SlideShare una empresa de Scribd logo
1 de 10
Descargar para leer sin conexión
0.1 Noción intuitiva de límite 1
Noción intuitiva de límite
Cada rama de las matemáticas tiene conceptos que resultan centrales para el desarrollo de la
misma.
Nosotros empezamos el estudio del cálculo infinitesimal, que está compuesto del cálculo diferen-
cial y del cálculo integral.
Los conceptos fundamentales en cálculo, la derivada y la integral, son definidos a partir de otro,
todavía más fundamental: el concepto de límite.
0.1 Noción intuitiva de límite
Nosotros utilizamos los límites muy frecuentemente, pero no los reconocemos como tales simple-
mente porque no estamos acostumbrados a pensar en términos de ellos.
Ejemplo
1
¿Cómo medimos la velocidad de un coche?
• Cuando viajamos en un coche es común revisar frecuentemente el velocímetro.
• Supongamos que la velocidad que éste indica es de 45 km/hr.
• Nosotros podemos calcular la velocidad promedio ¯v de un móvil dividiendo la distancia d
recorrida por él entre el tiempo t que le tomó recorrerla.
• En un instante, es decir, en un punto del tiempo, la distancia recorrida es cero.
• ¿Cómo, entonces, medimos la velocidad para indicarla en el velocímetro?
Ejemplo
2
Imagina que tienes que llenar un vaso con agua. Abres el grifo del agua y ésta sale a
razón de 30 mililitros por segundo. Sabiendo que la capacidad del vaso es de 300 ml,
¿Cuánto tiempo requieres para llenarlo?
• Como cada segundo se vierten 30 ml de agua al vaso, en t = 10 segundos está a su capacidad
máxima.
• Lo interesante de esto es que notemos que conforme el valor de t se acerca a 10 el volumen
de agua vertido en el vaso se aproxima cada vez más a 300 ml.
Ejemplo
3
Imagina que deseas calcular el valor exacto del número π. Sabiendo que el área
del círculo unitario (de radio 1) es igual a π, vamos a encontrar una forma de ir
aproximando el valor de esta constante geométrica.
• Ya sabes que el área de un círculo de radio 1 es igual a π unidades cuadradas.
• Entonces, podemos ir dibujando polígonos regulares en el círculo unitario (es decir, de radio
1), calcular el área de cada uno, y después aumentar el número de lados del polígono.
• Sea n el número de lados del polígono dibujado en el círculo unitario, y hagamos que n
vayan creciendo. Cuando n sea infinito, obtedremos el valor exacto del número π.
Efraín Soto A. www.aprendematematicas.org.mx
0.1 Noción intuitiva de límite 2
• Decimos que π es el valor del límite al cual tiende el área del polígono inscrito en el círculo
unitario.
n = 5
A5
n = 6
A6
n = 7
A7
n = 8
A8
n = 9
A9
n = 10
A10
• Observa que conforme hacemos crecer el número de lados n, el área An del polígono de n
lados se acerca cada vez más al área de la círculo, que es igual a π, dado que su radio es 1.
• El polígono regular que vamos dibujando inscrito al círculo tiene su propia área. Si hacemos
que el número de lados de este polígono crezca mucho, su área cada vez se acercará a la del
círculo.
• Un matemático diría: «el límite del área del polígono inscrito a la circunferencia unitaria cuando su
número de lados tiende a infinito es π.»
Ejemplo 4
Luisa tiene una cuerda de un metro de largo. Como está aburrida y quiere matar
el ocio, empieza a cortar la cuerda por la mitad exactamente. De los dos trozos que
obtuvo, uno lo coloca en una mesa que está junto a ella y el otro trozo lo vuelve a
partir por la mitad; de nuevo un trozo lo coloca en la mesa y el otro lo vuelve a cortar
por la mitad. Si ella realiza n cortes, ¿Cuál es la longitud de cuerda que está en la
mesa? [?]
• Observa que cada vez corta la mitad de lo que le queda en la mano.
• En el primer corte tiene medio metro en cada trozo.
• Después de cortar la segunda vez tiene un cuarto.
• Después de cortar la tercera vez tiene un octavo de metro, y así sucesivamente.
