SlideShare una empresa de Scribd logo
1 de 40
Definición y origen de los números complejos.
Historia de los números complejos
La primera referencia conocida a raíces cuadradas de números
negativos proviene del trabajo de los matemáticos griegos, como
Herón de Alejandría en el siglo I antes de Cristo, como resultado de
una imposible secciónde una pirámide. Los complejos se hicieron más
patentes en el Siglo XVI, cuando la búsqueda de fórmulas que dieran
las raíces exactas de los polinomios de grados 2 y 3 fueron
encontradas por matemáticos italianos como Tartaglia, Cardano.
Aunque sólo estaban interesados en las raíces reales de este tipo de
ecuaciones, se encontraban con la necesidad de lidiar con raíces de
números negativos. El término imaginario para estas cantidades fue
acuñado por Descartes en el Siglo XVII y está en desuso. La
existencia de números complejos no fue completamente aceptada
hasta la más abajo mencionada interpretación geométrica que fue
descrita por Wessel en 1799, redescubierta algunos años después y
popularizada por Gauss. La implementación más formal, con pares de
números reales fue dada en el Siglo XIX.
Definición de número complejo
Los números complejos z se pueden definir como pares ordenados
z = (x,
y)
de números reales x e y, con las operaciones de suma y producto que
especificaremos más adelante. Se suelen identificar los pares (x,
0) con los números reales x.
(Dar click para agrandar las imagenes)
1.2 Operaciones fundamentales con números
complejos.
Varias propiedades de la suma y del producto de números complejos
coinciden con las de los números reales. Recogeremos aquí las más
básicas y verificamos algunas de ellas.
Las leyes conmitativas
z1 + z2= z2 + z1, z1z2 =
z2z1
y las asociativas
(z1 + z2) + z3 = z1 + (z2 + z3), (z1z2)z3 =
z1(z2z3)
se siguen fácilmente de las definiciones de la suma y el producto de
números complejos, y del hecho de que los números reales las
satisfacen. Por ejemplo, si
z1 = (x1, y1) y z2 = (x2, y2),
entonces
z1 + z2 = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) = (x2 + x1, y2 + y1) = (x2, y2) +
(x1, y1) = z2 + z1
La verificación de las restantes, así como de la ley distributiva
z(z1 + z2) = zz1 +
zz2,
es similar.
De acuerdo con la ley conmutativa del producto, iy = yi; luego está
permitido escribir
z = x + iy o z = x + yi
Además, por las leyes asociativas, una suma z1 + z2 + z3 o un
producto z1z2z3 están bien definidos sin paréntesis, igual que ocurría con
los números reales.
La identidad aditiva 0 = (0, 0) y la idenidad multiplicativa 1 = (1, 0) de los
números reales se transfieren al sistema de los números complejos. O
sea,
z + 0 = z y z * 1 =
z
para todo número complejo z. Más aún, 0 y 1 son los únicos números
complejos con tales propiedades. Para establecer la unicidad de 0,
supongamos que (u, v) es una identidad aditiva, y escribamos
(x, y) + (u, v) = (x, y),
donde (x, y) es cualquier número complejo. Se deduce que
x + u = x e y + v = y;
o sea, u = 0 y v = 0. El número complejo 0 = (0, 0) es, por tanto, la única
identidad aditiva.
Cada número complejo z = (x, y) tiene asociado un inverso aditivo
-z = (-x, -
y)
que satisface la ecuación z + (-z) = 0. Además, hay un sólo inverso
aditivo para cada z, pues la ecuación (x, y) + (u, v) = (0,0) implica que u =
-x y v = -y.
Los inversos aditivos se usan para definir la resta:
z1 - z2 = z1 + (-z2).
Luego si z1 = (x1, y1) y z2 = (x2, y2), entonces
z1 - z2 = (x1 - x2, y1 - y2) = (x1 - x2) + i(y1 - y2).
Análogamente, para todo número complejo z = (x, y) no nulo, existe un
número complejo z-1
tal que zz-1
= 1. Este inverso multiplicativo es menos
obvio que el aditivo. Para hallarlo, buscamos números reales u,
v expresados en términos de x e y, tales que
(x, y)(u, v) = (1,0).
(Dar click para agrandar la imagen)
1.3 Potencias de "i", modulo o valor absoluto.
El valor absoluto, módulo o magnitud de un número complejo z viene
dado por la siguiente expresión:
Si pensamos en z como algún punto en el plano; podemos ver, por el
teorema de Pitágoras, que el valor absoluto de un número complejo
coincide con la distancia euclídea desde el origen del plano.
Si el complejo está escrito en forma exponencial z = r eiφ
, entonces |z|
= r. Se puede expresar en forma polar como z = r (cosφ + isenφ), donde
cosφ + isenφ = eiφ
es la conocida fórmula de Euler.
Podemos comprobar con facilidad estas cuatro importantes propiedades
del valor absoluto
para cualquier complejo z y w.
Por definición, la función distancia queda como sigue d(z, w) = |z - w| y
nos provee de un espacio métrico con los complejos gracias al que se
puede hablar de límites y continuidad. La suma, la resta, la multiplicación
y la división de complejos son operaciones continuas. Si no se dice lo
contrario, se asume que ésta es la métrica usada en los números
complejos.
(Dar click para agrandar las imagenes)
1.5 Teorema de De Moivre, potencias y extracción de
raíces de un número complejos
Potencias de números complejos
Las potencias enteras de un número complejo no nulo z = reiθ
vienen dadas por
z = rn
einθ
(n = 0, +1, -1, +2, -2 ...)
Como zn+1
= zzn
cuando n=1,2,..., esto se comprueba fácilmente para valores
positivos de n por inducción, para el producto de números complejos en forma
exponencial. La ecuación es válida también para n = 0 con el convenio de que z0
=
1. Si n = -1, -2..., por otro lado, definimos zn
en términos del inverso multiplicativo de
z escribiendo zn
= (z-1
)m
, donde m = -n = 1, 2, ... Entonces, como la ecuación z
= rn
einθ
es válida para potencias enteras positivas, se sigue de la forma exponencial
de z-1
que
zn
= [1/r ei(-θ)
]m
= (1/r)m
eim(-θ) =
rn
einθ
Por tanto, la ecuación z = rn
einθ
es válida para toda potencia entera.
Nótese que si r = 1, z = rn
einθ
se convierte en
(eiθ
)n
= eiθn
(n = 0, ±1, ±2 ...)
Cuando se expresa en la forma
(cos θ + i sen θ)n
= cos nθ + i sen nθ
que se le conoce como la fórmula de De Moivre
(Dar click para agrandar la imagen)
2.1.- Definición de Matriz, Notación y Orden.
La matriz anterior se denota también por (ai j ), i =1, ..., m, j =1, ..., n, o simplemente por (ai j ).
Los términos horizontales son las filas de la matriz y los verticales son sus columnas.Una matrizcon m filas y n columnas se
denomina matrizm por n,o matriz m ð n.
Las matrices se denotarán usualmente por letras mayúsculas, A,B, ..., y los elementos de las mismas por minúsculas, a,b, ...
Ejemplo:
donde sus filas son (1, -3, 4) y (0, 5, -2) y sus
CLASES DE MATRICES
Según el aspecto de las matrices,éstas pueden clasificarse en:
Matrices cuadradas
Una matriz cuadrada es la que tiene el mismo número de filas que de columnas.Se dice que una matriz cuadrada n ð n es de
orden n y se denomina matriz n-cuadrada.
Ejemplo:Sean las matrices
Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente.
Matriz identidad
Sea A = (ai j ) una matriz n-cuadrada.La diagonal (o diagonal principal) de A consiste en los elementos a11,a22,..., ann. La
traza de A, escrito trA, es la suma de los elementos diagonales.
