SlideShare una empresa de Scribd logo
1 de 19
ANDRES BONILLA  ANGEL DARIO CLAVIJO RAFAEL RIVEROS
Una equivalencia lógica es una similitud en grados de verdad existente entre 2 o más expresiones, siendo cualquiera de ellas válidas; es decir cualquiera de estas expresiones puede ser usada en la demostración de un supuesto, sin que ello implique variación en el resultado final por el cambio o sustitución de cualquiera de ellas. La demostración de equivalencias más comúnmente usada es mediante el método de tablas de verdad.
[object Object],[object Object],Sea P, el está informado y Q, el es honesto. Tenemos la siguiente tabla de verdad para demostrar que las anteriores afirmaciones son equivalentes. P Q P Λ Q ~(P Λ Q) ~P v ~Q ~(P Λ Q) ↔ ~P v ~Q V V V F F V V F F V V V F V F V V V F F F V V V
En el algebra declarativa, se manipulan expresiones lógicas donde las variables y las constantes representan valores de verdad. También se manejan esquemas para la solución de equivalencias lógicas. Algunos de estos esquemas son: A  Λ   ~ A ≡ F Esquema 1 A  Λ  F ≡ F Esquema 2 Ejemplo: (P  Λ  Q)  Λ ~ Q ≡ P  Λ  (Q  Λ   ~ Q)  (P  Λ  Q)  Λ ~ Q ≡ P  Λ  F (P  Λ  Q)  Λ ~ Q ≡ F Aplicando el esq. 2 tenemos Aplicando el esq. 3 tenemos Solución
Para hacer más fácil la manipulación de expresiones en el algebra declarativa suele  eliminarse los condicionales y bicondicionales primero antes de ejecutar otros esquemas. Para la eliminación del condicional se usa el siguiente esquema: P ->Q ≡ ~P v ~Q Esquema 4 Para la eliminación del bicondicional se usan los siguientes esquemas: P ↔Q ≡ (P  Λ  Q) v (~P  Λ  ~Q) Esquema 5 P ↔Q ≡ (~P v Q)  Λ  (P v ~Q) Esquema 6 Ejemplo: Elimine los -> y los ↔ de la siguiente expresión. (P->Q  Λ  R) v ((R↔S)  Λ  (Q v S)) (~P v Q  Λ  R) v ((R↔S)  Λ  (Q v S)) (~P v Q  Λ  R) v (((~R v S)  Λ  (R v ~S))  Λ  (Q v S)) Usando el esq. 4 eliminamos el condicional Usando el esq. 6 eliminamos el bicondicional Solución.
LEYES NOMBRE P v ~P ≡ V P  Λ   ~P ≡ F Ley del Medio excluido Ley de Contradicción P v F ≡ P P  Λ  V ≡ P Leyes de Identidad P v V ≡ V P  Λ  F ≡ F Leyes de Dominación P v P ≡ P P  Λ  P ≡ P Leyes de Idempotencia ~(~P) ≡ P Ley de Doble Negación P v Q ≡ Q v P P  Λ  Q ≡ Q  Λ  P Leyes Conmutativas (P v Q) v R ≡ P v (Q v R) (P  Λ  Q)  Λ  R ≡ P  Λ  (Q  Λ  R) Leyes Asociativas (P v Q)  Λ  (P v R) ≡ P v (Q  Λ  R) (P  Λ  Q) v (P  Λ  R) ≡ P  Λ  (Q v R) Leyes Distributivas ~(P  Λ  Q) ≡ ~P v ~Q ~(P v Q) ≡ P  Λ  Q Leyes De Morgan
Simplificar: (P 3   Λ  ~   P 2  Λ  P 3  Λ  ~   P 1 ) v (P 1  Λ  P 3  Λ  ~   P 1 ) Por la ley de la contradicción (P 3   Λ  ~   P 2  Λ  P 3  Λ  ~   P 1 ) v (P 3  Λ  F) Por la ley de Dominación (P 3   Λ  ~   P 2  Λ  P 3  Λ  ~   P 1 ) v F Por la ley de Identidad P 3   Λ  ~   P 2  Λ  P 3  Λ  ~   P 1 Por la ley de Idempotencia en P 3 ~   P 1  Λ  ~   P 2  Λ  P 3  Ordenando tenemos la solución Simplificar: (P  Λ  Q) v (Q  Λ  R) ≡ Q  Λ  (P v R) Por la ley Distributiva Q  Λ  (P v R) ≡ Q  Λ  (P v R) Solución Simplificar: ~(~P  Λ  Q) v P) ≡ F Por la ley del Medio Excluido ~(V  Λ  Q) ≡ F Por la ley de Identidad ~(V) ≡ F Negando V  F ≡ F Solución
Son  formas   estándar  para las expresiones lógicas, existen dos tipos de formas normales,  formas  normales disyuntivas y formas normales conjuntivas. Conjuncion=  Λ  =Y  Disyuncion=V=0 Forma norma disyuntiva Forma normal conjuntiva  Se dice  que   una   expresión   lógica   está  en forma normal  disyuntiva   si   está   escrita   como   una   disyunción , en el  cual   todos  los  términos  son  conjunciones  de  literales . Se dice que una expresion logica está en forma normal conjuntiva si está escrita como una conjunción de  disyunciones de literales.
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Si una función , tal como f, esta dada pon una tabla de verdad, sabemos exactamente para que asignaciones es verdadera, por consiguiente,  podemos seleccionar los términos mínimos que  hacen a la función verdadera y formar la  disyunción  de estos términos mínimos. P Q R F V V V V V V F F V F V V V F F F F V V F F V F F F F V V F F F F
La complementación es un modo eficiente de negar una expresión, es decir el complementario de A es siempre la negación de A. EJEMPLO: A= (P  Λ  Q) v  ~R La complementación puede utilizarse para hallar la forma normal conjuntiva a partir de una tabla de verdad de cualquier función f. Primero se determina la forma normal disyuntiva de ~f y Luego se realiza la complementación. EJEMPLO:   P Q R F V V V V V V F V V F V F V F F F F V V V F V F V F F V F F F F V
En el razonamiento existen argumentos válidos y otros que no lo son; los argumentos no válidos se llaman Falacias. Los patrones de razonamiento pueden expresarse de varias formas, la conclusión se establece después de las premisas y se presenta mediante palabras como “Por tanto”, “En conclusión” y “Como consecuencia” Si el esquema de razonamiento es válido se usa el símbolo╞ para separar las premisas de la conclusión. El símbolo╞ también es usado para denotar tautologías. Un argumento es válido si la conclusión de deduce lógicamente, siempre que se cumplan todas las premisas. Para saber si la conclusión de las premisas es verdadera se toman las premisas y se realiza una conjunción entre ellas. La demostración de la validez entre las premisas y la conclusión se realiza bajo el condicional, si el resultado es una Tautología podemos decir que el razonamiento es válido.
