SlideShare una empresa de Scribd logo
1 de 24
Leyes de los Gases
Introduccion
La ley general de los gases es una ley de los gases que combina la ley de
Boyle-Mariotte, la ley de Charles y la ley de Gay-Lussac. Estas leyes
matemáticamente se refieren a cada una de las variables termodinámicas
con relación a otra mientras todo lo demás se mantiene constante. La ley de
Charles establece que el volumen y la temperatura son directamente
proporcionales entre sí, siempre y cuando la presión se mantenga constante.
La ley de Boyle afirma que la presión y el volumen son inversamente
proporcionales entre sí a temperatura constante. Finalmente, la ley de Gay-
Lussac introduce una proporcionalidad directa entre la temperatura y la
presión, siempre y cuando se encuentre a un volumen constante. La
interdependencia de estas variables se muestra en la ley de los gases
combinados, que establece claramente que: La relación entre el producto
presión-volumen y la temperatura de un sistema permanece constante.
Matemáticamente puede formularse como:
PV = K
T
donde:
 P es la presión
 V es el volumen
 T es la temperatura absoluta (en kelvin)
 K es una constante (con unidades de energía dividido por la
temperatura) que dependerá de la cantidad de gas considerado.
Otra forma de expresarlo es la siguiente:
P1V1 = P2V2
T1 = T2
donde presión, volumen y temperatura se han medido en dos instantes
distintos 1 y 2 para un mismo sistema.
En adición de la ley de Avogadro al rendimiento de la ley de gases
combinados se obtiene la ley de los gases ideales.
Objetivos
1. Identificar los gases de cada una de las leyes (Boyle-Charles-Gay
Lussac-gases ideales), con sus respectivas formulas. También te
daré a conocer sus Conceptos, Leyes, Laboratorios y sus
respectivas actividades o ejercicios.
2. Reconocer cada uno de los parámetros de maneja cada formula o
ley de gases
3. Aprender sus fórmulas para resolver los ejercicios actividades
respectivas
Procedimiento
1. Entramos a la pagina
http://www.educaplus.org/gases/index.html o escribimos en el
buscador
2. Donde nos va aparecer la siguiente pagina
3. Luego nos dirigimos a la barra que está en el lateral izquierdo
4. Luego vamos a conceptos donde nos aparecerá todos lo que
queremos saber y significado con sus respectivas formulas
5. Después vamos a leyes donde encontraremos la ley de
Avogadro, Boyle, Charles, Gay Lussac, Gases ideales, Ley
generalizada. Vamos a entrar a todas excepto a la de Avogadro
6. A continuación, vamos a laboratorio donde encontraremos las
instrucciones, el de Boyle, charles, Graham. Vamos a resolver solo
el de Boyle y el de Charles
7. Y por último hacemos los ejercicios de Boyle, charles, Gases
ideales, Gay Lussac
Marco Teorico
Conceptos
Estados de agregación:Los estados de agregación, sólido, líquido
y gaseoso, dependen fundamentalmente de las condiciones de presión
y temperatura a las que esté sometida la materia
Temperatura
Según la teoría cinética, la temperatura es una medida de la energía cinética
media de los átomos y moléculas que constituyen un sistema. Dado que la
energía cinética depende de la velocidad, podemos decir que la temperatura
está relacionada con las velocidades medias de las moléculas del gas.
Hay varias escalas para medir la temperatura; las más conocidas y
utilizadas son las escalas Celsius (ºC), Kelvin (K) y Fahrenheit (ºF). En
este trabajo sólo utilizaremos las dos primeras.
¿Cómo se calibra un termómetro?
Mientras se está produciendo un cambio de estado la temperatura
permanece constante y por ello consideramos los cambios de estado del
agua (a 1 atm) como puntos de referencia.
Punto de fusión del agua:
La fase líquida se encuentra en equilibrio con la fase sólida
y la temperatura permanece constante.
Los valores otorgados a este punto en cada escala son:
 Celsius: 0
 Kelvin: 273.15
 Fahrenheit: 32
Punto de ebullición del agua:
La fase líquida se encuentra en equilibrio con la fase
gaseosa y la temperatura permanece constante.
Los valores otorgados a este punto en cada escala
son:
 Celsius: 100
 Kelvin: 373.15
 Fahrenheit: 212
En el intervalo de temperatura comprendido entre los puntos de fusión y