• Esto es,
1
2
+
1
4
+
1
8
+
1
16
+ · · · +
1
2n
1
2
+
1
22
+
1
23
+
1
24
+ · · · +
1
2n
Efraín Soto A. www.aprendematematicas.org.mx
0.1 Noción intuitiva de límite 3
• En cada corte que hace Luisa a la cuerda, obtiene la mitad del pedazo anterior, y éste lo
suma a la longitud que ya tenía en la mesa.
• La misma situación práctica nos sugiere una interpretación en una recta numérica, como se
muestra a continuación:
1 metro
0 1o 2o 3o 4o · · · Corte
• O bien, en una tabla:
No. Corte Longitud del corte
0 1 m
1 1/2 m
2 1/22 m
3 1/23 m
· · · · · ·
n 1/2n m
• Observa que cada vez que ella corta el trozo de cuerda que le queda en la mano, obtiene
otros dos nuevos trozos que tienen el mismo tamaño, porque siempre corta por la mitad.
• Entonces, el último trozo que sumó a la cantidad de cuerda que había en la mesa es igual al
trozo con el que se quedó en la mano.
• Esto significa que la suma de la cuerda que está en la mesa es igual a 1 metro de cuerda (la
longitud inicial de la cuerda) menos la longitud del trozo que le quedó en la mano, cuya
longitud es igual a la del último trozo que agregó.
1
2
+
1
4
+
1
8
+ · · · +
1
2n
= 1 −
1
2n
=
2n
2n
−
1
2n
=
2n − 1
2n
• Observa que conforme n crece la suma se acerca cada vez más a 1.
• Esto es así porque el trozo de cuerda que le queda en la mano es cada vez más pequeño.
Ejemplo
5
Un terreno que va a ser repartido entre todos los que llegarán al Castillo de Chato
Petter de tal forma que a la primera persona le tocará la mitad del terreno, a la
segunda persona la mitad de lo que quede y a la siguiente persona la mitad que
quede, y así sucesivamente. Enseguida se muestra la interpretación geométrica de
esta situación.
• Como a la primer persona le toca la mitad, dividimos el terreno por la mitad.
• A la segunda persona le corresponde la mitad de la mitad, es decir, una cuarta parte de todo
el terreno.
• A la siguiente personal la mitad de lo que quede, y así sucesivamente...
• A la persona n-ésima le darán 1/2n del terreno:
Efraín Soto A. www.aprendematematicas.org.mx
0.1 Noción intuitiva de límite 4
1a
2a
3a
4a
5a
6a...
• Observa que la suma:
1
2
+
1
4
+
1
8
+ · · · +
1
2n
=
2n − 1
2n
se aproxima mucho a 1 cuando el valor de n crece mucho, sin embargo, nunca se hace
igual a 1, porque para que eso ocurriera, necesariamente el numerador debería ser igual al
denominador, pero eso nunca ocurre, porque se está restando 1 a 2n.
• Por otra parte, cuando los valores de n crecen mucho, el número 1 se hace insignificante
comparado con 2n, y esto hace que el cociente:
2n − 1
2n
se aproxime cada vez más al número 1, pero como ya dijimos, nunca lo iguala.
Ejemplo 6
Cuando una piedra cae desde 10 metros de altura, su posición y puede calcularse con
la fórmula:
y = 10 − 4.905t2
donde t es el tiempo que lleva cayendo. ¿Qué velocidad lleva a los 1.25 segundos
después de inciar la caída?
• Podemos calcular la altura a la que se encuentra 1.2 segundos después de iniciar la caída:
y(1.2) = 10 − 4.905(1.2)2
= 2.9368 metros.
• Y cuando ya pasaron 1.25 segundos su altura es:
y(1.25) = 10 − 4.905(1.25)2
= 2.3329 metros.
• Entonces, entre los primeros 1.2 y 1.25 segundos ha recorrido:
y(1.25) − y(1.2) = 2.3329 − 2.9368 = −0.6 metros
• Su velocidad promedio en ese intervalo es:
¯v =
d
t
=
−0.6
0.05
= −12 m/s
• Observa que hemos considerado la piedra justo antes de que pase por t = 1.25.
Efraín Soto A. www.aprendematematicas.org.mx
0.1 Noción intuitiva de límite 5
t
0 1 1.5 2
1.2 1.25
• Vamos a calcular su velocidad justo después de pasar por ahí.
• Primero calculamos la altura que tiene esa predra a los 1.3 segundos:
y(1.3) = 10 − 4.905(1.3)2
= 1.71055 metros.
• Y como y(1.25) = 2.33594, entre los primeros 1.25 y 1.3 segundos ha recorrido:
y(1.3) − y(1.25) = 1.71055 − 2.33594 = −0.625388 metros
• Y ahora su velocidad es:
¯v =
d
t
=