Las equivalencias lógicas crean Implicaciones Lógicas, cualquier implicación lógica se puede demostrar mediante el método de tabla de verdad. Un argumento es válido si las premisas en su conjunto implican lógicamente la conclusión. Si A 1 , A 2 , A 3 ,… A n  son las premisas y C la conclusión, se debe mostrar que la siguiente expresión es una tautología: A 1 Λ  A 2  Λ  A 3 …  Λ  A n  -> C Para poder demostrar una implicación mediante el método de tabla de verdad, se escriben en columnas cada una de las partes de la expresión y en una columna con el rótulo de PREMISAS se escribe el valor de verdad mediante la conjunción entre las premisas, también se reserva otra columna con el rótulo de VÁLIDO la cual nos indicara si las premisas implican o no la conclusión; tal como se puede apreciar en el ejemplo.
Considere la siguiente expresión P->Q, Q->R╞ P->R y demuestre si es válida la conclusión respecto de las premisas. Como se puede apreciar en la anterior tabla de verdad, la conclusión es válida, puesto que todas las asignaciones posibles conducen a V en la columna válido. P Q R (P->Q) (Q->R) PREMISAS (P->R) VÁLIDO V V V V V V V V V V F V F F F V V F V F V F V V V F F F V F F V F V V V V V V V F V F V F F V V F F V V V V V V F F F V V V V V
Muchos argumentos lógicos, son, argumentos compuestos en el sentido de que la conclusión de un argumento es la premisa para el próximo. Toda demostración es una secuencia de tales argumentos. El siguiente ejemplo tiene que ver con el razonamiento usado por Sherlock Holmes en relación con un asesinato en particular 1 : “ Y ahora llegamos a la gran pregunta del porqué. El robo no ha sido el objeto del asesinato, puesto que nada desapareció ¿Fue por motivos políticos o fue una mujer? Ésta es la pregunta con que me enfrento. Desde el principio me he inclinado hacia esta última suposición. Los asesinos políticos se complacen demasiado en hacer sólo su trabajo y huir. Este asesinato, por el contrario, había sido realizado muy deliberadamente, y quien lo perpetró ha dejado huellas por toda la habitación, mostrando que estuvo ahí todo el tiempo.” Para expresar esta cita, utilizamos las siguientes variables proposicionales: P 1 : Fue un robo. P 2 : Algo desapareció. P 3 : Fue político. P 4 : Fue una mujer. P 5 : El asesino huyó inmediatamente. P 6 : El asesino dejó huellas por toda la habitación. 1  Citado de  Un Estudio en Escarlata
La siguiente tabla nos muestra la demostración de la motivación del crimen, obsérvese que tras cada premisa aparece una nueva de acuerdo al enunciado y a la premisa anterior, también aparecen nuevas premisas por medio de las reglas de inferencia. MP: Modus Ponens MT: Modus Tollens SD: Silogismo Disyuntivo DERIVACION FORMAL REGLA COMENTARIO 1. P 1 -> P 2 Premisa Si fue un robo,  hubiera desaparecido algo. 2. ~P 2 Premisa No desapareció nada. 3. ~P 1 1,2, MT No fue un robo. 4. ~P 1  -> P 3  v P 4 Premisa Si no fue un robo, fue algo político o fue una mujer. 5. P 3  v P 4 3,4, MP Fue político, o una mujer. 6. P 3  -> P 5 Premisa Si hubiera sido algo político, el asesino hubiera huido inmediatamente. 7. P 6  -> ~P 5 Premisa Si el asesino dejó huellas por toda la habitación, no pudo haber huido inmediatamente. 8. P 6 Premisa El asesino dejó huellas por toda la habitación. 9. ~P 5 7,8, MP El asesino no huyó inmediatamente. 10. ~P 3 6,9, MT No fue político. 11. P 4 5,10, SD Por consiguiente, fue una mujer.
Son demostraciones formalizadas, estos sistemas de derivaciones tienen unas características en común: * Existe una lista de argumentos lógicos admisibles, llamados Reglas de Inferencia. * Es una lista de expresiones lógicas que originalmente se encuentra vacía, se le pueden ir añadiendo expresiones si constituyen una premisa o si pueden obtenerse a partir de expresiones previas aplicando alguna regla de inferencia. Este proceso se continúa hasta que se alcanza la conclusión. * Las reglas de inferencia deben ser elegidas de forma tal que solo se deriven resultados válidos. * Un sistema para hacer derivaciones no solo debe ser válido sino completo.
REGLA NOMBRE A, B ╞ A  Λ  B Ley de Combinación A  Λ  B ╞ B Ley de Simplificación A  Λ  B╞ A Variante de la ley de Simplificación A ╞ A v B Ley de Adición B ╞ A v B Variante de la ley de Adición A, A -> B╞ B Modus Ponens ~B, A -> B╞ ~A Modus Tollens A -> B, B -> C╞ A -> C Silogismo Hipotético A v B, ~A╞ B Silogismo Disyuntivo A v B, ~B╞ A Variante del Silogismo Disyuntivo A -> B, ~A -> B╞ B Ley de Casos A ↔ B╞  A -> B Eliminación de la Equivalencia A ↔ B╞  B -> A Variación de eliminación de la equivalencia  A -> B, B -> A╞ A ↔ B Introducción de la equivalencia A, ~A╞ B Ley de Inconsistencia
Para demostrar A -> B en matemáticas, se utiliza con frecuencia el siguiente argumento informal: 1. Se supone A, y se añade A a las premisas. 2 Se demuestra B, utilizando A si es necesario. 3 Se prescinde de A, lo que significa que A no es necesariamente verdadera y se escribe A -> B. TEOREMA 1:  Sean A y B dos expresiones, y sean A 1 , A 2 , A 3  … las premisas. Si B, A 1 , A 2 , A 3 … juntos implican lógicamente C, entonces A 1 , A 2 , A 3 ,… implican lógicamente B -> C Ejemplo: Una pareja tiene un niño, y están esperando un segundo hijo. Demostrar que si el segundo niño es una niña entonces la pareja tendrá una niña y un niño. Solución: Sea P “El primer hijo es un niño”. Sea Q “el segundo hijo es una niña”. Queremos demostrar Q -> P  Λ  Q, dado que la premisa es P. De acuerdo al teorema de la deducción puede hacerse como sigue: 1. P es verdadero: la pareja tiene un niño. 2. Se supone Q; esto es, se supone que el segundo hijo es una niña. 3. A partir de P y Q se concluye P  Λ  Q por la ley de Combinación. 4. En este momento concluimos que Q -> P  Λ  Q, es trivialmente verdadera aun si Q resulta falsa, si resulta verdadera puede ser licenciada la conclusión.