ebullición, el agua permanece líquida. Este intervalo se divide en 100 partes
en las escalas Celsius y Kelvin, mientras que en la escala Fahrenheit se
divide en 180 partes.
Presión = 1 atm
P.F.
del agua
P.E.
del agua
Divisiones
Escala Celsius 0 100 100
Escala Kelvin 273.15 373.15 100
Escala Fahrenheit 32 212 180
Relación entre las escalas
T(K) = T(°C) + 273.15
T(°F) = T(°C)·1.8 + 32
Recuerda:
En los cálculos que vamos a realizar en este trabajo SIEMPRE habrá
que expresar la temperatura en kelvin.
Presión
En Física, llamamos presión a la relación que existe entre una fuerza y la
superficie sobre la que se aplica:
P= F
S
Dado que en el Sistema Internacional la unidad de fuerza es el newton (N) y
la de superficie es el metro cuadrado (m2
), la unidad resultante para la
presión es el newton por metro cuadrado (N/m2
) que recibe el nombre de
pascal (Pa)
N
1PA=1 m2
Otra unidad muy utilizada para medir la presión,
aunque no pertenece al Sistema Internacional, es el
milímetro de mercurio (mm Hg) que representa una
presión equivalente al peso de una columna de
mercurio de 1 mm de altura. Esta unidad está
relacionada con la experiencia de Torricelli que
encontró, utilizando un barómetro de mercurio, que
al nivel del mar la presión atmosférica era
equivalente a la ejercida por una columna de
mercurio de 760 mm de altura.
En este caso la fuerza se correspondería con el
peso (m⋅g) de la columna de mercurio por lo que
P=m⋅gS
Como la masa puede expresarse como el producto
de la densidad por el volumen (m=d⋅V), si
sustituimos será:
P=d⋅V⋅gS
y dado que el volumen es el producto de la
superficie de la base por la altura (V=S⋅h), tenemos
P=d⋅S⋅h⋅gS
y simplificando tenemos:
P=d⋅g⋅h
que nos permite calcular la presión en función de la densidad, la intensidad
del campo gravitatorio y la altura de la columna.
Sustituyendo los correspondientes valores en la ecuación anterior tenemos
que:
P=d⋅g⋅h=13600kgm3⋅9,8Nkg⋅0,76m≊101300Nm2=101300Pa
Según la teoríacinética, la presión de un gas está relacionada con el número
de choques por unidad de tiempo de las moléculas del gas contra las
paredes del recipiente. Cuando la presión aumenta quiere decir que el
número de choques por unidad de tiempo es mayor.
En este trabajo usaremos la atmósfera (atm) y el milímetro de mercurio
(mmHg):
Volumen
El volumen es el espacio que ocupa un sistema. Recuerda que los gases
ocupan todo el volumen disponible del recipiente en el que se encuentran.
Decir que el volumen de un recipiente que contiene un gas ha cambiado es
equivalente a decir que ha cambiado el volumen del gas.
En el laboratorio se utilizan frecuentemente jeringuillas como recipientes de
volumen variable cuando se quiere experimentar con gases.
Hay muchas unidades para medir el volumen. En este trabajo usaremos el
litro (L) y el mililitro (mL)
Su equivalencia es:
1L = 1000 mL
Como 1 L es equivalente a 1 dm3
, es decir a 1000 cm3
, tenemos que el mL
y el cm3
son unidades equivalentes.
Cantidad De Gas
La cantidad de gas está relacionada con el número total de moléculas
que se encuentran en un recipiente. La unidad que utilizamos para
medir la cantidad de gas es la mol. Un mol es una cantidad igual al
llamado número de Avogadro:
1 mol de moléculas= 6,022·1023 moléculas
1 mol de átomos= 6,022·1023 átomos
¡¡¡ 602.200.000.000.000.000.000.000!!!
La masa molar de una sustancia pura es la masa que corresponde a 1
mol de dicha sustancia:
Masa molar=masa en gramos
Cantidad de moles
Con el siguiente simulador puedes calcular las masas molares de
algunas sustancias puras como el hidrógeno, el metano, el cloro y el
yodo. La medida es correcta cuando se enciende
Leyes
Ley de Boyle
Relación entre la presión y el volumen de un gas cuando la temperatura
es constante
Fue descubierta por Robert Boyle en 1662. Edme Mariotte también llegó a
la misma conclusión que Boyle, pero no publicó sus trabajos hasta 1676.
Esta es la razón por la que en muchos libros encontramos esta ley con el
nombre de Ley de Boyle y Mariotte.
La ley de Boyle establece que la presión de un gas en un recipiente cerrado
es inversamente proporcional al volumen del recipiente, cuando la
