SlideShare una empresa de Scribd logo

Guia 3 graficas de control 2018

Instrumentación y control industrial

1 de 16
Descargar para leer sin conexión
1
UNIVERSIDAD NACIONAL EXPERIMENTAL
FRANCISCO DE MIRANDA
AREA DE TECNOLOGÍA
COMPLEJO DOCENTE PUNTO FIJO
ASIGNATURA: CONTROL DE CALIDAD
Profesor: MSc. Marcolina Valery A.
Tema 3. HERRAMIENTAS DE LA CALIDAD (COMPLEMENTO)
GRÁFICOS DE CONTROL
INTRODUCCIÓN
El inicio del período del CONTROL ESTADÍSTICO DE LOS PROCESOS, que constituyó un avance sin
precedente en el movimiento hacia la calidad, surge en la década de los 30’s a raíz de los trabajos de
investigación realizados por la Bell Telephone Laboratories. Donde uno de sus principales
investigadores, Dr. Walter A. Shewhart, como principal aporte reconoce que en todo proceso de
producción existe variación, puntualizando que no podían producirse dos partes con las mismas
especificaciones, pues era evidente que las diferencias en la materia prima e insumos y los distintos
grados de habilidad de los operadores provocaban variabilidad.
Shewhart no proponía suprimir las variaciones, sino determinar cuál era el rango tolerable de variación
que evite que se originen problemas. Para lograr lo anterior, desarrolló las GRÁFICAS DE CONTROL,
punto central del material didáctico.
CAUSAS COMUNES Y ESPECIALES DE LA VARIACIÓN
La variación es algo inherente a todo proceso debido al efecto conjunto de equipos, materiales, entorno
y operario. La variación experimentada en un proceso puede ser consecuencia de 2 tipos de causas, las
causas comunes (fortuitas o aleatorias) y causas especiales (atribuibles o impotables).
La variación debido a causas comunes o al azar, es inherente a las características esenciales del
proceso y es el resultado de la acumulación y combinación de las diferentes fuentes de variabilidad. Las
causas comunes son difíciles de identificar y eliminar.
La variación debido a causas especiales o atribuibles no es parte del sistema de causas comunes,
orinadas por situaciones o circunstancias especiales que no estén presentes permanentemente en el
sistema. Las causas especiales, por su naturaleza relativamente discreta, a menudo puedan ser
identificadas y eliminadas.
Un proceso que trabaja solo con causas comunes de variación, se considera que esta en estado de
control estadístico. Es estable y predecible, independientemente de que su variabilidad sea mucha o
poca, es predecible en el futuro inmediato. En un proceso bajo control estadístico la calidad, la cantidad
y los costos son predecibles.
Un proceso en el que están presentes causas especiales de variación se considera fuera se control
estadístico (o es inestable).
Los gráficos de control constituyen un instrumento que permite distinguir, la mayoría de las veces,
cuando un cambio, problema o una variación se debe a causas comunes y cuando a causas especiales.
GRÁFICAS DE CONTROL
Una gráfica de control consiste en una línea central, un par de límites de control, uno de ellos colocados
por encima de la línea central y otro por debajo, y ciertos valores característicos registrados en la
grafica que representa el estado del proceso. Si todos los valores ocurren dentro de los límites de
control, sin ninguna tendencia especial, se dice que el proceso está bajo control estadístico, si no, esta
fuera de control.
2
Para el cálculo de los limites de control se debe proceder de tal forma que bajo condiciones de control
estadístico, la variable que se grafique en la carta tenga una alta probabilidad de caer dentro de tales
limites. Por lo tanto, una forma de proceder es encontrar la distribución de las probabilidades de la
variable, estimar sus parámetros y ubicar los limites de tal forma que un alto % de la distribución este
dentro de ellos; esta forma se conoce como límites de probabilidad.
Una forma sencilla y usual se obtiene a partir de la relación entre la media y la desviación estándar de
una variable, que para el caso de una variable con distribución normal con media  y desviación
estándar  , y bajo condiciones de control estadístico, se tiene que entre -3 y +3 se encuentran
el 99.73 % de los posibles valores que tome tal variable.
68,27%
95,45%
99,73%
Frecuencia
68,27%
95,45%
99,73%
Frecuencia
Sea X la variable (o estadístico) que se va a graficar en el Gráfico de Control y suponiendo que su
media es X y su desviación estándar X, entonces el límite de control superior (LCS), la línea central
(LC) y el límite de control inferior (LCI) están dados por:
LCS = x + 3x
LC = x
LCI = x - 3x
Con estos limites, y bajo condiciones de control estadístico, se tendrá una alta probabilidad de que los
valores de X estén dentro de ellos. Si X tiene distribución normal, tal probabilidad es de 0.9973.
Los Gráficos de control de Shewhart son básicamente de 2 tipos:
 Gráficos de Control para Variables
 Gráficos de Control para Atributos
Los gráficos de control para variables:
Este tipo de gráfico se aplican a características de calidad de tipo continuo, que intuitivamente son
aquellas que requieren un instrumento de medición para medirse (peso, volumen, voltaje, etc.)
Los gráficos de control para variables más usuales son:
De medias, X
De rangos, R
Desviaciones estándar, S
En una característica de calidad de tipo continua en un producto o en un proceso interesante controlar
su variabilidad y su tendencia central, por ejemplo, las dimensiones de cierta pieza deben ser 10 cm.
con una tolerancia de  0.2 cm., por lo que la tendencia central de estas piezas debe estar muy
3
próxima a 10, y su variabilidad debe ser tal que todas las piezas tengan una dimensión que caiga entre
9.8 y 10.2 cm.
Es por esto que generalmente, se presentan juntas los Gráficos de X , para controlar la tendencia
central, y la R (ocasionalmente una S) para controlar su variabilidad o dispersión.
GRÁFICAS X
Esta gráfica registra la variación experimentada en el valor promedio de las muestras (entre muestras).
La forma operativa de construir un Gráfico X inicia determinando las características a estudiar.
Posteriormente se mide la característica en una cantidad pequeña de productos consecutivos
(subgrupos de productos) cada determinado periodo y en lugar de analizar las mediciones individuales
se analizar las medias y los rangos de los subgrupos (o muestras).
La Gráfica X evidenciará el comportamiento sobre el tiempo de la columna de medias, sobre lo cual se
tendrá información sobre la tendencia central y sobre la variación entre las muestras.
Los limites de control para una Gráfica X , se obtendrán de la siguiente manera:
RAXLCI
XLC
RAXLCS
2
2



R es el promedio de los rangos de los subgrupos, y 2A es una constante que depende del número de
subgrupos (se ubica por tablas anexas).
GRÁFICAS R
Este diagrama es utilizado para estudiar la variabilidad de una característica de calidad de un producto
o un proceso, y en ella se analiza el comportamiento en el tiempo de los rangos de las muestras o
subgrupos.
Los limites de control para una carta R se obtienen a partir de la misma forma general: la media mas o
menos tres veces la desviación estándar de la variable que se grafica en la carta,
Los límites de una grafica R, se obtienen de la siguiente manera:
RDLCI
RLC
RDLCS
3
4



Donde 3D y 4D están tabuladas para varios tamaños de muestra.
REPRESENTACION DE LOS GRÁFICOS RX 
Ejemplo: Los siguientes datos representan el diámetro de un eje que se usa para hacer girar la hélice
de un motor fuera de borda. Determinar si el proceso esta bajo control estadístico.
4
Muestra o
subgrupo
Diámetro en mm
Media X Rango
X1 X2 X3 X4 X5
1 16 23 12 11 16 15,6 12
2 14 14 19 12 23 16,4 11
3 11 13 14 17 14 13,8 6
4 21 23 21 13 8 17,2 15
5 13 17 13 13 14 14 4
6 16 13 14 17 14 14,8 4
7 16 22 16 17 17 17,6 6
8 17 12 14 15 16 14,8 5
9 17 18 15 20 14 16,8 6
10 10 9 18 14 13 12,8 9
11 15 10 17 10 9 12,2 8
12 16 13 16 11 14 14 5
13 14 11 14 22 15 15,2 11
14 11 10 18 14 12 13 8
15 16 10 14 10 18 13,6 8
16 13 18 14 13 20 15,6 7
17 10 10 18 17 13 13,6 8
18 12 12 19 9 14 13,2 10
19 13 12 11 18 13 13,4 7
20 16 14 16 15 15 15,2 2
X = 14,64 R = 7,6
Para Gráfico X Para Gráfico R
10,250,577(7,6)14,64RAXLCI
14,64XLC
19,030.577(7,6)14,64RAXLCS
2
2



