SlideShare una empresa de Scribd logo
1 de 12
UNIVERSIDAD VERACRUZANA

              FACULTAD DE BIOLOGIA

               QUIMICA INORGANICA

“PRACTICA 1°: OBSERVACION CIENTIFICA Y DESCRIPCION”

             PROF. ANA BERTHA ROCIO

  FECHA DE REALIZACION: 7 DE SEMPTIEMBRE DE 2012

    FECHA DE ENTREGA: 11 DE SEPTIEMBRE DE 2012

                   INTEGRANTES:

               JUAREZ BRAVO ZULLYN

        LOPEZ ORTEGA GUADALUPE YAMILETH

       SALAZAR CHAMORRO MARIA FERNANDA

         TABAL CORTES MARCOS ALEJANDRO
Sustento Teórico

Al presenciar algún acontecimiento, ya sea de manera natural y espontánea o
controlada dentro de un laboratorio es importante que no solo veamos lo que
sucede, sino que observemos a detalle todo lo que ocurre dentro de ese sistema,
así podemos recopilar datos de una forma ordenada y precisa. La observación es
un proceso muy importante dentro del aspecto científico, que requiere toda la
atención y concentración del practicante. Tomando en cuenta que cualquier
variable puede ser la causa de un cambio en los resultados, por lo que no se debe
perder de vista nada de lo que ocurre en el sistema.

Objetivos

1.- Mejorar nuestra forma de observar.

2.- Conocer los cambios que ocurren a un cuerpo cuando se calienta.

3.- Comparar los diferentes efectos en cada uno de los materiales tomados.

4.- Relacionar y hacer nexos sobre los fenómenos ocurridos en los materiales.

5.- Sacar conclusiones en base a las reacciones presentadas.

Descripción de la práctica

Este experimento a realizar es muy sencillo, con el fin de que podamos observar
los efectos de calentamiento de algunos metales por medio de una vela y
posteriormente por medio de un mechero e identificar los diferentes efectos que
acontece a cada uno de ellos.

Realización

1.- Antes de realizar la práctica se lleva a cabo una discusión sobre la importancia
del método científico en el trabajo práctico de laboratorio.

2.- Realizar un cuidado examen de la vela que será utilizada en el experimento.

3-.Encender la vela y anotar el mayor número de observaciones posibles que
puedan realizarse en un plazo breve de tiempo.

4.-Conviene no formar frases con las observaciones tomadas, simplemente hacer
una lista enumerándolas.

5.-Se introducen en la llama cada uno de los metales, sosteniéndolos con una
pinza. En cada caso se anotarán las observaciones.
6.-Repetir el procedimiento anterior pero ahora usando la llama del mecheron
Bunsen en lugar de la vela.

7.-Mediante unas pinzas colocar un trozo de lana de acero en la llama del
mechero. Anotar las observaciones. ¿Resultan iguales las observaciones
realizadas con el alambre de hierro en los pasos 5 y 6?

8.-Preparar un espiral con el alambre de cobre no. 22, enrollándolo en un lápiz de
manera que se formen unas diez espiras. Dejar sin enrollar un extremo que sirva
de mango. Quitar el alambre del lápiz en introducirlo en la llama de la vela. Anotar
las observaciones.

9.-¿De qué manera se modifica el estaño y el plomo cuando se colocan en la
llama de la vela, si es que se modifican?

10.-¿Cuáles son los materiales que en el paso 5 se modifican a una temperatura
que es evidente inferior a la temperatura alcanzado por la llama de la vela?

11.- ¿Cuáles son los materiales que en el paso 6 se modifican a una temperatura
menor que la temperatura alcanzada por la llama del mechero?

12.- Usando como guía las observaciones realizadas, ordenar los materiales
empleados en orden creciente de su temperatura de fusión. Si en algún caso no
fuese posible llegar a una conclusión entre dos materiales, deben anotarse
conjuntamente.

13.- Traten de sugerir una explicación posible para las observaciones hechas con
la lana de acero en el paso 7.

14.- Tratar de encontrar un modelo que explique lo que se observa durante el paso
8. En este caso, intervienen varios factores, de manera que se puede conjeturar
libremente.

Resultados y discusión.

Observaciones de la vela.

La parte inferior de la llama de la vela tiene un color azul y el resto es de color
amarillo-naranja. La vela se encontraba sucia y desnivelada, poco a poco con el
derretimiento de la cera se fue limpiando y fue nivelada con unas pinzas de
disección y unas tijeras. Después de 7 minutos el color azul se empieza a notar
más hacia los lados, la flama crece y se hace más delgada, se mueve
constantemente de un lado a otro por el paso del aire, por lo cual su forma cambia
de manera constante.
Materiales introducidos en la llama de la vela.

Zinc:

1.-Desprende humo de color negro

2.-Se quema en la parte donde el fuego tuvo contacto con él.

3.-Se nota que su proceso de derretimiento es un poco lento.

4.-Toda la parte inferior de la placa quedó de color negro aún sin tener contacto
con el fuego directamente.

5.-Desprende un olor parecido al de la madera quemada.



Plomo:

1.-No desprende humo.

2.-Se derrite rápidamente.

3.-Al derretirse y caer el pedazo de plomo derretido desprende un humo de color
blanco, y de color negro de la lámina de plomo.

4.- Cambia fácilmente de forma al ser introducido en la llama.

5.- No se nota ningún olor en particular al ocurrir su derretimiento.



Aluminio:

1.-Desprende humo de color blanco de forma constante.

2.-No se derrite.

3.-No se dobla.

4.-La parte quemada se obscurece poniéndose de color café.

5.-Después de unos minutos bajo la llama comienza a emanar humo color negro.

6.-La lámina en ningún momento cambió su forma.



Hierro:
1.-Rápidamente comienza a desprender humo de color negro.

2.-Mantiene su forma de forma constante, no se produce ningún cambio.

3.- Se puede notar que es un buen conductor de calor, ya que transportó el calor
desde la punta de la barra hasta el extremo que no estaba en contacto con la
llama.



Alambre de cobre retorcido:

1.-Durante el inicio del proceso comienza a desprender humo de color negro.