temperatura es constante.
¿Por qué ocurre esto?
Al aumentar el volumen, las partículas (átomos o moléculas) del gas tardan
más en llegar a las paredes del recipiente y por lo tanto chocan menos veces
por unidad de tiempo contra ellas. Esto significa que la presión será menor
ya que ésta representa la frecuencia de choques del gas contra las paredes.
Cuando disminuye el volumen la distancia que tienen que recorrer las
partículas es menor y por tanto se producen más choques en cada unidad
de tiempo: aumenta la presión.
Lo que Boyle descubrió es que si la cantidad de gas y la temperatura
permanecen constantes, el producto de la presión por el volumen siempre
tiene el mismo valor.
Como hemos visto, la expresión matemática de esta ley es:
P⋅V=k
(el producto de la presión por el volumen es constante)
Supongamos que tenemos un cierto volumen de gas V1 que se encuentra a
una presión P1 al comienzo del experimento. Si variamos el volumen de gas
hasta un nuevo valor V2, entonces la presión cambiará a P2, y se cumplirá:
P1⋅V1=P2⋅V2
que es otra manera de expresar la ley de Boyle.
Ley De Charles
Relación entre la temperatura y el volumen de un gas cuando la presión
es constante
En 1787, Jack Charles estudió por primera vez la relación entre el volumen
y la temperatura de una muestra de gas a presión constante y observó que
cuando se aumentaba la temperatura el volumen del gas también
aumentaba y que al enfriar el volumen disminuía.
¿Por qué ocurre esto?
Cuando aumentamos la temperatura del gas las moléculas se mueven con
más rapidez y tardan menos tiempo en alcanzar las paredes del recipiente.
Esto quiere decir que el número de choques por unidad de tiempo será
mayor. Es decir se producirá un aumento (por un instante) de la presión en
el interior del recipiente y aumentará el volumen (el émbolo se desplazará
hacia arriba hasta que la presión se iguale con la exterior).
Lo que Charles descubrió es que si la cantidad de gas y la presión
permanecen constantes, el cociente entre el volumen y la temperatura
siempre tiene el mismo valor.
Matemáticamente podemos expresarlo así:
V=k
T
(el cociente entre el volumen y la temperatura es constante)
Supongamos que tenemos un cierto volumen de gas V1 que se encuentra a
una temperatura T1 al comienzo del experimento. Si variamos el volumen de
gas hasta un nuevo valor V2, entonces la temperatura cambiará a T2, y se
cumplirá:
V1T1=
V2T2
que es otra manera de expresar la ley de Charles.
Esta ley se descubre casi ciento cuarenta años después de la de Boyle
debido a que cuando Charles la enunció se encontró con el inconveniente
de tener que relacionar el volumen con la temperatura Celsius ya que aún
no existía la escala absoluta de temperatura.
Ley de Gay-Lussac
Relación entre la presión y la temperatura de un gas cuando el
volumen es constante
Fue enunciada por Joseph Louis Gay-Lussac a principios de 1800.
Establece la relación entre la temperatura y la presión de un gas cuando
el volumen es constante.
¿Por qué ocurre esto?
Al aumentar la temperatura las moléculas del gas se mueven más
rápidamente y por tanto aumenta el número de choques contra las paredes,
es decir aumenta la presión ya que el recipiente es de paredes fijas y su
volumen no puede cambiar.
Gay-Lussac descubrió que, en cualquier momento de este proceso, el
cociente entre la presión y la temperatura siempre tenía el mismo valor:
P=k
T
(el cociente entre la presión y la temperatura es constante)
Supongamos que tenemos un gas que se encuentra a una presión P1 y a
una temperatura T1 al comienzo del experimento. Si variamos la temperatura
hasta un nuevo valor T2, entonces la presión cambiará a P2, y se cumplirá:
P1/T1=P2/T2
que es otra manera de expresar la ley de Gay-Lussac.
Esta ley, al igual que la de Charles, está expresada en función de la
temperatura absoluta. Al igual que en la ley de Charles, las temperaturas
han de expresarse en Kelvin.
Ley de los gases ideales
Laboratorio
Laboratorio de Boyle
Laboratorio de Charles
Ejercicios
Charles
Gay Lussac
Gases Ideales
Boyle
Webgrafías
http://www.educaplus.org/gases/index.html

