SlideShare una empresa de Scribd logo
1 de 14
1
REPUBLICA BOLIVARIANA DE VENEZUELA
MINISTERIO DEL PODER POPLAR PARA LA EDUCACION
UNIVERSITARIA
TACHIRA –SAN CRISTOBAL
-AUTOR:
-WENDY CARIANY
BOADA CARRILLO
C.I. 25.166.909
-ESCUELA:
ING. INDUSTRIAL
SAN CRISTOBAL-16-JUNIO DEL 2015
2
METODO DE LA TRANSFORMADA INVERSA
El método de la transformada (o transformación) inversa, también conocido
como método de la inversa de la transformada, es un método para la
generación de números aleatorios de cualquier distribución de probabilidad
continua cuando se conoce la inversa de su función de distribución (cdf). Este
método es en general aplicable, pero puede resultar muy complicado obtener una
expresión analítica de la inversa para algunas distribuciones de probabilidad.
El método de Box-Muller es un ejemplo de algoritmo que aunque menos general, es
más eficiente desde el punto de vista computacional.
3
Obtención del método
El método de la transformada inversa se basa en el siguiente teorema:
Teorema de inversión. Sea X una variable aleatoria con función de
distribución de probabilidad acumulada F, continua e invertible, y
sea su función inversa. Entonces, la variable aleatoria U = F(X)
tiene distribución uniforme en . Como consecuencia, si U es una
variable aleatoria uniforme en entonces la variable
aleatoria satisface la distribución F.
EL METODO
El problema que resuelve el método de la transformada inversa es el siguiente:
 Sea X una variable aleatoria cuya distribución puede ser descrita por la cdf F.
 Se desea generar valores de X que están distribuidos según dicha distribución.
Numerosos lenguajes de programación poseen la capacidad de generar números
aleatorios que se encuentran distribuidos de acuerdo con una distribución
uniforme estándar d.
4
Si una variable aleatoria posee ese tipo de distribución, entonces la probabilidad
de que el número caiga dentro de cualquier sub intervalo (a, b) del intervalo entre 0 a 1
es la longitud del subintervalo, o sea b − a.
El método de la transformada inversa funciona de la siguiente manera:
1. Se genera un número aleatorio a partir de la distribución uniforme standard; se
lo llama u.
2. Se calcula el valor x tal que ; y se lo llama xelegido.
3. Se toma xelegido como el número aleatorio extraído de la distribución
caracterizada por F.
Demostración del teorema
Sea
(por definición de )
(aplicando F, que es monótona, a ambos lados)
(porque , dado que U es uniforme en el intervalo
unitario)
5
La transformada inversa de Laplace
Al aplicar la transformada de Laplace a una ecuación diferencial la convertimos en una
ecuación algebraica, la cual podemos resolver para , es decir, .
Ahora, como si pudiéramos devolvernos obtendríamos la
solución que buscamos. Es decir, necesitamos de la transformada
inversa , para hallar la función
Entonces definamos la transformada inversa.
Definición [Transformada inversa de Laplace]
Si es la transformada de Laplace de una función continua , es
decir, , entonces la transformada inversa de Laplace
de , escrita es , es decir,
Ejemplo
Calcule
6
Solución
Puesto que
tenemos que
Observación existe un problema potencial al trabajar con la transformada inversa, puede
no ser única. En efecto, es posible que , siendo . Para
nuestro propósito esto no es tan malo como parece, pues, si y son continuas y de
orden exponencial en y , entonces ; pero, si
y son continuas y de orden exponencial en y , entonces
se puede demostrar que las funciones y son casi iguales; esto quiere decir, que
pueden diferir sólo en puntos de discontinuidad.
Ejemplo
7
Calcule , donde esta dada por
¿Qué se puede concluir ?
Solución
Usando la definición de transformada
Pero, anteriormente hemos comprobado que
con lo cual las funciones y tienen la misma transformada, de este modo, la
transformada inversa de
8
no es única.
El siguiente resultado establece el comportamiento de en infinito.
Teorema [Comportamiento de en infinito]
Sea una función continua a trozos y de orden
exponencial en , entonces
Demostración
Puesto que es continua a trozos en necesariamente es acotada en este
intervalo; o sea, para todo . De donde
y así cuando , de modo que cuando .
Observación: el resultado anterior es válido independientemente de que sea
continua a trozos o de orden exponencial, basta con que existe.
9
Ejemplo
¿ Porqué no existe una función tal que ?
Solución
Suponga que existe, entonces por el teorema anterior
lo cual es falso; por lo tanto no existe tal función.
Observación: con un argumento similar podemos concluir que no existen una
función tal que , , , , es decir,
estas funciones no tienen transformada inversa. Por otro lado, una función
racional es la transformada de alguna función si el grado del
numerador es menor que la del denominador .
Los siguientes resultados son útiles en análisis de sistemas de control automático,
especialmente cuando se trazan gráficas.
Teorema [Del valor inicial]
Si y existe y es igual a ,
entonces
1
0
Demostración:
Como
y
siempre y cuando sea continua a trozos y de orden exponencial. Tenemos que
siempre y cuando sea continua por la derecha en .
Ejemplo
Si , calcule .
1
1
Solución
Usando el teorema del valor inicial
Note que no fue necesario calcular .
Teorema [Del valor final]
Si y el límite existe, entonces
Demostración:
Análoga a la anterior.
El siguiente teorema establece la linealidad de la transformada inversa.
Teorema [Linealidad de la transformada inversa]
Sean y funciones continuas a trozos y de orden exponencial en el
intervalo tales que y , entonces
1
2
Ejemplo
Calcule
Solución
Para usar la propiedad de linealidad de la transformada inversa de Laplace primero
debemos expandir
en fraciones parciales
ahora sí
El siguiente ejemplo ilustra el proceso que vamos a usar en la solución de ecuaciones
1
3
diferenciales mediante Laplace. Es un ejemplo que puede ser resuelto de manera más
eficiente con las técnicas ya estudiadas, pero el objetivo es aplicar algunas de las
propiedades enunciadas hasta ahora e introducir la técnica de solución de ecuaciones
diferenciales.
Ejemplo
Use la transformada de Laplace para resolver el problema de valor inicial
Solución
Aplicando transformada de Laplace a ambos lados de la ecuación diferencial
Ahora debemos de aplicar transformada inversa para hallar
1
4
Observación: está ecuación diferencial puede resolverse como una ecuación lineal con
factor integrante .