La matriz n-cuadrada con unos en la diagonal principal yceros en cualquier otra posición,denotada por I, se conoce como
matriz identidad (o unidad).Para cualquier matrizA,
A· I = I ·A = A.
Matrices triangulares
Una matriz cuadrada A = (ai j ) es una matriz triangular superior o simplemente una matriztriangular,s i todas las entradas
bajo la diagonal principal son iguales a cero.Así pues,las matrices
son matrices triangulares superiores de órdenes 2,3 y 4.
Matrices diagonales
Una matriz cuadrada es diagonal,si todas sus entradas no diagonales son cero o nulas.Se denota por D = diag (d11,d22,
..., dnn ). Por ejemplo,
son matrices diagonales que pueden representarse,respectivamente,por
diag(3,-1,7) diag(4,-3) y diag(2,6,0,-1).
Traspuesta de una matriz
La traspuesta de una matrizA consiste en intercambiar las filas por las columnas y se denota por AT.
Así, la traspuesta de
En otras palabras,si A = (ai j ) es una matriz m ð n, entonces AT=
es la matriz n ð m.La trasposición de una matriz cumple las siguientes propiedades:
1. (A + B)T = AT + BT.
2. (AT)T = A.
3. (kA)T = kAT (si k es un escalar).
4. (AB)T = BTAT.
Matrices simétricas
Se dice que una matriz real es simétrica,si AT= A; y que es antisimétrica,
si AT = -A.
Ejemplo:
Consideremos las siguientes matrices:
Podemos observar que los elementos simétricos de A son iguales,o que AT = A. Siendo así, A es simétrica.
Para B los elementos simétricos son opuestos entre sí,de este modo B es antisimétrica.
A simple vista, C no es cuadrada;en consecuencia,no es ni simétrica ni antisimétrica.
Matrices ortogonales
Se dice que una matriz real A es ortogonal,si AAT = AT A = I. Se observa que una matriz ortogonal A es necesariamente
cuadrada e invertible, con inversa A-1 = AT.
Consideremos una matriz3 ð 3 arbitraria:
Si A es ortogonal,entonces:
Matrices normales
Una matriz es normal si conmuta con su traspuesta,esto es,si AAT= ATA. Obviamente,si A es simétrica,antisimétrica u
ortogonal,es necesariamente normal.
Ejemplo:
Puesto que AAT = ATA, la matriz es normal.
2.2.- Operaciones con Matrices.
Suma y resta de matrices
Para poder sumar o restar matrices,éstas deben tener el mismo número de filas y de columnas.Es decir,si una matriz es de
orden 3 ð 2 y otra de 3 ð 3, no se pueden sumar ni restar.Esto es asíya que, tanto para la suma como para la resta,se
suman o se restan los términos que ocupan el mismo lugar en las matrices.
Ejemplo:
Para sumar o restar más de dos matrices se procede igual.No necesariamente para poder sumar o restar matrices,éstas
tienen que ser cuadradas.
Ejemplo:
2.3.- Clasificación de las Matrices.
Una matriz cuadrada tiene un número de filas p igual a su número de columnas q.
Son matrices de orden,p x p ó p2.
Las matrices:
A = 2 0 B = 0 2 3
-3 1 -1 0 2
0 0 0
son de orden 2 x 2 y 3 x 3 respectivamente.
Los elementos a11,a22,a33, ... ann de una matriz cuadrada constituyen su diagonal principal.
La diagonal principal será:
a11 ... ... ...
A = ... a22 ... ...
... ... a33 ...
... ... ... ann
una matriz cuadrada tal que:
a11 = a22 = a33 = .... = ann = 1 y todos los demás elementos son cero, es una matriz unidad.
La representaremos por Io sea:
IA = 1 0
 1
es una matriz de orden 2 x 2.
Una matriz diagonal es aquella en que los elementos que no están en la diagonal principal son ceros.
Esta es un matriz diagonal:
2 0 0 0
A = 0 3 0 0
0 0 -2 0
0 0 0 4
Una matriz cuyos elementos por encima o por debajo de la diagonal principal son todos ceros es matriztriangular.Si todos
los ceros están por encima de la diagonal principal entonces es una matrizinferior y si todos los ceros están por debajo de la
diagonal principal es una matrizsuperior.
Ejemplo:
A = 3 0 0 es una matriz inferior.
1 2 0
-1 0 4
B = 4 1 -2
0 1 5 es una matriz superior.
0 0 3
Esquema de filas, columnas y diagonal principal.
1 0 4 7 filas
A = 0 2 5 8
0 3 6 9
1 2 1 0 diagonal principal
columnas
Una matriz nula tiene todos sus elementos nulos.
Ejemplo:
0 0 0
A = 0 0 0
0 0 0
Una matriz cuadrada es simétrica si:aij = aji.
Es decir si los elementos situados a igual distancia de su diagonal principal son iguales.
A = 1 -3 5
-3 2 0
5 0 1
es simétrica porque:a12 = a21 = -3, a13 = a31 = 5, a23 = a32 = 0.
Una matriz es asimétrica si:aij = aji.
Observa si 1 = j, aii = -aii y el único número que cumple con esta igualdad es elceropor lo que es una matriz asimétrica la
diagonal principal esta formada por elementos nulos.
En una matriz asimétrica los elementos situados a igual distancia de la diagonal principal son iguales en valor absoluto y de
signos contrarios.
B = 0 2 -2 5
-2 0 3 6
2 -3 0 -1
-5 6 1 0
es una matriz asimétrica
Matriz escalar
Si tenemos una matrizdiagonal cuyos elementos que están en la diagonal principal son todos iguales entonces tenemos una
matriz escalar.
A = 3 0 0
0 3 0
0 0 3
Matriz identidad
Es toda matriz escalar en la que todos los elementos de la diagonal principal son iguales a la unidad.
Esta matriz se representa por 1n.
12 = 1 0
 1
igualdad de matrices si ysolo si tienen el mismo orden y sus elementos son iguales.
Ejemplo:
A = a b B = x y
c d z w
si en estas matrices a = x, b = y, c = z y d = w, entonces las matrices Ay B son iguales.
Matriz transpuesta
Si tenemos una matriz(A) cualquiera de orden m x n entonces su transpuesta es otra matriz(A) de orden n x m donde se
intercambian las filas y las columnas de la matriz (A).
Ejemplo:
Si
A = 4 -1 3
0 5 -2
entonces su traspuesta será:
At = 4 0
-1 5
(Dar click para agrandar las imagenes)
2.4.- Transformaciones Elementales por Renglón
Escalonamiento. Rango.
(Dar click para agrandar la imagen)
2.5.- Cálculo de la Inversa de una Matriz.
Cálculo de la matriz inversa usando determinantes
Dada una matriz cuadrada A, se llama matriz adjunta de A, y se representa por Adj(A), a la matriz de los adjuntos, Adj (A) =
(Aij).
Si tenemos una matriz tal que det (A) ¹ 0, se verifica:
Esto es fácil probarlo puesto que sabemos que la suma de los productos de los elementos de una fila por sus adjuntos es el
valor del determinante,y que la suma de los productos de los elementos de una fila por los adjuntos de otra fila diferente es 0
(esto sería el desarrollo de un determinante que tiene dos filas iguales por los adjuntos de una de ellas).
Método de Gauss-Jordan para el cálculo de la matriz inversa
El método de Gauss - Jordan para calcular la matriz inversa de una dada se basa en una triangularización superior y luego
otra inferior de la matriz a la cual se le quiere calcular la inversa.
Para aplicar el método se necesita una matrizcuadrada de rango máximo.Sabemos que no siempre una matriztiene inversa,
por lo cual comprobaremos que la matriztenga rango máximo al aplicar el método de Gauss para realizar la triangularización
superior.Si al aplicar el método de Gauss (triangularización inferior) se obtiene una línea de ceros, la matriz no tiene inversa.
(Dar click para agrandar la imagen)
2.6.- Definición de Determinante de una Matriz.
Para una matriz cuadrada A[n,n], el determinante de A, abreviado det (A), es un escalar definido
