SlideShare una empresa de Scribd logo
1 de 4
Descargar para leer sin conexión
Universidad Autónoma de Baja California UABC
                                                       Facultad de Ingeniería Mexicali

1.6 Ecuaciones Exactas

Ahora veremos la resolución de ecuaciones exactas a través de su método
correspondiente. Es importante señalar que este método se basa en el concepto del
diferencial total de una función así como en la forma diferencial exacta de una ecuación
diferencial, por lo que será importante definir primero dichos conceptos.

Recuerde que la ecuación diferencial de primer orden
                                            dy
                                               = f ( x, y )
                                            dx
También puede expresarse en la forma diferencial

                                 M ( x, y )dx + N ( x, y )dy = 0

 Ejemplo:

  La Ec. Diferencial
                     dy 3x 2 – y
                     dx
                        =
                          x –1
                                                                      (       )
                                 puede expresarse así: y – 3 x 2 dx + ( x – 1)dy = 0



DEFINICION Diferencial total de una función
Recuerde que existe el concepto llamado diferencial total de una función expresado
como dF ( x, y ) , mismo que se define mediante:
                                            ∂F ( x, y )      ∂F ( x, y )
                           dF ( x, y ) :=               dx +             dy
                                               ∂x               ∂y
donde dx y dy son incrementos arbitrarios.


DEFINICION Forma diferencial exacta.
Se dice que la forma diferencial
                                      M ( x, y )dx + N ( x, y )dy
es exacta, si existe una función F ( x, y ) tal que
                    ∂F                                       ∂F
                       ( x , y ) = M ( x, y )                    ( x, y ) = N ( x, y )
                    ∂x                                       ∂y
Dicho de otra manera, la forma diferencial M ( x, y )dx + N ( x, y )dy es exacta si y solo si
proviene de aplicar el diferencial total a una función F ( x, y )


DEFINICION Ecuación diferencial exacta.
Si M ( x, y )dx + N ( x, y )dy es una forma diferencial exacta, entonces la ecuación
diferencial expresada como M ( x, y )dx + N ( x, y )dy = 0 se llama ecuación diferencial
exacta.




                                                                   Curso Ecuaciones Diferenciales
Universidad Autónoma de Baja California UABC
                                                            Facultad de Ingeniería Mexicali


  Ejemplo:
  La ecuación y ⋅ dx + x ⋅ dy = 0 es exacta, ya que:
                                         d ( xy ) = y ⋅ dx + x ⋅ dy
  es la diferencial total de F ( x, y ) = x ⋅ y

Ahora la pregunta debe ser, y cómo puedo verificar si una ecuación diferencial es
exacta? El criterio de exactitud nos puede ayudar.

Criterio de exactitud
Supóngase que las primeras derivadas parciales de M ( x, y ) y N ( x, y ) son continuas
en un rectángulo R.
Entonces M ( x, y )dx + N ( x, y )dy = 0 es una ecuación exacta en R si y sólo si
                                          ∂M
                                              (x, y ) = ∂N (x, y )
                                           ∂y           ∂x
para todo ( x, y ) en R.


Método para resolver ecuaciones exactas
Paso 1. Si M ( x, y )dx + N ( x, y )dy = 0 es una ecuación diferencial exacta, entonces
                                                (a)
                      ∂F ( x, y )                             ∂F ( x, y )
                 a)               = M ( x, y )           b)               = N ( x, y )
                         ∂x                                      ∂y
                                         (b)
Observe que ambos incisos son verdaderos desde el momento en que la ecuación es
exacta. Tomaremos como referencia solo uno, en este caso será el inciso a).

