
* ββ
β=
Donde : M* = demanda de dinero deseada o de largo plazo
R = la tasa de interes a largo plazo en %
Y = Ingreso nacional real agregado
Sugerencia: Utilice el modelo de Ajuste de existencias o de ajuste parcial
Los datos se encuentran en la tabla 17.3
tktkttt uXXXY +++++= −− βββα ....110
Modelo de Almon para rezagos distribuidos
Almon supone que βi puede ser aproximado mediante un polinomio de grado m en i. Se supone que m
(grado del polinomio) es menor que k (longitud del rezago)
m
mi iaiaiaa ++++= ....2
210β
*
*
**
**
*
*
*
i
βi
Polinomio de grado 2
*
* *
*
*
* *
*
*
i
βi
Polinomio de grado 3
Haciendo un cambio de variable
........
93
42
2103
2102
2101
00
aaa
aaa
aaa
a
++=
++=
++=
=
β
β
β
β
∑=
−=
k
i
it
m
mt XiZ
0
tmtmttt uZaZaZaY +++++= ....1100α
Una vez estimado los valores ai, se puede encontrar las betas de la siguiente forma:
Para el caso de un
polinomio de
segundo grado
K = numero de rezagos
**
*
*
*
*
* *
*
i
βi
Caso de Koyck
tktkttt uXXXY +++++= −− βββα ....110
Modelo de Almon para rezagos distribuidos
Almon supone que βi puede ser aproximado mediante un polinomio de grado m en i. Se supone que m
(grado del polinomio) es menor que k (longitud del rezago)
m
mi iaiaiaa ++++= ....2
210β
*
*
**
**
*
*
*
i
βi
Polinomio de grado 2
*
* *
*
*
* *
*
*
i
βi
Polinomio de grado 3
Haciendo un cambio de variable
........
93
42
2103
2102
2101
00
aaa
aaa
aaa
a
++=
++=
++=
=
β
β
β
β
∑=
−=
k
i
it
m
mt XiZ
0
tmtmttt uZaZaZaY +++++= ....1100α
Una vez estimado los valores ai, se puede encontrar las betas de la siguiente forma:
Para el caso de un
polinomio de
segundo grado
K = numero de rezagos
**
*
*
*
*
* *
*
i
βi
Caso de Koyck

Más contenido relacionado

La actualidad más candente

Inverse kinematics 2D
Inverse kinematics 2DInverse kinematics 2D
Inverse kinematics 2DJose Sanabria
 
Tecnicas y teoremas para calculo de Limites
Tecnicas y teoremas para calculo de LimitesTecnicas y teoremas para calculo de Limites
Tecnicas y teoremas para calculo de Limitesjesusalarcon29
 
TERCERA PRACTICA
TERCERA PRACTICATERCERA PRACTICA
TERCERA PRACTICAkokame
 
Lección 1 y 2 de la unidad 5 grado 11
Lección 1 y 2 de la unidad 5 grado 11Lección 1 y 2 de la unidad 5 grado 11
Lección 1 y 2 de la unidad 5 grado 11tutor7
 
Aplicaciones de calculo
Aplicaciones de calculoAplicaciones de calculo
Aplicaciones de calculoGilbert Rz
 
Trabajo Practico - Aplicación de la Programación Lineal y Entera (359) - UNA
Trabajo Practico - Aplicación de la Programación Lineal y Entera (359) - UNATrabajo Practico - Aplicación de la Programación Lineal y Entera (359) - UNA
Trabajo Practico - Aplicación de la Programación Lineal y Entera (359) - UNARonald Alexander Medina Pinto
 
operaciones con numeros complejos
operaciones con numeros complejosoperaciones con numeros complejos
operaciones con numeros complejosnorayni molina roa
 
Ejercicio resuelto: Derivadas e^sqrt(x)
Ejercicio resuelto: Derivadas e^sqrt(x)Ejercicio resuelto: Derivadas e^sqrt(x)
Ejercicio resuelto: Derivadas e^sqrt(x)hkviktor (HKV)
 
Limites infinitos
Limites infinitosLimites infinitos
Limites infinitoscarlosd1996
 