Más contenido relacionado

La actualidad más candente

La actualidad más candente (17)

Ley general de_los_gases[1]
Ley general de_los_gases[1]Ley general de_los_gases[1]
Ley general de_los_gases[1]
 
Lab Física B - Informe #12 (Ley de Boyle)
Lab Física B - Informe #12 (Ley de Boyle)Lab Física B - Informe #12 (Ley de Boyle)
Lab Física B - Informe #12 (Ley de Boyle)
 
ley cero fip uni
ley cero fip uniley cero fip uni
ley cero fip uni
 
ley de avogadro
ley de avogadroley de avogadro
ley de avogadro
 
Ley de gases - Quimica
Ley de gases - Quimica Ley de gases - Quimica
Ley de gases - Quimica
 
Gases Ideales. Practica
Gases Ideales. PracticaGases Ideales. Practica
Gases Ideales. Practica
 
Gases
GasesGases
Gases
 
Gases I
Gases IGases I
Gases I
 
Gases ideales
Gases idealesGases ideales
Gases ideales
 
Ley de los gases ideales (1)
Ley de los gases ideales (1)Ley de los gases ideales (1)
Ley de los gases ideales (1)
 
Diapositivas gases
Diapositivas gasesDiapositivas gases
Diapositivas gases
 
Gases ideales-
Gases ideales-Gases ideales-
Gases ideales-
 
Introducción a los gases
Introducción a los gasesIntroducción a los gases
Introducción a los gases
 
Leyes de los_gases_ideales (1)
Leyes de los_gases_ideales (1)Leyes de los_gases_ideales (1)
Leyes de los_gases_ideales (1)
 
Introducción a las leyes de los gases
Introducción a las leyes de los gasesIntroducción a las leyes de los gases
Introducción a las leyes de los gases
 
INFORME DE LEY DE GASES
INFORME DE LEY DE GASESINFORME DE LEY DE GASES
INFORME DE LEY DE GASES
 
Leyes de los gases
Leyes de los gasesLeyes de los gases
Leyes de los gases
 

Similar a Ley de los gases (20)

Laboratorio de gases
Laboratorio de gasesLaboratorio de gases
Laboratorio de gases
 
Documento sin título
Documento sin títuloDocumento sin título
Documento sin título
 
Leyes de los gases
Leyes de los gasesLeyes de los gases
Leyes de los gases
 
LEY DE LOS GASES
LEY DE LOS GASESLEY DE LOS GASES
LEY DE LOS GASES
 
LEY DE LOS GASES
LEY DE LOS GASESLEY DE LOS GASES
LEY DE LOS GASES
 
Leyes de los gase1
Leyes de los gase1Leyes de los gase1
Leyes de los gase1
 
Laboratorio gases
Laboratorio gasesLaboratorio gases
Laboratorio gases
 
Química
QuímicaQuímica
Química
 
Gases
GasesGases
Gases
 
Laboratorio de gases
Laboratorio de gasesLaboratorio de gases
Laboratorio de gases
 
Laboratorio de gases
Laboratorio de gasesLaboratorio de gases
Laboratorio de gases
 
Laboratorio de gases
Laboratorio de gasesLaboratorio de gases
Laboratorio de gases
 
Laboratorio de Gases
Laboratorio de GasesLaboratorio de Gases
Laboratorio de Gases
 
LEYES DE LOS GASES Y UNIDADES DE CONCENTRACIÓN
LEYES DE LOS GASES Y UNIDADES DE CONCENTRACIÓN LEYES DE LOS GASES Y UNIDADES DE CONCENTRACIÓN
LEYES DE LOS GASES Y UNIDADES DE CONCENTRACIÓN
 
Institución educativa exalumnas de la presentación.docx
Institución educativa exalumnas de la presentación.docxInstitución educativa exalumnas de la presentación.docx
Institución educativa exalumnas de la presentación.docx
 
Gases
Gases Gases
Gases
 
Leyes de comportamiento de los gases
Leyes de comportamiento de los gasesLeyes de comportamiento de los gases
Leyes de comportamiento de los gases
 
Leyes de los gases
Leyes de los gasesLeyes de los gases
Leyes de los gases
 
Cervantes canto lilianaelena_m12s4_proyectointegrador
Cervantes canto lilianaelena_m12s4_proyectointegradorCervantes canto lilianaelena_m12s4_proyectointegrador
Cervantes canto lilianaelena_m12s4_proyectointegrador
 
7.a gases ideales
7.a gases ideales7.a gases ideales
7.a gases ideales
 

Más de Danny Santos

Grupos de la tabla periodica
Grupos de la tabla periodicaGrupos de la tabla periodica
Grupos de la tabla periodicaDanny Santos
 
Herramientas Informaticas
Herramientas InformaticasHerramientas Informaticas
Herramientas InformaticasDanny Santos
 