Más contenido relacionado

La actualidad más candente (20)

Leyes del algebra proposicional
Leyes del algebra proposicionalLeyes del algebra proposicional
Leyes del algebra proposicional
 
Inferencia LóGica
Inferencia LóGicaInferencia LóGica
Inferencia LóGica
 
Leyes de algebra proposicional
Leyes de algebra proposicionalLeyes de algebra proposicional
Leyes de algebra proposicional
 
Lógica Sesión N°3
Lógica Sesión N°3Lógica Sesión N°3
Lógica Sesión N°3
 
LÓGICA MATEMATICA
LÓGICA MATEMATICALÓGICA MATEMATICA
LÓGICA MATEMATICA
 
Proposiciones
ProposicionesProposiciones
Proposiciones
 
taller de la espol sobre la primera unidad
taller de la espol sobre la primera unidad taller de la espol sobre la primera unidad
taller de la espol sobre la primera unidad
 
Conectivos logicos
Conectivos logicosConectivos logicos
Conectivos logicos
 
Proposiciones
ProposicionesProposiciones
Proposiciones
 
TAUTOLOGÍA .
TAUTOLOGÍA .TAUTOLOGÍA .
TAUTOLOGÍA .
 
Logica matematica
Logica matematicaLogica matematica
Logica matematica
 
Lógica proposicional
Lógica proposicionalLógica proposicional
Lógica proposicional
 
Algebra proposicional
Algebra proposicionalAlgebra proposicional
Algebra proposicional
 
simplificación inferencias gestión
 simplificación inferencias gestión simplificación inferencias gestión
simplificación inferencias gestión
 
Leyes De Lógica
Leyes De LógicaLeyes De Lógica
Leyes De Lógica
 
Lógico mat. c 3 equivalencia lógica.
Lógico mat. c 3 equivalencia lógica.Lógico mat. c 3 equivalencia lógica.
Lógico mat. c 3 equivalencia lógica.
 
Taller2 Logica Proposicional
Taller2 Logica ProposicionalTaller2 Logica Proposicional
Taller2 Logica Proposicional
 
VALIDEZ DE UNA INFERENCIA: MÉTODO ABREVIADO
VALIDEZ DE UNA INFERENCIA: MÉTODO ABREVIADO VALIDEZ DE UNA INFERENCIA: MÉTODO ABREVIADO
VALIDEZ DE UNA INFERENCIA: MÉTODO ABREVIADO
 
Logica proposicional
Logica proposicionalLogica proposicional
Logica proposicional
 
PRESENTACION DE TABLAS DE VERDAD
PRESENTACION DE TABLAS DE VERDADPRESENTACION DE TABLAS DE VERDAD
PRESENTACION DE TABLAS DE VERDAD
 

Destacado

Tablas de verdad
Tablas de verdadTablas de verdad
Tablas de verdadverocha66
 
Las tablas de verdad
Las tablas de verdadLas tablas de verdad
Las tablas de verdadJudith Wuera
 
Introduccion a Tablas de Verdad
Introduccion a Tablas de VerdadIntroduccion a Tablas de Verdad
Introduccion a Tablas de Verdadalipichu
 
Redacción de justificación, objetivos y alcance
Redacción de justificación, objetivos y alcanceRedacción de justificación, objetivos y alcance
Redacción de justificación, objetivos y alcanceBarbie López
 

Destacado (8)

El lenguaje simbólico y natural en la clase de matemática
El lenguaje simbólico y natural en la clase de matemáticaEl lenguaje simbólico y natural en la clase de matemática
El lenguaje simbólico y natural en la clase de matemática
 
Tablas de verdad
Tablas de verdadTablas de verdad
Tablas de verdad
 
Las tablas de verdad
Las tablas de verdadLas tablas de verdad
Las tablas de verdad
 
Introduccion a Tablas de Verdad
Introduccion a Tablas de VerdadIntroduccion a Tablas de Verdad
Introduccion a Tablas de Verdad
 
Modulo logica matematica
Modulo  logica matematicaModulo  logica matematica
Modulo logica matematica
 
Argumentos de validez
Argumentos de validezArgumentos de validez
Argumentos de validez
 