 Recuerde que en todo momento lo que queremos encontrar es la función F ( x, y ) , de
tal manera que procedemos a despejar dicho elemento a partir del inciso a). Observe
que F ( x, y ) esta afectado por un diferencial (derivada), así que integrando nos queda:

                                       F ( x, y ) = ∫ M ( x, y ) dx + C

Desde el momento en que estamos integrando con respecto a la variable independiente
x , la variable dependiente y se considera como constante (si estuviéramos integrando
con respecto a la variable dependiente y , entonces la variable independiente x sería
considerada como constante). De acuerdo a lo anterior la constante numérica C bien
podría ser una función que dependa de la variable dependiente y , por lo que podemos
escribir la siguiente ecuación:

                                     F ( x, y ) = ∫ M ( x, y ) dx + g ( y )




                                                                        Curso Ecuaciones Diferenciales
Universidad Autónoma de Baja California UABC
                                                                  Facultad de Ingeniería Mexicali
Hasta este punto prácticamente tenemos una parte de la solución, ya que conocemos el
valor de M ( x, y ) ; nos falta encontrar el valor de g ( y ) , procedimiento que veremos a
continuación.

Paso 2. Para determinar g ( y ) , se realiza lo siguiente: se toma la derivada parcial con
respecto a la variable dependiente y en ambos lados de la ecuación anterior.

De lo anterior resulta:


∂F ( x, y ) ∂
           =
                 ( ∫ M ( x, y ) dx + g ( y) )                       ∂F ( x, y ) ∂
                                                                               =
                                                                                    ( ∫ M ( x, y ) dx ) + g ′ ( y )
   ∂y                       ∂y                                         ∂y                  ∂y

Observe que gracias a que la ecuación es exacta podemos sustituir N ( x, y ) por ∂F ( x, y )
                                                                                                                 ∂y


lo que nos da:      N ( x, y ) =
                                   ∂   ( ∫ M ( x, y ) dx ) + g ′ ( y )
                                              ∂y

Paso 3. Despejamos g ′( y ) e integramos para obtener g ( y ) . Sustituyendo g ( y ) en
F ( x, y ) = ∫ M ( x, y ) dx + g ( y ) podemos tener el equivalente de F ( x, y )

Paso 4. Finalmente la solución de la ecuación diferencial M ( x, y )dx + N ( x, y )dy = 0
está dada implícitamente por F ( x, y ) = C


Ejemplos

 Resuelva:
                                                                         F ( x, y ) = x 2 y – tan x + y 2
  (2 xy – sec x )dx + (x
             2              2
                                + 2 y )dy = 0                Solución:
                                                                         x 2 y – tan x + y 2 = C



 Resuelva:
  (                  )      (
 1 + e x y + xe x y dx + xe x + 2 dy = 0 )                    Solución: xe x y + 2 y + x = C



Factores integrantes para ecuaciones exactas
       En ciertas ocasiones, una ecuación diferencial que no es exacta puede volverse
exacta a través de lo que se conoce como un factor integrante. Este factor integrante es
una función, que multiplicada por la ecuación diferencial en su forma diferencial, permite
a dicha ecuación cumplir con criterio de exactitud.



                                                                           Curso Ecuaciones Diferenciales
Universidad Autónoma de Baja California UABC
                                                       Facultad de Ingeniería Mexicali

       Para verificar si una ecuación diferencial posee un factor integrante se
consideran las siguientes dos condiciones:

       ⎛ M y − Nx ⎞
1) Si ⎜           ⎟ es una función que depende solamente de la variable independiente
       ⎝    N     ⎠
x , entonces un factor integrante para la ecuación diferencial es:

                                                          M y −Nx
                                                      ∫             dx
                                        μ ( x) = e          N


       ⎛ Nx − M y ⎞
2) Si ⎜           ⎟ es una función que depende solamente de la variable independiente
       ⎝ M        ⎠
y , entonces un factor integrante para la ecuación diferencial es:

                                                          Nx −M y

                                        μ ( y) = e∫
                                                                    dy
                                                            M



Notas importantes
   • La nomenclatura       N x representa la derivada parcial de la función N con respecto a la
          variable x
   •      Recuerde que N y M se obtienen de la ecuación diferencial original en su forma
          diferencial