Más contenido relacionado

La actualidad más candente

Integrales
IntegralesIntegrales
Integralesuneve
 
Materia de investigación de Gran Vill
Materia de investigación de Gran Vill  Materia de investigación de Gran Vill
Materia de investigación de Gran Vill Rafael potes
 
Slideshare de Matematica
Slideshare de MatematicaSlideshare de Matematica
Slideshare de Matematicaruben_f12
 
Formas Indeterminadas
Formas IndeterminadasFormas Indeterminadas
Formas IndeterminadasyuoscaryPY
 
Tipos de discontinuidad (3)
Tipos de discontinuidad (3)Tipos de discontinuidad (3)
Tipos de discontinuidad (3)Yazmin
 
Calculo diferencial_Capitulo 3 (Granville)_EuroAmericano
Calculo diferencial_Capitulo 3 (Granville)_EuroAmericanoCalculo diferencial_Capitulo 3 (Granville)_EuroAmericano
Calculo diferencial_Capitulo 3 (Granville)_EuroAmericanojosue alvarez
 
Autómatas finitos deterministas (afd)
Autómatas finitos deterministas (afd)Autómatas finitos deterministas (afd)
Autómatas finitos deterministas (afd)Moises Morales
 
Calculo diferencial (Granville)_EuroAmericano
Calculo diferencial (Granville)_EuroAmericanoCalculo diferencial (Granville)_EuroAmericano
Calculo diferencial (Granville)_EuroAmericanojosue alvarez
 
Automatas Finitos Deterministicos y No Deterministicos
Automatas Finitos Deterministicos y No DeterministicosAutomatas Finitos Deterministicos y No Deterministicos
Automatas Finitos Deterministicos y No DeterministicosRosviannis Barreiro
 