Ejercicio resuelto de monopolio (regulación)
Ejercicio resuelto de monopolio (regulación)Ejercicio resuelto de monopolio (regulación)
Ejercicio resuelto de monopolio (regulación)Juan Carlos Aguado Franco
 
272169862 asignacion-ppt
272169862 asignacion-ppt272169862 asignacion-ppt
272169862 asignacion-pptMajos Conejita
 
Limites infinitos y limites en el infinito
Limites infinitos y limites en el infinitoLimites infinitos y limites en el infinito
Limites infinitos y limites en el infinitodelysm
 
Representación matricial del simplex
Representación matricial del simplexRepresentación matricial del simplex
Representación matricial del simplexmauricioeviana
 

La actualidad más candente (19)

Inverse kinematics 2D
Inverse kinematics 2DInverse kinematics 2D
Inverse kinematics 2D
 
Teorema fundamental del cálculo
Teorema fundamental del cálculoTeorema fundamental del cálculo
Teorema fundamental del cálculo
 
Trabajo De CáLculo
Trabajo De CáLculoTrabajo De CáLculo
Trabajo De CáLculo
 
Tecnicas y teoremas para calculo de Limites
Tecnicas y teoremas para calculo de LimitesTecnicas y teoremas para calculo de Limites
Tecnicas y teoremas para calculo de Limites
 
TERCERA PRACTICA
TERCERA PRACTICATERCERA PRACTICA
TERCERA PRACTICA
 
Lección 1 y 2 de la unidad 5 grado 11
Lección 1 y 2 de la unidad 5 grado 11Lección 1 y 2 de la unidad 5 grado 11
Lección 1 y 2 de la unidad 5 grado 11
 
Aplicaciones de calculo
Aplicaciones de calculoAplicaciones de calculo
Aplicaciones de calculo
 
Ejercicio resuelto de monopolio
Ejercicio resuelto de monopolioEjercicio resuelto de monopolio
Ejercicio resuelto de monopolio
 
Trabajo Practico - Aplicación de la Programación Lineal y Entera (359) - UNA
Trabajo Practico - Aplicación de la Programación Lineal y Entera (359) - UNATrabajo Practico - Aplicación de la Programación Lineal y Entera (359) - UNA
Trabajo Practico - Aplicación de la Programación Lineal y Entera (359) - UNA
 
operaciones con numeros complejos
operaciones con numeros complejosoperaciones con numeros complejos
operaciones con numeros complejos
 
Ejercicio resuelto: Derivadas e^sqrt(x)
Ejercicio resuelto: Derivadas e^sqrt(x)Ejercicio resuelto: Derivadas e^sqrt(x)
Ejercicio resuelto: Derivadas e^sqrt(x)
 
Limites infinitos
Limites infinitosLimites infinitos
Limites infinitos
 
Limites de funciones
Limites de funcionesLimites de funciones
Limites de funciones
 
Ejercicio resuelto de monopolio (regulación)
Ejercicio resuelto de monopolio (regulación)Ejercicio resuelto de monopolio (regulación)
Ejercicio resuelto de monopolio (regulación)
 
272169862 asignacion-ppt
272169862 asignacion-ppt272169862 asignacion-ppt
272169862 asignacion-ppt
 
Asignacion
AsignacionAsignacion
Asignacion
 
Limites infinitos y limites en el infinito
Limites infinitos y limites en el infinitoLimites infinitos y limites en el infinito
Limites infinitos y limites en el infinito
 
Representación matricial del simplex
Representación matricial del simplexRepresentación matricial del simplex
Representación matricial del simplex
 
00053700
0005370000053700
00053700
 

Destacado

Econometria i
Econometria iEconometria i
Econometria itarrgo
 
10 Insightful Quotes On Designing A Better Customer Experience
10 Insightful Quotes On Designing A Better Customer Experience10 Insightful Quotes On Designing A Better Customer Experience
10 Insightful Quotes On Designing A Better Customer ExperienceYuan Wang
 
How to Build a Dynamic Social Media Plan
How to Build a Dynamic Social Media PlanHow to Build a Dynamic Social Media Plan
How to Build a Dynamic Social Media PlanPost Planner
 