Ejemplo

 Verifique que la siguiente ecuación diferencial no es exacta; encuentre un factor
 integrante y verifique nuevamente su criterio de exactitud.
  ( xy ) dx + ( 2 x 2 + 3 y 2 − 20 ) dy = 0




                                                                Curso Ecuaciones Diferenciales

Más contenido relacionado

La actualidad más candente

MéTodo De IteracióN De Punto Fijo
MéTodo De IteracióN De Punto FijoMéTodo De IteracióN De Punto Fijo
MéTodo De IteracióN De Punto Fijo
lisset neyra
 
Ecuaciones diferenciales de grado superior
Ecuaciones diferenciales de grado superiorEcuaciones diferenciales de grado superior
Ecuaciones diferenciales de grado superior
Dani
 
Ecuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de SoluciónEcuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de Solución
Kike Prieto
 
Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)
ratix
 
Solucionario ecuaciones diferenciales
Solucionario ecuaciones diferencialesSolucionario ecuaciones diferenciales
Solucionario ecuaciones diferenciales
Daniel Mg
 

La actualidad más candente (20)

Ejercicios resueltos- de metodos
Ejercicios resueltos- de metodosEjercicios resueltos- de metodos
Ejercicios resueltos- de metodos
 
Ecuaciones Parametricas
Ecuaciones ParametricasEcuaciones Parametricas
Ecuaciones Parametricas
 
Ejercicios resueltos edo homogéneas
Ejercicios resueltos edo homogéneasEjercicios resueltos edo homogéneas
Ejercicios resueltos edo homogéneas
 
MéTodo De IteracióN De Punto Fijo
MéTodo De IteracióN De Punto FijoMéTodo De IteracióN De Punto Fijo
MéTodo De IteracióN De Punto Fijo
 
Ecuaciones diferenciales de grado superior
Ecuaciones diferenciales de grado superiorEcuaciones diferenciales de grado superior
Ecuaciones diferenciales de grado superior
 
Conjunto Fundamental de Soluciones
Conjunto Fundamental de SolucionesConjunto Fundamental de Soluciones
Conjunto Fundamental de Soluciones
 
Gráfica, curvas de nivel, límites
Gráfica, curvas de nivel, límitesGráfica, curvas de nivel, límites
Gráfica, curvas de nivel, límites
 
Ecuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de SoluciónEcuaciones diferenciales - Métodos de Solución
Ecuaciones diferenciales - Métodos de Solución
 
Trayectorias ortogonales monografia
Trayectorias ortogonales monografiaTrayectorias ortogonales monografia
Trayectorias ortogonales monografia
 
Guia intervalos de confianza
Guia intervalos de confianzaGuia intervalos de confianza
Guia intervalos de confianza
 
Ecuaciones Diferenciales Homogéneas
Ecuaciones Diferenciales HomogéneasEcuaciones Diferenciales Homogéneas
Ecuaciones Diferenciales Homogéneas
 
Ecuaciones diferenciales-12
Ecuaciones diferenciales-12Ecuaciones diferenciales-12
Ecuaciones diferenciales-12
 
Apuntes transformaciones lineales - UTFSM
Apuntes transformaciones lineales - UTFSMApuntes transformaciones lineales - UTFSM
Apuntes transformaciones lineales - UTFSM
 
Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)
 
Integrales
IntegralesIntegrales
Integrales
 
Solucionario ecuaciones diferenciales
Solucionario ecuaciones diferencialesSolucionario ecuaciones diferenciales
Solucionario ecuaciones diferenciales
 
Fracciones Parciales/ Segundo Caso/ Denominador con factores de primer grado...
Fracciones Parciales/ Segundo Caso/ Denominador con factores de primer grado...Fracciones Parciales/ Segundo Caso/ Denominador con factores de primer grado...
Fracciones Parciales/ Segundo Caso/ Denominador con factores de primer grado...
 
Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactasEcuaciones diferenciales exactas
Ecuaciones diferenciales exactas
 
Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)
Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)
Ecuaciones diferenciales lineales de primer orden y aplicaciones(tema 1)
 
Independencia Lineal y Wronskiano
Independencia Lineal y Wronskiano Independencia Lineal y Wronskiano
Independencia Lineal y Wronskiano
 

Destacado (8)

Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactas Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactas
 
Ejercicios resueltos edo separables
Ejercicios resueltos edo separablesEjercicios resueltos edo separables
Ejercicios resueltos edo separables
 
Ecuaciones diferenciales exactas
Ecuaciones  diferenciales exactasEcuaciones  diferenciales exactas
Ecuaciones diferenciales exactas
 
Ecuaciones Diferenciales Exactas
Ecuaciones Diferenciales ExactasEcuaciones Diferenciales Exactas
Ecuaciones Diferenciales Exactas
 
1 4 Variables Separables
1 4 Variables Separables1 4 Variables Separables
1 4 Variables Separables
 
Ecuaciones Diferenciales- UFPS
Ecuaciones Diferenciales- UFPSEcuaciones Diferenciales- UFPS
Ecuaciones Diferenciales- UFPS
 
Ecuaciones diferenciales exactas y por factor integrante
Ecuaciones diferenciales exactas y por factor integranteEcuaciones diferenciales exactas y por factor integrante
Ecuaciones diferenciales exactas y por factor integrante
 
Ecuaciones Diferenciales Lineales
Ecuaciones Diferenciales LinealesEcuaciones Diferenciales Lineales
Ecuaciones Diferenciales Lineales
 

Similar a 1 6 Ecuaciones Exactas

Ecuaciones diferenciales exactas y lineales
Ecuaciones diferenciales exactas y linealesEcuaciones diferenciales exactas y lineales
Ecuaciones diferenciales exactas y lineales
AndresMartinez101291
 
Recetas de ecuaciones diferenciales elementales
Recetas  de ecuaciones diferenciales elementalesRecetas  de ecuaciones diferenciales elementales
Recetas de ecuaciones diferenciales elementales
jcalguien
 
Semana 9 diferencial, introduccion, antiderivadas o primitivas
Semana 9 diferencial, introduccion, antiderivadas o primitivasSemana 9 diferencial, introduccion, antiderivadas o primitivas
Semana 9 diferencial, introduccion, antiderivadas o primitivas
VicenteSilva57
 
Los dos temas de ecuaciones homogenias y variables separables
Los dos temas de ecuaciones homogenias y variables separablesLos dos temas de ecuaciones homogenias y variables separables
Los dos temas de ecuaciones homogenias y variables separables
ge0ser
 

Similar a 1 6 Ecuaciones Exactas (20)

Resumen Ecuaciones Diferenciales
Resumen Ecuaciones DiferencialesResumen Ecuaciones Diferenciales
Resumen Ecuaciones Diferenciales
 
T6
T6T6
T6
 
Ecuaciones diferenciales trabajo
Ecuaciones diferenciales trabajoEcuaciones diferenciales trabajo
Ecuaciones diferenciales trabajo
 
Recetas para la resolución de ed os
Recetas para la resolución de ed osRecetas para la resolución de ed os
Recetas para la resolución de ed os
 
Ecuaciones Exactas
Ecuaciones ExactasEcuaciones Exactas
Ecuaciones Exactas
 
Resolucion de ecuaciones diferenciales utilizando el metodo de ecuaciones lin...
Resolucion de ecuaciones diferenciales utilizando el metodo de ecuaciones lin...Resolucion de ecuaciones diferenciales utilizando el metodo de ecuaciones lin...
Resolucion de ecuaciones diferenciales utilizando el metodo de ecuaciones lin...
 