LóGica Proposicional
LóGica ProposicionalLóGica Proposicional
LóGica Proposicional
 
Redacción de justificación, objetivos y alcance
Redacción de justificación, objetivos y alcanceRedacción de justificación, objetivos y alcance
Redacción de justificación, objetivos y alcance
 

Similar a Tablas De Verdad

Diapositivas estructura discreta
Diapositivas estructura discretaDiapositivas estructura discreta
Diapositivas estructura discretaGer Castillo
 
Diapositivas estructura discreta
Diapositivas estructura discretaDiapositivas estructura discreta
Diapositivas estructura discretaGer Castillo
 
calculo proposicional
calculo proposicionalcalculo proposicional
calculo proposicionalCarlos Veliz
 
Estructuras discretas (Proposiciones)
Estructuras discretas (Proposiciones)Estructuras discretas (Proposiciones)
Estructuras discretas (Proposiciones)pedrobombace
 
Proposicionesuft 121103193805-phpapp01
Proposicionesuft 121103193805-phpapp01Proposicionesuft 121103193805-phpapp01
Proposicionesuft 121103193805-phpapp01yapa50
 
Universidad fermin toro esctructura discreta
Universidad fermin toro esctructura discretaUniversidad fermin toro esctructura discreta
Universidad fermin toro esctructura discretaIvan Bernal
 
Gregory cordero est. disc. unidad i
Gregory cordero est. disc. unidad iGregory cordero est. disc. unidad i
Gregory cordero est. disc. unidad i14879114
 
Asignacion1.deximarboza
Asignacion1.deximarbozaAsignacion1.deximarboza
Asignacion1.deximarbozaDeximar Boza
 
argumentos logicos 1.pptx
argumentos logicos  1.pptxargumentos logicos  1.pptx
argumentos logicos 1.pptxEnriqueSermeo
 
Unid1 ed juan abreu
Unid1 ed juan abreuUnid1 ed juan abreu
Unid1 ed juan abreujuanabreuri
 
Unid1 ED Juan Abreu
Unid1 ED Juan AbreuUnid1 ED Juan Abreu
Unid1 ED Juan Abreujuanabreuri
 
Estructura
EstructuraEstructura
Estructurapregiver
 
argumentos logicos.pptx
argumentos logicos.pptxargumentos logicos.pptx
argumentos logicos.pptxEnriqueSermeo
 
Proposiciones - ESD
Proposiciones  - ESDProposiciones  - ESD
Proposiciones - ESDradilfs
 
C4_Leyes Logicas_def.pdf
C4_Leyes Logicas_def.pdfC4_Leyes Logicas_def.pdf
C4_Leyes Logicas_def.pdfJasonZge
 
Unidad i estructuras discretas
Unidad i estructuras discretasUnidad i estructuras discretas
Unidad i estructuras discretasYessica Fernandez
 

Similar a Tablas De Verdad (20)

Diapositivas estructura discreta
Diapositivas estructura discretaDiapositivas estructura discreta
Diapositivas estructura discreta
 
Diapositivas estructura discreta
Diapositivas estructura discretaDiapositivas estructura discreta
Diapositivas estructura discreta
 
calculo proposicional
calculo proposicionalcalculo proposicional
calculo proposicional
 
Estructuras discretas (Proposiciones)
Estructuras discretas (Proposiciones)Estructuras discretas (Proposiciones)
Estructuras discretas (Proposiciones)
 
Introducción a la lógica
Introducción a la lógicaIntroducción a la lógica
Introducción a la lógica
 
Unidad1 discreta
Unidad1 discretaUnidad1 discreta
Unidad1 discreta
 
Proposicionesuft 121103193805-phpapp01
Proposicionesuft 121103193805-phpapp01Proposicionesuft 121103193805-phpapp01
Proposicionesuft 121103193805-phpapp01
 
Unidad 1 discreta
Unidad 1 discretaUnidad 1 discreta
Unidad 1 discreta
 
Universidad fermin toro esctructura discreta
Universidad fermin toro esctructura discretaUniversidad fermin toro esctructura discreta
Universidad fermin toro esctructura discreta
 
Gregory cordero est. disc. unidad i
Gregory cordero est. disc. unidad iGregory cordero est. disc. unidad i
Gregory cordero est. disc. unidad i
 
Asignacion1.deximarboza
Asignacion1.deximarbozaAsignacion1.deximarboza
Asignacion1.deximarboza
 
argumentos logicos 1.pptx
argumentos logicos  1.pptxargumentos logicos  1.pptx
argumentos logicos 1.pptx
 
Unid1 ed juan abreu
Unid1 ed juan abreuUnid1 ed juan abreu
Unid1 ed juan abreu
 
Unid1 ED Juan Abreu
Unid1 ED Juan AbreuUnid1 ED Juan Abreu
Unid1 ED Juan Abreu
 
Unid1 ed juan_abreu
Unid1 ed juan_abreuUnid1 ed juan_abreu
Unid1 ed juan_abreu
 
Estructura
EstructuraEstructura
Estructura
 
argumentos logicos.pptx
argumentos logicos.pptxargumentos logicos.pptx
argumentos logicos.pptx
 
Proposiciones - ESD
Proposiciones  - ESDProposiciones  - ESD
Proposiciones - ESD
 
C4_Leyes Logicas_def.pdf
C4_Leyes Logicas_def.pdfC4_Leyes Logicas_def.pdf
C4_Leyes Logicas_def.pdf
 
Unidad i estructuras discretas
Unidad i estructuras discretasUnidad i estructuras discretas
Unidad i estructuras discretas
 

Último

informacion-finanTFHHETHAETHciera-2022.pdf
informacion-finanTFHHETHAETHciera-2022.pdfinformacion-finanTFHHETHAETHciera-2022.pdf
informacion-finanTFHHETHAETHciera-2022.pdfPriscilaBermello
 
modulo+penal+del+16+al+20+hhggde+enero.pdf
modulo+penal+del+16+al+20+hhggde+enero.pdfmodulo+penal+del+16+al+20+hhggde+enero.pdf
modulo+penal+del+16+al+20+hhggde+enero.pdfmisssusanalrescate01
 