Avances tecnologicos
Avances tecnologicosAvances tecnologicos
Avances tecnologicosDanny Santos
 
HISTORIA DE LA INFORMATICA
HISTORIA DE LA INFORMATICAHISTORIA DE LA INFORMATICA
HISTORIA DE LA INFORMATICADanny Santos
 
Grupos de la tabla periodica
Grupos de la tabla periodicaGrupos de la tabla periodica
Grupos de la tabla periodicaDanny Santos
 
herramientas para crear videos
herramientas para crear videos herramientas para crear videos
herramientas para crear videos Danny Santos
 
Reactivo limitante y rendimiento
Reactivo limitante y rendimiento Reactivo limitante y rendimiento
Reactivo limitante y rendimiento Danny Santos
 
Reconocimiento de material de laboratorio
Reconocimiento de material de laboratorioReconocimiento de material de laboratorio
Reconocimiento de material de laboratorioDanny Santos
 
Reconocimiento de material de laborator io (correcion)
Reconocimiento de material de laborator io (correcion)Reconocimiento de material de laborator io (correcion)
Reconocimiento de material de laborator io (correcion)Danny Santos
 
Formulación y nomenclatura de química inorgánica interactiva
Formulación y nomenclatura de química inorgánica interactivaFormulación y nomenclatura de química inorgánica interactiva
Formulación y nomenclatura de química inorgánica interactivaDanny Santos
 
Herramientas Interactivas
Herramientas InteractivasHerramientas Interactivas
Herramientas InteractivasDanny Santos
 
el origen de la vida
el origen de la vida el origen de la vida
el origen de la vida Danny Santos
 
Proceso para subir videos a youtube y su respectiva conversión
Proceso para subir videos a youtube y su respectiva conversiónProceso para subir videos a youtube y su respectiva conversión
Proceso para subir videos a youtube y su respectiva conversiónDanny Santos
 
Consejos básicos para grabar vídeos con tu dispositivo móvil (1)
Consejos básicos para grabar vídeos con tu dispositivo móvil (1)Consejos básicos para grabar vídeos con tu dispositivo móvil (1)
Consejos básicos para grabar vídeos con tu dispositivo móvil (1)Danny Santos
 

Más de Danny Santos (20)

Grupos de la tabla periodica
Grupos de la tabla periodicaGrupos de la tabla periodica
Grupos de la tabla periodica
 
Quimica organica
Quimica organicaQuimica organica
Quimica organica
 
Google sites
Google sitesGoogle sites
Google sites
 
Herramientas Informaticas
Herramientas InformaticasHerramientas Informaticas
Herramientas Informaticas
 
Avances tecnologicos
Avances tecnologicosAvances tecnologicos
Avances tecnologicos
 
HISTORIA DE LA INFORMATICA
HISTORIA DE LA INFORMATICAHISTORIA DE LA INFORMATICA
HISTORIA DE LA INFORMATICA
 
JIMDO
JIMDO JIMDO
JIMDO
 
Grupos de la tabla periodica
Grupos de la tabla periodicaGrupos de la tabla periodica
Grupos de la tabla periodica
 
herramienta JCLIC
herramienta JCLICherramienta JCLIC
herramienta JCLIC
 
herramientas para crear videos
herramientas para crear videos herramientas para crear videos
herramientas para crear videos
 
Yola
YolaYola
Yola
 
Reactivo limitante y rendimiento
Reactivo limitante y rendimiento Reactivo limitante y rendimiento
Reactivo limitante y rendimiento
 
Reconocimiento de material de laboratorio
Reconocimiento de material de laboratorioReconocimiento de material de laboratorio
Reconocimiento de material de laboratorio
 
Reconocimiento de material de laborator io (correcion)
Reconocimiento de material de laborator io (correcion)Reconocimiento de material de laborator io (correcion)
Reconocimiento de material de laborator io (correcion)
 
Formulación y nomenclatura de química inorgánica interactiva
Formulación y nomenclatura de química inorgánica interactivaFormulación y nomenclatura de química inorgánica interactiva
Formulación y nomenclatura de química inorgánica interactiva
 
Herramientas Interactivas
Herramientas InteractivasHerramientas Interactivas
Herramientas Interactivas
 
el origen de la vida
el origen de la vida el origen de la vida
el origen de la vida
 
Guia vegetariana
Guia vegetarianaGuia vegetariana
Guia vegetariana
 
Proceso para subir videos a youtube y su respectiva conversión
Proceso para subir videos a youtube y su respectiva conversiónProceso para subir videos a youtube y su respectiva conversión
Proceso para subir videos a youtube y su respectiva conversión
 