UNIDAD 6. TRANSFORMADA LAPLACE
UNIDAD 6. TRANSFORMADA LAPLACEUNIDAD 6. TRANSFORMADA LAPLACE
UNIDAD 6. TRANSFORMADA LAPLACEedvinogo
 

La actualidad más candente (20)

Integrales
IntegralesIntegrales
Integrales
 
Materia de investigación de Gran Vill
Materia de investigación de Gran Vill  Materia de investigación de Gran Vill
Materia de investigación de Gran Vill
 
DERIVADAS
DERIVADASDERIVADAS
DERIVADAS
 
Formas indetermina nelson
Formas indetermina nelsonFormas indetermina nelson
Formas indetermina nelson
 
Formas indeterminadas
Formas indeterminadasFormas indeterminadas
Formas indeterminadas
 
Interpolación
InterpolaciónInterpolación
Interpolación
 
Slideshare de Matematica
Slideshare de MatematicaSlideshare de Matematica
Slideshare de Matematica
 
Bisección
BisecciónBisección
Bisección
 
Ciclos
CiclosCiclos
Ciclos
 
Formas Indeterminadas
Formas IndeterminadasFormas Indeterminadas
Formas Indeterminadas
 
Tipos de discontinuidad (3)
Tipos de discontinuidad (3)Tipos de discontinuidad (3)
Tipos de discontinuidad (3)
 
Calculo diferencial_Capitulo 3 (Granville)_EuroAmericano
Calculo diferencial_Capitulo 3 (Granville)_EuroAmericanoCalculo diferencial_Capitulo 3 (Granville)_EuroAmericano
Calculo diferencial_Capitulo 3 (Granville)_EuroAmericano
 
Autómatas finitos deterministas (afd)
Autómatas finitos deterministas (afd)Autómatas finitos deterministas (afd)
Autómatas finitos deterministas (afd)
 
Funciones Continuas
Funciones  ContinuasFunciones  Continuas
Funciones Continuas
 
Calculo diferencial (Granville)_EuroAmericano
Calculo diferencial (Granville)_EuroAmericanoCalculo diferencial (Granville)_EuroAmericano
Calculo diferencial (Granville)_EuroAmericano
 
Aplicación de la derivada
Aplicación de la derivadaAplicación de la derivada
Aplicación de la derivada
 
Teoría de limites
Teoría de limites Teoría de limites
Teoría de limites
 
Contadores y Acumuladores
Contadores y AcumuladoresContadores y Acumuladores
Contadores y Acumuladores
 
Automatas Finitos Deterministicos y No Deterministicos
Automatas Finitos Deterministicos y No DeterministicosAutomatas Finitos Deterministicos y No Deterministicos
Automatas Finitos Deterministicos y No Deterministicos
 
UNIDAD 6. TRANSFORMADA LAPLACE
UNIDAD 6. TRANSFORMADA LAPLACEUNIDAD 6. TRANSFORMADA LAPLACE
UNIDAD 6. TRANSFORMADA LAPLACE
 

Similar a Transformada Inversa

Similar a Transformada Inversa (20)

Transformada inversa mate
Transformada inversa mateTransformada inversa mate
Transformada inversa mate
 
capitulo#3
capitulo#3capitulo#3
capitulo#3
 
Transformada de laplace
Transformada de laplaceTransformada de laplace
Transformada de laplace
 
normal.pdf
normal.pdfnormal.pdf
normal.pdf
 
Convolución y su transformada de fourier
Convolución y su transformada de fourierConvolución y su transformada de fourier
Convolución y su transformada de fourier
 
La distribucion normal
La distribucion normalLa distribucion normal
La distribucion normal
 
Distribucion Normal
Distribucion NormalDistribucion Normal
Distribucion Normal
 
Distribucion normal
Distribucion normalDistribucion normal
Distribucion normal
 
Solución de-sistema-de-ecuaciones-lineales-omar-monagas
Solución de-sistema-de-ecuaciones-lineales-omar-monagasSolución de-sistema-de-ecuaciones-lineales-omar-monagas
Solución de-sistema-de-ecuaciones-lineales-omar-monagas
 
Método de la transformada inversa
Método de la transformada inversaMétodo de la transformada inversa
Método de la transformada inversa
 