ADMINISTRACION FINANCIERA CAPITULO 4.pdf
ADMINISTRACION FINANCIERA CAPITULO 4.pdfADMINISTRACION FINANCIERA CAPITULO 4.pdf
ADMINISTRACION FINANCIERA CAPITULO 4.pdfguillencuevaadrianal
 
Como Construir Un Modelo De Negocio.pdf nociones basicas
Como Construir Un Modelo De Negocio.pdf   nociones basicasComo Construir Un Modelo De Negocio.pdf   nociones basicas
Como Construir Un Modelo De Negocio.pdf nociones basicasoscarhernandez98241
 
PPT DIAGNOSTICO DAFO Y CAME MEGAPUERTO CHANCAY
PPT DIAGNOSTICO DAFO Y CAME MEGAPUERTO CHANCAYPPT DIAGNOSTICO DAFO Y CAME MEGAPUERTO CHANCAY
PPT DIAGNOSTICO DAFO Y CAME MEGAPUERTO CHANCAYCarlosAlbertoVillafu3
 
el impuesto genera A LAS LAS lasventas IGV
el impuesto genera A LAS  LAS lasventas IGVel impuesto genera A LAS  LAS lasventas IGV
el impuesto genera A LAS LAS lasventas IGVTeresa Rc
 
Clase 2 Ecosistema Emprendedor en Chile.
Clase 2 Ecosistema Emprendedor en Chile.Clase 2 Ecosistema Emprendedor en Chile.
Clase 2 Ecosistema Emprendedor en Chile.Gonzalo Morales Esparza
 
COPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESA
COPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESACOPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESA
COPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESADanielAndresBrand
 
Efectos del cambio climatico en huanuco.pptx
Efectos del cambio climatico en huanuco.pptxEfectos del cambio climatico en huanuco.pptx
Efectos del cambio climatico en huanuco.pptxCONSTRUCTORAEINVERSI3
 
PIA MATEMATICAS FINANCIERAS SOBRE PROBLEMAS DE ANUALIDAD.pptx
PIA MATEMATICAS FINANCIERAS SOBRE PROBLEMAS DE ANUALIDAD.pptxPIA MATEMATICAS FINANCIERAS SOBRE PROBLEMAS DE ANUALIDAD.pptx
PIA MATEMATICAS FINANCIERAS SOBRE PROBLEMAS DE ANUALIDAD.pptxJosePuentePadronPuen
 
EGLA CORP - Honduras Abril 27 , 2024.pptx
EGLA CORP - Honduras Abril 27 , 2024.pptxEGLA CORP - Honduras Abril 27 , 2024.pptx
EGLA CORP - Honduras Abril 27 , 2024.pptxDr. Edwin Hernandez
 
Modelo de convenio de pago con morosos del condominio (GENÉRICO).docx
Modelo de convenio de pago con morosos del condominio (GENÉRICO).docxModelo de convenio de pago con morosos del condominio (GENÉRICO).docx
Modelo de convenio de pago con morosos del condominio (GENÉRICO).docxedwinrojas836235
 
Gestion de rendicion de cuentas viaticos.pptx
Gestion de rendicion de cuentas viaticos.pptxGestion de rendicion de cuentas viaticos.pptx
Gestion de rendicion de cuentas viaticos.pptxignaciomiguel162
 
Presentación Final Riesgo de Crédito.pptx
Presentación Final Riesgo de Crédito.pptxPresentación Final Riesgo de Crédito.pptx
Presentación Final Riesgo de Crédito.pptxIvnAndres5
 
Nota de clase 72 aspectos sobre salario, nomina y parafiscales.pdf
Nota de clase 72 aspectos sobre salario, nomina y parafiscales.pdfNota de clase 72 aspectos sobre salario, nomina y parafiscales.pdf
Nota de clase 72 aspectos sobre salario, nomina y parafiscales.pdfJUANMANUELLOPEZPEREZ
 
diseño de redes en la cadena de suministro.pptx
diseño de redes en la cadena de suministro.pptxdiseño de redes en la cadena de suministro.pptx
diseño de redes en la cadena de suministro.pptxjuanleivagdf
 
Ejemplo Caso: El Juego de la negociación
Ejemplo Caso: El Juego de la negociaciónEjemplo Caso: El Juego de la negociación
Ejemplo Caso: El Juego de la negociaciónlicmarinaglez
 
Buenas Practicas de Almacenamiento en droguerias
Buenas Practicas de Almacenamiento en drogueriasBuenas Practicas de Almacenamiento en droguerias
Buenas Practicas de Almacenamiento en drogueriasmaicholfc
 
DELITOS CONTRA LA GESTION PUBLICA PPT.pdf
DELITOS CONTRA LA GESTION PUBLICA PPT.pdfDELITOS CONTRA LA GESTION PUBLICA PPT.pdf
DELITOS CONTRA LA GESTION PUBLICA PPT.pdfJaquelinRamos6
 

Último (20)

informacion-finanTFHHETHAETHciera-2022.pdf
informacion-finanTFHHETHAETHciera-2022.pdfinformacion-finanTFHHETHAETHciera-2022.pdf
informacion-finanTFHHETHAETHciera-2022.pdf
 
modulo+penal+del+16+al+20+hhggde+enero.pdf
modulo+penal+del+16+al+20+hhggde+enero.pdfmodulo+penal+del+16+al+20+hhggde+enero.pdf
modulo+penal+del+16+al+20+hhggde+enero.pdf
 
ADMINISTRACION FINANCIERA CAPITULO 4.pdf
ADMINISTRACION FINANCIERA CAPITULO 4.pdfADMINISTRACION FINANCIERA CAPITULO 4.pdf
ADMINISTRACION FINANCIERA CAPITULO 4.pdf
 