2.-Genera una flama de color verde también al comienzo del proceso.

3.-Obtiene un color negro.

4.-El color negro mencionado anteriormente posteriormente cambia a rojo.

5.-Su forma en ningún momento es modificada.

6.-Al final del proceso su color es gris.



Materiales introducidos dentro de la llama del mechero Bunsen.

Zinc:

1.-Se derrite más rápidamente que con la llama de la vela.

2.-La barra de zinc adelgaza con el calor.

3.-Al caer alguna parte derretida desprende humo de color blanco y rápidamente
se endurece.

4.-La parte que no llega a derretirse adquiere un color blanco-azulado.



Aluminio:

1.-Cambió su color a café.

2.-Se derritió por primera vez, ya que con la vela no lo hizo.

3.-Al seguir calentándose adquirió de nuevo el color azul obtenido durante el
anterior calentamiento con la vela.
4.-La barra de aluminio se puede notar que se ablandó un poco.



Plomo:

1.-Se vuelve más delgado rápidamente.

2.-El derretimiento es muy rápido.

3.-Se puede notar que este material es muy maleable.



Cobre:

1.-No se nota ningún hecho importante, simplemente sucede lo mismo que con la
vela, solo que esta vez el proceso ocurre más rápidamente.



Hierro finamente dividido:

Este hierro es sometido a un proceso de calentamiento en la llama del mechero
Bunsen, sin embargo después de unos minutos no es posible notar algún cambio
sobre él, y después de pasado un lapso de tiempo mayor de igual forma no se
notó ningún cambio notorio en el material.

Explicación:

Una posible explicación del porqué el hierro finamente dividido no fue modificado,
es debido a que al estar más separado de los otros fragmentos de hierro, no se
puede llegar a notar un cambio notorio, aparte de que el hierro entero no presenta
algún tipo de cambio, al ponerlo de forma separada el cambio es mucho menos
notorio.



Orden de los materiales de acuerdo a su temperatura de fusión.

1.-Plomo

2.-Zinc

3.-Aluminio

4.-Cobre
5.-Hierro

Hierro:

1.-Vuelve a adquirir su tono color negro.

2.-Su forma no es alterada en absoluto.

3.-Básicamente ocurren los mismos casos que ocurrieron con la llama de la vela.



Conclusión.

Cada material presentó diferentes reacciones físicas al ser calentadas, ya que
cada uno cuenta con diferentes propiedades químicas, pudimos notar todos estos
fenómenos tanto espontáneos como permanentes mediante la observación.
Notamos que al exponerse los materiales al calor de la vela su reacción es más
tenue en comparación a la combustión del mechero ya que el fuego es mas
intenso

Cuestionario.

1.- ¿Cuáles son los elementos clave del pensamiento científico que se usa en el
siguiente escenario? Mientras hace el pan tostado del desayuno, nota que el pan
no sale de la tostadora; piensa que el mecanismo del resorte está atorado y ve
que el pan sigue igual. Pensando que volvió a conectar el tostador, lo verifica y ve
que está conectado. Cuando lleva el tostador a la sala y lo conecta en otro
contacto, ve que si funciona. Regresa a la cocina y prende la luz y no pasa nada:

Los elementos clave son el explorar el que sucedería si... Tomando en cuenta de
que no se tiene un resultado esperado en el lugar que se supone debe suceder, se
deben tomar más opciones hasta poder llegar al resultado que se espera, y con
eso se puede comparar con lo anterior para dar con la respuesta de lo sucedido,
también en menor medida, el investigar si el daño no está ocasionado por el lugar,
si no por el objeto con el que se está trabajando, observando si se encuentra en
buen estado.



2.- ¿Porqué una observación cuantitativa es más útil que una cualitativa?

Porqué con ella se obtienen cifras que se pueden estar buscando, no alguna
característica que no es lo que nosotros esperábamos obtener durante nuestro
resultado.
3- ¿Cuál de las siguientes observaciones son cuantitativas?

   a)   El sol sale por el Oriente
   b)   Un astronauta pesa una sexta parte en la Luna que en la tierra.
   c)   El hielo flota en el agua.
   d)   Una bomba de succión anticuada no puede extraer agua de un pozo de
        más de 34 pies de profundidad.

4.-Describa las características esenciales del método científico.

Éste método se forma por cuatro fases:

   1. Observación: es de vital importancia que al estudiar un algo o una situación
      no solo veamos lo que sucede a su alrededor, sino que observemos, es
      decir, que pongamos toda nuestra atención a lo que podemos ver para
      notar cada suceso que se presente alrededor, o en lo que estemos
      estudiando, sin perdernos de nada, ya que cada suceso por muy pequeño
      que sea tiene su relevancia.
   2. Formulación de hipótesis: basándose en lo que pudo observar, el científico
      realiza hipótesis del porque o cómo fue que sucedió todo aquello que notó
      al observar.
   3. Experimentación: ya hechas las hipótesis, se debe experimentar con ellas,
      para ver si son ciertas o falsas, para ello el experimento se repite unas
      cuantas veces, en cada vez las variables se cambian y así ver si los
      resultados concuerdan con alguna de las hipótesis.
   4. Emisión de conclusiones: ya contando con los resultados, éstos se
      interpretan para ver si concuerdan con la hipótesis, si es así, se da una
      explicación científica del suceso, y ésta puede ser enunciada como una ley,
      que formará parte de una teoría.
      En el caso de que la hipótesis haya fracasado se debe regresar al punto 2.



Bibliografía.