00(7,6)RDLCI
14,64RLC
16,0742,115(7,6)RDLCS
3
4



Realizadas las graficas deben ser analizadas para determinar el estado del proceso. Primero debe
analizarse la Gráfica R para ver si es estable. Si el proceso no esta dentro del control, la Gráfica X
tendrá poco significado, ya que los limites de control de ésta dependen de la variabilidad.
Gráfico de Control de X
8
9
10
11
12
13
14
15
16
17
18
19
20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Muestras
mm.
A
B
C
C
B
A
5
Gráfico de Control de R
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Muestras
mm.
A
B
C
C
B
A
Gráficos I-Rm (Valores Individuales)
La gráfica de individuales es un diagrama para variables de tipo continuo que se podría ver como un
caso particular de la carta RX  , cuando el tamaño de la muestra es n = 1, pero la diferencia principal
se da en los procesos en los cuales se aplica.
Existe muchos procesos o situaciones donde no tiene sentido práctico agrupar medidas para formar una
muestra o subgrupo, como por ejemplo: Proceso muy lentos; Procesos en los que las mediciones
cercanas solo difieren por el error de medición (Por ejemplo, temperaturas); Se inspecciona de manera
automática todas las unidades producidas y Resulta costoso inspeccionar y medir más de un artículo.
En estos casos la mejor alternativa es usar una gráfica de individuales, donde cada medición particular
de la característica de calidad que se obtiene se registra en una carta. Para estimar la variabilidad de
estas mediciones se acostumbra usar el rango móvil de dos observaciones consecutivas, por lo que, al
graficar estos rangos, se obtiene una carta de rangos móviles.
Los límites de control de una Gráfica para Valores Individuales se obtiene igual que la carta RX  de
muestra n = 2, dado que el rango se obtiene de entre los datos de dos mediciones consecutivas:
Para la Gráfica X Para la Gráfica R





































1.128
R
3X
d
R
3XLCI
XLC
1.128
R
3X
d
R
3XLCS
2
2
0,RDLCI
RLC
RDLCS
3
4



Nota: 342 DyD,d son constantes porque siempre n=2
Ejemplo: En una empresa que hace impresiones en láminas de acero, un aspecto importante es la
temperatura del horno. La temperatura debe ser de 125 ºC  5 ºC porque si no se cumple se pueden
presentar problemas de calidad final de las láminas.
Para investigar si la temperatura tuvo una variabilidad estable primero se analizan los rangos móviles.
Para analizar el comportamiento de la tendencia central, se usa la carta de individuales.
6
Muestra Temp. del horno Rango Móvil
120,87
1.128
2,29
3126,97
d
R
3XLCI
126,97XLC
133,06
1.128
2,29
3126,97
d
R
3XLCS
2
2

































1 125,1 -
2 127,5 2,4
3 122,7 4,8
4 126,4 3,7
5 125,5 0,9
6 130,5 5,0
7 127,3 3,2
8 127,5 0,2
9 127,3 0,2
10 123,0 4,3
11 123,5 0,5
12 128,0 4,5
13 126,4 1,6
14 128,3 1,9
15 129,5 1,2
16 128,1 1,4
17 125,1 3,0
02,29*0RDLCI
2,29RLC
7,482,29*3.267RDLCS
3
4



18 128,5 3,4
19 125,0 3,5
20 126,3 1,3
21 126,5 0,2
22 127,9 1,4
23 129,5 1,6
24 131,9 2,4
X = 126,97 R = 2,29
Gráfico de Rango móvil
0
1
2
3
4
5
6
7
8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Muestras
Temperatura
A
B
C
C
B
Según la gráfica de rangos la temperatura en el horno estuvo bajo control estadístico en cuanto a
variabilidad. Pero el gráfico de individuales muestra que el proceso estuvo fuera de control estadístico
es su tendencia central, ya que desde las semanas 18 a la 24 se presento una tendencia ascendente.

Recomendados

Más contenido relacionado

La actualidad más candente

Cartas de control
Cartas de controlCartas de control
Cartas de controlEna Ucles
 
Semana 2 ejercicios cap 2
Semana 2 ejercicios cap 2Semana 2 ejercicios cap 2
Semana 2 ejercicios cap 2Juan Negrete
 
Gráficas de Control
Gráficas de Control  Gráficas de Control
Gráficas de Control BUAP
 
Guía de ejercicios aplicación de la calidad
Guía de ejercicios aplicación de la calidadGuía de ejercicios aplicación de la calidad
Guía de ejercicios aplicación de la calidadCorporación Dinant
 
2 precio dual y costo reducido (1)
2 precio dual y costo reducido (1)2 precio dual y costo reducido (1)
2 precio dual y costo reducido (1)Pierina Diaz Meza
 
Interpretacion graficas de control
Interpretacion graficas de controlInterpretacion graficas de control
Interpretacion graficas de controlstemur
 
Taller p y np sandra liliana patiño
Taller p y np sandra liliana patiñoTaller p y np sandra liliana patiño
Taller p y np sandra liliana patiñoSandra Liliana
 
Conceptos basico de diseño factorial
Conceptos basico de diseño factorialConceptos basico de diseño factorial
Conceptos basico de diseño factorialJonathan Argüello
 

La actualidad más candente (20)

Cartas de control
Cartas de controlCartas de control
Cartas de control
 
Semana 2 ejercicios cap 2
Semana 2 ejercicios cap 2Semana 2 ejercicios cap 2
Semana 2 ejercicios cap 2
 
Graficas de control por atributo
Graficas de control por atributoGraficas de control por atributo
Graficas de control por atributo
 
Gráficos de control
Gráficos de controlGráficos de control
Gráficos de control
 
Gráficas de Control
Gráficas de Control  Gráficas de Control
Gráficas de Control
 
CARTA X Y R
CARTA X Y R CARTA X Y R
CARTA X Y R
 
Guía de ejercicios aplicación de la calidad
Guía de ejercicios aplicación de la calidadGuía de ejercicios aplicación de la calidad
Guía de ejercicios aplicación de la calidad
 
2 precio dual y costo reducido (1)
2 precio dual y costo reducido (1)2 precio dual y costo reducido (1)
2 precio dual y costo reducido (1)
 
Cartas de control en minitab por Ing. Jose Zavala
Cartas de control en minitab por Ing. Jose ZavalaCartas de control en minitab por Ing. Jose Zavala
Cartas de control en minitab por Ing. Jose Zavala
 
Diseno Completamente al Azar
Diseno Completamente al AzarDiseno Completamente al Azar
Diseno Completamente al Azar
 
Control Estadistico De Procesos
Control Estadistico De ProcesosControl Estadistico De Procesos
Control Estadistico De Procesos
 
Muestreo Aceptacion
Muestreo AceptacionMuestreo Aceptacion
Muestreo Aceptacion
 
Interpretacion graficas de control
Interpretacion graficas de controlInterpretacion graficas de control
Interpretacion graficas de control
 
Niveles de la calidad
Niveles de la calidadNiveles de la calidad
Niveles de la calidad
 
Diseño experimental ortogonal pdf
Diseño experimental ortogonal pdfDiseño experimental ortogonal pdf
Diseño experimental ortogonal pdf
 
Problemas Disenos Factoriales
Problemas Disenos FactorialesProblemas Disenos Factoriales
Problemas Disenos Factoriales
 
MUESTREO DE ACEPTACION
MUESTREO DE ACEPTACIONMUESTREO DE ACEPTACION
MUESTREO DE ACEPTACION
 
Taller p y np sandra liliana patiño
Taller p y np sandra liliana patiñoTaller p y np sandra liliana patiño
Taller p y np sandra liliana patiño
 
6 sigmas cap. 2 resolucion
6 sigmas cap. 2 resolucion6 sigmas cap. 2 resolucion
6 sigmas cap. 2 resolucion
 
Conceptos basico de diseño factorial
Conceptos basico de diseño factorialConceptos basico de diseño factorial
Conceptos basico de diseño factorial
 

Similar a Guia 3 graficas de control 2018

Tema 3. HERRAMIENTAS DE LA CALIDAD (COMPLEMENTO) GRÁFICOS DE CONTROL
Tema 3. HERRAMIENTAS DE LA CALIDAD (COMPLEMENTO) GRÁFICOS DE CONTROLTema 3. HERRAMIENTAS DE LA CALIDAD (COMPLEMENTO) GRÁFICOS DE CONTROL
Tema 3. HERRAMIENTAS DE LA CALIDAD (COMPLEMENTO) GRÁFICOS DE CONTROLSistemadeEstudiosMed
 
Clase 2 (2016) sección s ud2
Clase 2 (2016) sección s  ud2Clase 2 (2016) sección s  ud2
Clase 2 (2016) sección s ud2Suelen Oseida
 
Presentacion control de_calidad_graficos
Presentacion control de_calidad_graficosPresentacion control de_calidad_graficos
Presentacion control de_calidad_graficoschikenchurro
 
Graficas de control por atributo y por variable [autoguardado]
Graficas de control por  atributo  y por  variable [autoguardado]Graficas de control por  atributo  y por  variable [autoguardado]
Graficas de control por atributo y por variable [autoguardado]Aron Mazeda Guzman
 
Clase 2 (2016) sección s1
Clase 2 (2016) sección s1Clase 2 (2016) sección s1
Clase 2 (2016) sección s1Suelen Oseida
 
Graficos de control
Graficos de controlGraficos de control
Graficos de controlEloen13
 
Control estadístico de procesos
Control estadístico de procesosControl estadístico de procesos
Control estadístico de procesosDaniel Remondegui
 
Cartas de control para variables res.pdf
Cartas de control para variables res.pdfCartas de control para variables res.pdf
Cartas de control para variables res.pdfJavierLiconaPalacios
 

Similar a Guia 3 graficas de control 2018 (20)