1 7 Ecuaciones Lineales
1 7 Ecuaciones Lineales1 7 Ecuaciones Lineales
1 7 Ecuaciones Lineales
 
Trabajo matematica 22 marzo
Trabajo matematica 22 marzoTrabajo matematica 22 marzo
Trabajo matematica 22 marzo
 
Ecuaciones diferenciales exactas y lineales
Ecuaciones diferenciales exactas y linealesEcuaciones diferenciales exactas y lineales
Ecuaciones diferenciales exactas y lineales
 
Recetas de ecuaciones diferenciales elementales
Recetas  de ecuaciones diferenciales elementalesRecetas  de ecuaciones diferenciales elementales
Recetas de ecuaciones diferenciales elementales
 
Teoria Edo
Teoria EdoTeoria Edo
Teoria Edo
 
Ecuaciones exactas por factor integrante,lineales,bernoulli
Ecuaciones exactas por factor integrante,lineales,bernoulliEcuaciones exactas por factor integrante,lineales,bernoulli
Ecuaciones exactas por factor integrante,lineales,bernoulli
 
1 2 Teoria Preeliminar
1 2 Teoria Preeliminar1 2 Teoria Preeliminar
1 2 Teoria Preeliminar
 
Semana 9 diferencial, introduccion, antiderivadas o primitivas
Semana 9 diferencial, introduccion, antiderivadas o primitivasSemana 9 diferencial, introduccion, antiderivadas o primitivas
Semana 9 diferencial, introduccion, antiderivadas o primitivas
 
Apuntes ecuaciones diferenciales
Apuntes ecuaciones diferencialesApuntes ecuaciones diferenciales
Apuntes ecuaciones diferenciales
 
Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactasEcuaciones diferenciales exactas
Ecuaciones diferenciales exactas
 
Los dos temas de ecuaciones homogenias y variables separables
Los dos temas de ecuaciones homogenias y variables separablesLos dos temas de ecuaciones homogenias y variables separables
Los dos temas de ecuaciones homogenias y variables separables
 
Derivadas
DerivadasDerivadas
Derivadas
 
Derivadas teoria-ejercicios-resueltos
Derivadas teoria-ejercicios-resueltosDerivadas teoria-ejercicios-resueltos
Derivadas teoria-ejercicios-resueltos
 
Tablasmatematicas 8254
Tablasmatematicas 8254Tablasmatematicas 8254
Tablasmatematicas 8254
 

Más de Fernando Felix Solis Cortes

Más de Fernando Felix Solis Cortes (12)

Introducción al álgebra: Factorización
Introducción al álgebra: FactorizaciónIntroducción al álgebra: Factorización
Introducción al álgebra: Factorización
 
Uso de TICS en extensionismo rural porcino
Uso de TICS en extensionismo rural porcinoUso de TICS en extensionismo rural porcino
Uso de TICS en extensionismo rural porcino
 
La cerveza....
La cerveza....La cerveza....
La cerveza....
 
Evaluacion en el sistema educ basica
Evaluacion en el sistema educ basicaEvaluacion en el sistema educ basica
Evaluacion en el sistema educ basica
 
1 6 ecuaciones_exactas
1 6 ecuaciones_exactas1 6 ecuaciones_exactas
1 6 ecuaciones_exactas
 
Modelación matemática para ecuaciones diferenciales
Modelación matemática para ecuaciones diferencialesModelación matemática para ecuaciones diferenciales
Modelación matemática para ecuaciones diferenciales
 
1 1 introduccion
1 1 introduccion1 1 introduccion
1 1 introduccion
 
1 4 variables_separables
1 4 variables_separables1 4 variables_separables
1 4 variables_separables
 
Cómo elaborar un Currriculum Vitae
Cómo elaborar un Currriculum VitaeCómo elaborar un Currriculum Vitae
Cómo elaborar un Currriculum Vitae
 
Breves propuestas para lograr una mejor educación en Mexico
Breves propuestas para lograr una mejor educación en MexicoBreves propuestas para lograr una mejor educación en Mexico
Breves propuestas para lograr una mejor educación en Mexico
 
Concepto geométrico de la derivada de una función y su relación con la recta ...
Concepto geométrico de la derivada de una función y su relación con la recta ...Concepto geométrico de la derivada de una función y su relación con la recta ...
Concepto geométrico de la derivada de una función y su relación con la recta ...
 