Consejos básicos para grabar vídeos con tu dispositivo móvil (1)
Consejos básicos para grabar vídeos con tu dispositivo móvil (1)Consejos básicos para grabar vídeos con tu dispositivo móvil (1)
Consejos básicos para grabar vídeos con tu dispositivo móvil (1)
 

Último

plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdfenelcielosiempre
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxMaritzaRetamozoVera
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfFrancisco158360
 
CLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdfCLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdfJonathanCovena1
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dstEphaniiie
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdfDemetrio Ccesa Rayme
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSYadi Campos
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioELIASAURELIOCHAVEZCA1
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñotapirjackluis
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfPaolaRopero2
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxKarlaMassielMartinez
 

Último (20)

Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdf
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docx
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
CLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdfCLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdf
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdf
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
 

Ley de los gases

  • 1. Leyes de los Gases Introduccion La ley general de los gases es una ley de los gases que combina la ley de Boyle-Mariotte, la ley de Charles y la ley de Gay-Lussac. Estas leyes matemáticamente se refieren a cada una de las variables termodinámicas con relación a otra mientras todo lo demás se mantiene constante. La ley de Charles establece que el volumen y la temperatura son directamente proporcionales entre sí, siempre y cuando la presión se mantenga constante. La ley de Boyle afirma que la presión y el volumen son inversamente proporcionales entre sí a temperatura constante. Finalmente, la ley de Gay- Lussac introduce una proporcionalidad directa entre la temperatura y la presión, siempre y cuando se encuentre a un volumen constante. La interdependencia de estas variables se muestra en la ley de los gases combinados, que establece claramente que: La relación entre el producto presión-volumen y la temperatura de un sistema permanece constante. Matemáticamente puede formularse como: PV = K T donde:  P es la presión  V es el volumen  T es la temperatura absoluta (en kelvin)  K es una constante (con unidades de energía dividido por la temperatura) que dependerá de la cantidad de gas considerado. Otra forma de expresarlo es la siguiente: P1V1 = P2V2 T1 = T2
  • 2. donde presión, volumen y temperatura se han medido en dos instantes distintos 1 y 2 para un mismo sistema. En adición de la ley de Avogadro al rendimiento de la ley de gases combinados se obtiene la ley de los gases ideales. Objetivos 1. Identificar los gases de cada una de las leyes (Boyle-Charles-Gay Lussac-gases ideales), con sus respectivas formulas. También te daré a conocer sus Conceptos, Leyes, Laboratorios y sus respectivas actividades o ejercicios. 2. Reconocer cada uno de los parámetros de maneja cada formula o ley de gases 3. Aprender sus fórmulas para resolver los ejercicios actividades respectivas Procedimiento 1. Entramos a la pagina http://www.educaplus.org/gases/index.html o escribimos en el buscador 2. Donde nos va aparecer la siguiente pagina
  • 3. 3. Luego nos dirigimos a la barra que está en el lateral izquierdo 4. Luego vamos a conceptos donde nos aparecerá todos lo que queremos saber y significado con sus respectivas formulas 5. Después vamos a leyes donde encontraremos la ley de Avogadro, Boyle, Charles, Gay Lussac, Gases ideales, Ley generalizada. Vamos a entrar a todas excepto a la de Avogadro
  • 4. 6. A continuación, vamos a laboratorio donde encontraremos las instrucciones, el de Boyle, charles, Graham. Vamos a resolver solo el de Boyle y el de Charles 7. Y por último hacemos los ejercicios de Boyle, charles, Gases ideales, Gay Lussac Marco Teorico Conceptos Estados de agregación:Los estados de agregación, sólido, líquido y gaseoso, dependen fundamentalmente de las condiciones de presión y temperatura a las que esté sometida la materia
  • 5.