Tema 3. HERRAMIENTAS DE LA CALIDAD (COMPLEMENTO) GRÁFICOS DE CONTROL
Tema 3. HERRAMIENTAS DE LA CALIDAD (COMPLEMENTO) GRÁFICOS DE CONTROLTema 3. HERRAMIENTAS DE LA CALIDAD (COMPLEMENTO) GRÁFICOS DE CONTROL
Tema 3. HERRAMIENTAS DE LA CALIDAD (COMPLEMENTO) GRÁFICOS DE CONTROL
 
Encuentro No. 15- CEC
Encuentro No. 15- CECEncuentro No. 15- CEC
Encuentro No. 15- CEC
 
Diagrama de control
Diagrama de controlDiagrama de control
Diagrama de control
 
Presentación1
Presentación1Presentación1
Presentación1
 
Clase 2 (2016) sección s ud2
Clase 2 (2016) sección s  ud2Clase 2 (2016) sección s  ud2
Clase 2 (2016) sección s ud2
 
Encuentro no. 12 y no. 13 - CEC
Encuentro no. 12 y no. 13 - CECEncuentro no. 12 y no. 13 - CEC
Encuentro no. 12 y no. 13 - CEC
 
Presentacion control de_calidad_graficos
Presentacion control de_calidad_graficosPresentacion control de_calidad_graficos
Presentacion control de_calidad_graficos
 
Diag
DiagDiag
Diag
 
Graficas de control por atributo y por variable [autoguardado]
Graficas de control por  atributo  y por  variable [autoguardado]Graficas de control por  atributo  y por  variable [autoguardado]
Graficas de control por atributo y por variable [autoguardado]
 
Diagramas de control
Diagramas de controlDiagramas de control
Diagramas de control
 
Clase 2 (2016) sección s1
Clase 2 (2016) sección s1Clase 2 (2016) sección s1
Clase 2 (2016) sección s1
 
Graficos de control
Graficos de controlGraficos de control
Graficos de control
 
Graficos de control.pptx
Graficos de control.pptxGraficos de control.pptx
Graficos de control.pptx
 
Gráficos variables
Gráficos variablesGráficos variables
Gráficos variables
 
Graficos de control
Graficos de controlGraficos de control
Graficos de control
 
David ugarte
David ugarteDavid ugarte
David ugarte
 
Graficos de Control
Graficos de ControlGraficos de Control
Graficos de Control
 
Estadistica
EstadisticaEstadistica
Estadistica
 
Control estadístico de procesos
Control estadístico de procesosControl estadístico de procesos
Control estadístico de procesos
 
Cartas de control para variables res.pdf
Cartas de control para variables res.pdfCartas de control para variables res.pdf
Cartas de control para variables res.pdf
 

Más de Edgar Ortiz Sánchez

Frank White Mecanica de los fluidos
Frank White Mecanica de los fluidosFrank White Mecanica de los fluidos
Frank White Mecanica de los fluidosEdgar Ortiz Sánchez
 
Crane flujo de fuidos en válvulas, accesorios y tuberías.
Crane flujo de fuidos en válvulas, accesorios y tuberías.Crane flujo de fuidos en válvulas, accesorios y tuberías.
Crane flujo de fuidos en válvulas, accesorios y tuberías.Edgar Ortiz Sánchez
 
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioMecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioEdgar Ortiz Sánchez
 
¿Quien Creo a Dios? - Ravi Zacharias
¿Quien Creo a Dios? - Ravi Zacharias¿Quien Creo a Dios? - Ravi Zacharias
¿Quien Creo a Dios? - Ravi ZachariasEdgar Ortiz Sánchez
 
100 Ideas para Líderes de Células y Grupos Pequeños.pdf
100 Ideas para Líderes de Células y Grupos Pequeños.pdf100 Ideas para Líderes de Células y Grupos Pequeños.pdf
100 Ideas para Líderes de Células y Grupos Pequeños.pdfEdgar Ortiz Sánchez
 
BOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDF
BOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDFBOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDF
BOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDFEdgar Ortiz Sánchez
 
MODULO 4-FAMILIAS CON PROPÓSITO.pdf
MODULO 4-FAMILIAS CON PROPÓSITO.pdfMODULO 4-FAMILIAS CON PROPÓSITO.pdf
MODULO 4-FAMILIAS CON PROPÓSITO.pdfEdgar Ortiz Sánchez
 
MODULO 3 - LA ESTRATEGIA DEL GANAR.pdf
MODULO 3 - LA ESTRATEGIA DEL GANAR.pdfMODULO 3 - LA ESTRATEGIA DEL GANAR.pdf
MODULO 3 - LA ESTRATEGIA DEL GANAR.pdfEdgar Ortiz Sánchez
 
Cuestionarios nivel 2 capacitacion destino COMPLETO.pdf
Cuestionarios nivel 2 capacitacion destino COMPLETO.pdfCuestionarios nivel 2 capacitacion destino COMPLETO.pdf
Cuestionarios nivel 2 capacitacion destino COMPLETO.pdfEdgar Ortiz Sánchez
 
Cuestionarios nivel 1 capacitacion destino.pdf
Cuestionarios nivel 1 capacitacion destino.pdfCuestionarios nivel 1 capacitacion destino.pdf
Cuestionarios nivel 1 capacitacion destino.pdfEdgar Ortiz Sánchez
 
MODULO 1-PASTOREADOS EN SU AMOR.pdf
MODULO 1-PASTOREADOS EN SU AMOR.pdfMODULO 1-PASTOREADOS EN SU AMOR.pdf
MODULO 1-PASTOREADOS EN SU AMOR.pdfEdgar Ortiz Sánchez
 
MODULO 2- EL PODER DE UNA VISION.pdf
MODULO 2- EL PODER DE UNA VISION.pdfMODULO 2- EL PODER DE UNA VISION.pdf
MODULO 2- EL PODER DE UNA VISION.pdfEdgar Ortiz Sánchez
 
Problemas de teorias de fallas estaticas 2019
Problemas de teorias de fallas estaticas 2019Problemas de teorias de fallas estaticas 2019
Problemas de teorias de fallas estaticas 2019Edgar Ortiz Sánchez
 
Aprende a dibujar cómic Volumen 00
Aprende a dibujar cómic Volumen 00Aprende a dibujar cómic Volumen 00
Aprende a dibujar cómic Volumen 00Edgar Ortiz Sánchez
 
Evaluación de intercambiadores de calor
Evaluación  de  intercambiadores de calorEvaluación  de  intercambiadores de calor
Evaluación de intercambiadores de calorEdgar Ortiz Sánchez
 
Informe 1 de Operaciones Unitarias III
Informe 1 de Operaciones Unitarias III  Informe 1 de Operaciones Unitarias III
Informe 1 de Operaciones Unitarias III Edgar Ortiz Sánchez
 

Más de Edgar Ortiz Sánchez (20)

Frank White Mecanica de los fluidos
Frank White Mecanica de los fluidosFrank White Mecanica de los fluidos
Frank White Mecanica de los fluidos
 
Crane flujo de fuidos en válvulas, accesorios y tuberías.
Crane flujo de fuidos en válvulas, accesorios y tuberías.Crane flujo de fuidos en válvulas, accesorios y tuberías.
Crane flujo de fuidos en válvulas, accesorios y tuberías.
 
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioMecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
 
Catalogo de Acero Aisi 4340
Catalogo de Acero Aisi 4340Catalogo de Acero Aisi 4340
Catalogo de Acero Aisi 4340
 
Diseño de Maquinas Schaum.pdf
Diseño de Maquinas Schaum.pdfDiseño de Maquinas Schaum.pdf
Diseño de Maquinas Schaum.pdf
 
¿Quien Creo a Dios? - Ravi Zacharias
¿Quien Creo a Dios? - Ravi Zacharias¿Quien Creo a Dios? - Ravi Zacharias
¿Quien Creo a Dios? - Ravi Zacharias
 
100 Ideas para Líderes de Células y Grupos Pequeños.pdf
100 Ideas para Líderes de Células y Grupos Pequeños.pdf100 Ideas para Líderes de Células y Grupos Pequeños.pdf
100 Ideas para Líderes de Células y Grupos Pequeños.pdf
 
BOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDF
BOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDFBOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDF
BOSQUEJOS PARA PREDICADORES Tomo 1 - Kittim Silva.PDF
 
MODULO 4-FAMILIAS CON PROPÓSITO.pdf
MODULO 4-FAMILIAS CON PROPÓSITO.pdfMODULO 4-FAMILIAS CON PROPÓSITO.pdf
MODULO 4-FAMILIAS CON PROPÓSITO.pdf
 
MODULO 3 - LA ESTRATEGIA DEL GANAR.pdf
MODULO 3 - LA ESTRATEGIA DEL GANAR.pdfMODULO 3 - LA ESTRATEGIA DEL GANAR.pdf
MODULO 3 - LA ESTRATEGIA DEL GANAR.pdf
 
Cuestionarios nivel 2 capacitacion destino COMPLETO.pdf
Cuestionarios nivel 2 capacitacion destino COMPLETO.pdfCuestionarios nivel 2 capacitacion destino COMPLETO.pdf
Cuestionarios nivel 2 capacitacion destino COMPLETO.pdf
 
Cuestionarios nivel 1 capacitacion destino.pdf
Cuestionarios nivel 1 capacitacion destino.pdfCuestionarios nivel 1 capacitacion destino.pdf
Cuestionarios nivel 1 capacitacion destino.pdf
 