Introducción a las ecuaciones diferenciales
Introducción a las ecuaciones diferencialesIntroducción a las ecuaciones diferenciales
Introducción a las ecuaciones diferenciales
 

Último

PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
lupitavic
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
JonathanCovena1
 

Último (20)

Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCV
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
Ley 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularLey 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circular
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdf
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
actividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoactividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° grado
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 

1 6 Ecuaciones Exactas

  • 1. Universidad Autónoma de Baja California UABC Facultad de Ingeniería Mexicali 1.6 Ecuaciones Exactas Ahora veremos la resolución de ecuaciones exactas a través de su método correspondiente. Es importante señalar que este método se basa en el concepto del diferencial total de una función así como en la forma diferencial exacta de una ecuación diferencial, por lo que será importante definir primero dichos conceptos. Recuerde que la ecuación diferencial de primer orden dy = f ( x, y ) dx También puede expresarse en la forma diferencial M ( x, y )dx + N ( x, y )dy = 0 Ejemplo: La Ec. Diferencial dy 3x 2 – y dx = x –1 ( ) puede expresarse así: y – 3 x 2 dx + ( x – 1)dy = 0 DEFINICION Diferencial total de una función Recuerde que existe el concepto llamado diferencial total de una función expresado como dF ( x, y ) , mismo que se define mediante: ∂F ( x, y ) ∂F ( x, y ) dF ( x, y ) := dx + dy ∂x ∂y donde dx y dy son incrementos arbitrarios. DEFINICION Forma diferencial exacta. Se dice que la forma diferencial M ( x, y )dx + N ( x, y )dy es exacta, si existe una función F ( x, y ) tal que ∂F ∂F ( x , y ) = M ( x, y ) ( x, y ) = N ( x, y ) ∂x ∂y Dicho de otra manera, la forma diferencial M ( x, y )dx + N ( x, y )dy es exacta si y solo si proviene de aplicar el diferencial total a una función F ( x, y ) DEFINICION Ecuación diferencial exacta. Si M ( x, y )dx + N ( x, y )dy es una forma diferencial exacta, entonces la ecuación diferencial expresada como M ( x, y )dx + N ( x, y )dy = 0 se llama ecuación diferencial exacta. Curso Ecuaciones Diferenciales
  • 2. Universidad Autónoma de Baja California UABC Facultad de Ingeniería Mexicali Ejemplo: La ecuación y ⋅ dx + x ⋅ dy = 0 es exacta, ya que: d ( xy ) = y ⋅ dx + x ⋅ dy es la diferencial total de F ( x, y ) = x ⋅ y Ahora la pregunta debe ser, y cómo puedo verificar si una ecuación diferencial es exacta? El criterio de exactitud nos puede ayudar. Criterio de exactitud Supóngase que las primeras derivadas parciales de M ( x, y ) y N ( x, y ) son continuas en un rectángulo R. Entonces M ( x, y )dx + N ( x, y )dy = 0 es una ecuación exacta en R si y sólo si ∂M (x, y ) = ∂N (x, y ) ∂y ∂x para todo ( x, y ) en R. Método para resolver ecuaciones exactas Paso 1. Si M ( x, y )dx + N ( x, y )dy = 0 es una ecuación diferencial exacta, entonces (a) ∂F ( x, y ) ∂F ( x, y ) a) = M ( x, y ) b) = N ( x, y ) ∂x ∂y (b) Observe que ambos incisos son verdaderos desde el momento en que la ecuación es exacta. Tomaremos como referencia solo uno, en este caso será el inciso a). Recuerde que