        Silberg, Martín S. (2002) Química: la naturaleza del cambio y la materia.
        McGraw-Hill. México.
        Tellefsen Robert L. (1974) Manual de laboratorio: química: fundamentos
        experimentales. Reverté. Barcelona.
        http://www.quimicaweb.net/ciencia/paginas/metodocc.html



Anexos.
ESTA ES LA PLANTA MÁS BRILLANTE DEL MUNDO




  Parece una canica esférica de brillos irisados y metálicos, pero en realidad es
parte del fruto de la planta africana Pollia condensata, que puede presumir de ser
  la más brillante del mundo. Un estudio de la Universidad de Cambridge (Reino
   Unido), publicado hoy en la revista Proceedings of the National Academy of
 Sciences, revela que si esta fruta ha conseguido ser el elemento natural con el
   color más intenso del planeta no es gracias a un pigmento, sino a que las
  células de la fruta están hechas a base de hebras de celulosa enrolladas que
reflejan la luz. La distribución asimétrica de estas hebras determina su iridiscencia.
“No hay ejemplos previos conocidos en la naturaleza”, explica Silvia Vignolini, que
asegura que aunque existen exoesqueletos de escarabajos, alas de mariposas e
incluso plumas como las del pavo real que muestran iridiscencia, en esos casos el
        efecto se consigue con otro tipo de materiales y otras estructuras.
Además, no hay otros ejemplos de elementos brillantes similares en el
                                    mundo vegetal.


 Los investigadores también han descubierto que cada célula individual genera
 su propio color de manera independiente, lo que origina un efecto pixelado o
puntillista, similar al que consiguen ciertos pintores en sus cuadros. Por otro lado,
 en función del grosor de las paredes de celulosa de cada célula, algunas reflejan
      longitud de onda azulada, mientras que otras exhiben reflejos verdes o
                                  ligeramente rojizos.


      La colorida fruta, aunque de aspecto reluciente, no tiene ningún valor
 nutricional, ya que solamente contiene semillas. Los investigadores sospechan
 que el brillo la convierte en un elemento irresistible para los pájaros, que atraídos
 por sus reflejos la usan para decorar sus nidos o impresionar a sus parejas. Otra
          estrategia "inteligente" de la naturaleza, admiten los investigadores.

Resumen

Este articulo habla sobre el fruto de una planta africana cuyo nombre es Pollia
condensata que es la más brillante del mundo según un estudio de la Universidad
de Cambridge (Reino Unido).

El fruto de esta planta parece una canica brillante, su color intenso de debe a que
las células de dicha fruta están hechas a base de hebras de celulosa enrolladas
que reflejan la luz. Cada célula de manera individual genera su color y gracias a
las paredes celulosas de estas se reflejan distintos colores como el azul, rojo y
verdes.

Debido a que solo contiene semillas no tiene ningún valor nutricional.

Bibliografía

http://www.muyinteresante.es/esta-es-la-planta-mas-brillante-del-mundo
MEDICINA: CURACIÓN
Según un artículo publicado esta semana en Technology Riview, algunos
investigadores de la universidad Cincinnati aseguran que el gel rico en plaquetas
obtenidas de la propia sangre de algún paciente sería posible prevenir infecciones
en heridas y acelerar al mismo tiempo su curación. Con este descubrimiento en un
futuro no tan lejano un “cocktail” concentrado de la sangre d una persona se
podría utilizar en el vendaje de heridas, principalmente en pacientes que padecen
enfermedades como la diabetes ya que en ellos su proceso de curación es muy
lento.

El secreto esta en las plaquetas. En los últimos años los investigadores han
realizado experimentos con distintos geles de plaquetas, de las cuales estudian
sus efectos en la reparación de los huesos i curación de hematomas e hinchazón
de tejidos. Pero aunque se han obtenido resultados positivos algunos casos, David
Hom, director de la división de cirugía reconstructiva y cirugía plástica facial de la
universidad de Cincinnati argumenta que aun no está muy claro la manera en que
influirían estos geles en el proceso de curación de heridas en personas sanas.

En un experimento publicado en la revista Archives of facial plastic sugery Hom,
por aquel entonces en la facultad de medicina de la universidad de Minnesota, y
sus colegas estudiaron el efecto de los geles derivados de plaquetas en 8
personas sanas, para esto Hom extrajo muestras de sangre de cada sujeto y
elaboro de manera individual un gel para cada uno de ellos, después de aplicar
una anestesia local se realizaron pequeñas incisiones en los muslos de cada uno.
Las heridas de una de sus piernas se trataron con gel y las de su otra pierna con
un antibiótico en pomada. Después de seis meses las personas volvieron a
continuar el estudio y Hom y sus colegas observaron que las heridas que habían
tratado con el gel se curaron estadísticamente más rápido que las de control.

Cuando Hom comparo la cantidad de plaquetas que estaban presentes en el gel
de cada uno, descubrió que los individuos con una concentración de plaquetas en
gel seis veces mayor a la de la sangre se curaba mucho mas rápido.
Aunque Hom solo estudio en los individuos sanos, afirma que ahora espera
hacerlo en personas con problemas crónicos de cicatrización de heridas, como los
diabéticos.

Según Robert Grant director de la división de cirugía plástica de la universidad de
Columbia, la aceleración que fue observada en el proceso de curación de heridas
en personas sanas no es lo suficientemente importante como para poder
considerar el uso de ese gel sea rentable; la cuestión es si lo seria en personas o
pacientes con múltiples fracturas, que reciben radiaciones o con enfermedades
vasculares. Añadió que serán necesarios más estudios con pacientes de estos
grupos para poder llegar a una conclusión.

Bibliografía.

http://www.google.com.mx/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0C
CQQFjAA&url=http%3A%2F%2Fwww.blogger.com%2Ffeeds%2F7357107950559
15678%2Fposts%2Fdefault&ei=fAFQUJCGEcSe2gXx4IDwAw&usg=AFQjCNG0q
YWiBrNWOJUSbU3ogGHGqDi9zg&sig2=sMIfCTHUpr3GnMrZSOy-DQ

Más contenido relacionado

La actualidad más candente

Identificación de cationes Mediante el análisis a la flama
Identificación de cationes Mediante el análisis a la flamaIdentificación de cationes Mediante el análisis a la flama
Identificación de cationes Mediante el análisis a la flamaAyleen_barcenas
 
PRACTICA DE LABORATORIO DE ENLACES QUÍMICOS Y FÍSICOS
PRACTICA DE LABORATORIO DE ENLACES QUÍMICOS Y FÍSICOSPRACTICA DE LABORATORIO DE ENLACES QUÍMICOS Y FÍSICOS
PRACTICA DE LABORATORIO DE ENLACES QUÍMICOS Y FÍSICOSlilisaar
 