Learn BEM: CSS Naming Convention
Learn BEM: CSS Naming ConventionLearn BEM: CSS Naming Convention
Learn BEM: CSS Naming ConventionIn a Rocket
 
SEO: Getting Personal
SEO: Getting PersonalSEO: Getting Personal
SEO: Getting PersonalKirsty Hulse
 

Destacado (7)

Desarrollo humano y solidario
Desarrollo humano y solidarioDesarrollo humano y solidario
Desarrollo humano y solidario
 
Ec360 tema04
Ec360 tema04Ec360 tema04
Ec360 tema04
 
Econometria i
Econometria iEconometria i
Econometria i
 
10 Insightful Quotes On Designing A Better Customer Experience
10 Insightful Quotes On Designing A Better Customer Experience10 Insightful Quotes On Designing A Better Customer Experience
10 Insightful Quotes On Designing A Better Customer Experience
 
How to Build a Dynamic Social Media Plan
How to Build a Dynamic Social Media PlanHow to Build a Dynamic Social Media Plan
How to Build a Dynamic Social Media Plan
 
Learn BEM: CSS Naming Convention
Learn BEM: CSS Naming ConventionLearn BEM: CSS Naming Convention
Learn BEM: CSS Naming Convention
 
SEO: Getting Personal
SEO: Getting PersonalSEO: Getting Personal
SEO: Getting Personal
 

Similar a Ec360 tema04

Similar a Ec360 tema04 (20)

Modelo lineal genaral eco0
Modelo lineal genaral eco0Modelo lineal genaral eco0
Modelo lineal genaral eco0
 
programacion lineal
 programacion lineal programacion lineal
programacion lineal
 
Ejercicios pnl
Ejercicios pnlEjercicios pnl
Ejercicios pnl
 
Actividad Integradora. Operaciones algebraicas y soluciones de problemas.
Actividad Integradora. Operaciones algebraicas y soluciones de problemas.Actividad Integradora. Operaciones algebraicas y soluciones de problemas.
Actividad Integradora. Operaciones algebraicas y soluciones de problemas.
 
Econometria.pptx
Econometria.pptxEconometria.pptx
Econometria.pptx
 
Ejercicios resueltos regresion multiple
Ejercicios resueltos  regresion multipleEjercicios resueltos  regresion multiple
Ejercicios resueltos regresion multiple
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
Integracion racional 2016
Integracion racional 2016Integracion racional 2016
Integracion racional 2016
 
Scert2 08
Scert2 08Scert2 08
Scert2 08
 
Complementos 5
Complementos 5Complementos 5
Complementos 5
 
Ejercicios resueltos capacitores (1)
Ejercicios resueltos capacitores (1)Ejercicios resueltos capacitores (1)
Ejercicios resueltos capacitores (1)
 
Ingeniería de control: Tema 2. compensación RF
Ingeniería de control: Tema 2. compensación RFIngeniería de control: Tema 2. compensación RF
Ingeniería de control: Tema 2. compensación RF
 
digital
digitaldigital
digital
 
Digitpro
DigitproDigitpro
Digitpro
 
Digitpro
DigitproDigitpro
Digitpro
 
PRACTICA DE DISEÑO DE BOCATOMA ver 02.pdf
PRACTICA DE DISEÑO DE BOCATOMA ver 02.pdfPRACTICA DE DISEÑO DE BOCATOMA ver 02.pdf
PRACTICA DE DISEÑO DE BOCATOMA ver 02.pdf
 
Oper.2305.m01.lectura.v1
Oper.2305.m01.lectura.v1Oper.2305.m01.lectura.v1
Oper.2305.m01.lectura.v1
 
Capitulo 5 integracion
Capitulo 5 integracionCapitulo 5 integracion
Capitulo 5 integracion
 
Ejercicios aplicados integrales11
Ejercicios aplicados integrales11Ejercicios aplicados integrales11
Ejercicios aplicados integrales11
 