−0.625388
0.05
= −12.5077 m/s
• Obviamente, al llevar más tiempo de caída, como está siendo acelerado debido a la gravedad,
su velocidad creció.
• Pero no hemos medido su velocidad cuando t = 1.25 segundos, sino un poco antes y un
poco después.
t
0 1 1.5 2
1.2 1.25 1.3
• Podemos calcular el promedio de las dos velocidades y suponer que este promedio está muy
cerca de la velocidad que tiene la piedra cuando t = 1.25 segundos:
¯vf = −
12 + 12.5077
2
= −12.2539 m/s
• Sin embargo, no estamos seguros de que esta velocidad esté correcta.
• Si comparamos otros valores de t poco antes y poco después y volvemos a calcular el prome-
dio, el resultado no necesariamente será el mismo.
• Vamos a elaborar una tabla, para calcular la altura de la piera para diferentes valores de t
antes y después de t = 1.25.
• A partir de esos valores vamos a calcular la velocidad alrededor del valor de t = 1.25 para
ver cómo cambia.
t y(t) ∆d ∆t ¯v
1.2000 2.9368 0.6009 0.0500 −12.0180
1.2250 2.6394 0.3035 0.0250 −12.1400
1.2375 2.4885 0.1526 0.0125 −12.2080
1.2500 2.3359 0.0000 0.0000 – – – –
1.2625 2.1819 0.1540 0.0125 −12.3200
1.2750 2.0263 0.3096 0.0250 −12.3840
1.3000 1.7106 0.6253 0.0500 −12.5060
Efraín Soto A. www.aprendematematicas.org.mx
0.1 Noción intuitiva de límite 6
• De la tabla podemos observar que la velocidad que obtenemos depende cómo nos acerque-
mos al punto t = 1.25 s.
• Nuestro problema consiste en calcular la velocidad de la piedra en ese instante.
• De cualquier manera, el promedio que dimos antes ( ¯vf = −12.229 m/s) parece estar cor-
recto.
Esa palabra «parece» nos deja con la duda. Sabemos que es una aproximación inteligente, pero
nos gustaría conocer con mayor certeza el valor de la velocidad en ese punto.
En el siguiente ejemplo utilizaremos un recurso geométrico.
Ejemplo 7
Un estudiante de física lanzó una piedra hacia arriba de manera tal que su trayectoria
sigue una parábola y la altura y medida en metros puede calcularse con:
y(t) = −4.905 t2
+ 24.535 t
donde t es el tiempo que lleva la piedra en el aire medido en segundos. Interpreta
gráficamente la velocidad de la piedra a los dos segundos de haber sido lanzada.
• Podemos calcular la posición de la piedra a los dos segundos:
y(2) = −4.905 (2)2
+ 24.535 (2) = 29.45 metros.
• Y su posición a los 2.5 segundos es:
y(2.5) = −4.905 (2.5)2
+ 24.535 (2.5) = 30.68 metros.
• Mientras que su posición después de 1.5 segundos de haber sido lanzada es:
y(1.5) = −4.905 (1.5)2
+ 24.535 (1.5) = 25.76 metros.
• Vamos a graficar esta función en el intervalo 2 ≤ t ≤ 2.5:
t
0 1 2 3
y(t)
25
26
27
28
29
30
31
A
B
C
Efraín Soto A. www.aprendematematicas.org.mx
0.1 Noción intuitiva de límite 7
• Recuerda que en el eje vertical tenemos la distancia que recorrió en t segundos.
• El eje horizontal está representando al tiempo.
• En la gráfica se incluyeron los puntos A(1.5, 25.76), B(2, 29.45) y C(2.5, 30.68).
• De la gráfica se deduce inmediatamente que mientras la piedra se movía del punto A al
punto B recorrió una mayor distancia que en el trayecto de B a C, a pesar de que utilizó la
misma cantidad de tiempo.
• Esto nos indica que viajó, en promedio a mayor velocidad en el primer intervalo.
• La velocidad se calcula definiendo distancia entre tiempo.
• La velocidad promedio a la que viajó el tramo AB es:
¯vAB =
29.45 − 25.76
2.0 − 1.5
=
3.7
0.5
= 7.4 m/s
• Por otra parte, la velocidad promedio para el tramo BC es:
¯vBC =
30.68 − 29.45
2.5 − 2.0
=
1.23
0.5
= 2.46 m/s
• ¡Vaya diferencia!
• Observa que la velocidad promedio en realidad es la pendiente de la recta que pasa por los
puntos de interés.
• Recuerda que la pendiente de una recta es una razón de dos cantidades:
m =
y2 − y1
x2 − x1
=
∆y
∆x
• Si en el numerador de la pendiente escribimos una distancia y en el denominador tiempo,
la pendiente representa una velocidad promedio.