Metales alcalinotérreos trabajo final JULI 1 (1).docx
Metales alcalinotérreos trabajo final JULI 1 (1).docxMetales alcalinotérreos trabajo final JULI 1 (1).docx
Metales alcalinotérreos trabajo final JULI 1 (1).docxnoemi50671
 
Practica 6 celula vegetal
Practica 6 celula vegetalPractica 6 celula vegetal
Practica 6 celula vegetalIriniita FG
 
Quimica practica numero 6
Quimica practica numero 6Quimica practica numero 6
Quimica practica numero 6mnilco
 
Práctica química obtención de etileno.
Práctica química  obtención de etileno.Práctica química  obtención de etileno.
Práctica química obtención de etileno.Andrea Fuentes
 
Práctica #5. identificación de metales a la llama
Práctica #5. identificación de metales a la llamaPráctica #5. identificación de metales a la llama
Práctica #5. identificación de metales a la llamaDaniel R. Camacho Uribe
 
Actividades De Aprendizaje La Flama Del Diablo2[1]
Actividades De Aprendizaje La Flama Del Diablo2[1]Actividades De Aprendizaje La Flama Del Diablo2[1]
Actividades De Aprendizaje La Flama Del Diablo2[1]guestd4e2dd
 
Celdas o cubetas para espectros
Celdas o cubetas para espectrosCeldas o cubetas para espectros
Celdas o cubetas para espectrosBessy Caroiz
 
Organica 1 practica 4 determinacion del punto de fusion
Organica 1 practica 4 determinacion del punto de fusionOrganica 1 practica 4 determinacion del punto de fusion
Organica 1 practica 4 determinacion del punto de fusionPeterr David
 
Informe practica #2 (lipidos)
Informe practica #2 (lipidos)Informe practica #2 (lipidos)
Informe practica #2 (lipidos)Pedro Rodriguez
 
EQUILIBRIO QUIMICO-LABORATORIO QIMICA II
EQUILIBRIO QUIMICO-LABORATORIO QIMICA IIEQUILIBRIO QUIMICO-LABORATORIO QIMICA II
EQUILIBRIO QUIMICO-LABORATORIO QIMICA IIRober Aparicio Lliuya
 

La actualidad más candente (20)

Práctica no. 4
Práctica no. 4Práctica no. 4
Práctica no. 4
 
Identificación de cationes Mediante el análisis a la flama
Identificación de cationes Mediante el análisis a la flamaIdentificación de cationes Mediante el análisis a la flama
Identificación de cationes Mediante el análisis a la flama
 
Operciones basicas en el laboratorio
Operciones basicas en el laboratorioOperciones basicas en el laboratorio
Operciones basicas en el laboratorio
 
Enlaces quimicos
Enlaces quimicosEnlaces quimicos
Enlaces quimicos
 
PRACTICA DE LABORATORIO DE ENLACES QUÍMICOS Y FÍSICOS
PRACTICA DE LABORATORIO DE ENLACES QUÍMICOS Y FÍSICOSPRACTICA DE LABORATORIO DE ENLACES QUÍMICOS Y FÍSICOS
PRACTICA DE LABORATORIO DE ENLACES QUÍMICOS Y FÍSICOS
 
Tipos y aplicaciones de las pilas galvánicas
Tipos y aplicaciones de las pilas galvánicasTipos y aplicaciones de las pilas galvánicas
Tipos y aplicaciones de las pilas galvánicas
 
Enlace quÍmico conductividad electrica
Enlace quÍmico conductividad electricaEnlace quÍmico conductividad electrica
Enlace quÍmico conductividad electrica
 
Metales alcalinotérreos trabajo final JULI 1 (1).docx
Metales alcalinotérreos trabajo final JULI 1 (1).docxMetales alcalinotérreos trabajo final JULI 1 (1).docx
Metales alcalinotérreos trabajo final JULI 1 (1).docx
 
Ensayo a la Llama
Ensayo a la LlamaEnsayo a la Llama
Ensayo a la Llama
 
Practica 6 celula vegetal
Practica 6 celula vegetalPractica 6 celula vegetal
Practica 6 celula vegetal
 
Metales de transición
Metales de transiciónMetales de transición
Metales de transición
 
Quimica practica numero 6
Quimica practica numero 6Quimica practica numero 6
Quimica practica numero 6
 
Práctica química obtención de etileno.
Práctica química  obtención de etileno.Práctica química  obtención de etileno.
Práctica química obtención de etileno.
 
Práctica #5. identificación de metales a la llama
Práctica #5. identificación de metales a la llamaPráctica #5. identificación de metales a la llama
Práctica #5. identificación de metales a la llama
 
Actividades De Aprendizaje La Flama Del Diablo2[1]
Actividades De Aprendizaje La Flama Del Diablo2[1]Actividades De Aprendizaje La Flama Del Diablo2[1]
Actividades De Aprendizaje La Flama Del Diablo2[1]
 
Celdas o cubetas para espectros
Celdas o cubetas para espectrosCeldas o cubetas para espectros
Celdas o cubetas para espectros
 
Organica 1 practica 4 determinacion del punto de fusion
Organica 1 practica 4 determinacion del punto de fusionOrganica 1 practica 4 determinacion del punto de fusion
Organica 1 practica 4 determinacion del punto de fusion
 
Informe practica #2 (lipidos)
Informe practica #2 (lipidos)Informe practica #2 (lipidos)
Informe practica #2 (lipidos)
 
Mechero bunsen
Mechero bunsenMechero bunsen
Mechero bunsen
 
EQUILIBRIO QUIMICO-LABORATORIO QIMICA II
EQUILIBRIO QUIMICO-LABORATORIO QIMICA IIEQUILIBRIO QUIMICO-LABORATORIO QIMICA II
EQUILIBRIO QUIMICO-LABORATORIO QIMICA II
 

Destacado

EL CALOR Y ESTADOS DE LA MATERIA
EL CALOR Y ESTADOS DE LA MATERIAEL CALOR Y ESTADOS DE LA MATERIA
EL CALOR Y ESTADOS DE LA MATERIAdayanariveros
 