Teorema de gauss
Teorema de gaussTeorema de gauss
Teorema de gauss
 

Ec360 tema04

  • 1. MODELO ECONOMETRICOS CON VARIABLES RETARDADAS tktktttt uXXXXY +++++= −−− ββββα ....22110 ttttt uXXXY +++++= −− ....22110 βββα Los modelos econométricos con variables retardadas son aquellos que contiene valores no solo del periodo sino también valores rezagados (pasados). Existen dos tipos de modelos: modelo de rezagos distribidos y modelo autoregresivo Modelo de rezago finito Modelo de rezago infinito Modelo de rezagos distribuidos Cuando la variable explicativa presenta rezagos La longitud del rezago es la distancia entre el periodo t-k y el periodo t plazocortodeoimpactodedormultiplicaeles0β plazoolderezagosdedormultiplicaeles k i i arg 0 ∑= = ββ Modelo autoregresivo o dinámico Cuando la variable explicada presenta rezagos tttt uYXY +++= −1ϕβα
  • 2. ttttt uXXXY +++++= −− ....22110 βββα Metodo de KOYCK para modelo de rezagos distribuidos infinitos KOYCK plantea que: ,....2,1,00 == kdondek k λββ ttttt uXXXY +++++= −− ....2 2 01 1 00 λβλββα 13 3 02 2 0101 .... −−−−− +++++= ttttt uXXXY λλβλβλβλαλ Multiplicando por λ y rezagando un periodo tenemos Restando miembro a miembro: 101 )1( −− −++−=− ttttt uuXYY λβαλλ Ordenando los términos 110)1( −− −+++−= ttttt uuYXY λλβαλ Se tiene un modelo autoregresivo 1−−= ttt uuv λ Se llama MEDIA MOVIL de orden 1 MA(1) tttt vYXY +++−= −10)1( λβαλ La longitud del rezago de la variabla Y es 1, como es autoregresivo se denomina AR(1) El multiplicador de largo plazo, se puede determinar como: ........ 2 000210 0 +++=+++== ∑ ∞ = λβλβββββββ i i λ ββ − = 1 1 0 λLog Log rezagoslosdeMediana 2 −= λ λ − = 1 Re Mediozago Por otra parte, los otros indicadores está dados por:
  • 3. Modelo de KOYCK El archivo Consumo.wf1 recoge datos del periodo 1964-1998 del consumo privado nacional (CPN80) y de la renta nacional disponible de las familias (RNDFAM80) en pesos constantes de 1980. Utilizando el modelo de Koyck, estimar la propensión marginal a consumir a corto y a largo plazo. ttttt uYYYCP +++++= −− ....22110 βββαSolución: El modelo es: Realizando la transformación tttt vCPYCP +++−= −10)1( λβαλY simplificando el modelo queda como: k k λββ 0= Donde CP= Consumo Y = Renta disponible Realizando la regresion MCO queda: β0 =β0λ 0 = 0,600705 β1 =β0λ 1 = 0,22587229 β2 =β0λ 2 = 0,08493069 β3 =β0λ 3 = 0,03193496 β4 =β0λ 4 = 0,01200793 7086.0 2 =−= λLog Log rezagoslosdeMediana 9627,0 1 1 0 = − = λ ββ
  • 4. En el modelo de Koyc El modelo de Koyck empieza como un modelo de rezagos distribuidos y termina como un modelo autoregresivo En el modelo, es probable que Yt-1cree un problema estadístico porque es una variable estocástica y es posible que tenga algun relacionamiento con e termino de perturbación. En el modelo ut – λut-1presenta un problema de autocorrelacion serial La Prueba d de Durbin Watson no se puede utilizar para la detección de autocorrelacion sino que se utiliza la prueba h de Durbin ∧ ∧ − = )var(1 λ ρ n n h 2 1 d −= ∧ ρ Donde: V(λ) es la varianzade la variable Y rezagada Y el coeficiente de correlacion muestral es: Donde: d es la Durbin Watson
  • 5. ∧ ∧ − = )var(1 α ρ n n h Prueba h de Durbin para autocorrelacion 522105,0 2 95579,0 1 2 1 =−=−= ∧ d ρ H0: No existe autocorrelacion 616687,4 125626,0351 35 522105,0 )var(1 2 = − = − = ∧ ∧ xn n h α ρ Z al 5% de significacion = 1,96 H es mayor a la Z de tabla por tanto rechazamos la hipotesis nula. Existe AUTOCORRELACION