MODULO 1-PASTOREADOS EN SU AMOR.pdf
MODULO 1-PASTOREADOS EN SU AMOR.pdfMODULO 1-PASTOREADOS EN SU AMOR.pdf
MODULO 1-PASTOREADOS EN SU AMOR.pdf
 
MODULO 2- EL PODER DE UNA VISION.pdf
MODULO 2- EL PODER DE UNA VISION.pdfMODULO 2- EL PODER DE UNA VISION.pdf
MODULO 2- EL PODER DE UNA VISION.pdf
 
Problemas de teorias de fallas estaticas 2019
Problemas de teorias de fallas estaticas 2019Problemas de teorias de fallas estaticas 2019
Problemas de teorias de fallas estaticas 2019
 
Aprende a dibujar cómic Volumen 00
Aprende a dibujar cómic Volumen 00Aprende a dibujar cómic Volumen 00
Aprende a dibujar cómic Volumen 00
 
Aprende a dibujar comic volumen 1
Aprende a dibujar comic volumen 1Aprende a dibujar comic volumen 1
Aprende a dibujar comic volumen 1
 
Trabajo en espacios confinados
Trabajo en espacios confinadosTrabajo en espacios confinados
Trabajo en espacios confinados
 
Evaluación de intercambiadores de calor
Evaluación  de  intercambiadores de calorEvaluación  de  intercambiadores de calor
Evaluación de intercambiadores de calor
 
Informe 1 de Operaciones Unitarias III
Informe 1 de Operaciones Unitarias III  Informe 1 de Operaciones Unitarias III
Informe 1 de Operaciones Unitarias III
 

Último

Revista SAI 2023 - Número3 de la Revista de la Sociedad Antioqueña de Ingenie...
Revista SAI 2023 - Número3 de la Revista de la Sociedad Antioqueña de Ingenie...Revista SAI 2023 - Número3 de la Revista de la Sociedad Antioqueña de Ingenie...
Revista SAI 2023 - Número3 de la Revista de la Sociedad Antioqueña de Ingenie...Enrique Posada
 
TEMA ILUSTRADO ccccccccccccccccc4.1.docx
TEMA ILUSTRADO ccccccccccccccccc4.1.docxTEMA ILUSTRADO ccccccccccccccccc4.1.docx
TEMA ILUSTRADO ccccccccccccccccc4.1.docxantoniolfdez2006
 
SISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJO
SISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJOSISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJO
SISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJOCristianPantojaCampa
 
TOLERANCIAS CATASTRALES REGISTRALES USO Y APICACIONES
TOLERANCIAS CATASTRALES REGISTRALES USO Y APICACIONESTOLERANCIAS CATASTRALES REGISTRALES USO Y APICACIONES
TOLERANCIAS CATASTRALES REGISTRALES USO Y APICACIONESDanielaMamani19
 
Hidroelectricidad en el mundo y Colombia Enrique Posada.pdf
Hidroelectricidad en el mundo y Colombia  Enrique Posada.pdfHidroelectricidad en el mundo y Colombia  Enrique Posada.pdf
Hidroelectricidad en el mundo y Colombia Enrique Posada.pdfEnrique Posada
 
PLAN REGULADOR INTERCOMUNAL DE LA PROVINCIA DE LIMARÍ
PLAN REGULADOR INTERCOMUNAL DE LA PROVINCIA DE LIMARÍPLAN REGULADOR INTERCOMUNAL DE LA PROVINCIA DE LIMARÍ
PLAN REGULADOR INTERCOMUNAL DE LA PROVINCIA DE LIMARÍJuan Luis Menares, Arquitecto
 
Evaluación de exposición a riesgos por vibraciones y posturas forzadas del Cu...
Evaluación de exposición a riesgos por vibraciones y posturas forzadas del Cu...Evaluación de exposición a riesgos por vibraciones y posturas forzadas del Cu...
Evaluación de exposición a riesgos por vibraciones y posturas forzadas del Cu...MARCOBARAHONA12
 
Régimen Laboral de Construcción Civil.pptx
Régimen Laboral de Construcción Civil.pptxRégimen Laboral de Construcción Civil.pptx
Régimen Laboral de Construcción Civil.pptxHENRYPEREZ657925
 
EXAMEN FINAL AE1_2024_VERANO_240225_150605.pdf
EXAMEN FINAL AE1_2024_VERANO_240225_150605.pdfEXAMEN FINAL AE1_2024_VERANO_240225_150605.pdf
EXAMEN FINAL AE1_2024_VERANO_240225_150605.pdfMatematicaFisicaEsta
 
Empleabilidad e Inserción Laboral Ingenieros.pptx
Empleabilidad e Inserción Laboral Ingenieros.pptxEmpleabilidad e Inserción Laboral Ingenieros.pptx
Empleabilidad e Inserción Laboral Ingenieros.pptxViviana Robelek
 
Regularizaciones Pichidangui - Los Vilos - Guangualí
Regularizaciones Pichidangui - Los Vilos - GuangualíRegularizaciones Pichidangui - Los Vilos - Guangualí
Regularizaciones Pichidangui - Los Vilos - GuangualíJuanLuis188
 
QUINTA PR-CTICA CALIFICADA- GRUPO A Y D.pdf
QUINTA PR-CTICA CALIFICADA- GRUPO A Y D.pdfQUINTA PR-CTICA CALIFICADA- GRUPO A Y D.pdf
QUINTA PR-CTICA CALIFICADA- GRUPO A Y D.pdfMatematicaFisicaEsta
 
Examen 1.docx EXAMEN EN TIEMPO REAL RESUELTO
Examen 1.docx EXAMEN EN TIEMPO REAL RESUELTOExamen 1.docx EXAMEN EN TIEMPO REAL RESUELTO
Examen 1.docx EXAMEN EN TIEMPO REAL RESUELTOfredyflores58
 
Proceso de produccion de Nescafé - Nestlé
Proceso de produccion de Nescafé - NestléProceso de produccion de Nescafé - Nestlé
Proceso de produccion de Nescafé - NestléRomanchasquero
 
PPT EXPOSICION PROYECTOS _Dirigida a LAS ut.pptx
PPT EXPOSICION PROYECTOS _Dirigida a LAS ut.pptxPPT EXPOSICION PROYECTOS _Dirigida a LAS ut.pptx
PPT EXPOSICION PROYECTOS _Dirigida a LAS ut.pptxCarlosAndresBarciaPe
 
Políticas OSC 7_Consolidado............pdf
Políticas OSC 7_Consolidado............pdfPolíticas OSC 7_Consolidado............pdf
Políticas OSC 7_Consolidado............pdfCristianPantojaCampa
 
S5_TAREA_SET_C_ESTGT1103.pdf RESUELTO CONSULTAS
S5_TAREA_SET_C_ESTGT1103.pdf RESUELTO CONSULTASS5_TAREA_SET_C_ESTGT1103.pdf RESUELTO CONSULTAS
S5_TAREA_SET_C_ESTGT1103.pdf RESUELTO CONSULTASMatematicaFisicaEsta
 
Revista de la SAI numero 2 julio de 2023.pdf
Revista de la SAI numero 2 julio de 2023.pdfRevista de la SAI numero 2 julio de 2023.pdf
Revista de la SAI numero 2 julio de 2023.pdfEnrique Posada
 
TEMA ILUSTRADOooooooooooooooooo 4.3.docx
TEMA ILUSTRADOooooooooooooooooo 4.3.docxTEMA ILUSTRADOooooooooooooooooo 4.3.docx
TEMA ILUSTRADOooooooooooooooooo 4.3.docxantoniolfdez2006
 

Último (20)

Revista SAI 2023 - Número3 de la Revista de la Sociedad Antioqueña de Ingenie...
Revista SAI 2023 - Número3 de la Revista de la Sociedad Antioqueña de Ingenie...Revista SAI 2023 - Número3 de la Revista de la Sociedad Antioqueña de Ingenie...
Revista SAI 2023 - Número3 de la Revista de la Sociedad Antioqueña de Ingenie...
 
TEMA ILUSTRADO ccccccccccccccccc4.1.docx
TEMA ILUSTRADO ccccccccccccccccc4.1.docxTEMA ILUSTRADO ccccccccccccccccc4.1.docx
TEMA ILUSTRADO ccccccccccccccccc4.1.docx
 
SISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJO
SISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJOSISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJO
SISTEMA DE GESTIÓN DE SEGURIDA DY SALUD EN EL TRABAJO
 
TOLERANCIAS CATASTRALES REGISTRALES USO Y APICACIONES
TOLERANCIAS CATASTRALES REGISTRALES USO Y APICACIONESTOLERANCIAS CATASTRALES REGISTRALES USO Y APICACIONES
TOLERANCIAS CATASTRALES REGISTRALES USO Y APICACIONES
 
Hidroelectricidad en el mundo y Colombia Enrique Posada.pdf
Hidroelectricidad en el mundo y Colombia  Enrique Posada.pdfHidroelectricidad en el mundo y Colombia  Enrique Posada.pdf
Hidroelectricidad en el mundo y Colombia Enrique Posada.pdf
 
PLAN REGULADOR INTERCOMUNAL DE LA PROVINCIA DE LIMARÍ
PLAN REGULADOR INTERCOMUNAL DE LA PROVINCIA DE LIMARÍPLAN REGULADOR INTERCOMUNAL DE LA PROVINCIA DE LIMARÍ
PLAN REGULADOR INTERCOMUNAL DE LA PROVINCIA DE LIMARÍ
 
Evaluación de exposición a riesgos por vibraciones y posturas forzadas del Cu...
Evaluación de exposición a riesgos por vibraciones y posturas forzadas del Cu...Evaluación de exposición a riesgos por vibraciones y posturas forzadas del Cu...
Evaluación de exposición a riesgos por vibraciones y posturas forzadas del Cu...
 