como la suma de n! términos involucrando el producto de n elementos de la matriz, cada uno
proveniente exactamente de una fila y columna diferente. Además, cada término de la suma está
multiplicado por -1 ó +1 dependiendo del número de permutaciones del orden de las columnas que
contenga.
2.7.- Propiedad de los Determinantes.
Propiedades
det(AB) = det(A)det(B).
det(AT) = det(A).
det(AH) = conjugado(det(A)), en donde AH es la transpuesta conjugada (Hermitian) de A.
det(cA) = cn det(A).
Intercambiando cualquier par de columnas (filas) de una matriz se multiplica su determinante por -
1.
Multiplicando cualquier columna (fila) de una matriz por c multiplica su determinante por c.
Agregando cualquier múltiplo de una columna (fila) de una matriz a otra no altera su determinante.
det(A) <> 0 si y sólo si A es no singular.
Determinante de Matrices Simples
det([a,b;c,d]) = ad-bc.
det([a,b,c;d,e,f;g,h,i]) = aei+bfg+cdh-ceg-bdi-afh.
El determinante de una matriz diagonal (pura, superior o inferior) es el producto de los elementos
de su diagonal.
Determinante de Bloques de Matrices
B[m,n], C[m,n]: det([A,B;CT,D]) = det([D,CT;B,A])= det(A) det(D-CTA-1B).
B[m,n], C[m,n]: det([I,B;CT,I]) = det(I-BTC) = det(I-BCT) = det(I-CTB)= det(I-CBT).
A[m,m], D[n,n]: det([A,B;0,D]) = det(A) det(D).
A[n,n], B[n,n], C[n,n], D[n,n]; CD=DC: det([A,B;C,D]) = det(AD-BC).
A[n,n], B[n,n], C[n,n], D[n,n]; AC=CA: det([A,B;C,D]) = det(AD-CB).
A[n,n], B[n,n], C[n,n], D[n,n]; AB=BA: det([A,B;C,D]) = det(DA-CB).
A[n,n], B[n,n], C[n,n], D[n,n]; BD=DB: det([A,B;C,D]) = det(DA-BC).
2.8.- Inversa de una Matriz Cuadrada a Través de la Adjunta.
Definición: Una matriz cuadrada se llama matriz identidad si todos los componentes de su
diagonal principal son iguales a uno y todos los demás componentes que no están en la
diagonal principal son iguales a cero. La matriz identidad se representa con la letra I (la letra i
mayúscula).
Definición: Sea A una matriz cuadrada n x n. Entonces una matriz B es la inversa de A si
satisface A ∙ B = I y B ∙ A = I, donde I es la matriz identidad de orden n x n.
Ejemplo para discusión:
1. La inversa de A se representa por A-1. Así que A ∙ A-1 = A-1 ∙ A = I.
2. No toda matriz cuadrada tiene una inversa.
3. Si A tiene inversa, entonces decimos que A es invertible.
Teoremas:
1. Sea A una matriz cuadrada n x n, entonces AI = IA = A.
2. Si A es una matriz invertible, entonces A-1 es invertible y (A-1)-1 = A.
3. Si una matriz cuadrada A es invertible, entonces la inversa es única.
4. Sean A y B matrices de orden n x n invertibles. entonces AB es invertible y (AB)-1 = B-
1A-1.
Para hallar la inversa de una matriz cuadrada comenzamos con la matriz A/I, donde I representa
la matriz identidad del mismo orden que la matriz A. Efectuamos operaciones elementales con
las filas de A/I hasta que la matriz A se transforme en la matriz identidad I. Luego la matriz que
contiene los componentes a la derecha de la línea vertical es la inversa de A, esto es, A-1.
Ejemplo (para discusión): Halla A-1 si existe para cada una de las siguientes matrices:
(Dar click para agrandar la imagen)
2.9.- Aplicacion de Matrices y Determinantes.
Matrices cuadradas
Una matriz cuadrada es la que tiene el mismo número de filas que de columnas.Se dice que una matriz cuadrada n ð n es de
orden n y se denomina matriz n-cuadrada.
Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente.
Matriz identidad
Sea A = (ai j ) una matriz n-cuadrada.La diagonal (o diagonal principal) de A consiste en los elementos a11,a22,..., ann. La
traza de A, escrito trA, es la suma de los elementos diagonales.
La matriz n-cuadrada con unos en la diagonal principal yceros en cualquier otra posición,denotada por I, se conoce como
matriz identidad (o unidad).Para cualquier matrizA,
A· I = I ·A = A.
Matrices triangulares
Una matriz cuadrada A = (ai j ) es una matriz triangular superior o simplemente una matriztriangular,si todas las entradas
bajo la diagonal principal son iguales a cero.Así pues,las matrices
son matrices triangulares superiores de órdenes 2,3 y 4.
Matrices diagonales
Una matriz cuadrada es diagonal,si todas sus entradas no diagonales son cero o nulas.Se denota por D = diag (d11,d22,
..., dnn ). Por ejemplo,
son matrices diagonales que pueden representarse,respectivamente,por
diag(3,-1,7) diag(4,-3) y diag(2,6,0,-1).
Traspuesta de una matriz
La traspuesta de una matrizA consiste en intercambiar las filas por las columnas y se denota por AT.
Así, la traspuesta de
En otras palabras,si A = (ai j ) es una matriz m ð n, entonces AT=
es la matriz n ð m.La trasposición de una matriz cumple las siguientes propiedades:
1. (A + B)T = AT + BT.
2. (AT)T = A.
3. (kA)T = kAT (si k es un escalar).
4. (AB)T = BTAT.
Matrices simétricas
Se dice que una matriz real es simétrica,si AT= A; y que es antisimétrica,
si AT = -A.
Ejemplo:
Consideremos las siguientes matrices:
Podemos observar que los elementos simétricos de A son iguales,o que AT = A. Siendo así, A es simétrica.
Para B los elementos simétricos son opuestos entre sí,de este modo B es antisimétrica.
A simple vista, C no es cuadrada;en consecuencia,no es ni simétrica ni antisimétrica.
Matrices ortogonales
Se dice que una matriz real A es ortogonal,si AAT = AT A = I. Se observa que una matriz ortogonal A es necesariamente
cuadrada e invertible, con inversa A-1 = AT.
Consideremos una matriz3 ð 3 arbitraria:
Si A es ortogonal,entonces:
https://sites.google.com/site/tecalgebralineal/unidad-1-numeros-complejos
https://sites.google.com/site/tecalgebralineal/unidad-2---matrices-y-determinantes
3.1 Definición de sistemas de ecuaciones lineales.
En matemáticas y álgebra lineal, un sistema de ecuaciones lineales, también conocido como sistema lineal de
ecuaciones o simplemente sistema lineal, es un conjunto de ecuaciones lineales (es decir, un sistema de ecuaciones
en donde cada ecuación es de primer grado), definidas sobre un cuerpo o un anillo conmutativo. Un ejemplo de sistema
lineal de ecuaciones sería el siguiente:
El problema consiste en encontrar los valores desconocidos de las variables x1, x2 y x3 que satisfacen las tres
ecuaciones.
El problema de los sistemas lineales de ecuaciones es uno de los más antiguos de la matemática y tiene una infinidad
de aplicaciones, como en procesamiento digital de señales, análisis estructural, estimac ión, predicción y más
generalmente en programación lineal así como en la aproximación de problemas no lineales de análisis numérico.
En general, un sistema con m ecuaciones lineales y n incógnitas puede ser escrito en forma normal como:
Donde son las incógnitas y los números son los coeficientes del sistema sobre el
cuerpo . Es posible reescribir el sistema separando con coeficientes con notación matricial:
Si representamos cada matriz con una única letra obtenemos:
Donde A es una matriz m por n, x es un vector columna de longitud n y b es otro vector columna de longitud m. El
sistema de eliminación de Gauss-Jordan se aplica a este tipo de sistemas, sea cual sea el cuerpo del que provengan
los coeficientes.