Convolución y su transformada de fourier
Convolución y su transformada de fourierConvolución y su transformada de fourier
Convolución y su transformada de fourier
 
Calculo diferencial e integral
Calculo diferencial e integral Calculo diferencial e integral
Calculo diferencial e integral
 
Series infinitas carlos fuentes
Series infinitas carlos fuentesSeries infinitas carlos fuentes
Series infinitas carlos fuentes
 
Series infinitas
Series infinitasSeries infinitas
Series infinitas
 
Maematicas resumen 2
Maematicas resumen 2Maematicas resumen 2
Maematicas resumen 2
 
Límite y continuidad
Límite y continuidadLímite y continuidad
Límite y continuidad
 
Enyiberth i.
Enyiberth i.Enyiberth i.
Enyiberth i.
 
Unidad 6 metodos
Unidad 6 metodosUnidad 6 metodos
Unidad 6 metodos
 
Aplicaciones de las derivadas
Aplicaciones de las derivadasAplicaciones de las derivadas
Aplicaciones de las derivadas
 
Series Infinitas
Series InfinitasSeries Infinitas
Series Infinitas
 

Último

Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxOscarEduardoSanchezC
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docxAgustinaNuez21
 
TEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfTEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfDannyTola1
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIAAbelardoVelaAlbrecht1
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptxJunkotantik
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxdanalikcruz2000
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfromanmillans
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALEDUCCUniversidadCatl
 

Último (20)

VISITA À PROTEÇÃO CIVIL _
VISITA À PROTEÇÃO CIVIL                  _VISITA À PROTEÇÃO CIVIL                  _
VISITA À PROTEÇÃO CIVIL _
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docx
 
TEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfTEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdf
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptx
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdf
 
Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 
Sesión La luz brilla en la oscuridad.pdf
Sesión  La luz brilla en la oscuridad.pdfSesión  La luz brilla en la oscuridad.pdf
Sesión La luz brilla en la oscuridad.pdf
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
 