Organica 1 practica 3 ensayo de muestras preliminares
Organica 1 practica 3 ensayo de muestras preliminaresOrganica 1 practica 3 ensayo de muestras preliminares
Organica 1 practica 3 ensayo de muestras preliminaresPeterr David
 
1° práctica de laboratorio
1° práctica de laboratorio1° práctica de laboratorio
1° práctica de laboratorioaleeh_bd
 
Práctica 1 (Mecheros)
Práctica 1 (Mecheros)Práctica 1 (Mecheros)
Práctica 1 (Mecheros)Luis Morillo
 
Reporte de práctica no.4
Reporte de práctica no.4Reporte de práctica no.4
Reporte de práctica no.4aleeh_bd
 
Informe de lab organica #1
Informe de lab organica #1Informe de lab organica #1
Informe de lab organica #1Valeria Silva
 
Informe de laboratorio mechero de Bunsen
Informe de laboratorio mechero de Bunsen Informe de laboratorio mechero de Bunsen
Informe de laboratorio mechero de Bunsen William Matamoros
 
Ensayo a la llama - informe de laboratorio
Ensayo a la llama - informe de laboratorio Ensayo a la llama - informe de laboratorio
Ensayo a la llama - informe de laboratorio Lu G.
 

Destacado (8)

EL CALOR Y ESTADOS DE LA MATERIA
EL CALOR Y ESTADOS DE LA MATERIAEL CALOR Y ESTADOS DE LA MATERIA
EL CALOR Y ESTADOS DE LA MATERIA
 
Organica 1 practica 3 ensayo de muestras preliminares
Organica 1 practica 3 ensayo de muestras preliminaresOrganica 1 practica 3 ensayo de muestras preliminares
Organica 1 practica 3 ensayo de muestras preliminares
 
1° práctica de laboratorio
1° práctica de laboratorio1° práctica de laboratorio
1° práctica de laboratorio
 
Práctica 1 (Mecheros)
Práctica 1 (Mecheros)Práctica 1 (Mecheros)
Práctica 1 (Mecheros)
 
Reporte de práctica no.4
Reporte de práctica no.4Reporte de práctica no.4
Reporte de práctica no.4
 
Informe de lab organica #1
Informe de lab organica #1Informe de lab organica #1
Informe de lab organica #1
 
Informe de laboratorio mechero de Bunsen
Informe de laboratorio mechero de Bunsen Informe de laboratorio mechero de Bunsen
Informe de laboratorio mechero de Bunsen
 
Ensayo a la llama - informe de laboratorio
Ensayo a la llama - informe de laboratorio Ensayo a la llama - informe de laboratorio
Ensayo a la llama - informe de laboratorio
 

Similar a Observación científica de materiales calentados

Similar a Observación científica de materiales calentados (20)

Reporte de laboratorio química inorgánica
Reporte de laboratorio química inorgánicaReporte de laboratorio química inorgánica
Reporte de laboratorio química inorgánica
 
Universidad veracruzana
Universidad veracruzanaUniversidad veracruzana
Universidad veracruzana
 
Equipo 6
Equipo 6Equipo 6
Equipo 6
 
Practica 1.pdf
Practica 1.pdfPractica 1.pdf
Practica 1.pdf
 
Trabajo Practico de Laboratorio - Quimica
Trabajo Practico de Laboratorio - QuimicaTrabajo Practico de Laboratorio - Quimica
Trabajo Practico de Laboratorio - Quimica
 
Cuestionario del experimento n1 de quimica
Cuestionario del experimento n1 de quimicaCuestionario del experimento n1 de quimica
Cuestionario del experimento n1 de quimica
 
Adela carretero lopez_2
Adela carretero lopez_2Adela carretero lopez_2
Adela carretero lopez_2
 
Practica 1. esteban
Practica 1. estebanPractica 1. esteban
Practica 1. esteban
 
Observación de metales por elena centeno
Observación de metales por elena centenoObservación de metales por elena centeno
Observación de metales por elena centeno
 
proyecto Corrosión
proyecto Corrosión proyecto Corrosión
proyecto Corrosión
 
La Corrosion
La CorrosionLa Corrosion
La Corrosion
 
practicas de laboratorio de Biologia
practicas de laboratorio de Biologia practicas de laboratorio de Biologia
practicas de laboratorio de Biologia
 
Práctica no. 2
Práctica no. 2Práctica no. 2
Práctica no. 2
 
Practica 4
Practica 4Practica 4
Practica 4
 
Uso del mechero y trabajo en vidrio
Uso del mechero y trabajo en vidrioUso del mechero y trabajo en vidrio
Uso del mechero y trabajo en vidrio
 
Práctica química 4
Práctica química 4Práctica química 4
Práctica química 4
 
Proyecto 4 ¿como evitar la corrosión?
Proyecto 4 ¿como evitar la corrosión?Proyecto 4 ¿como evitar la corrosión?
Proyecto 4 ¿como evitar la corrosión?
 
Informe de laboratorio 1 de quimica
Informe de laboratorio 1 de quimicaInforme de laboratorio 1 de quimica
Informe de laboratorio 1 de quimica
 
Actividad experimental
Actividad experimentalActividad experimental
Actividad experimental
 
Practica 4
Practica 4Practica 4
Practica 4
 

Más de AlejandroTabal (20)

Practica 14
Practica 14Practica 14
Practica 14
 
Objetivos
ObjetivosObjetivos
Objetivos
 
Ensayo de suelo
Ensayo de sueloEnsayo de suelo
Ensayo de suelo
 
Trabajo de quimica suelo
Trabajo de quimica sueloTrabajo de quimica suelo
Trabajo de quimica suelo
 
Trabajo de quimica agua
Trabajo de quimica aguaTrabajo de quimica agua
Trabajo de quimica agua
 
Trabajo del suelo quimika
Trabajo del suelo quimikaTrabajo del suelo quimika
Trabajo del suelo quimika
 
Trabajo de quimica sobre el agua (2)
Trabajo de quimica sobre el agua (2)Trabajo de quimica sobre el agua (2)
Trabajo de quimica sobre el agua (2)
 