Más contenido relacionado

La actualidad más candente

La actualidad más candente (19)

Inecuacion lineal en el plano
Inecuacion lineal en el planoInecuacion lineal en el plano
Inecuacion lineal en el plano
 
Números Complejos
Números ComplejosNúmeros Complejos
Números Complejos
 
Numeros complejos
Numeros complejosNumeros complejos
Numeros complejos
 
Ecuaciones metodo branislapmatie
Ecuaciones metodo  branislapmatieEcuaciones metodo  branislapmatie
Ecuaciones metodo branislapmatie
 
Inecuaciones
InecuacionesInecuaciones
Inecuaciones
 
Teorema de fermat
Teorema de fermatTeorema de fermat
Teorema de fermat
 
Numeros complejos
Numeros complejos Numeros complejos
Numeros complejos
 
Int numeros complejos
Int numeros complejosInt numeros complejos
Int numeros complejos
 
Geometría analítica plana
Geometría analítica planaGeometría analítica plana
Geometría analítica plana
 
Matrices
MatricesMatrices
Matrices
 
Función lineal.
Función lineal.Función lineal.
Función lineal.
 
Numeros complejos
Numeros complejosNumeros complejos
Numeros complejos
 
Coordenadas cilindricas y esfericas
Coordenadas cilindricas y esfericasCoordenadas cilindricas y esfericas
Coordenadas cilindricas y esfericas
 
Números Complejos
Números ComplejosNúmeros Complejos
Números Complejos
 
Intersección de funciones
Intersección de funcionesIntersección de funciones
Intersección de funciones
 
Clase 3 resolución de ecuaciones de primer grado
Clase 3 resolución de ecuaciones de primer gradoClase 3 resolución de ecuaciones de primer grado
Clase 3 resolución de ecuaciones de primer grado
 
Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones lineales
 
Sistema de ecuaciones 10 semana
Sistema de ecuaciones 10 semana  Sistema de ecuaciones 10 semana
Sistema de ecuaciones 10 semana
 
Numeros complejos
Numeros complejosNumeros complejos
Numeros complejos
 

Similar a Definición y origen de los números complejos

Unidad ii complejos y logaritmos
Unidad ii  complejos y logaritmosUnidad ii  complejos y logaritmos
Unidad ii complejos y logaritmosAlberto Pazmiño
 
Resumen fórmulas matemática prueba de transición (ex-psu) - chile _ _ filadd
Resumen fórmulas   matemática   prueba de transición (ex-psu) - chile _ _ filaddResumen fórmulas   matemática   prueba de transición (ex-psu) - chile _ _ filadd
Resumen fórmulas matemática prueba de transición (ex-psu) - chile _ _ filaddcris253225
 
Cálculo diferencial.pptx
Cálculo diferencial.pptxCálculo diferencial.pptx
Cálculo diferencial.pptxAzaleaGarca1
 
Aplicaciones de los números complejos
Aplicaciones de los números complejosAplicaciones de los números complejos
Aplicaciones de los números complejosJazmin Rivera
 
Transformaciones lineales
Transformaciones linealesTransformaciones lineales
Transformaciones linealesmbgcmadelein
 
FUNDAMENTOS MATEMATICOS (I Bimestre Abril Agosto 2011)
FUNDAMENTOS MATEMATICOS (I Bimestre Abril Agosto 2011)FUNDAMENTOS MATEMATICOS (I Bimestre Abril Agosto 2011)
FUNDAMENTOS MATEMATICOS (I Bimestre Abril Agosto 2011)Videoconferencias UTPL
 
Tutoria Algebra I Bimestre 20082
Tutoria Algebra I Bimestre 20082Tutoria Algebra I Bimestre 20082
Tutoria Algebra I Bimestre 20082Germania Rodriguez
 
Ensayo de numeros complejos de carlos jose ramirez parra
Ensayo de numeros complejos de carlos jose ramirez parraEnsayo de numeros complejos de carlos jose ramirez parra
Ensayo de numeros complejos de carlos jose ramirez parracarlos jose ramirez parra
 
Presentacion Matrices
Presentacion MatricesPresentacion Matrices
Presentacion Matricesjmorenotito
 
Presentacion Matrices
Presentacion MatricesPresentacion Matrices
Presentacion Matricesjmorenotito
 
Coeficientes polinomicos y su cadena multidimensional
Coeficientes polinomicos y su cadena multidimensionalCoeficientes polinomicos y su cadena multidimensional
Coeficientes polinomicos y su cadena multidimensionalEnrique Ramon Acosta Ramos
 
Números Complejos
Números ComplejosNúmeros Complejos
Números Complejosrykker2011
 
UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)
UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)
UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)Videoconferencias UTPL
 

Similar a Definición y origen de los números complejos (20)

Unidad ii complejos y logaritmos
Unidad ii  complejos y logaritmosUnidad ii  complejos y logaritmos
Unidad ii complejos y logaritmos
 
UNIDAD 1 NUMEROS COMPLEJOS
UNIDAD 1 NUMEROS COMPLEJOSUNIDAD 1 NUMEROS COMPLEJOS
UNIDAD 1 NUMEROS COMPLEJOS
 
Resumen fórmulas matemática prueba de transición (ex-psu) - chile _ _ filadd
Resumen fórmulas   matemática   prueba de transición (ex-psu) - chile _ _ filaddResumen fórmulas   matemática   prueba de transición (ex-psu) - chile _ _ filadd
Resumen fórmulas matemática prueba de transición (ex-psu) - chile _ _ filadd
 