Régimen Laboral de Construcción Civil.pptx
Régimen Laboral de Construcción Civil.pptxRégimen Laboral de Construcción Civil.pptx
Régimen Laboral de Construcción Civil.pptx
 
EXAMEN FINAL AE1_2024_VERANO_240225_150605.pdf
EXAMEN FINAL AE1_2024_VERANO_240225_150605.pdfEXAMEN FINAL AE1_2024_VERANO_240225_150605.pdf
EXAMEN FINAL AE1_2024_VERANO_240225_150605.pdf
 
Empleabilidad e Inserción Laboral Ingenieros.pptx
Empleabilidad e Inserción Laboral Ingenieros.pptxEmpleabilidad e Inserción Laboral Ingenieros.pptx
Empleabilidad e Inserción Laboral Ingenieros.pptx
 
Regularizaciones Pichidangui - Los Vilos - Guangualí
Regularizaciones Pichidangui - Los Vilos - GuangualíRegularizaciones Pichidangui - Los Vilos - Guangualí
Regularizaciones Pichidangui - Los Vilos - Guangualí
 
QUINTA PR-CTICA CALIFICADA- GRUPO A Y D.pdf
QUINTA PR-CTICA CALIFICADA- GRUPO A Y D.pdfQUINTA PR-CTICA CALIFICADA- GRUPO A Y D.pdf
QUINTA PR-CTICA CALIFICADA- GRUPO A Y D.pdf
 
Examen 1.docx EXAMEN EN TIEMPO REAL RESUELTO
Examen 1.docx EXAMEN EN TIEMPO REAL RESUELTOExamen 1.docx EXAMEN EN TIEMPO REAL RESUELTO
Examen 1.docx EXAMEN EN TIEMPO REAL RESUELTO
 
PRACTICA GRUPAL. Materiales 2.pdf
PRACTICA GRUPAL. Materiales 2.pdfPRACTICA GRUPAL. Materiales 2.pdf
PRACTICA GRUPAL. Materiales 2.pdf
 
Proceso de produccion de Nescafé - Nestlé
Proceso de produccion de Nescafé - NestléProceso de produccion de Nescafé - Nestlé
Proceso de produccion de Nescafé - Nestlé
 
PPT EXPOSICION PROYECTOS _Dirigida a LAS ut.pptx
PPT EXPOSICION PROYECTOS _Dirigida a LAS ut.pptxPPT EXPOSICION PROYECTOS _Dirigida a LAS ut.pptx
PPT EXPOSICION PROYECTOS _Dirigida a LAS ut.pptx
 
Políticas OSC 7_Consolidado............pdf
Políticas OSC 7_Consolidado............pdfPolíticas OSC 7_Consolidado............pdf
Políticas OSC 7_Consolidado............pdf
 
S5_TAREA_SET_C_ESTGT1103.pdf RESUELTO CONSULTAS
S5_TAREA_SET_C_ESTGT1103.pdf RESUELTO CONSULTASS5_TAREA_SET_C_ESTGT1103.pdf RESUELTO CONSULTAS
S5_TAREA_SET_C_ESTGT1103.pdf RESUELTO CONSULTAS
 
Revista de la SAI numero 2 julio de 2023.pdf
Revista de la SAI numero 2 julio de 2023.pdfRevista de la SAI numero 2 julio de 2023.pdf
Revista de la SAI numero 2 julio de 2023.pdf
 
TEMA ILUSTRADOooooooooooooooooo 4.3.docx
TEMA ILUSTRADOooooooooooooooooo 4.3.docxTEMA ILUSTRADOooooooooooooooooo 4.3.docx
TEMA ILUSTRADOooooooooooooooooo 4.3.docx
 