  • 6. Temperatura Según la teoría cinética, la temperatura es una medida de la energía cinética media de los átomos y moléculas que constituyen un sistema. Dado que la energía cinética depende de la velocidad, podemos decir que la temperatura está relacionada con las velocidades medias de las moléculas del gas. Hay varias escalas para medir la temperatura; las más conocidas y utilizadas son las escalas Celsius (ºC), Kelvin (K) y Fahrenheit (ºF). En este trabajo sólo utilizaremos las dos primeras. ¿Cómo se calibra un termómetro? Mientras se está produciendo un cambio de estado la temperatura permanece constante y por ello consideramos los cambios de estado del agua (a 1 atm) como puntos de referencia. Punto de fusión del agua: La fase líquida se encuentra en equilibrio con la fase sólida y la temperatura permanece constante. Los valores otorgados a este punto en cada escala son:  Celsius: 0  Kelvin: 273.15  Fahrenheit: 32
  • 7. Punto de ebullición del agua: La fase líquida se encuentra en equilibrio con la fase gaseosa y la temperatura permanece constante. Los valores otorgados a este punto en cada escala son:  Celsius: 100  Kelvin: 373.15  Fahrenheit: 212 En el intervalo de temperatura comprendido entre los puntos de fusión y ebullición, el agua permanece líquida. Este intervalo se divide en 100 partes en las escalas Celsius y Kelvin, mientras que en la escala Fahrenheit se divide en 180 partes. Presión = 1 atm P.F. del agua P.E. del agua Divisiones Escala Celsius 0 100 100 Escala Kelvin 273.15 373.15 100 Escala Fahrenheit 32 212 180 Relación entre las escalas T(K) = T(°C) + 273.15 T(°F) = T(°C)·1.8 + 32 Recuerda: En los cálculos que vamos a realizar en este trabajo SIEMPRE habrá que expresar la temperatura en kelvin. Presión
  • 8. En Física, llamamos presión a la relación que existe entre una fuerza y la superficie sobre la que se aplica: P= F S Dado que en el Sistema Internacional la unidad de fuerza es el newton (N) y la de superficie es el metro cuadrado (m2 ), la unidad resultante para la presión es el newton por metro cuadrado (N/m2 ) que recibe el nombre de pascal (Pa) N 1PA=1 m2 Otra unidad muy utilizada para medir la presión, aunque no pertenece al Sistema Internacional, es el milímetro de mercurio (mm Hg) que representa una presión equivalente al peso de una columna de mercurio de 1 mm de altura. Esta unidad está relacionada con la experiencia de Torricelli que encontró, utilizando un barómetro de mercurio, que al nivel del mar la presión atmosférica era equivalente a la ejercida por una columna de mercurio de 760 mm de altura. En este caso la fuerza se correspondería con el peso (m⋅g) de la columna de mercurio por lo que P=m⋅gS Como la masa puede expresarse como el producto de la densidad por el volumen (m=d⋅V), si sustituimos será: P=d⋅V⋅gS y dado que el volumen es el producto de la superficie de la base por la altura (V=S⋅h), tenemos P=d⋅S⋅h⋅gS y simplificando tenemos:
  • 9. P=d⋅g⋅h que nos permite calcular la presión en función de la densidad, la intensidad del campo gravitatorio y la altura de la columna. Sustituyendo los correspondientes valores en la ecuación anterior tenemos que: P=d⋅g⋅h=13600kgm3⋅9,8Nkg⋅0,76m≊101300Nm2=101300Pa Según la teoríacinética, la presión de un gas está relacionada con el número de choques por unidad de tiempo de las moléculas del gas contra las paredes del recipiente. Cuando la presión aumenta quiere decir que el número de choques por unidad de tiempo es mayor. En este trabajo usaremos la atmósfera (atm) y el milímetro de mercurio (mmHg): Volumen El volumen es el espacio que ocupa un sistema. Recuerda que los gases ocupan todo el volumen disponible del recipiente en el que se encuentran. Decir que el volumen de un recipiente que contiene un gas ha cambiado es equivalente a decir que ha cambiado el volumen del gas. En el laboratorio se utilizan frecuentemente jeringuillas como recipientes de volumen variable cuando se quiere experimentar con gases. Hay muchas unidades para medir el volumen. En este trabajo usaremos el litro (L) y el mililitro (mL)
  • 10. Su equivalencia es: 1L = 1000 mL Como 1 L es equivalente a 1 dm3 , es decir a 1000 cm3 , tenemos que el mL y el cm3 son unidades equivalentes. Cantidad De Gas La cantidad de gas está relacionada con el número total de moléculas que se encuentran en un recipiente. La unidad que utilizamos para medir la cantidad de gas es la mol. Un mol es una cantidad igual al llamado número de Avogadro: 1 mol de moléculas= 6,022·1023 moléculas 1 mol de átomos= 6,022·1023 átomos ¡¡¡ 602.200.000.000.000.000.000.000!!! La masa molar de una sustancia pura es la masa que corresponde a 1 mol de dicha sustancia: Masa molar=masa en gramos Cantidad de moles