Cálculo diferencial.pptx
Cálculo diferencial.pptxCálculo diferencial.pptx
Cálculo diferencial.pptx
 
Complejos2
Complejos2Complejos2
Complejos2
 
Aplicaciones de los números complejos
Aplicaciones de los números complejosAplicaciones de los números complejos
Aplicaciones de los números complejos
 
Transformaciones lineales
Transformaciones linealesTransformaciones lineales
Transformaciones lineales
 
Tutoria Algebra I Bimestre
Tutoria Algebra I BimestreTutoria Algebra I Bimestre
Tutoria Algebra I Bimestre
 
FUNDAMENTOS MATEMATICOS (I Bimestre Abril Agosto 2011)
FUNDAMENTOS MATEMATICOS (I Bimestre Abril Agosto 2011)FUNDAMENTOS MATEMATICOS (I Bimestre Abril Agosto 2011)
FUNDAMENTOS MATEMATICOS (I Bimestre Abril Agosto 2011)
 
Tutoria Algebra I Bimestre 20082
Tutoria Algebra I Bimestre 20082Tutoria Algebra I Bimestre 20082
Tutoria Algebra I Bimestre 20082
 
Algebra
AlgebraAlgebra
Algebra
 
Rectasyplanos r3
Rectasyplanos r3Rectasyplanos r3
Rectasyplanos r3
 
Ensayo de numeros complejos de carlos jose ramirez parra
Ensayo de numeros complejos de carlos jose ramirez parraEnsayo de numeros complejos de carlos jose ramirez parra
Ensayo de numeros complejos de carlos jose ramirez parra
 
Algebra
AlgebraAlgebra
Algebra
 
Presentacion Matrices
Presentacion MatricesPresentacion Matrices
Presentacion Matrices
 
Presentacion Matrices
Presentacion MatricesPresentacion Matrices
Presentacion Matrices
 
Coeficientes polinomicos y su cadena multidimensional
Coeficientes polinomicos y su cadena multidimensionalCoeficientes polinomicos y su cadena multidimensional
Coeficientes polinomicos y su cadena multidimensional
 
Números Complejos
Números ComplejosNúmeros Complejos
Números Complejos
 
Tema numeros complejos
Tema numeros complejosTema numeros complejos
Tema numeros complejos
 
UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)
UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)
UTPL-FUNDAMENTOS MATEMÁTICOS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2012)
 

Último

NUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdf
NUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdfNUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdf
NUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdfisrael garcia
 
INSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENA
INSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENAINSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENA
INSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENAdanielaerazok
 
12 Clasificacion de las Computadoras.pdf
12 Clasificacion de las Computadoras.pdf12 Clasificacion de las Computadoras.pdf
12 Clasificacion de las Computadoras.pdfedwinmelgarschlink2
 
Buscadores, SEM SEO: el desafío de ser visto en la web
Buscadores, SEM SEO: el desafío de ser visto en la webBuscadores, SEM SEO: el desafío de ser visto en la web
Buscadores, SEM SEO: el desafío de ser visto en la webDecaunlz
 
institucion educativa la esperanza sede magdalena
institucion educativa la esperanza sede magdalenainstitucion educativa la esperanza sede magdalena
institucion educativa la esperanza sede magdalenajuniorcuellargomez
 
COMPETENCIAS CIUDADANASadadadadadadada .pdf
COMPETENCIAS CIUDADANASadadadadadadada .pdfCOMPETENCIAS CIUDADANASadadadadadadada .pdf
COMPETENCIAS CIUDADANASadadadadadadada .pdfOscarBlas6
 
Institucion educativa la esperanza sede la magdalena
Institucion educativa la esperanza sede la magdalenaInstitucion educativa la esperanza sede la magdalena
Institucion educativa la esperanza sede la magdalenadanielaerazok
 
Guia para el registro en el sitio slideshare.pdf
Guia para el registro en el sitio slideshare.pdfGuia para el registro en el sitio slideshare.pdf
Guia para el registro en el sitio slideshare.pdflauradbernals
 

Último (8)

NUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdf
NUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdfNUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdf
NUVO PROGRAMAS DE ESCUELAS NUEVO-ACUERDO-CTE.pdf
 
INSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENA
INSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENAINSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENA
INSTITUCION EDUCATIVA LA ESPERANZA SEDE MAGDALENA
 
12 Clasificacion de las Computadoras.pdf
12 Clasificacion de las Computadoras.pdf12 Clasificacion de las Computadoras.pdf
12 Clasificacion de las Computadoras.pdf
 
Buscadores, SEM SEO: el desafío de ser visto en la web
Buscadores, SEM SEO: el desafío de ser visto en la webBuscadores, SEM SEO: el desafío de ser visto en la web
Buscadores, SEM SEO: el desafío de ser visto en la web
 
institucion educativa la esperanza sede magdalena
institucion educativa la esperanza sede magdalenainstitucion educativa la esperanza sede magdalena
institucion educativa la esperanza sede magdalena
 
COMPETENCIAS CIUDADANASadadadadadadada .pdf
COMPETENCIAS CIUDADANASadadadadadadada .pdfCOMPETENCIAS CIUDADANASadadadadadadada .pdf
COMPETENCIAS CIUDADANASadadadadadadada .pdf
 
Institucion educativa la esperanza sede la magdalena
Institucion educativa la esperanza sede la magdalenaInstitucion educativa la esperanza sede la magdalena
Institucion educativa la esperanza sede la magdalena
 
Guia para el registro en el sitio slideshare.pdf
Guia para el registro en el sitio slideshare.pdfGuia para el registro en el sitio slideshare.pdf
Guia para el registro en el sitio slideshare.pdf
 