Guia 3 graficas de control 2018

  • 1. 1 UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA COMPLEJO DOCENTE PUNTO FIJO ASIGNATURA: CONTROL DE CALIDAD Profesor: MSc. Marcolina Valery A. Tema 3. HERRAMIENTAS DE LA CALIDAD (COMPLEMENTO) GRÁFICOS DE CONTROL INTRODUCCIÓN El inicio del período del CONTROL ESTADÍSTICO DE LOS PROCESOS, que constituyó un avance sin precedente en el movimiento hacia la calidad, surge en la década de los 30’s a raíz de los trabajos de investigación realizados por la Bell Telephone Laboratories. Donde uno de sus principales investigadores, Dr. Walter A. Shewhart, como principal aporte reconoce que en todo proceso de producción existe variación, puntualizando que no podían producirse dos partes con las mismas especificaciones, pues era evidente que las diferencias en la materia prima e insumos y los distintos grados de habilidad de los operadores provocaban variabilidad. Shewhart no proponía suprimir las variaciones, sino determinar cuál era el rango tolerable de variación que evite que se originen problemas. Para lograr lo anterior, desarrolló las GRÁFICAS DE CONTROL, punto central del material didáctico. CAUSAS COMUNES Y ESPECIALES DE LA VARIACIÓN La variación es algo inherente a todo proceso debido al efecto conjunto de equipos, materiales, entorno y operario. La variación experimentada en un proceso puede ser consecuencia de 2 tipos de causas, las causas comunes (fortuitas o aleatorias) y causas especiales (atribuibles o impotables). La variación debido a causas comunes o al azar, es inherente a las características esenciales del proceso y es el resultado de la acumulación y combinación de las diferentes fuentes de variabilidad. Las causas comunes son difíciles de identificar y eliminar. La variación debido a causas especiales o atribuibles no es parte del sistema de causas comunes, orinadas por situaciones o circunstancias especiales que no estén presentes permanentemente en el sistema. Las causas especiales, por su naturaleza relativamente discreta, a menudo puedan ser identificadas y eliminadas. Un proceso que trabaja solo con causas comunes de variación, se considera que esta en estado de control estadístico. Es estable y predecible, independientemente de que su variabilidad sea mucha o poca, es predecible en el futuro inmediato. En un proceso bajo control estadístico la calidad, la cantidad y los costos son predecibles. Un proceso en el que están presentes causas especiales de variación se considera fuera se control estadístico (o es inestable). Los gráficos de control constituyen un instrumento que permite distinguir, la mayoría de las veces, cuando un cambio, problema o una variación se debe a causas comunes y cuando a causas especiales. GRÁFICAS DE CONTROL Una gráfica de control consiste en una línea central, un par de límites de control, uno de ellos colocados por encima de la línea central y otro por debajo, y ciertos valores característicos registrados en la grafica que representa el estado del proceso. Si todos los valores ocurren dentro de los límites de control, sin ninguna tendencia especial, se dice que el proceso está bajo control estadístico, si no, esta fuera de control.
  • 2. 2 Para el cálculo de los limites de control se debe proceder de tal forma que bajo condiciones de control estadístico, la variable que se grafique en la carta tenga una alta probabilidad de caer dentro de tales limites. Por lo tanto, una forma de proceder es encontrar la distribución de las probabilidades de la variable, estimar sus parámetros y ubicar los limites de tal forma que un alto % de la distribución este dentro de ellos; esta forma se conoce como límites de probabilidad. Una forma sencilla y usual se obtiene a partir de la relación entre la media y la desviación estándar de una variable, que para el caso de una variable con distribución normal con media  y desviación estándar  , y bajo condiciones de control estadístico, se tiene que entre -3 y +3 se encuentran el 99.73 % de los posibles valores que tome tal variable. 68,27% 95,45% 99,73% Frecuencia 68,27% 95,45% 99,73% Frecuencia Sea X la variable (o estadístico) que se va a graficar en el Gráfico de Control y suponiendo que su media es X y su desviación estándar X, entonces el límite de control superior (LCS), la línea central (LC) y el límite de control inferior (LCI) están dados por: LCS = x + 3x LC = x LCI = x - 3x Con estos limites, y bajo condiciones de control estadístico, se tendrá una alta probabilidad de que los valores de X estén dentro de ellos. Si X tiene distribución normal, tal probabilidad es de 0.9973. Los Gráficos de control de Shewhart son básicamente de 2 tipos:  Gráficos de Control para Variables  Gráficos de Control para Atributos Los gráficos de control para variables: Este tipo de gráfico se aplican a características de calidad de tipo continuo, que intuitivamente son aquellas que requieren un instrumento de medición para medirse (peso, volumen, voltaje, etc.) Los gráficos de control para variables más usuales son: De medias, X De rangos, R Desviaciones estándar, S En una característica de calidad de tipo continua en un producto o en un proceso interesante controlar su variabilidad y su tendencia central, por ejemplo, las dimensiones de cierta pieza deben ser 10 cm. con una tolerancia de  0.2 cm., por lo que la tendencia central de estas piezas debe estar muy
  • 3. 3 próxima a 10, y su variabilidad debe ser tal que todas las piezas tengan una dimensión que caiga entre 9.8 y 10.2 cm. Es por esto que generalmente, se presentan juntas los Gráficos de X , para controlar la tendencia central, y la R (ocasionalmente una S) para controlar su variabilidad o dispersión. GRÁFICAS X Esta gráfica registra la variación experimentada en el valor promedio de las muestras (entre muestras). La forma operativa de construir un Gráfico X inicia determinando las características a estudiar. Posteriormente se mide la característica en una cantidad pequeña de productos consecutivos (subgrupos de productos) cada determinado periodo y en lugar de analizar las mediciones individuales se analizar las medias y los rangos de los subgrupos (o muestras). La Gráfica X evidenciará el comportamiento sobre el tiempo de la columna de medias, sobre lo cual se tendrá información sobre la tendencia central y sobre la variación entre las muestras. Los limites de control para una Gráfica X , se obtendrán de la siguiente manera: RAXLCI XLC RAXLCS 2 2    R es el promedio de los rangos de los subgrupos, y 2A es una constante que depende del número de subgrupos (se ubica por tablas anexas). GRÁFICAS R Este diagrama es utilizado para estudiar la variabilidad de una característica de calidad de un producto o un proceso, y en ella se analiza el comportamiento en el tiempo de los rangos de las muestras o subgrupos. Los limites de control para una carta R se obtienen a partir de la misma forma general: la media mas o menos tres veces la desviación estándar de la variable que se grafica en la carta, Los límites de una grafica R, se obtienen de la siguiente manera: RDLCI RLC RDLCS 3 4    Donde 3D y 4D están tabuladas para varios tamaños de muestra. REPRESENTACION DE LOS GRÁFICOS RX  Ejemplo: Los siguientes datos representan el diámetro de un eje que se usa para hacer girar la hélice de un motor fuera de borda. Determinar si el proceso esta bajo control estadístico.
  • 4. 4 Muestra o subgrupo Diámetro en mm Media X Rango X1 X2 X3 X4 X5 1 16 23 12 11 16 15,6 12 2 14 14 19 12 23 16,4 11 3 11 13 14 17 14 13,8 6 4 21 23 21 13 8 17,2 15 5 13 17 13 13 14 14 4 6 16 13 14 17 14 14,8 4 7 16 22 16 17 17 17,6 6 8 17 12 14 15 16 14,8 5 9 17 18 15 20 14 16,8 6 10 10 9 18 14 13 12,8 9 11 15 10 17 10 9 12,2 8 12 16 13 16 11 14 14 5 13 14 11 14 22 15 15,2 11 14 11 10 18 14 12 13 8 15 16 10 14 10 18 13,6 8 16 13 18 14 13 20 15,6 7 17 10 10 18 17 13 13,6 8 18 12 12 19 9 14 13,2 10 19 13 12 11 18 13 13,4 7 20 16 14 16 15 15 15,2 2 X = 14,64 R = 7,6 Para Gráfico X Para Gráfico R 10,250,577(7,6)14,64RAXLCI 14,64XLC 19,030.577(7,6)14,64RAXLCS 2 2    00(7,6)RDLCI 14,64RLC 16,0742,115(7,6)RDLCS 3 4    Realizadas las graficas deben ser analizadas para determinar el estado del proceso. Primero debe analizarse la Gráfica R para ver si es estable. Si el proceso no esta dentro del control, la Gráfica X tendrá poco significado, ya que los limites de control de ésta dependen de la variabilidad. Gráfico de Control de X 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Muestras mm. A B C C B A
  • 5. 5 Gráfico de Control de R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Muestras mm. A B C C B A Gráficos I-Rm (Valores Individuales) La gráfica de individuales es un diagrama para variables de tipo continuo que se podría ver como un caso particular de la carta RX  , cuando el tamaño de la muestra es n = 1, pero la diferencia principal se da en los procesos en los cuales se aplica. Existe muchos procesos o situaciones donde no tiene sentido práctico agrupar medidas para formar una muestra o subgrupo, como por ejemplo: Proceso muy lentos; Procesos en los que las mediciones cercanas solo difieren por el error de medición (Por ejemplo, temperaturas); Se inspecciona de manera automática todas las unidades producidas y Resulta costoso inspeccionar y medir más de un artículo. En estos casos la mejor alternativa es usar una gráfica de individuales, donde cada medición particular de la característica de calidad que se obtiene se registra en una carta. Para estimar la variabilidad de estas mediciones se acostumbra usar el rango móvil de dos observaciones consecutivas, por lo que, al graficar estos rangos, se obtiene una carta de rangos móviles. Los límites de control de una Gráfica para Valores Individuales se obtiene igual que la carta RX  de muestra n = 2, dado que el rango se obtiene de entre los datos de dos mediciones consecutivas: Para la Gráfica X Para la Gráfica R                                      1.128 R 3X d R 3XLCI XLC 1.128 R 3X d R 3XLCS 2 2 0,RDLCI RLC RDLCS 3 4    Nota: 342 DyD,d son constantes porque siempre n=2 Ejemplo: En una empresa que hace impresiones en láminas de acero, un aspecto importante es la temperatura del horno. La temperatura debe ser de 125 ºC  5 ºC porque si no se cumple se pueden presentar problemas de calidad final de las láminas. Para investigar si la temperatura tuvo una variabilidad estable primero se analizan los rangos móviles. Para analizar el comportamiento de la tendencia central, se usa la carta de individuales.