• Geométricamente ahora puedes notar la gran diferencia en las velocidad medida entre los
puntos A y B comparada con los puntos B y C.
• La pendiente de cada segmento en la gráfica nos debe mostrar eso1.
Pero no hemos terminado con el problema inicial.
Nosotros debemos calcular la velocidad de un objeto que se mueve, pero en un instante.
Ejemplo
8
Sabiendo que la pendiente se interpreta como una velocidad, aproxima la velocidad
promedio para acercarla cada vez más a la velocidad instantánea.
• Utilizaremos la gráfica del ejemplo anterior:
1Los segmentos no están incluidos en la gráfica.
Efraín Soto A. www.aprendematematicas.org.mx
0.1 Noción intuitiva de límite 8
t
1 2 3
y(t)
29
30
31
∆y
∆t
B
C
• Ahora lo que debemos hacer es acercar el punto C al punto B poco a poco para ver cómo se
comporta la pendiente de la recta que pasa por B y C.
• Pero nosotros sabemos cómo calcular y a partir de t:
y(t) = −4.905 t2
+ 24.535 t
• Así que si hacemos t0 = 2, trataremos de averiguar qué ocurre con la pendiente de la recta
conforme los valores de ∆t se acercan a cero.
• Esto implica que el punto C se aproxime cada vez más al punto B.
• Así podremos calcular la velocidad de esa piedra en el instante t = 2.
• Empezamos, si t0 = 2 está fijo y le sumamos la cantidad ∆t, entonces, y se comporta así:
y(2 + ∆t) = −4.905 (2 + ∆t)2
+ 24.535 (2 + ∆t)
= −4.905 4 + 4∆t + (∆t)2
+ 49.08 + 24.535 ∆t
= −19.62 − 19.62 ∆t − 4.05 (∆t)2
+ 49.08 + 24.535 ∆t
= 29.46 + 4.915 ∆t − 4.05 (∆t)2
• La última expresión nos indica cómo se comporta y(2 + ∆t).
Efraín Soto A. www.aprendematematicas.org.mx
0.1 Noción intuitiva de límite 9
• Cuando ∆t se hace muy pequeño, casi cero, y(2 + ∆t) debe aproximarse a y(2):
y(2) = 29.46 + 4.915 (0) − 4.05 (0)2
= 29.46
• Esto está de acuerdo con la intuición.
• Observa que y(2 + ∆t) − y(2) representa la distancia que la piedra recorrió durante ∆t se-
gundos, a partir de t = 2.
• Ahora veamos qué pasa con el cociente [y(2 + ∆t) − y(2)]/(∆t), que es igual a la velocidad
promedio:
¯vBC =
y(2 + ∆t) − y(2)
∆t
=
[29.46 + 4.915 ∆t − 4.05 (∆t)2] − 29.46
∆t
= 4.915 − 4.05 ∆t
• Cuando ∆t se hace muy pequeño, la velocidad promedio se acerca mucho a la velocidad que
debe tener la piedra cuando t = 2 segundos, que en este caso es de:
vB = 4.915 − 4.05 (0) = 14.725 m/s.
En el ejemplo anterior notamos que la velocidad promedio de la piedra entre los puntos B y C
está representada geométricamente por la pendiente de la recta que pasa por esos puntos.
Cuando acercamos el punto C al punto B la recta secante a la parábola se va acercando a la
tangente a la parábola en el punto B.
Precisamente esta es la interpretación geométrica de la velocidad instantánea.
Créditos
Albert
Einstein
Todo debe hacerse tan simple como sea posible, pero no más.
Este material se extrajo del libro Matemáticas V escrito por Efraín Soto Apolinar. La idea es com-
partir estos trucos para que más gente se enamore de las matemáticas, de ser posible, mucho más
que el autor.
Autor: Efraín Soto Apolinar.
Edición: Efraín Soto Apolinar.
Composición tipográfica: Efraín Soto Apolinar.
Diseño de figuras: Efraín Soto Apolinar.
Efraín Soto A. www.aprendematematicas.org.mx
0.1 Noción intuitiva de límite 10
Productor general: Efraín Soto Apolinar.
Año de edición: 2010
Año de publicación: Pendiente.
Última revisión: 01 de febrero de 2016.
Derechos de autor: Todos los derechos reservados a favor de Efraín Soto Apolinar. México. 2010.
Espero que estos trucos se distribuyan entre profesores de matemáticas de todos los niveles y sean
divulgados entre otros profesores y sus alumnos.
Este material es de distribución gratuita.
Profesor, agradezco sus comentarios y sugerencias a la cuenta de correo electrónico:
efrain@aprendematematicas.org.mx
Efraín Soto A. www.aprendematematicas.org.mx