Transformada Inversa

  • 1. 1 REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPLAR PARA LA EDUCACION UNIVERSITARIA TACHIRA –SAN CRISTOBAL -AUTOR: -WENDY CARIANY BOADA CARRILLO C.I. 25.166.909 -ESCUELA: ING. INDUSTRIAL SAN CRISTOBAL-16-JUNIO DEL 2015
  • 2. 2 METODO DE LA TRANSFORMADA INVERSA El método de la transformada (o transformación) inversa, también conocido como método de la inversa de la transformada, es un método para la generación de números aleatorios de cualquier distribución de probabilidad continua cuando se conoce la inversa de su función de distribución (cdf). Este método es en general aplicable, pero puede resultar muy complicado obtener una expresión analítica de la inversa para algunas distribuciones de probabilidad. El método de Box-Muller es un ejemplo de algoritmo que aunque menos general, es más eficiente desde el punto de vista computacional.
  • 3. 3 Obtención del método El método de la transformada inversa se basa en el siguiente teorema: Teorema de inversión. Sea X una variable aleatoria con función de distribución de probabilidad acumulada F, continua e invertible, y sea su función inversa. Entonces, la variable aleatoria U = F(X) tiene distribución uniforme en . Como consecuencia, si U es una variable aleatoria uniforme en entonces la variable aleatoria satisface la distribución F. EL METODO El problema que resuelve el método de la transformada inversa es el siguiente:  Sea X una variable aleatoria cuya distribución puede ser descrita por la cdf F.  Se desea generar valores de X que están distribuidos según dicha distribución. Numerosos lenguajes de programación poseen la capacidad de generar números aleatorios que se encuentran distribuidos de acuerdo con una distribución uniforme estándar d.
  • 4. 4 Si una variable aleatoria posee ese tipo de distribución, entonces la probabilidad de que el número caiga dentro de cualquier sub intervalo (a, b) del intervalo entre 0 a 1 es la longitud del subintervalo, o sea b − a. El método de la transformada inversa funciona de la siguiente manera: 1. Se genera un número aleatorio a partir de la distribución uniforme standard; se lo llama u. 2. Se calcula el valor x tal que ; y se lo llama xelegido. 3. Se toma xelegido como el número aleatorio extraído de la distribución caracterizada por F. Demostración del teorema Sea (por definición de ) (aplicando F, que es monótona, a ambos lados) (porque , dado que U es uniforme en el intervalo unitario)
  • 5. 5 La transformada inversa de Laplace Al aplicar la transformada de Laplace a una ecuación diferencial la convertimos en una ecuación algebraica, la cual podemos resolver para , es decir, . Ahora, como si pudiéramos devolvernos obtendríamos la solución que buscamos. Es decir, necesitamos de la transformada inversa , para hallar la función Entonces definamos la transformada inversa. Definición [Transformada inversa de Laplace] Si es la transformada de Laplace de una función continua , es decir, , entonces la transformada inversa de Laplace de , escrita es , es decir, Ejemplo Calcule
  • 6. 6 Solución Puesto que tenemos que Observación existe un problema potencial al trabajar con la transformada inversa, puede no ser única. En efecto, es posible que , siendo . Para nuestro propósito esto no es tan malo como parece, pues, si y son continuas y de orden exponencial en y , entonces ; pero, si y son continuas y de orden exponencial en y , entonces se puede demostrar que las funciones y son casi iguales; esto quiere decir, que pueden diferir sólo en puntos de discontinuidad. Ejemplo
  • 7. 7 Calcule , donde esta dada por ¿Qué se puede concluir ? Solución Usando la definición de transformada Pero, anteriormente hemos comprobado que con lo cual las funciones y tienen la misma transformada, de este modo, la transformada inversa de
  • 8. 8 no es única. El siguiente resultado establece el comportamiento de en infinito. Teorema [Comportamiento de en infinito] Sea una función continua a trozos y de orden exponencial en , entonces Demostración Puesto que es continua a trozos en necesariamente es acotada en este intervalo; o sea, para todo . De donde y así cuando , de modo que cuando . Observación: el resultado anterior es válido independientemente de que sea continua a trozos o de orden exponencial, basta con que existe.
  • 9. 9 Ejemplo ¿ Porqué no existe una función tal que ? Solución Suponga que existe, entonces por el teorema anterior lo cual es falso; por lo tanto no existe tal función. Observación: con un argumento similar podemos concluir que no existen una función tal que , , , , es decir, estas funciones no tienen transformada inversa. Por otro lado, una función racional es la transformada de alguna función si el grado del numerador es menor que la del denominador . Los siguientes resultados son útiles en análisis de sistemas de control automático, especialmente cuando se trazan gráficas. Teorema [Del valor inicial] Si y existe y es igual a , entonces
  • 10. 1 0 Demostración: Como y siempre y cuando sea continua a trozos y de orden exponencial. Tenemos que siempre y cuando sea continua por la derecha en . Ejemplo Si , calcule .
  • 11. 1 1 Solución Usando el teorema del valor inicial Note que no fue necesario calcular . Teorema [Del valor final] Si y el límite existe, entonces Demostración: Análoga a la anterior. El siguiente teorema establece la linealidad de la transformada inversa. Teorema [Linealidad de la transformada inversa] Sean y funciones continuas a trozos y de orden exponencial en el intervalo tales que y , entonces
  • 12. 1 2 Ejemplo Calcule Solución Para usar la propiedad de linealidad de la transformada inversa de Laplace primero debemos expandir en fraciones parciales ahora sí El siguiente ejemplo ilustra el proceso que vamos a usar en la solución de ecuaciones
  • 13. 1 3 diferenciales mediante Laplace. Es un ejemplo que puede ser resuelto de manera más eficiente con las técnicas ya estudiadas, pero el objetivo es aplicar algunas de las propiedades enunciadas hasta ahora e introducir la técnica de solución de ecuaciones diferenciales. Ejemplo Use la transformada de Laplace para resolver el problema de valor inicial Solución Aplicando transformada de Laplace a ambos lados de la ecuación diferencial Ahora debemos de aplicar transformada inversa para hallar
  • 14. 1 4 Observación: está ecuación diferencial puede resolverse como una ecuación lineal con factor integrante .