Como Construir Un Modelo De Negocio.pdf nociones basicas
Como Construir Un Modelo De Negocio.pdf   nociones basicasComo Construir Un Modelo De Negocio.pdf   nociones basicas
Como Construir Un Modelo De Negocio.pdf nociones basicas
 
PPT DIAGNOSTICO DAFO Y CAME MEGAPUERTO CHANCAY
PPT DIAGNOSTICO DAFO Y CAME MEGAPUERTO CHANCAYPPT DIAGNOSTICO DAFO Y CAME MEGAPUERTO CHANCAY
PPT DIAGNOSTICO DAFO Y CAME MEGAPUERTO CHANCAY
 
el impuesto genera A LAS LAS lasventas IGV
el impuesto genera A LAS  LAS lasventas IGVel impuesto genera A LAS  LAS lasventas IGV
el impuesto genera A LAS LAS lasventas IGV
 
Clase 2 Ecosistema Emprendedor en Chile.
Clase 2 Ecosistema Emprendedor en Chile.Clase 2 Ecosistema Emprendedor en Chile.
Clase 2 Ecosistema Emprendedor en Chile.
 
COPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESA
COPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESACOPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESA
COPASST Y COMITE DE CONVIVENCIA.pptx DE LA EMPRESA
 
Efectos del cambio climatico en huanuco.pptx
Efectos del cambio climatico en huanuco.pptxEfectos del cambio climatico en huanuco.pptx
Efectos del cambio climatico en huanuco.pptx
 
PIA MATEMATICAS FINANCIERAS SOBRE PROBLEMAS DE ANUALIDAD.pptx
PIA MATEMATICAS FINANCIERAS SOBRE PROBLEMAS DE ANUALIDAD.pptxPIA MATEMATICAS FINANCIERAS SOBRE PROBLEMAS DE ANUALIDAD.pptx
PIA MATEMATICAS FINANCIERAS SOBRE PROBLEMAS DE ANUALIDAD.pptx
 
EGLA CORP - Honduras Abril 27 , 2024.pptx
EGLA CORP - Honduras Abril 27 , 2024.pptxEGLA CORP - Honduras Abril 27 , 2024.pptx
EGLA CORP - Honduras Abril 27 , 2024.pptx
 
Modelo de convenio de pago con morosos del condominio (GENÉRICO).docx
Modelo de convenio de pago con morosos del condominio (GENÉRICO).docxModelo de convenio de pago con morosos del condominio (GENÉRICO).docx
Modelo de convenio de pago con morosos del condominio (GENÉRICO).docx
 
Gestion de rendicion de cuentas viaticos.pptx
Gestion de rendicion de cuentas viaticos.pptxGestion de rendicion de cuentas viaticos.pptx
Gestion de rendicion de cuentas viaticos.pptx
 
Presentación Final Riesgo de Crédito.pptx
Presentación Final Riesgo de Crédito.pptxPresentación Final Riesgo de Crédito.pptx
Presentación Final Riesgo de Crédito.pptx
 
Nota de clase 72 aspectos sobre salario, nomina y parafiscales.pdf
Nota de clase 72 aspectos sobre salario, nomina y parafiscales.pdfNota de clase 72 aspectos sobre salario, nomina y parafiscales.pdf
Nota de clase 72 aspectos sobre salario, nomina y parafiscales.pdf
 
diseño de redes en la cadena de suministro.pptx
diseño de redes en la cadena de suministro.pptxdiseño de redes en la cadena de suministro.pptx
diseño de redes en la cadena de suministro.pptx
 
Ejemplo Caso: El Juego de la negociación
Ejemplo Caso: El Juego de la negociaciónEjemplo Caso: El Juego de la negociación
Ejemplo Caso: El Juego de la negociación
 
Tarea-4-Estadistica-Descriptiva-Materia.ppt
Tarea-4-Estadistica-Descriptiva-Materia.pptTarea-4-Estadistica-Descriptiva-Materia.ppt
Tarea-4-Estadistica-Descriptiva-Materia.ppt
 
Buenas Practicas de Almacenamiento en droguerias
Buenas Practicas de Almacenamiento en drogueriasBuenas Practicas de Almacenamiento en droguerias
Buenas Practicas de Almacenamiento en droguerias
 
DELITOS CONTRA LA GESTION PUBLICA PPT.pdf
DELITOS CONTRA LA GESTION PUBLICA PPT.pdfDELITOS CONTRA LA GESTION PUBLICA PPT.pdf
DELITOS CONTRA LA GESTION PUBLICA PPT.pdf
 