en todo momento lo que queremos encontrar es la función F ( x, y ) , de tal manera que procedemos a despejar dicho elemento a partir del inciso a). Observe que F ( x, y ) esta afectado por un diferencial (derivada), así que integrando nos queda: F ( x, y ) = ∫ M ( x, y ) dx + C Desde el momento en que estamos integrando con respecto a la variable independiente x , la variable dependiente y se considera como constante (si estuviéramos integrando con respecto a la variable dependiente y , entonces la variable independiente x sería considerada como constante). De acuerdo a lo anterior la constante numérica C bien podría ser una función que dependa de la variable dependiente y , por lo que podemos escribir la siguiente ecuación: F ( x, y ) = ∫ M ( x, y ) dx + g ( y ) Curso Ecuaciones Diferenciales
  • 3. Universidad Autónoma de Baja California UABC Facultad de Ingeniería Mexicali Hasta este punto prácticamente tenemos una parte de la solución, ya que conocemos el valor de M ( x, y ) ; nos falta encontrar el valor de g ( y ) , procedimiento que veremos a continuación. Paso 2. Para determinar g ( y ) , se realiza lo siguiente: se toma la derivada parcial con respecto a la variable dependiente y en ambos lados de la ecuación anterior. De lo anterior resulta: ∂F ( x, y ) ∂ = ( ∫ M ( x, y ) dx + g ( y) ) ∂F ( x, y ) ∂ = ( ∫ M ( x, y ) dx ) + g ′ ( y ) ∂y ∂y ∂y ∂y Observe que gracias a que la ecuación es exacta podemos sustituir N ( x, y ) por ∂F ( x, y ) ∂y lo que nos da: N ( x, y ) = ∂ ( ∫ M ( x, y ) dx ) + g ′ ( y ) ∂y Paso 3. Despejamos g ′( y ) e integramos para obtener g ( y ) . Sustituyendo g ( y ) en F ( x, y ) = ∫ M ( x, y ) dx + g ( y ) podemos tener el equivalente de F ( x, y ) Paso 4. Finalmente la solución de la ecuación diferencial M ( x, y )dx + N ( x, y )dy = 0 está dada implícitamente por F ( x, y ) = C Ejemplos Resuelva: F ( x, y ) = x 2 y – tan x + y 2 (2 xy – sec x )dx + (x 2 2 + 2 y )dy = 0 Solución: x 2 y – tan x + y 2 = C Resuelva: ( ) ( 1 + e x y + xe x y dx + xe x + 2 dy = 0 ) Solución: xe x y + 2 y + x = C Factores integrantes para ecuaciones exactas En ciertas ocasiones, una ecuación diferencial que no es exacta puede volverse exacta a través de lo que se conoce como un factor integrante. Este factor integrante es una función, que multiplicada por la ecuación diferencial en su forma diferencial, permite a dicha ecuación cumplir con criterio de exactitud. Curso Ecuaciones Diferenciales
  • 4. Universidad Autónoma de Baja California UABC Facultad de Ingeniería Mexicali Para verificar si una ecuación diferencial posee un factor integrante se consideran las siguientes dos condiciones: ⎛ M y − Nx ⎞ 1) Si ⎜ ⎟ es una función que depende solamente de la variable independiente ⎝ N ⎠ x , entonces un factor integrante para la ecuación diferencial es: M y −Nx ∫ dx μ ( x) = e N ⎛ Nx − M y ⎞ 2) Si ⎜ ⎟ es una función que depende solamente de la variable independiente ⎝ M ⎠ y , entonces un factor integrante para la ecuación diferencial es: Nx −M y μ ( y) = e∫ dy M Notas importantes • La nomenclatura N x representa la derivada parcial de la función N con respecto a la variable x • Recuerde que N y M se obtienen de la ecuación diferencial original en su forma diferencial Ejemplo Verifique que la siguiente ecuación diferencial no es exacta; encuentre un factor integrante y verifique nuevamente su criterio de exactitud. ( xy ) dx + ( 2 x 2 + 3 y 2 − 20 ) dy = 0 Curso Ecuaciones Diferenciales