Más contenido relacionado

La actualidad más candente

Metodo simplexdual
Metodo simplexdualMetodo simplexdual
Metodo simplexdualAndres Mena
 
Derivadas de una función
Derivadas de una funciónDerivadas de una función
Derivadas de una funciónChristofer001
 
Problemas y ejercicios resueltos de cónicas
 Problemas y ejercicios resueltos de cónicas Problemas y ejercicios resueltos de cónicas
Problemas y ejercicios resueltos de cónicasPascual Sardella
 
Transformaciones lineales de la reflexión y rotación en forma matricial en 2D
Transformaciones lineales de la reflexión y rotación en forma matricial en 2DTransformaciones lineales de la reflexión y rotación en forma matricial en 2D
Transformaciones lineales de la reflexión y rotación en forma matricial en 2DJlm Udal
 
Importancia del cálculo vectorial Mat III
Importancia del cálculo vectorial Mat IIIImportancia del cálculo vectorial Mat III
Importancia del cálculo vectorial Mat IIIAngel Granados
 
Limites de funciones
Limites de funcionesLimites de funciones
Limites de funcionesBartoluco
 
La Transformada De Laplace
La Transformada De LaplaceLa Transformada De Laplace
La Transformada De LaplaceDianitolis
 
Ejercicios programacion lineal
Ejercicios programacion linealEjercicios programacion lineal
Ejercicios programacion linealJose Perez
 
DERIVADAS PARCIALES DE ORDEN SUPERIOR
DERIVADAS PARCIALES DE ORDEN SUPERIORDERIVADAS PARCIALES DE ORDEN SUPERIOR
DERIVADAS PARCIALES DE ORDEN SUPERIOREthel Sullcaray
 
Concepto de variable, función, dominio, conocimiento y recorrido de una función.
Concepto de variable, función, dominio, conocimiento y recorrido de una función.Concepto de variable, función, dominio, conocimiento y recorrido de una función.
Concepto de variable, función, dominio, conocimiento y recorrido de una función.Lely
 
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación AplicadaMétodo Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicadamarticalu001
 
Transformadas de laplace murray r. spiegel
Transformadas de laplace   murray r. spiegelTransformadas de laplace   murray r. spiegel
Transformadas de laplace murray r. spiegelCesar Lima
 

La actualidad más candente (20)

Metodo simplexdual
Metodo simplexdualMetodo simplexdual
Metodo simplexdual
 
Derivadas de una función
Derivadas de una funciónDerivadas de una función
Derivadas de una función
 