  • 6. 6 Muestra Temp. del horno Rango Móvil 120,87 1.128 2,29 3126,97 d R 3XLCI 126,97XLC 133,06 1.128 2,29 3126,97 d R 3XLCS 2 2                                  1 125,1 - 2 127,5 2,4 3 122,7 4,8 4 126,4 3,7 5 125,5 0,9 6 130,5 5,0 7 127,3 3,2 8 127,5 0,2 9 127,3 0,2 10 123,0 4,3 11 123,5 0,5 12 128,0 4,5 13 126,4 1,6 14 128,3 1,9 15 129,5 1,2 16 128,1 1,4 17 125,1 3,0 02,29*0RDLCI 2,29RLC 7,482,29*3.267RDLCS 3 4    18 128,5 3,4 19 125,0 3,5 20 126,3 1,3 21 126,5 0,2 22 127,9 1,4 23 129,5 1,6 24 131,9 2,4 X = 126,97 R = 2,29 Gráfico de Rango móvil 0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Muestras Temperatura A B C C B Según la gráfica de rangos la temperatura en el horno estuvo bajo control estadístico en cuanto a variabilidad. Pero el gráfico de individuales muestra que el proceso estuvo fuera de control estadístico es su tendencia central, ya que desde las semanas 18 a la 24 se presento una tendencia ascendente.
  • 7. 7 Gráfico de Individuales 118,0 120,0 122,0 124,0 126,0 128,0 130,0 132,0 134,0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Muestras Temperatura A B C C B A EVIDENCIAS DE AUSENCIA DE CONTROL Las causas especiales de variación (un proceso esta fuera de control) se manifiesta cuando uno o varios puntos caen fuera de los límites de control, o cuando los puntos registrados en el gráfico siguen un comportamiento no aleatorio. Para identificación estos patrones, primero hay que dividir la grafica de control en seis zonas o bandas iguales, cada una con una amplitud similar a una desviación estándar de la variable que se grafica. A continuación se dan cinco patrones para el comportamiento de los puntos. Racha: Sucede cuando los puntos ocurren continuamente en un lado de la línea central y el numero de puntos se llama longitud de racha. Se consideran anormales los siguientes casos:  7 Puntos de un mismo lado de la línea central  Al menos 10 de 11 puntos consecutivos ocurren en un lado de la línea central.  Al menos 12 de 14 puntos consecutivos ocurren en un mismo lado de la línea central.  Al menos 16 de 20 puntos consecutivos ocurren en un mismo lado de la línea central. 8 11,1122 14,2244 17,3366 20,4488 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Racha de 7 puntos. Es anormal 10 de 11 puntos consecutivos del mismo lado es anormal. Tendencia: Cuando los puntos forman una curva ascendente o descendente bien definida (6 puntos consecutivos ascendentes o descendentes). 8 11,1122 14,2244 17,3366 20,4488 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 7 puntos ascendentes Tendencia descendente drástica Acercamiento a los limites de control: Teniendo en cuenta los puntos que se acercan a los limites de control de 3σ . Si 2 de 3 puntos ocurren por fuera de las líneas de 2σ el caso se considera anormal.
  • 8. 8 8 11,1122 14,2244 17,3366 20,4488 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Acercamiento a la línea central: Cuando la mayoría de los puntos están dentro de las líneas de 1,5σ , es decir, se refleja poca variabilidad. Esto puede deberse a una forma inapropiada de hacer subgrupos. (15 puntos consecutivos en 1,5σ puede ser muestra de esta tendencia. 8 11,1122 14,2244 17,3366 20,4488 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Periodicidad: También es anormal que la curva muestre repetidamente una tendencia ascendente y descendente para casi el mismo intervalo. El criterio puede ser 14 puntos consecutivos alternando entre altos y bajos. 8 11,1122 14,2244 17,3366 20,4488 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Según Besterfield (1995), cuando un proceso esta bajo control, se produce un patrón normal de variación que cumple con los siguientes: 1. El 34 % de los puntos esta dentro del espacio 1 a ambos lados de la línea central 2. Aproximadamente el 13.5 % de los puntos están dentro del espacio en 1σ y 2σ a ambos lados de la línea central. 3. Aproximadamente 2.5 % de los puntos están dentro del espacio entre 2σ y 3σ a ambos lados de la línea central. Analizando el ejemplo de X -R, se deduce que el proceso esta bajo control estadístico, debido a que los gráficos tiene puntos fuera de control, ni cumple con alguno de los patrones descritos de anormalidad, pero si cumple con las condiciones de normalidad descritas anteriormente. CAPACIDAD DEL PROCESO (Cp) Es la habilidad de un proceso de producir una salida, donde la mediciones individuales de una característica importante tendrá una variabilidad tan pequeña, que caerá dentro de las especificaciones, siempre y cuando el promedio del proceso este centrado apropiadamente. Para realizar un análisis de la capacidad es necesario que el proceso se encuentre bajo control estadístico. Un proceso puede estar bajo control estadístico pero no cumplir con especificaciones.
  • 9. 9 El histograma es la herramienta grafica por excelencia para evaluar si se cumple con las especificaciones, sean de productos o procesos. Sin embargo, otra forma muy usual de cuantificar la capacidad de cumplir con especificaciones son los índices Cp y Cpk. Índice Cp: se utiliza para medir la capacidad potencial del proceso para cumplir con las especificaciones técnicas, comparando el ancho de las especificaciones con la amplitud de la variación del proceso, es decir: NaturalTolerancia TécnicaTolerancia Cp  Donde: Tolerancia Técnica (TT): especificación superior menos especificación inferior (ES-EI). Tolerancia Natural: representa la variación real de la salida producida en el proceso ( 6 ) siendo  la desviación estándar estimada del proceso, es decir: 6 EI)-(ES Cp  La capacidad de un proceso existe cuando un proceso es consistente TN<TT (Cp>1). El índice de capacidad no muestra si en verdad se esta cumpliendo con las especificaciones, solo indica la variación del proceso en relación a la variación permitida bajo la especificación. Pasos para Calcular Cp. 1. Calcular el valor de  , a través el R de la muestra de la Gráfica R, con las formula: 2. Conociendo σ y las tolerancias del proceso, se calcula Cp. A continuación se muestra un criterio para tomar dediciones con respecto al Índice Cp. VALOR DE Cp CLASE DEL PROCESO DESICIÓN Cp>1.33 1 El proceso es más que adecuado. 1< Cp<1.33 2 El proceso es adecuado pero requiere de un control estricto conforme acerca Cp a 1. 0.67<Cp<1 3 El proceso no es adecuado para el trabajo. Es necesario un análisis del proceso. Hay una buena probabilidad de éxito Cp<0.67 4 El proceso no es adecuado para el trabajo. Requiere serias modificaciones. NOTA: Cuanto mayor sea Cp, mayor será la calidad (siempre que el proceso esté centrado). -4 -2.2 -1.3 -0.3 0.7 1.7 2.7 4 CP = 0,67 6 EIES -4 -2.2 -1.3 -0.3 0.7 1.7 2.7 8 CP = 1,33 6 ES EI -4 -2.2 -1.3 -0.3 0.7 1.7 2.7 6 CP = 1,00 6 EIES 2d R 
  • 10. 10 Ejemplo: En función de que el ejercicio realizado en los Gráficos RX  está bajo control estadístico y consta de 24 subgrupos, se tomara el mismo ejemplo, siendo las especificaciones técnicas 15 mm.  2 mm. ES= 17, EI = 1.3 y 2d para n=5 es 2.326 0,20 19.60 6 2,326 7.6 6 317 Cp          1 De acuerdo a los criterios, el proceso evaluado no es capaz de cumplir las especificaciones dadas, correspondiendo a una clasificación 4. Cp y Cpk. (Índice de desempeño de un proceso) El índice de Capacidad Cp no constituye en sí una medida del desempeño del proceso, en función del valor nominal o meta. Esta medición se obtiene mediante Cpk y se calcula como sigue: Cpk 3σ XES   minCpk  Cpk 3σ EIX   En la siguiente figura se ilustran los valores Cp y Cpk de un proceso, mostrando las opciones de las relaciones, que pueden inferirse con los cálculos obtenidos, entre estos índices. Observando las figuras, con respecto a Cp y CpK puede considerarse:  Cp=Cpk cuando el proceso esta centrado.  El máximo valor de CpK es Cp  Cuando CpK< Cp el promedio del proceso no esta centrado respecto a los límites de especificación.  Cuando CpK= 1.00 el proceso se está obteniendo un producto que satisface especificaciones.  CpK< 1 indica que se está obteniendo un producto que no satisface especificaciones. Como el ejemplo de Gráfica RX  ) el Cp < 1, supongamos que con un R = 1,38 Cp= 1,12 si es capaz, el Cpk es: 1.32 2.326 1.38 3 14.6417         0,92 2.326 1.38 3 1314.64         Como Cpk<1 el proceso no se esta desempeñando adecuadamente, además Cpk<Cp indica que el promedio del proceso no está centrado respecto a los límites de especificación. GRÁFICAS DE CONTROL PARA ATRIBUTOS Un atributo se refiere, para el control de calidad a una característica de calidad que cumple con las especificaciones o no. Hay dos tipos de atributos: 1. Aquellos casos cuando no es posible hacer mediciones: color, ralladuras, etc. Se usa el valor mas bajo de Cpk para el análisis -12 -2.7 -1.8 -0.8 0.2 1.2 2.2 Cp = 0,67; Cpk=0,33 Proceso No Centrado 6 ES EI X0 -12 -2.7 -1.8 -0.8 0.2 1.2 2.2 6 ES EI X0 Cp = 1,33; Cpk=1,00 Proceso No Centrado -3 -2.0 -1.1 -0.1 0.9 1.9 2.9 X0 Cp = 1,33; Cpk=1,33 Proceso Centrado 6 ES EI -6 -2.1 -1.2 -0.2 0.8 1.8 X0 Cp = 1,00; Cpk=0,67 Proceso No Centrado 6 ES EI -2.7 -1.8 -0.8 0.2 1.2 2.2 X0 Cp = 0,67; Cpk=0,67 Proceso Centrado 6 ES EI -2.7 -1.8 -0.8 0.2 1.2 2.2 Cp = 1,00; Cpk=1,00 Proceso Centrado 6 ES EI X0 minCpk Cpk =0,92
