EDUCACIÓN VIRTUAL EN LINEA




ALGEBRA ELEMENTAL MODERNA

                            Clase Nº 1: DIEZ CASOS DE FACTOREO

...
1. Factor común: Un polinomio tiene un término común.

Ejemplo:

                                   +      −       =      ...
5. Combinación de cuadrado perfecto y diferencia de cuadrado: Se deben agrupar para
       formar cuadrados perfectos y lu...
8. Trinomio de la forma       +     + : Existen 3 métodos a continuación el más sencillo:
       Ejemplo: 4 + 8 + 3
      ...
Referencias:

MANCILL J.D. GONZÁLEZ M.O. Algebra elemental moderna. Ed. Kapelusz, Buenos Aires –
Argentina, Volumen I, 199...
Próxima SlideShare
Cargando en...5
×

10 casos de factoreo

375,320

Published on

18 comentarios
47 Me gusta
Estadísticas
Notas
Sin descargas
reproducciones
reproducciones totales
375,320
En SlideShare
0
De insertados
0
Número de insertados
7
Acciones
Compartido
0
Descargas
3,646
Comentarios
18
Me gusta
47
Insertados 0
No embeds

No notes for slide

10 casos de factoreo

  1. 1. EDUCACIÓN VIRTUAL EN LINEA ALGEBRA ELEMENTAL MODERNA Clase Nº 1: DIEZ CASOS DE FACTOREO Prof. Christian Farinango www.eduvirtual.tk 27/09/2010 A breves rasgos, con ejemplos sencillos y ejercicios de afianzamiento, se pretende introducir al estudiante en el mundo de la descomposición en factores, muy necesarios como base en el estudio del algebra. Este documento está bajo la Licencia Creative Commons; esto quiere decir que puede hacer uso del mismo y modificarlo siempre y cuando se reconozca su autoría.
  2. 2. 1. Factor común: Un polinomio tiene un término común. Ejemplo: + − = ( + − ) Ejercicios: i) ( + ) −( + ) ii) 4 +8 + 12 iii) 7 + 14 − 21 2. Factor común por agrupamiento: Agrupar las expresiones para determinar un factor común. Ejemplo: + + + Agrupar: =( + )+( + ) Sacar factor común de cada grupo: = ( + )+ ( + ) Tenemos otro factor común = ( + )( + ) Ejercicios: i) + − − ii) + + − − − iii) + − − 3. Trinomio cuadrado perfecto: Es igual al cuadrado de un binomio. Ejemplo: + + =( + ) − + =( − ) Ejercicios: i) , − , + ii) ( + ) + ( + )( + ) + ( + ) iii) − ( − )+( − ) 4. Diferencia de cuadrados: Producto de la suma por la diferencia de las bases de los cuadrados. Ejemplo: − = ( + )( − ) Ejercicios: i) 1− ii) *( − + ) − ( + − ) iii) *( − + 1) − ( + + 1)
  3. 3. 5. Combinación de cuadrado perfecto y diferencia de cuadrado: Se deben agrupar para formar cuadrados perfectos y luego se descompone la diferencia de cuadrados. Ejemplo: + + − Agrupamos =( + + )− Resolvemos el cuadrado perfecto =( + ) − Resolvemos la diferencia de cuadrados =( + + )( + − ) Ejercicios: i) − + − ii) − − + + + iii) − − − 6. Cuadrado perfecto incompleto: Son los polinomios que se pueden convertir en trinomios cuadrados perfectos sumando un término y restándolo para que no se altere. Ejemplo: + + Añadimos y restamos = + + + − Formamos el trinomio cuadrado perfecto =( + + )− Resolvemos =( + ) − = ( + ) + ( + ) − = ( + + )( + − ) Ejercicios: i) * + − − − ii) + iii) + + 7. Trinomio de la forma + + : Se debe encontrar dos números cuya suma algebraica b y cuyo producto sea c. Ejemplo: + + = ( )( ) Suma sea +5 y multiplicación +6; los números son 2 y 3: = ( + )( + ) +2+3=+5 y (+2)(+3)=6 Ejercicios: i) + + ii) − + iii) + −
  4. 4. 8. Trinomio de la forma + + : Existen 3 métodos a continuación el más sencillo: Ejemplo: 4 + 8 + 3 El 4 multiplicamos a los otros términos. = 4 + 8(4) + 3(4) 4 2 +8(4) +3(4) Para que no se altere dividimos para 4. = 4 4 2 +8(4 )+12 Resolvemos. = 4 (4 +6)(4 +2) = 4 2(2 +3)2(2 +1) Factoramos y simplificamos. = 4 Respuesta. (2 + 3)(2 + 1) Ejercicios: i) − − ii) + − iii) − + 9. Suma y Resta de potencias de exponente impar. Suma: + = ( + )( − + − + ) Resta: − = ( − )( + + + + ) Ejercicios: i) + ii) + iii) − iv) − 10. Suma y Resta de potencias de exponente par: Convertir a potencias impares. Suma: + = + = + − + =( + )( − + ) Resta: − = ( + )( − ) =( + ) − + ( − )( + + ) Ejercicios: i) −( + ) ii) ( + ) + iii) − iv) +
  5. 5. Referencias: MANCILL J.D. GONZÁLEZ M.O. Algebra elemental moderna. Ed. Kapelusz, Buenos Aires – Argentina, Volumen I, 1991. www.eduvirtual.tk

×