Definición y origen de los números complejos

  • 1. Definición y origen de los números complejos. Historia de los números complejos La primera referencia conocida a raíces cuadradas de números negativos proviene del trabajo de los matemáticos griegos, como Herón de Alejandría en el siglo I antes de Cristo, como resultado de una imposible secciónde una pirámide. Los complejos se hicieron más patentes en el Siglo XVI, cuando la búsqueda de fórmulas que dieran las raíces exactas de los polinomios de grados 2 y 3 fueron encontradas por matemáticos italianos como Tartaglia, Cardano. Aunque sólo estaban interesados en las raíces reales de este tipo de ecuaciones, se encontraban con la necesidad de lidiar con raíces de números negativos. El término imaginario para estas cantidades fue acuñado por Descartes en el Siglo XVII y está en desuso. La existencia de números complejos no fue completamente aceptada hasta la más abajo mencionada interpretación geométrica que fue descrita por Wessel en 1799, redescubierta algunos años después y popularizada por Gauss. La implementación más formal, con pares de números reales fue dada en el Siglo XIX. Definición de número complejo Los números complejos z se pueden definir como pares ordenados z = (x, y) de números reales x e y, con las operaciones de suma y producto que especificaremos más adelante. Se suelen identificar los pares (x, 0) con los números reales x.
  • 2. (Dar click para agrandar las imagenes)
  • 3. 1.2 Operaciones fundamentales con números complejos. Varias propiedades de la suma y del producto de números complejos coinciden con las de los números reales. Recogeremos aquí las más básicas y verificamos algunas de ellas. Las leyes conmitativas z1 + z2= z2 + z1, z1z2 = z2z1 y las asociativas (z1 + z2) + z3 = z1 + (z2 + z3), (z1z2)z3 = z1(z2z3) se siguen fácilmente de las definiciones de la suma y el producto de números complejos, y del hecho de que los números reales las satisfacen. Por ejemplo, si z1 = (x1, y1) y z2 = (x2, y2), entonces z1 + z2 = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) = (x2 + x1, y2 + y1) = (x2, y2) + (x1, y1) = z2 + z1 La verificación de las restantes, así como de la ley distributiva z(z1 + z2) = zz1 + zz2, es similar. De acuerdo con la ley conmutativa del producto, iy = yi; luego está permitido escribir z = x + iy o z = x + yi
  • 4. Además, por las leyes asociativas, una suma z1 + z2 + z3 o un producto z1z2z3 están bien definidos sin paréntesis, igual que ocurría con los números reales. La identidad aditiva 0 = (0, 0) y la idenidad multiplicativa 1 = (1, 0) de los números reales se transfieren al sistema de los números complejos. O sea, z + 0 = z y z * 1 = z para todo número complejo z. Más aún, 0 y 1 son los únicos números complejos con tales propiedades. Para establecer la unicidad de 0, supongamos que (u, v) es una identidad aditiva, y escribamos (x, y) + (u, v) = (x, y), donde (x, y) es cualquier número complejo. Se deduce que x + u = x e y + v = y; o sea, u = 0 y v = 0. El número complejo 0 = (0, 0) es, por tanto, la única identidad aditiva. Cada número complejo z = (x, y) tiene asociado un inverso aditivo -z = (-x, - y) que satisface la ecuación z + (-z) = 0. Además, hay un sólo inverso aditivo para cada z, pues la ecuación (x, y) + (u, v) = (0,0) implica que u = -x y v = -y. Los inversos aditivos se usan para definir la resta: z1 - z2 = z1 + (-z2). Luego si z1 = (x1, y1) y z2 = (x2, y2), entonces z1 - z2 = (x1 - x2, y1 - y2) = (x1 - x2) + i(y1 - y2).
  • 5. Análogamente, para todo número complejo z = (x, y) no nulo, existe un número complejo z-1 tal que zz-1 = 1. Este inverso multiplicativo es menos obvio que el aditivo. Para hallarlo, buscamos números reales u, v expresados en términos de x e y, tales que (x, y)(u, v) = (1,0). (Dar click para agrandar la imagen)
  • 6.
  • 7.
  • 8. 1.3 Potencias de "i", modulo o valor absoluto. El valor absoluto, módulo o magnitud de un número complejo z viene dado por la siguiente expresión: Si pensamos en z como algún punto en el plano; podemos ver, por el teorema de Pitágoras, que el valor absoluto de un número complejo coincide con la distancia euclídea desde el origen del plano. Si el complejo está escrito en forma exponencial z = r eiφ , entonces |z| = r. Se puede expresar en forma polar como z = r (cosφ + isenφ), donde cosφ + isenφ = eiφ es la conocida fórmula de Euler. Podemos comprobar con facilidad estas cuatro importantes propiedades del valor absoluto para cualquier complejo z y w. Por definición, la función distancia queda como sigue d(z, w) = |z - w| y nos provee de un espacio métrico con los complejos gracias al que se puede hablar de límites y continuidad. La suma, la resta, la multiplicación y la división de complejos son operaciones continuas. Si no se dice lo contrario, se asume que ésta es la métrica usada en los números complejos.
  • 9. (Dar click para agrandar las imagenes) 1.5 Teorema de De Moivre, potencias y extracción de raíces de un número complejos Potencias de números complejos Las potencias enteras de un número complejo no nulo z = reiθ vienen dadas por z = rn einθ (n = 0, +1, -1, +2, -2 ...) Como zn+1 = zzn cuando n=1,2,..., esto se comprueba fácilmente para valores positivos de n por inducción, para el producto de números complejos en forma exponencial. La ecuación es válida también para n = 0 con el convenio de que z0 = 1. Si n = -1, -2..., por otro lado, definimos zn en términos del inverso multiplicativo de z escribiendo zn = (z-1 )m , donde m = -n = 1, 2, ... Entonces, como la ecuación z = rn einθ es válida para potencias enteras positivas, se sigue de la forma exponencial de z-1 que zn = [1/r ei(-θ) ]m = (1/r)m eim(-θ) = rn einθ
  • 10. Por tanto, la ecuación z = rn einθ es válida para toda potencia entera. Nótese que si r = 1, z = rn einθ se convierte en (eiθ )n = eiθn (n = 0, ±1, ±2 ...) Cuando se expresa en la forma (cos θ + i sen θ)n = cos nθ + i sen nθ que se le conoce como la fórmula de De Moivre (Dar click para agrandar la imagen)
  • 11. 2.1.- Definición de Matriz, Notación y Orden. La matriz anterior se denota también por (ai j ), i =1, ..., m, j =1, ..., n, o simplemente por (ai j ). Los términos horizontales son las filas de la matriz y los verticales son sus columnas.Una matrizcon m filas y n columnas se denomina matrizm por n,o matriz m ð n.
  • 12. Las matrices se denotarán usualmente por letras mayúsculas, A,B, ..., y los elementos de las mismas por minúsculas, a,b, ... Ejemplo: donde sus filas son (1, -3, 4) y (0, 5, -2) y sus CLASES DE MATRICES Según el aspecto de las matrices,éstas pueden clasificarse en: Matrices cuadradas Una matriz cuadrada es la que tiene el mismo número de filas que de columnas.Se dice que una matriz cuadrada n ð n es de orden n y se denomina matriz n-cuadrada. Ejemplo:Sean las matrices Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente. Matriz identidad Sea A = (ai j ) una matriz n-cuadrada.La diagonal (o diagonal principal) de A consiste en los elementos a11,a22,..., ann. La traza de A, escrito trA, es la suma de los elementos diagonales. La matriz n-cuadrada con unos en la diagonal principal yceros en cualquier otra posición,denotada por I, se conoce como matriz identidad (o unidad).Para cualquier matrizA, A· I = I ·A = A. Matrices triangulares Una matriz cuadrada A = (ai j ) es una matriz triangular superior o simplemente una matriztriangular,s i todas las entradas bajo la diagonal principal son iguales a cero.Así pues,las matrices