Tablas De Verdad

  • 1. ANDRES BONILLA ANGEL DARIO CLAVIJO RAFAEL RIVEROS
  • 2. Una equivalencia lógica es una similitud en grados de verdad existente entre 2 o más expresiones, siendo cualquiera de ellas válidas; es decir cualquiera de estas expresiones puede ser usada en la demostración de un supuesto, sin que ello implique variación en el resultado final por el cambio o sustitución de cualquiera de ellas. La demostración de equivalencias más comúnmente usada es mediante el método de tablas de verdad.
  • 3.
  • 4. En el algebra declarativa, se manipulan expresiones lógicas donde las variables y las constantes representan valores de verdad. También se manejan esquemas para la solución de equivalencias lógicas. Algunos de estos esquemas son: A Λ ~ A ≡ F Esquema 1 A Λ F ≡ F Esquema 2 Ejemplo: (P Λ Q) Λ ~ Q ≡ P Λ (Q Λ ~ Q) (P Λ Q) Λ ~ Q ≡ P Λ F (P Λ Q) Λ ~ Q ≡ F Aplicando el esq. 2 tenemos Aplicando el esq. 3 tenemos Solución
  • 5. Para hacer más fácil la manipulación de expresiones en el algebra declarativa suele eliminarse los condicionales y bicondicionales primero antes de ejecutar otros esquemas. Para la eliminación del condicional se usa el siguiente esquema: P ->Q ≡ ~P v ~Q Esquema 4 Para la eliminación del bicondicional se usan los siguientes esquemas: P ↔Q ≡ (P Λ Q) v (~P Λ ~Q) Esquema 5 P ↔Q ≡ (~P v Q) Λ (P v ~Q) Esquema 6 Ejemplo: Elimine los -> y los ↔ de la siguiente expresión. (P->Q Λ R) v ((R↔S) Λ (Q v S)) (~P v Q Λ R) v ((R↔S) Λ (Q v S)) (~P v Q Λ R) v (((~R v S) Λ (R v ~S)) Λ (Q v S)) Usando el esq. 4 eliminamos el condicional Usando el esq. 6 eliminamos el bicondicional Solución.
  • 6. LEYES NOMBRE P v ~P ≡ V P Λ ~P ≡ F Ley del Medio excluido Ley de Contradicción P v F ≡ P P Λ V ≡ P Leyes de Identidad P v V ≡ V P Λ F ≡ F Leyes de Dominación P v P ≡ P P Λ P ≡ P Leyes de Idempotencia ~(~P) ≡ P Ley de Doble Negación P v Q ≡ Q v P P Λ Q ≡ Q Λ P Leyes Conmutativas (P v Q) v R ≡ P v (Q v R) (P Λ Q) Λ R ≡ P Λ (Q Λ R) Leyes Asociativas (P v Q) Λ (P v R) ≡ P v (Q Λ R) (P Λ Q) v (P Λ R) ≡ P Λ (Q v R) Leyes Distributivas ~(P Λ Q) ≡ ~P v ~Q ~(P v Q) ≡ P Λ Q Leyes De Morgan
  • 7. Simplificar: (P 3 Λ ~ P 2 Λ P 3 Λ ~ P 1 ) v (P 1 Λ P 3 Λ ~ P 1 ) Por la ley de la contradicción (P 3 Λ ~ P 2 Λ P 3 Λ ~ P 1 ) v (P 3 Λ F) Por la ley de Dominación (P 3 Λ ~ P 2 Λ P 3 Λ ~ P 1 ) v F Por la ley de Identidad P 3 Λ ~ P 2 Λ P 3 Λ ~ P 1 Por la ley de Idempotencia en P 3 ~ P 1 Λ ~ P 2 Λ P 3 Ordenando tenemos la solución Simplificar: (P Λ Q) v (Q Λ R) ≡ Q Λ (P v R) Por la ley Distributiva Q Λ (P v R) ≡ Q Λ (P v R) Solución Simplificar: ~(~P Λ Q) v P) ≡ F Por la ley del Medio Excluido ~(V Λ Q) ≡ F Por la ley de Identidad ~(V) ≡ F Negando V F ≡ F Solución
  • 8. Son formas estándar para las expresiones lógicas, existen dos tipos de formas normales, formas normales disyuntivas y formas normales conjuntivas. Conjuncion= Λ =Y Disyuncion=V=0 Forma norma disyuntiva Forma normal conjuntiva Se dice que una expresión lógica está en forma normal disyuntiva si está escrita como una disyunción , en el cual todos los términos son conjunciones de literales . Se dice que una expresion logica está en forma normal conjuntiva si está escrita como una conjunción de disyunciones de literales.
  • 9.
  • 10. Si una función , tal como f, esta dada pon una tabla de verdad, sabemos exactamente para que asignaciones es verdadera, por consiguiente, podemos seleccionar los términos mínimos que hacen a la función verdadera y formar la disyunción de estos términos mínimos. P Q R F V V V V V V F F V F V V V F F F F V V F F V F F F F V V F F F F
  • 11. La complementación es un modo eficiente de negar una expresión, es decir el complementario de A es siempre la negación de A. EJEMPLO: A= (P Λ Q) v ~R La complementación puede utilizarse para hallar la forma normal conjuntiva a partir de una tabla de verdad de cualquier función f. Primero se determina la forma normal disyuntiva de ~f y Luego se realiza la complementación. EJEMPLO: P Q R F V V V V V V F V V F V F V F F F F V V V F V F V F F V F F F F V
  • 12. En el razonamiento existen argumentos válidos y otros que no lo son; los argumentos no válidos se llaman Falacias. Los patrones de razonamiento pueden expresarse de varias formas, la conclusión se establece después de las premisas y se presenta mediante palabras como “Por tanto”, “En conclusión” y “Como consecuencia” Si el esquema de razonamiento es válido se usa el símbolo╞ para separar las premisas de la conclusión. El símbolo╞ también es usado para denotar tautologías. Un argumento es válido si la conclusión de deduce lógicamente, siempre que se cumplan todas las premisas. Para saber si la conclusión de las premisas es verdadera se toman las premisas y se realiza una conjunción entre ellas. La demostración de la validez entre las premisas y la conclusión se realiza bajo el condicional, si el resultado es una Tautología podemos decir que el razonamiento es válido.
  • 13. Las equivalencias lógicas crean Implicaciones Lógicas, cualquier implicación lógica se puede demostrar mediante el método de tabla de verdad. Un argumento es válido si las premisas en su conjunto implican lógicamente la conclusión. Si A 1 , A 2 , A 3 ,… A n son las premisas y C la conclusión, se debe mostrar que la siguiente expresión es una tautología: A 1 Λ A 2 Λ A 3 … Λ A n -> C Para poder demostrar una implicación mediante el método de tabla de verdad, se escriben en columnas cada una de las partes de la expresión y en una columna con el rótulo de PREMISAS se escribe el valor de verdad mediante la conjunción entre las premisas, también se reserva otra columna con el rótulo de VÁLIDO la cual nos indicara si las premisas implican o no la conclusión; tal como se puede apreciar en el ejemplo.