  • 11. 11 2. Aquellos casos en los que si es posible hacer mediciones, pero no se realizan debido a tiempo, costo o necesidad implicados. Este tipo de gráficas puede ser muy útil cuando se pueden evaluar varias características de calidad medibles, obteniendo información global sobre la calidad de forma práctica y menos costosa. Tipos de Gráficos para Atributos Existen dos tipos de grupos de gráficos de control por atributos. Uno de ellos es para unidades no conformes y se basa en la distribución binomial (Gráficos p y np). El otro grupo de gráficos es la de no conformidades y se basa en la distribución de Poisson (Gráficos c y u). Gráficos p y np. Gráficos p (proporción de artículos defectuosos). Muestra las variaciones en la fracción o proporción de artículos defectuosos en un proceso. En esta carta se revisan los artículos de una muestra (o subgrupo), y cada uno tiene una calidad aceptable o no, es decir, un artículo pasa o no pasa. Los límites de control para una carta p están dados por: n )p(1p 3pLCI pLC n )p(1p 3pLCS      Donde, n = es el tamaño de muestra p = es la proporción promedio de artículos defectuosos (la cantidad de artículos defectuosos en todas las muestras dividido entre la totalidad de productos inspeccionados). En ocasiones el tamaño de muestra, n, es variable de muestra a muestra; en estos casos se debe usar el tamaño de la muestra promedio para calcular los limites de control. Ejemplo: Para analizar la estabilidad de la cantidad de artículos defectuosos en un proceso de producción y tratar de mejorar, se toma una muestra de 120 piezas cada 4 horas. Los datos obtenidos durante 6 días se muestran en la tabla. Muestra Artículos Defect. p 0,0001 120 0,07)0,07(1 30,07 n p(1p 3pLCI 0,07pLC 0,139 120 0,07)0,07(1 30,07 n p(1p 3pLCS            ) ) 1 11 0,09 2 10 0,08 3 7 0,06 4 10 0,08 5 4 0,03 6 12 0,10 7 8 0,07 8 5 0,04 9 14 0,12 10 12 0,10 11 8 0,07 12 7 0,06 13 9 0,08 14 6 0,05 15 6 0,05 16 11 0,09 17 9 0,08 18 7 0,06 19 6 0,05 20 10 0,08
  • 12. 12 Gráfico de Control p 0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Muestrasp A B C C B A p = 0,072 Análisis: Como puede observarse en la gráfica existe un acercamiento al límite central, se refleja poca variabilidad. Esto puede deberse a una forma inapropiada de hacer subgrupos. Gráficos np (número de Artículos Defectuosos). En ocasiones, cuando el número de muestras en los gráficos p es constantes, es más conveniente usar la carta np en la que se gráfica el numero de artículos defectuosos por muestra, en lugar de la proporción. Los límites de control para la gráfica np están dados por: p)(1pn3pnLCI pnLC p)(1pn3pnLCS    Donde igual que en la carta p, n es el tamaño de la muestra y p es la proporción promedio de artículos defectuosos, con lo que pn es la estimación del número promedio de artículos defectuosos por muestra. Algo que es importante destacar es la relación entre la gráfica p y la pn , ya que esencialmente estas gráfica son las mismas, salvo un cambio de escala. En el ejemplo anterior, para convertir el Gráfico p en un Gráfico pn , basta multiplicar la escala por el tamaño de muestra (120). Con la carta np se tiene la ventaja de que se grafica directamente el numero de artículos defectuoso, mientras que en la carta p es mas fácil evaluar la magnitud de las fallas en el proceso en términos porcentuales. Interpretación de los Gráficos p y pn Una buena interpretación de las cartas p y pn no solo es ver si hay puntos fuera de los límites de control, sino además analizar el cambio de nivel, tendencias, tolerancias, ciclos, y mucha o poca variabilidad, con los mismos criterios observados en los Gráficos RX  . Gráficos c y u (para defectos) Gráficos c (número de defectos) El objetivo del Gráfico c es analizar la variabilidad del número de defectos. En ella se grafica ci que es igual al numero de defectos encontrado en cada muestra. Los límites de control se obtienen: Donde c es el número promedio de defectos por subgrupo, y se obtiene al dividir el total de defectos encontrados entre el total de subgrupos. La carta c es aplicable donde el tamaño de subgrupo puede verse como constante; por ejemplo, una semana, una pieza, 100 artículos, 1m. de tela o cualquier otra cantidad que pueda verse como unidad, pero siempre debe permanecer constante. Si es variable se aplica la carta u. Ejemplo: Una empresa edita mil ejemplares semanales de un boletín técnico. Semanalmente se toma una muestra de 200 ejemplares y se verifica si la dirección del destinatario ha sido bien tipeada. El número de errores detectados en la muestra durante las últimas veinte semanas se suministra a continuación, al igual que el Gráfico de Control c, para analizar el proceso. c3cLCI cLCl c3cLCS   
  • 13. 13 Análisis: Como puede observarse en la semana 15 y 16 se da un número de defectos que superan el límite de control superior, por lo cual, se evidencia que el proceso se encuentra fuera de control estadístico, y es importante encontrar la causa especial de variación para eliminarla. Semana Nº Errores 0-16,853-6,85c3cLCI 6,85cLCl 14,706,8536,85c3cLCS    Gráfico de Control c 0 2 4 6 8 10 12 14 16 18 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Muestras c A B C C B A 1 11 2 7 3 4 4 1 5 5 6 13 7 6 8 5 9 3 10 0 11 5 12 7 13 9 14 5 15 17 16 18 17 9 18 5 19 7 20 0 c = 6,85 Gráficos u (número de defectos por unidad) Cuando en los gráficos c el tamaño del subgrupo no es constante o cuando, aunque sea constante, se prefiere cuantificar el número promedio de defectos por unidad en lugar del total de defectos en la muestra, se usa la carta u. Los límites de control en una carta u están dados por: n u 3uLCI uLC n u 3uLCS    Donde u es el número promedio de defectos por unidad en todo el conjunto de datos. Cuando el tamaño de subgrupo, no es constante, entonces n se sustituye por el tamaño promedio de subgrupo, n. Ejemplo: En un hotel se ha venido llevando un registro de quejas de los clientes desde hace 15 semanas junto con el número de clientes por semana. Los datos se muestran en la tabla anexa, al igual que el grafico u resultante. Análisis: Como puede observarse no se detecta ningún patrón que indique alguna variación especial en el proceso, por lo que se considera bajo control estadístico. Semana Clientes Quejas 0.08 2195 184 u  146 15 2.195 n  0,009 146 0,08 3-0,08 n u 3uLCI 0,08uLC 0,15 146 0,08 30,08 n u 3uLCS    1 114 11 2 153 15 3 115 5 4 174 14 5 157 16 6 219 11
  • 14. 14 0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15u Muestras Gráfico de Control u A B C C B A 7 149 10 8 147 9 9 131 10 10 91 10 11 112 10 12 158 11 13 244 30 14 111 11 15 120 11 Total 2.195 184 BIBLIOGRAFÍA BESTERFIELD, Dale (1995). CONTROL DE LA CALIDAD. Cuarta Edición. Prentice Hall Hispanoamericana, S.A. México. PP 508. FEIGENBAUM, Armand (1986). CONTROL TOTAL DE LA CALIDAD. Novena Edición. Ediciones CECSA. México. PP 871. EVANS, James y LINDSAY, William (2000). ADMINISTRACIÓN Y CONTROL DE LA CALIDAD. Cuarta Edición. International Thomson Editores. México. GRANT, Eugene (1987). CONTROL ESTADÍSTICO DE CALIDAD. Quinta Reimpresión CECSA. México GUTIERREZ, Humberto (1997). CALIDAD TOTAL Y PRODUCTIVIDAD. Primera Edición. Mc Graw Hill. México. PP 522 HITOSHI, Kume (1992). HERRAMIENTAS ESTADÍSTICAS BÁSICAS PARA EL MEJORAMIENTO DE LA CALIDAD. Grupo Editorial Norma. Colombia. PP 232. ISHIKAWA. Kaouru (1985). GUÍA DE CONTROL DE CALIDAD. UNIPUB. Estados Unidos de América. PP 216.
  • 15. 15 RESUMEN DE FORMULAS PARA GRÁFICOS DE CONTROL PARA VARIABLES GRÁFICO DE CONTROL OBJETIVO FORMULAS OBSERVACIONES X Medias o Promedio Registra la variación experimentada en el valor promedio de las muestras, cuando la característica de calidad del producto que se está midiendo toma valores continuos. Cuando se usa con Gráfico R RAXLCI XLC RAXLCS 2 2    Esta gráfica debe usarse en combinación con una gráfica R para controlar la variación dentro de un subgrupo. X Individuales Se usa cuando los datos de un proceso se registran durantes intervalos largos o los subgrupos no son efectivos, registrando valores individuales de variables continuas.                                      1.128 R 3X d R 3XLCI XLC 1.128 R 3X d R 3XLCS 2 2 Se usa únicamente en combinación con la Gráfica R. Debido a que no hay subgrupo y el valor de R no se puede calcular, se usa el rango móvil de datos sucesivos para el cálculo de los límites de control. R Rango Se usa para estudiar la variabilidad dentro de las muestras, cuando la característica de calidad del producto que se está midiendo toma valores continuos. RDLCI RLC RDLCS 3 4    Se usa en combinación con una gráfica X cuando n < 10. RESUMEN DE FORMULAS PARA GRÁFICOS DE CONTROL PARA ATRIBUTOS GRÁFICO DE CONTROL OBJETIVO FORMULAS OBSERVACIONES p Fracción o proporción de unidades defectuosas Sirve para controlar la fracción de unidades defectuosas. n )p(1p 3pLCI pLC n )p(1p 3pLCS      El tamaño de la muestra, n, puede ser constante o variable. pn Número de unidades defectuosas Registra el número de unidades defectuosas. p)(1pn3pnLCI pnLC p)(1pn3pnLCS    El tamaño de la muestra, n, debe ser constante. c Número de defectos Registra y controla el número de defectos. c3cLCI cLCl c3cLCS    El tamaño de la muestra, n, debe ser constante. u Número de defectos por unidad Registra y controla el número de defectos por unidad de la muestra. n u 3uLCI uLC n u 3uLCS    El tamaño de la muestra, n, puede ser variable o constante.
  • 16. 16 Índice Cp: 6 EI)-(ES Cp  , 2d R  Cpk 3σ XES   Índice minCpk  Cpk 3σ EIX   TABLA DE CONSTANTES PARA GRÁFICOS DE CONTROL n d2 A2 d3 D3 D4 2 1.128 1.880 0.853 0.000 3.267 3 1.693 1.023 0.888 0.000 2.575 4 2.059 0.729 0.880 0.000 2.282 5 2.326 0.577 0.864 0.000 2.115 6 2.534 0.483 0.848 0.000 2.004 7 2.704 0.419 0.833 0.076 1.924 8 2.847 0.373 0.820 0.136 1.864 9 2.970 0.337 0.808 0.187 1.816 10 3.078 0.308 0.797 0.223 1.777 11 3.173 0.285 0.787 0.256 1.744 12 3.258 0.266 0.778 0.284 1.716 13 3.336 0.249 0.770 0.308 1.692 14 3.407 0.235 0.763 0.329 1.671 15 3.472 0.223 0.756 0.348 1.652 16 3.532 0.212 0.750 0.640 1.636 17 3.588 0.203 0.744 0.379 1.621 18 3.640 0.194 0.739 0.392 1.608 19 3.689 0.187 0.734 0.404 1.596 20 3.735 0.180 0.729 0.414 1.586 21 3.778 0.173 0.724 0.425 1.575 22 3.819 0.167 0.720 0.434 1.566 23 3.858 0.162 0.716 0.443 1.557 24 3.895 0.157 0.712 0.452 1.548 25 3.931 0.153 0.708 0.459 1.541 Se usa el valor mas bajo de Cpk para el análisis