Universidad veracruzan el agua2
Universidad veracruzan el agua2Universidad veracruzan el agua2
Universidad veracruzan el agua2
 
Universidad veracruzana suelo 2 (2)
Universidad veracruzana suelo 2 (2)Universidad veracruzana suelo 2 (2)
Universidad veracruzana suelo 2 (2)
 
El agua
El  aguaEl  agua
El agua
 
El suelo quimica
El suelo quimicaEl suelo quimica
El suelo quimica
 
Trabajo de quimica sobre el agua
Trabajo de quimica sobre el aguaTrabajo de quimica sobre el agua
Trabajo de quimica sobre el agua
 
Trabajo de quimica de suelo
Trabajo de quimica  de sueloTrabajo de quimica  de suelo
Trabajo de quimica de suelo
 
Suelo
SueloSuelo
Suelo
 
Suelo
SueloSuelo
Suelo
 
Suelo
SueloSuelo
Suelo
 
Agua~
Agua~Agua~
Agua~
 
Agua~
Agua~Agua~
Agua~
 
Practia 11 de quimica
Practia 11 de quimicaPractia 11 de quimica
Practia 11 de quimica
 
Suelos final~
Suelos final~Suelos final~
Suelos final~
 

Observación científica de materiales calentados

  • 1. UNIVERSIDAD VERACRUZANA FACULTAD DE BIOLOGIA QUIMICA INORGANICA “PRACTICA 1°: OBSERVACION CIENTIFICA Y DESCRIPCION” PROF. ANA BERTHA ROCIO FECHA DE REALIZACION: 7 DE SEMPTIEMBRE DE 2012 FECHA DE ENTREGA: 11 DE SEPTIEMBRE DE 2012 INTEGRANTES: JUAREZ BRAVO ZULLYN LOPEZ ORTEGA GUADALUPE YAMILETH SALAZAR CHAMORRO MARIA FERNANDA TABAL CORTES MARCOS ALEJANDRO
  • 2. Sustento Teórico Al presenciar algún acontecimiento, ya sea de manera natural y espontánea o controlada dentro de un laboratorio es importante que no solo veamos lo que sucede, sino que observemos a detalle todo lo que ocurre dentro de ese sistema, así podemos recopilar datos de una forma ordenada y precisa. La observación es un proceso muy importante dentro del aspecto científico, que requiere toda la atención y concentración del practicante. Tomando en cuenta que cualquier variable puede ser la causa de un cambio en los resultados, por lo que no se debe perder de vista nada de lo que ocurre en el sistema. Objetivos 1.- Mejorar nuestra forma de observar. 2.- Conocer los cambios que ocurren a un cuerpo cuando se calienta. 3.- Comparar los diferentes efectos en cada uno de los materiales tomados. 4.- Relacionar y hacer nexos sobre los fenómenos ocurridos en los materiales. 5.- Sacar conclusiones en base a las reacciones presentadas. Descripción de la práctica Este experimento a realizar es muy sencillo, con el fin de que podamos observar los efectos de calentamiento de algunos metales por medio de una vela y posteriormente por medio de un mechero e identificar los diferentes efectos que acontece a cada uno de ellos. Realización 1.- Antes de realizar la práctica se lleva a cabo una discusión sobre la importancia del método científico en el trabajo práctico de laboratorio. 2.- Realizar un cuidado examen de la vela que será utilizada en el experimento. 3-.Encender la vela y anotar el mayor número de observaciones posibles que puedan realizarse en un plazo breve de tiempo. 4.-Conviene no formar frases con las observaciones tomadas, simplemente hacer una lista enumerándolas. 5.-Se introducen en la llama cada uno de los metales, sosteniéndolos con una pinza. En cada caso se anotarán las observaciones.
  • 3. 6.-Repetir el procedimiento anterior pero ahora usando la llama del mecheron Bunsen en lugar de la vela. 7.-Mediante unas pinzas colocar un trozo de lana de acero en la llama del mechero. Anotar las observaciones. ¿Resultan iguales las observaciones realizadas con el alambre de hierro en los pasos 5 y 6? 8.-Preparar un espiral con el alambre de cobre no. 22, enrollándolo en un lápiz de manera que se formen unas diez espiras. Dejar sin enrollar un extremo que sirva de mango. Quitar el alambre del lápiz en introducirlo en la llama de la vela. Anotar las observaciones. 9.-¿De qué manera se modifica el estaño y el plomo cuando se colocan en la llama de la vela, si es que se modifican? 10.-¿Cuáles son los materiales que en el paso 5 se modifican a una temperatura que es evidente inferior a la temperatura alcanzado por la llama de la vela? 11.- ¿Cuáles son los materiales que en el paso 6 se modifican a una temperatura menor que la temperatura alcanzada por la llama del mechero? 12.- Usando como guía las observaciones realizadas, ordenar los materiales empleados en orden creciente de su temperatura de fusión. Si en algún caso no fuese posible llegar a una conclusión entre dos materiales, deben anotarse conjuntamente. 13.- Traten de sugerir una explicación posible para las observaciones hechas con la lana de acero en el paso 7. 14.- Tratar de encontrar un modelo que explique lo que se observa durante el paso 8. En este caso, intervienen varios factores, de manera que se puede conjeturar libremente. Resultados y discusión. Observaciones de la vela. La parte inferior de la llama de la vela tiene un color azul y el resto es de color amarillo-naranja. La vela se encontraba sucia y desnivelada, poco a poco con el derretimiento de la cera se fue limpiando y fue nivelada con unas pinzas de disección y unas tijeras. Después de 7 minutos el color azul se empieza a notar más hacia los lados, la flama crece y se hace más delgada, se mueve constantemente de un lado a otro por el paso del aire, por lo cual su forma cambia de manera constante.
  • 4. Materiales introducidos en la llama de la vela. Zinc: 1.-Desprende humo de color negro 2.-Se quema en la parte donde el fuego tuvo contacto con él. 3.-Se nota que su proceso de derretimiento es un poco lento. 4.-Toda la parte inferior de la placa quedó de color negro aún sin tener contacto con el fuego directamente. 5.-Desprende un olor parecido al de la madera quemada. Plomo: 1.-No desprende humo. 2.-Se derrite rápidamente. 3.-Al derretirse y caer el pedazo de plomo derretido desprende un humo de color blanco, y de color negro de la lámina de plomo. 4.- Cambia fácilmente de forma al ser introducido en la llama. 5.- No se nota ningún olor en particular al ocurrir su derretimiento. Aluminio: 1.-Desprende humo de color blanco de forma constante. 2.-No se derrite. 3.-No se dobla. 4.-La parte quemada se obscurece poniéndose de color café. 5.-Después de unos minutos bajo la llama comienza a emanar humo color negro. 6.-La lámina en ningún momento cambió su forma. Hierro:
  • 5. 1.-Rápidamente comienza a desprender humo de color negro. 2.-Mantiene su forma de forma constante, no se produce ningún cambio. 3.- Se puede notar que es un buen conductor de calor, ya que transportó el calor desde la punta de la barra hasta el extremo que no estaba en contacto con la llama. Alambre de cobre retorcido: 1.-Durante el inicio del proceso comienza a desprender humo de color negro. 2.-Genera una flama de color verde también al comienzo del proceso. 3.-Obtiene un color negro. 4.-El color negro mencionado anteriormente posteriormente cambia a rojo. 5.-Su forma en ningún momento es modificada. 6.-Al final del proceso su color es gris. Materiales introducidos dentro de la llama del mechero Bunsen. Zinc: 1.-Se derrite más rápidamente que con la llama de la vela. 2.-La barra de zinc adelgaza con el calor. 3.-Al caer alguna parte derretida desprende humo de color blanco y rápidamente se endurece. 4.-La parte que no llega a derretirse adquiere un color blanco-azulado. Aluminio: 1.-Cambió su color a café. 2.-Se derritió por primera vez, ya que con la vela no lo hizo. 3.-Al seguir calentándose adquirió de nuevo el color azul obtenido durante el anterior calentamiento con la vela.
  • 6. 4.-La barra de aluminio se puede notar que se ablandó un poco. Plomo: 1.-Se vuelve más delgado rápidamente. 2.-El derretimiento es muy rápido. 3.-Se puede notar que este material es muy maleable. Cobre: 1.-No se nota ningún hecho importante, simplemente sucede lo mismo que con la vela, solo que esta vez el proceso ocurre más rápidamente. Hierro finamente dividido: Este hierro es sometido a un proceso de calentamiento en la llama del mechero Bunsen, sin embargo después de unos minutos no es posible notar algún cambio sobre él, y después de pasado un lapso de tiempo mayor de igual forma no se notó ningún cambio notorio en el material. Explicación: Una posible explicación del porqué el hierro finamente dividido no fue modificado, es debido a que al estar más separado de los otros fragmentos de hierro, no se puede llegar a notar un cambio notorio, aparte de que el hierro entero no presenta algún tipo de cambio, al ponerlo de forma separada el cambio es mucho menos notorio. Orden de los materiales de acuerdo a su temperatura de fusión. 1.-Plomo 2.-Zinc 3.-Aluminio 4.-Cobre
  • 7. 5.-Hierro Hierro: 1.-Vuelve a adquirir su tono color negro. 2.-Su forma no es alterada en absoluto. 3.-Básicamente ocurren los mismos casos que ocurrieron con la llama de la vela. Conclusión. Cada material presentó diferentes reacciones físicas al ser calentadas, ya que cada uno cuenta con diferentes propiedades químicas, pudimos notar todos estos fenómenos tanto espontáneos como permanentes mediante la observación. Notamos que al exponerse los materiales al calor de la vela su reacción es más tenue en comparación a la combustión del mechero ya que el fuego es mas intenso Cuestionario. 1.- ¿Cuáles son los elementos clave del pensamiento científico que se usa en el siguiente escenario? Mientras hace el pan tostado del desayuno, nota que el pan no sale de la tostadora; piensa que el mecanismo del resorte está atorado y ve que el pan sigue igual. Pensando que volvió a conectar el tostador, lo verifica y ve que está conectado. Cuando lleva el tostador a la sala y lo conecta en otro contacto, ve que si funciona. Regresa a la cocina y prende la luz y no pasa nada: Los elementos clave son el explorar el que sucedería si... Tomando en cuenta de que no se tiene un resultado esperado en el lugar que se supone debe suceder, se deben tomar más opciones hasta poder llegar al resultado que se espera, y con eso se puede comparar con lo anterior para dar con la respuesta de lo sucedido, también en menor medida, el investigar si el daño no está ocasionado por el lugar, si no por el objeto con el que se está trabajando, observando si se encuentra en buen estado. 2.- ¿Porqué una observación cuantitativa es más útil que una cualitativa? Porqué con ella se obtienen cifras que se pueden estar buscando, no alguna característica que no es lo que nosotros esperábamos obtener durante nuestro resultado.
  • 8. 3- ¿Cuál de las siguientes observaciones son cuantitativas? a) El sol sale por el Oriente b) Un astronauta pesa una sexta parte en la Luna que en la tierra. c) El hielo flota en el agua. d) Una bomba de succión anticuada no puede extraer agua de un pozo de más de 34 pies de profundidad. 4.-Describa las características esenciales del método científico. Éste método se forma por cuatro fases: 1. Observación: es de vital importancia que al estudiar un algo o una situación no solo veamos lo que sucede a su alrededor, sino que observemos, es decir, que pongamos toda nuestra atención a lo que podemos ver para notar cada suceso que se presente alrededor, o en lo que estemos estudiando, sin perdernos de nada, ya que cada suceso por muy pequeño que sea tiene su relevancia. 2. Formulación de hipótesis: basándose en lo que pudo observar, el científico realiza hipótesis del porque o cómo fue que sucedió todo aquello que notó al observar. 3. Experimentación: ya hechas las hipótesis, se debe experimentar con ellas, para ver si son ciertas o falsas, para ello el experimento se repite unas cuantas veces, en cada vez las variables se cambian y así ver si los resultados concuerdan con alguna de las hipótesis. 4. Emisión de conclusiones: ya contando con los resultados, éstos se interpretan para ver si concuerdan con la hipótesis, si es así, se da una explicación científica del suceso, y ésta puede ser enunciada como una ley, que formará parte de una teoría. En el caso de que la hipótesis haya fracasado se debe regresar al punto 2. Bibliografía. Silberg, Martín S. (2002) Química: la naturaleza del cambio y la materia. McGraw-Hill. México. Tellefsen Robert L. (1974) Manual de laboratorio: química: fundamentos experimentales. Reverté. Barcelona. http://www.quimicaweb.net/ciencia/paginas/metodocc.html Anexos.