  • 13. son matrices triangulares superiores de órdenes 2,3 y 4. Matrices diagonales Una matriz cuadrada es diagonal,si todas sus entradas no diagonales son cero o nulas.Se denota por D = diag (d11,d22, ..., dnn ). Por ejemplo, son matrices diagonales que pueden representarse,respectivamente,por diag(3,-1,7) diag(4,-3) y diag(2,6,0,-1). Traspuesta de una matriz La traspuesta de una matrizA consiste en intercambiar las filas por las columnas y se denota por AT. Así, la traspuesta de En otras palabras,si A = (ai j ) es una matriz m ð n, entonces AT= es la matriz n ð m.La trasposición de una matriz cumple las siguientes propiedades: 1. (A + B)T = AT + BT. 2. (AT)T = A.
  • 14. 3. (kA)T = kAT (si k es un escalar). 4. (AB)T = BTAT. Matrices simétricas Se dice que una matriz real es simétrica,si AT= A; y que es antisimétrica, si AT = -A. Ejemplo: Consideremos las siguientes matrices: Podemos observar que los elementos simétricos de A son iguales,o que AT = A. Siendo así, A es simétrica. Para B los elementos simétricos son opuestos entre sí,de este modo B es antisimétrica. A simple vista, C no es cuadrada;en consecuencia,no es ni simétrica ni antisimétrica. Matrices ortogonales Se dice que una matriz real A es ortogonal,si AAT = AT A = I. Se observa que una matriz ortogonal A es necesariamente cuadrada e invertible, con inversa A-1 = AT. Consideremos una matriz3 ð 3 arbitraria: Si A es ortogonal,entonces:
  • 15. Matrices normales Una matriz es normal si conmuta con su traspuesta,esto es,si AAT= ATA. Obviamente,si A es simétrica,antisimétrica u ortogonal,es necesariamente normal. Ejemplo: Puesto que AAT = ATA, la matriz es normal. 2.2.- Operaciones con Matrices. Suma y resta de matrices Para poder sumar o restar matrices,éstas deben tener el mismo número de filas y de columnas.Es decir,si una matriz es de orden 3 ð 2 y otra de 3 ð 3, no se pueden sumar ni restar.Esto es asíya que, tanto para la suma como para la resta,se suman o se restan los términos que ocupan el mismo lugar en las matrices.
  • 16. Ejemplo: Para sumar o restar más de dos matrices se procede igual.No necesariamente para poder sumar o restar matrices,éstas tienen que ser cuadradas. Ejemplo:
  • 17. 2.3.- Clasificación de las Matrices. Una matriz cuadrada tiene un número de filas p igual a su número de columnas q. Son matrices de orden,p x p ó p2. Las matrices: A = 2 0 B = 0 2 3 -3 1 -1 0 2 0 0 0
  • 18. son de orden 2 x 2 y 3 x 3 respectivamente. Los elementos a11,a22,a33, ... ann de una matriz cuadrada constituyen su diagonal principal. La diagonal principal será: a11 ... ... ... A = ... a22 ... ... ... ... a33 ... ... ... ... ann una matriz cuadrada tal que: a11 = a22 = a33 = .... = ann = 1 y todos los demás elementos son cero, es una matriz unidad. La representaremos por Io sea: IA = 1 0  1 es una matriz de orden 2 x 2. Una matriz diagonal es aquella en que los elementos que no están en la diagonal principal son ceros. Esta es un matriz diagonal: 2 0 0 0 A = 0 3 0 0 0 0 -2 0 0 0 0 4 Una matriz cuyos elementos por encima o por debajo de la diagonal principal son todos ceros es matriztriangular.Si todos los ceros están por encima de la diagonal principal entonces es una matrizinferior y si todos los ceros están por debajo de la diagonal principal es una matrizsuperior. Ejemplo: A = 3 0 0 es una matriz inferior. 1 2 0 -1 0 4 B = 4 1 -2
  • 19. 0 1 5 es una matriz superior. 0 0 3 Esquema de filas, columnas y diagonal principal. 1 0 4 7 filas A = 0 2 5 8 0 3 6 9 1 2 1 0 diagonal principal columnas Una matriz nula tiene todos sus elementos nulos. Ejemplo: 0 0 0 A = 0 0 0 0 0 0 Una matriz cuadrada es simétrica si:aij = aji. Es decir si los elementos situados a igual distancia de su diagonal principal son iguales. A = 1 -3 5 -3 2 0 5 0 1 es simétrica porque:a12 = a21 = -3, a13 = a31 = 5, a23 = a32 = 0. Una matriz es asimétrica si:aij = aji. Observa si 1 = j, aii = -aii y el único número que cumple con esta igualdad es elceropor lo que es una matriz asimétrica la diagonal principal esta formada por elementos nulos. En una matriz asimétrica los elementos situados a igual distancia de la diagonal principal son iguales en valor absoluto y de signos contrarios. B = 0 2 -2 5 -2 0 3 6 2 -3 0 -1
  • 20. -5 6 1 0 es una matriz asimétrica Matriz escalar Si tenemos una matrizdiagonal cuyos elementos que están en la diagonal principal son todos iguales entonces tenemos una matriz escalar. A = 3 0 0 0 3 0 0 0 3 Matriz identidad Es toda matriz escalar en la que todos los elementos de la diagonal principal son iguales a la unidad. Esta matriz se representa por 1n. 12 = 1 0  1 igualdad de matrices si ysolo si tienen el mismo orden y sus elementos son iguales. Ejemplo: A = a b B = x y c d z w si en estas matrices a = x, b = y, c = z y d = w, entonces las matrices Ay B son iguales. Matriz transpuesta Si tenemos una matriz(A) cualquiera de orden m x n entonces su transpuesta es otra matriz(A) de orden n x m donde se intercambian las filas y las columnas de la matriz (A). Ejemplo: Si A = 4 -1 3 0 5 -2 entonces su traspuesta será: At = 4 0
  • 21. -1 5 (Dar click para agrandar las imagenes)
  • 22.
  • 23. 2.4.- Transformaciones Elementales por Renglón Escalonamiento. Rango. (Dar click para agrandar la imagen)
  • 24.
  • 25.
  • 26.
  • 27. 2.5.- Cálculo de la Inversa de una Matriz. Cálculo de la matriz inversa usando determinantes Dada una matriz cuadrada A, se llama matriz adjunta de A, y se representa por Adj(A), a la matriz de los adjuntos, Adj (A) = (Aij). Si tenemos una matriz tal que det (A) ¹ 0, se verifica: Esto es fácil probarlo puesto que sabemos que la suma de los productos de los elementos de una fila por sus adjuntos es el valor del determinante,y que la suma de los productos de los elementos de una fila por los adjuntos de otra fila diferente es 0 (esto sería el desarrollo de un determinante que tiene dos filas iguales por los adjuntos de una de ellas). Método de Gauss-Jordan para el cálculo de la matriz inversa El método de Gauss - Jordan para calcular la matriz inversa de una dada se basa en una triangularización superior y luego otra inferior de la matriz a la cual se le quiere calcular la inversa.
  • 28. Para aplicar el método se necesita una matrizcuadrada de rango máximo.Sabemos que no siempre una matriztiene inversa, por lo cual comprobaremos que la matriztenga rango máximo al aplicar el método de Gauss para realizar la triangularización superior.Si al aplicar el método de Gauss (triangularización inferior) se obtiene una línea de ceros, la matriz no tiene inversa. (Dar click para agrandar la imagen)
  • 29.