  • 11. Con el siguiente simulador puedes calcular las masas molares de algunas sustancias puras como el hidrógeno, el metano, el cloro y el yodo. La medida es correcta cuando se enciende Leyes Ley de Boyle Relación entre la presión y el volumen de un gas cuando la temperatura es constante Fue descubierta por Robert Boyle en 1662. Edme Mariotte también llegó a la misma conclusión que Boyle, pero no publicó sus trabajos hasta 1676. Esta es la razón por la que en muchos libros encontramos esta ley con el nombre de Ley de Boyle y Mariotte.
  • 12. La ley de Boyle establece que la presión de un gas en un recipiente cerrado es inversamente proporcional al volumen del recipiente, cuando la temperatura es constante. ¿Por qué ocurre esto? Al aumentar el volumen, las partículas (átomos o moléculas) del gas tardan más en llegar a las paredes del recipiente y por lo tanto chocan menos veces por unidad de tiempo contra ellas. Esto significa que la presión será menor ya que ésta representa la frecuencia de choques del gas contra las paredes.
  • 13. Cuando disminuye el volumen la distancia que tienen que recorrer las partículas es menor y por tanto se producen más choques en cada unidad de tiempo: aumenta la presión. Lo que Boyle descubrió es que si la cantidad de gas y la temperatura permanecen constantes, el producto de la presión por el volumen siempre tiene el mismo valor. Como hemos visto, la expresión matemática de esta ley es: P⋅V=k (el producto de la presión por el volumen es constante) Supongamos que tenemos un cierto volumen de gas V1 que se encuentra a una presión P1 al comienzo del experimento. Si variamos el volumen de gas hasta un nuevo valor V2, entonces la presión cambiará a P2, y se cumplirá: P1⋅V1=P2⋅V2 que es otra manera de expresar la ley de Boyle. Ley De Charles Relación entre la temperatura y el volumen de un gas cuando la presión es constante En 1787, Jack Charles estudió por primera vez la relación entre el volumen y la temperatura de una muestra de gas a presión constante y observó que
  • 14. cuando se aumentaba la temperatura el volumen del gas también aumentaba y que al enfriar el volumen disminuía. ¿Por qué ocurre esto? Cuando aumentamos la temperatura del gas las moléculas se mueven con más rapidez y tardan menos tiempo en alcanzar las paredes del recipiente. Esto quiere decir que el número de choques por unidad de tiempo será mayor. Es decir se producirá un aumento (por un instante) de la presión en el interior del recipiente y aumentará el volumen (el émbolo se desplazará hacia arriba hasta que la presión se iguale con la exterior). Lo que Charles descubrió es que si la cantidad de gas y la presión permanecen constantes, el cociente entre el volumen y la temperatura siempre tiene el mismo valor. Matemáticamente podemos expresarlo así: V=k T (el cociente entre el volumen y la temperatura es constante) Supongamos que tenemos un cierto volumen de gas V1 que se encuentra a una temperatura T1 al comienzo del experimento. Si variamos el volumen de gas hasta un nuevo valor V2, entonces la temperatura cambiará a T2, y se cumplirá: V1T1= V2T2 que es otra manera de expresar la ley de Charles. Esta ley se descubre casi ciento cuarenta años después de la de Boyle debido a que cuando Charles la enunció se encontró con el inconveniente
  • 15. de tener que relacionar el volumen con la temperatura Celsius ya que aún no existía la escala absoluta de temperatura. Ley de Gay-Lussac Relación entre la presión y la temperatura de un gas cuando el volumen es constante Fue enunciada por Joseph Louis Gay-Lussac a principios de 1800. Establece la relación entre la temperatura y la presión de un gas cuando el volumen es constante.
  • 16. ¿Por qué ocurre esto? Al aumentar la temperatura las moléculas del gas se mueven más rápidamente y por tanto aumenta el número de choques contra las paredes, es decir aumenta la presión ya que el recipiente es de paredes fijas y su volumen no puede cambiar. Gay-Lussac descubrió que, en cualquier momento de este proceso, el cociente entre la presión y la temperatura siempre tenía el mismo valor: P=k T (el cociente entre la presión y la temperatura es constante) Supongamos que tenemos un gas que se encuentra a una presión P1 y a una temperatura T1 al comienzo del experimento. Si variamos la temperatura hasta un nuevo valor T2, entonces la presión cambiará a P2, y se cumplirá: P1/T1=P2/T2 que es otra manera de expresar la ley de Gay-Lussac. Esta ley, al igual que la de Charles, está expresada en función de la temperatura absoluta. Al igual que en la ley de Charles, las temperaturas han de expresarse en Kelvin. Ley de los gases ideales
  • 17.
  • 18.
  • 23. Boyle