  • 14. Considere la siguiente expresión P->Q, Q->R╞ P->R y demuestre si es válida la conclusión respecto de las premisas. Como se puede apreciar en la anterior tabla de verdad, la conclusión es válida, puesto que todas las asignaciones posibles conducen a V en la columna válido. P Q R (P->Q) (Q->R) PREMISAS (P->R) VÁLIDO V V V V V V V V V V F V F F F V V F V F V F V V V F F F V F F V F V V V V V V V F V F V F F V V F F V V V V V V F F F V V V V V
  • 15. Muchos argumentos lógicos, son, argumentos compuestos en el sentido de que la conclusión de un argumento es la premisa para el próximo. Toda demostración es una secuencia de tales argumentos. El siguiente ejemplo tiene que ver con el razonamiento usado por Sherlock Holmes en relación con un asesinato en particular 1 : “ Y ahora llegamos a la gran pregunta del porqué. El robo no ha sido el objeto del asesinato, puesto que nada desapareció ¿Fue por motivos políticos o fue una mujer? Ésta es la pregunta con que me enfrento. Desde el principio me he inclinado hacia esta última suposición. Los asesinos políticos se complacen demasiado en hacer sólo su trabajo y huir. Este asesinato, por el contrario, había sido realizado muy deliberadamente, y quien lo perpetró ha dejado huellas por toda la habitación, mostrando que estuvo ahí todo el tiempo.” Para expresar esta cita, utilizamos las siguientes variables proposicionales: P 1 : Fue un robo. P 2 : Algo desapareció. P 3 : Fue político. P 4 : Fue una mujer. P 5 : El asesino huyó inmediatamente. P 6 : El asesino dejó huellas por toda la habitación. 1 Citado de Un Estudio en Escarlata
  • 16. La siguiente tabla nos muestra la demostración de la motivación del crimen, obsérvese que tras cada premisa aparece una nueva de acuerdo al enunciado y a la premisa anterior, también aparecen nuevas premisas por medio de las reglas de inferencia. MP: Modus Ponens MT: Modus Tollens SD: Silogismo Disyuntivo DERIVACION FORMAL REGLA COMENTARIO 1. P 1 -> P 2 Premisa Si fue un robo, hubiera desaparecido algo. 2. ~P 2 Premisa No desapareció nada. 3. ~P 1 1,2, MT No fue un robo. 4. ~P 1 -> P 3 v P 4 Premisa Si no fue un robo, fue algo político o fue una mujer. 5. P 3 v P 4 3,4, MP Fue político, o una mujer. 6. P 3 -> P 5 Premisa Si hubiera sido algo político, el asesino hubiera huido inmediatamente. 7. P 6 -> ~P 5 Premisa Si el asesino dejó huellas por toda la habitación, no pudo haber huido inmediatamente. 8. P 6 Premisa El asesino dejó huellas por toda la habitación. 9. ~P 5 7,8, MP El asesino no huyó inmediatamente. 10. ~P 3 6,9, MT No fue político. 11. P 4 5,10, SD Por consiguiente, fue una mujer.
  • 17. Son demostraciones formalizadas, estos sistemas de derivaciones tienen unas características en común: * Existe una lista de argumentos lógicos admisibles, llamados Reglas de Inferencia. * Es una lista de expresiones lógicas que originalmente se encuentra vacía, se le pueden ir añadiendo expresiones si constituyen una premisa o si pueden obtenerse a partir de expresiones previas aplicando alguna regla de inferencia. Este proceso se continúa hasta que se alcanza la conclusión. * Las reglas de inferencia deben ser elegidas de forma tal que solo se deriven resultados válidos. * Un sistema para hacer derivaciones no solo debe ser válido sino completo.
  • 18. REGLA NOMBRE A, B ╞ A Λ B Ley de Combinación A Λ B ╞ B Ley de Simplificación A Λ B╞ A Variante de la ley de Simplificación A ╞ A v B Ley de Adición B ╞ A v B Variante de la ley de Adición A, A -> B╞ B Modus Ponens ~B, A -> B╞ ~A Modus Tollens A -> B, B -> C╞ A -> C Silogismo Hipotético A v B, ~A╞ B Silogismo Disyuntivo A v B, ~B╞ A Variante del Silogismo Disyuntivo A -> B, ~A -> B╞ B Ley de Casos A ↔ B╞ A -> B Eliminación de la Equivalencia A ↔ B╞ B -> A Variación de eliminación de la equivalencia A -> B, B -> A╞ A ↔ B Introducción de la equivalencia A, ~A╞ B Ley de Inconsistencia
  • 19. Para demostrar A -> B en matemáticas, se utiliza con frecuencia el siguiente argumento informal: 1. Se supone A, y se añade A a las premisas. 2 Se demuestra B, utilizando A si es necesario. 3 Se prescinde de A, lo que significa que A no es necesariamente verdadera y se escribe A -> B. TEOREMA 1: Sean A y B dos expresiones, y sean A 1 , A 2 , A 3 … las premisas. Si B, A 1 , A 2 , A 3 … juntos implican lógicamente C, entonces A 1 , A 2 , A 3 ,… implican lógicamente B -> C Ejemplo: Una pareja tiene un niño, y están esperando un segundo hijo. Demostrar que si el segundo niño es una niña entonces la pareja tendrá una niña y un niño. Solución: Sea P “El primer hijo es un niño”. Sea Q “el segundo hijo es una niña”. Queremos demostrar Q -> P Λ Q, dado que la premisa es P. De acuerdo al teorema de la deducción puede hacerse como sigue: 1. P es verdadero: la pareja tiene un niño. 2. Se supone Q; esto es, se supone que el segundo hijo es una niña. 3. A partir de P y Q se concluye P Λ Q por la ley de Combinación. 4. En este momento concluimos que Q -> P Λ Q, es trivialmente verdadera aun si Q resulta falsa, si resulta verdadera puede ser licenciada la conclusión.