  • 30. 2.6.- Definición de Determinante de una Matriz. Para una matriz cuadrada A[n,n], el determinante de A, abreviado det (A), es un escalar definido como la suma de n! términos involucrando el producto de n elementos de la matriz, cada uno proveniente exactamente de una fila y columna diferente. Además, cada término de la suma está multiplicado por -1 ó +1 dependiendo del número de permutaciones del orden de las columnas que contenga. 2.7.- Propiedad de los Determinantes. Propiedades det(AB) = det(A)det(B). det(AT) = det(A). det(AH) = conjugado(det(A)), en donde AH es la transpuesta conjugada (Hermitian) de A. det(cA) = cn det(A). Intercambiando cualquier par de columnas (filas) de una matriz se multiplica su determinante por - 1.
  • 31. Multiplicando cualquier columna (fila) de una matriz por c multiplica su determinante por c. Agregando cualquier múltiplo de una columna (fila) de una matriz a otra no altera su determinante. det(A) <> 0 si y sólo si A es no singular. Determinante de Matrices Simples det([a,b;c,d]) = ad-bc. det([a,b,c;d,e,f;g,h,i]) = aei+bfg+cdh-ceg-bdi-afh. El determinante de una matriz diagonal (pura, superior o inferior) es el producto de los elementos de su diagonal. Determinante de Bloques de Matrices B[m,n], C[m,n]: det([A,B;CT,D]) = det([D,CT;B,A])= det(A) det(D-CTA-1B). B[m,n], C[m,n]: det([I,B;CT,I]) = det(I-BTC) = det(I-BCT) = det(I-CTB)= det(I-CBT). A[m,m], D[n,n]: det([A,B;0,D]) = det(A) det(D). A[n,n], B[n,n], C[n,n], D[n,n]; CD=DC: det([A,B;C,D]) = det(AD-BC). A[n,n], B[n,n], C[n,n], D[n,n]; AC=CA: det([A,B;C,D]) = det(AD-CB). A[n,n], B[n,n], C[n,n], D[n,n]; AB=BA: det([A,B;C,D]) = det(DA-CB). A[n,n], B[n,n], C[n,n], D[n,n]; BD=DB: det([A,B;C,D]) = det(DA-BC).
  • 32.
  • 33.
  • 34. 2.8.- Inversa de una Matriz Cuadrada a Través de la Adjunta. Definición: Una matriz cuadrada se llama matriz identidad si todos los componentes de su diagonal principal son iguales a uno y todos los demás componentes que no están en la diagonal principal son iguales a cero. La matriz identidad se representa con la letra I (la letra i mayúscula). Definición: Sea A una matriz cuadrada n x n. Entonces una matriz B es la inversa de A si satisface A ∙ B = I y B ∙ A = I, donde I es la matriz identidad de orden n x n. Ejemplo para discusión: 1. La inversa de A se representa por A-1. Así que A ∙ A-1 = A-1 ∙ A = I. 2. No toda matriz cuadrada tiene una inversa. 3. Si A tiene inversa, entonces decimos que A es invertible. Teoremas: 1. Sea A una matriz cuadrada n x n, entonces AI = IA = A. 2. Si A es una matriz invertible, entonces A-1 es invertible y (A-1)-1 = A. 3. Si una matriz cuadrada A es invertible, entonces la inversa es única. 4. Sean A y B matrices de orden n x n invertibles. entonces AB es invertible y (AB)-1 = B- 1A-1.
  • 35. Para hallar la inversa de una matriz cuadrada comenzamos con la matriz A/I, donde I representa la matriz identidad del mismo orden que la matriz A. Efectuamos operaciones elementales con las filas de A/I hasta que la matriz A se transforme en la matriz identidad I. Luego la matriz que contiene los componentes a la derecha de la línea vertical es la inversa de A, esto es, A-1. Ejemplo (para discusión): Halla A-1 si existe para cada una de las siguientes matrices: (Dar click para agrandar la imagen)
  • 36.
  • 37. 2.9.- Aplicacion de Matrices y Determinantes. Matrices cuadradas Una matriz cuadrada es la que tiene el mismo número de filas que de columnas.Se dice que una matriz cuadrada n ð n es de orden n y se denomina matriz n-cuadrada. Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente. Matriz identidad Sea A = (ai j ) una matriz n-cuadrada.La diagonal (o diagonal principal) de A consiste en los elementos a11,a22,..., ann. La traza de A, escrito trA, es la suma de los elementos diagonales. La matriz n-cuadrada con unos en la diagonal principal yceros en cualquier otra posición,denotada por I, se conoce como matriz identidad (o unidad).Para cualquier matrizA, A· I = I ·A = A.
  • 38. Matrices triangulares Una matriz cuadrada A = (ai j ) es una matriz triangular superior o simplemente una matriztriangular,si todas las entradas bajo la diagonal principal son iguales a cero.Así pues,las matrices son matrices triangulares superiores de órdenes 2,3 y 4. Matrices diagonales Una matriz cuadrada es diagonal,si todas sus entradas no diagonales son cero o nulas.Se denota por D = diag (d11,d22, ..., dnn ). Por ejemplo, son matrices diagonales que pueden representarse,respectivamente,por diag(3,-1,7) diag(4,-3) y diag(2,6,0,-1). Traspuesta de una matriz La traspuesta de una matrizA consiste en intercambiar las filas por las columnas y se denota por AT. Así, la traspuesta de En otras palabras,si A = (ai j ) es una matriz m ð n, entonces AT= es la matriz n ð m.La trasposición de una matriz cumple las siguientes propiedades: 1. (A + B)T = AT + BT. 2. (AT)T = A.
  • 39. 3. (kA)T = kAT (si k es un escalar). 4. (AB)T = BTAT. Matrices simétricas Se dice que una matriz real es simétrica,si AT= A; y que es antisimétrica, si AT = -A. Ejemplo: Consideremos las siguientes matrices: Podemos observar que los elementos simétricos de A son iguales,o que AT = A. Siendo así, A es simétrica. Para B los elementos simétricos son opuestos entre sí,de este modo B es antisimétrica. A simple vista, C no es cuadrada;en consecuencia,no es ni simétrica ni antisimétrica. Matrices ortogonales Se dice que una matriz real A es ortogonal,si AAT = AT A = I. Se observa que una matriz ortogonal A es necesariamente cuadrada e invertible, con inversa A-1 = AT. Consideremos una matriz3 ð 3 arbitraria: Si A es ortogonal,entonces: https://sites.google.com/site/tecalgebralineal/unidad-1-numeros-complejos https://sites.google.com/site/tecalgebralineal/unidad-2---matrices-y-determinantes 3.1 Definición de sistemas de ecuaciones lineales. En matemáticas y álgebra lineal, un sistema de ecuaciones lineales, también conocido como sistema lineal de ecuaciones o simplemente sistema lineal, es un conjunto de ecuaciones lineales (es decir, un sistema de ecuaciones en donde cada ecuación es de primer grado), definidas sobre un cuerpo o un anillo conmutativo. Un ejemplo de sistema lineal de ecuaciones sería el siguiente:
  • 40. El problema consiste en encontrar los valores desconocidos de las variables x1, x2 y x3 que satisfacen las tres ecuaciones. El problema de los sistemas lineales de ecuaciones es uno de los más antiguos de la matemática y tiene una infinidad de aplicaciones, como en procesamiento digital de señales, análisis estructural, estimac ión, predicción y más generalmente en programación lineal así como en la aproximación de problemas no lineales de análisis numérico. En general, un sistema con m ecuaciones lineales y n incógnitas puede ser escrito en forma normal como: Donde son las incógnitas y los números son los coeficientes del sistema sobre el cuerpo . Es posible reescribir el sistema separando con coeficientes con notación matricial: Si representamos cada matriz con una única letra obtenemos: Donde A es una matriz m por n, x es un vector columna de longitud n y b es otro vector columna de longitud m. El sistema de eliminación de Gauss-Jordan se aplica a este tipo de sistemas, sea cual sea el cuerpo del que provengan los coeficientes.