  • 9. ESTA ES LA PLANTA MÁS BRILLANTE DEL MUNDO Parece una canica esférica de brillos irisados y metálicos, pero en realidad es parte del fruto de la planta africana Pollia condensata, que puede presumir de ser la más brillante del mundo. Un estudio de la Universidad de Cambridge (Reino Unido), publicado hoy en la revista Proceedings of the National Academy of Sciences, revela que si esta fruta ha conseguido ser el elemento natural con el color más intenso del planeta no es gracias a un pigmento, sino a que las células de la fruta están hechas a base de hebras de celulosa enrolladas que reflejan la luz. La distribución asimétrica de estas hebras determina su iridiscencia. “No hay ejemplos previos conocidos en la naturaleza”, explica Silvia Vignolini, que asegura que aunque existen exoesqueletos de escarabajos, alas de mariposas e incluso plumas como las del pavo real que muestran iridiscencia, en esos casos el efecto se consigue con otro tipo de materiales y otras estructuras.
  • 10. Además, no hay otros ejemplos de elementos brillantes similares en el mundo vegetal. Los investigadores también han descubierto que cada célula individual genera su propio color de manera independiente, lo que origina un efecto pixelado o puntillista, similar al que consiguen ciertos pintores en sus cuadros. Por otro lado, en función del grosor de las paredes de celulosa de cada célula, algunas reflejan longitud de onda azulada, mientras que otras exhiben reflejos verdes o ligeramente rojizos. La colorida fruta, aunque de aspecto reluciente, no tiene ningún valor nutricional, ya que solamente contiene semillas. Los investigadores sospechan que el brillo la convierte en un elemento irresistible para los pájaros, que atraídos por sus reflejos la usan para decorar sus nidos o impresionar a sus parejas. Otra estrategia "inteligente" de la naturaleza, admiten los investigadores. Resumen Este articulo habla sobre el fruto de una planta africana cuyo nombre es Pollia condensata que es la más brillante del mundo según un estudio de la Universidad de Cambridge (Reino Unido). El fruto de esta planta parece una canica brillante, su color intenso de debe a que las células de dicha fruta están hechas a base de hebras de celulosa enrolladas que reflejan la luz. Cada célula de manera individual genera su color y gracias a las paredes celulosas de estas se reflejan distintos colores como el azul, rojo y verdes. Debido a que solo contiene semillas no tiene ningún valor nutricional. Bibliografía http://www.muyinteresante.es/esta-es-la-planta-mas-brillante-del-mundo
  • 11. MEDICINA: CURACIÓN Según un artículo publicado esta semana en Technology Riview, algunos investigadores de la universidad Cincinnati aseguran que el gel rico en plaquetas obtenidas de la propia sangre de algún paciente sería posible prevenir infecciones en heridas y acelerar al mismo tiempo su curación. Con este descubrimiento en un futuro no tan lejano un “cocktail” concentrado de la sangre d una persona se podría utilizar en el vendaje de heridas, principalmente en pacientes que padecen enfermedades como la diabetes ya que en ellos su proceso de curación es muy lento. El secreto esta en las plaquetas. En los últimos años los investigadores han realizado experimentos con distintos geles de plaquetas, de las cuales estudian sus efectos en la reparación de los huesos i curación de hematomas e hinchazón de tejidos. Pero aunque se han obtenido resultados positivos algunos casos, David Hom, director de la división de cirugía reconstructiva y cirugía plástica facial de la universidad de Cincinnati argumenta que aun no está muy claro la manera en que influirían estos geles en el proceso de curación de heridas en personas sanas. En un experimento publicado en la revista Archives of facial plastic sugery Hom, por aquel entonces en la facultad de medicina de la universidad de Minnesota, y sus colegas estudiaron el efecto de los geles derivados de plaquetas en 8 personas sanas, para esto Hom extrajo muestras de sangre de cada sujeto y elaboro de manera individual un gel para cada uno de ellos, después de aplicar una anestesia local se realizaron pequeñas incisiones en los muslos de cada uno. Las heridas de una de sus piernas se trataron con gel y las de su otra pierna con un antibiótico en pomada. Después de seis meses las personas volvieron a continuar el estudio y Hom y sus colegas observaron que las heridas que habían tratado con el gel se curaron estadísticamente más rápido que las de control. Cuando Hom comparo la cantidad de plaquetas que estaban presentes en el gel de cada uno, descubrió que los individuos con una concentración de plaquetas en gel seis veces mayor a la de la sangre se curaba mucho mas rápido.
  • 12. Aunque Hom solo estudio en los individuos sanos, afirma que ahora espera hacerlo en personas con problemas crónicos de cicatrización de heridas, como los diabéticos. Según Robert Grant director de la división de cirugía plástica de la universidad de Columbia, la aceleración que fue observada en el proceso de curación de heridas en personas sanas no es lo suficientemente importante como para poder considerar el uso de ese gel sea rentable; la cuestión es si lo seria en personas o pacientes con múltiples fracturas, que reciben radiaciones o con enfermedades vasculares. Añadió que serán necesarios más estudios con pacientes de estos grupos para poder llegar a una conclusión. Bibliografía. http://www.google.com.mx/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0C CQQFjAA&url=http%3A%2F%2Fwww.blogger.com%2Ffeeds%2F7357107950559 15678%2Fposts%2Fdefault&ei=fAFQUJCGEcSe2gXx4IDwAw&usg=AFQjCNG0q YWiBrNWOJUSbU3ogGHGqDi9zg&sig2=sMIfCTHUpr3GnMrZSOy-DQ