  • 6. El modelo de expectativas adaptativas )1(* 10 ttt uXY ++= ββ Y = Variable dependiente X* = Valor esperado de la variable X Supuesto: )2()( * 1 * 1 * −− −=− tttt XXXX γ Coeficiente de expectativas adaptativas o de aprendizaje por error 10 ≤≤ γ =γ X es el valor observado )1()1()2( * 1 * endoreemplazanXXXde ttt −−+= γγ )1()1()1()1( 1 * 1101 γγβγβγ −+−+−=− −−− ttt uXY tttt uXXY +−++= − * 1110 )1( γβγββ La Ec (1) rezagando un periodo y multiplicando por: )1( γ− Restando Ec(a) – Ec(b) y simplificando tenemos: tttt vYXY +−++= −110 )1( γγβγβ 1)1( −−−= ttt uuvdonde γ Nuevamente tenemos un modelo autoregresivo Modelos derivados de KOYCK
  • 7. El modelo de ajuste parcial de existencias )1(10 * ttt uXY ++= ββ Y* = Variable dependiente (Valor deseado de Y) X = Valor de la variable X Supuesto: )2()( 1 * 1 −− −=− tttt YYYY δ Coeficiente de ajuste 10 ≤≤ δ =δ De la ecuacion (2) se tiene: 1 * )1( −−+= ttt YYY δδ Sustituyendo la Ec (1) en la anterior se tiene: tttt uYXY δδδβδβ +−++= −110 )1( Nuevamente tenemos un modelo autoregresivo Modelos derivados de KOYCK observadoCambioYY tt =− −1 deseadoCambioYY tt =− −1 * Nota: Si en los modelos de Koyc y de expectativas adaptativas no se puede utilizar directamente el MCO porque las ui esta correlacionadas con Yt-1, se deben utilizar tecnicas alternativas para estimar los parametros. Una tecnica alternativa es el de la introduccion de variables instrumentales. En este modelo, si ut satisface las condiciones que se exige para los MCO entonces, la uɗ t tambien los hara por tanto es posible utilizar los MCO para estimar los parametros.
  • 8. Considerese el modelo: tu ttt eYRM 21 0 * ββ β= Donde : M* = demanda de dinero deseada o de largo plazo R = la tasa de interes a largo plazo en % Y = Ingreso nacional real agregado Sugerencia: Utilice el modelo de Ajuste de existencias o de ajuste parcial Los datos se encuentran en la tabla 17.3
  • 9. tktkttt uXXXY +++++= −− βββα ....110 Modelo de Almon para rezagos distribuidos Almon supone que βi puede ser aproximado mediante un polinomio de grado m en i. Se supone que m (grado del polinomio) es menor que k (longitud del rezago) m mi iaiaiaa ++++= ....2 210β * * ** ** * * * i βi Polinomio de grado 2 * * * * * * * * * i βi Polinomio de grado 3 Haciendo un cambio de variable ........ 93 42 2103 2102 2101 00 aaa aaa aaa a ++= ++= ++= = β β β β ∑= −= k i it m mt XiZ 0 tmtmttt uZaZaZaY +++++= ....1100α Una vez estimado los valores ai, se puede encontrar las betas de la siguiente forma: Para el caso de un polinomio de segundo grado K = numero de rezagos ** * * * * * * * i βi Caso de Koyck
  • 10. tktkttt uXXXY +++++= −− βββα ....110 Modelo de Almon para rezagos distribuidos Almon supone que βi puede ser aproximado mediante un polinomio de grado m en i. Se supone que m (grado del polinomio) es menor que k (longitud del rezago) m mi iaiaiaa ++++= ....2 210β * * ** ** * * * i βi Polinomio de grado 2 * * * * * * * * * i βi Polinomio de grado 3 Haciendo un cambio de variable ........ 93 42 2103 2102 2101 00 aaa aaa aaa a ++= ++= ++= = β β β β ∑= −= k i it m mt XiZ 0 tmtmttt uZaZaZaY +++++= ....1100α Una vez estimado los valores ai, se puede encontrar las betas de la siguiente forma: Para el caso de un polinomio de segundo grado K = numero de rezagos ** * * * * * * * i βi Caso de Koyck