Problemas y ejercicios resueltos de cónicas
 Problemas y ejercicios resueltos de cónicas Problemas y ejercicios resueltos de cónicas
Problemas y ejercicios resueltos de cónicas
 
Transformaciones lineales de la reflexión y rotación en forma matricial en 2D
Transformaciones lineales de la reflexión y rotación en forma matricial en 2DTransformaciones lineales de la reflexión y rotación en forma matricial en 2D
Transformaciones lineales de la reflexión y rotación en forma matricial en 2D
 
Importancia del cálculo vectorial Mat III
Importancia del cálculo vectorial Mat IIIImportancia del cálculo vectorial Mat III
Importancia del cálculo vectorial Mat III
 
Limites de funciones
Limites de funcionesLimites de funciones
Limites de funciones
 
La Transformada De Laplace
La Transformada De LaplaceLa Transformada De Laplace
La Transformada De Laplace
 
Continuidad (Cálculo I)
Continuidad (Cálculo I)Continuidad (Cálculo I)
Continuidad (Cálculo I)
 
Funciones y modelos matematicos
Funciones y modelos matematicosFunciones y modelos matematicos
Funciones y modelos matematicos
 
Ejercicios programacion lineal
Ejercicios programacion linealEjercicios programacion lineal
Ejercicios programacion lineal
 
Derivada marzo2009
Derivada marzo2009Derivada marzo2009
Derivada marzo2009
 
DERIVADAS PARCIALES DE ORDEN SUPERIOR
DERIVADAS PARCIALES DE ORDEN SUPERIORDERIVADAS PARCIALES DE ORDEN SUPERIOR
DERIVADAS PARCIALES DE ORDEN SUPERIOR
 
Concepto de variable, función, dominio, conocimiento y recorrido de una función.
Concepto de variable, función, dominio, conocimiento y recorrido de una función.Concepto de variable, función, dominio, conocimiento y recorrido de una función.
Concepto de variable, función, dominio, conocimiento y recorrido de una función.
 
Limites y-continuidad
Limites y-continuidadLimites y-continuidad
Limites y-continuidad
 
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación AplicadaMétodo Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
 
Espacios vectoriales
Espacios vectorialesEspacios vectoriales
Espacios vectoriales
 
Transformadas de laplace murray r. spiegel
Transformadas de laplace   murray r. spiegelTransformadas de laplace   murray r. spiegel
Transformadas de laplace murray r. spiegel
 
Antiderivadas
AntiderivadasAntiderivadas
Antiderivadas
 
Metodo Simplex
Metodo SimplexMetodo Simplex
Metodo Simplex
 
Ecuaciones Parametricas
Ecuaciones ParametricasEcuaciones Parametricas
Ecuaciones Parametricas
 

Similar a Límite matemático concepto intuitivo

Similar a Límite matemático concepto intuitivo (20)

Introducciòn
IntroducciònIntroducciòn
Introducciòn
 
Problemas resueltos de física.
Problemas resueltos de física.Problemas resueltos de física.
Problemas resueltos de física.
 
guia de calculo1 colegio de ciencias y humanidades.pdf
guia de calculo1 colegio de ciencias y humanidades.pdfguia de calculo1 colegio de ciencias y humanidades.pdf
guia de calculo1 colegio de ciencias y humanidades.pdf
 
Razon de cambio problema de la tangente
Razon de cambio problema de la tangenteRazon de cambio problema de la tangente
Razon de cambio problema de la tangente
 
Álgebra Bloque 4
Álgebra Bloque 4Álgebra Bloque 4
Álgebra Bloque 4
 
Guia 3 reales
Guia 3 realesGuia 3 reales
Guia 3 reales
 
Resolución de problemas de área pag 4 1
Resolución de problemas de área pag 4 1Resolución de problemas de área pag 4 1
Resolución de problemas de área pag 4 1
 
Taller vs mov1d
Taller vs mov1dTaller vs mov1d
Taller vs mov1d
 
Taller vs mov1d
Taller vs mov1dTaller vs mov1d
Taller vs mov1d
 
El Juego en Matemáticas
El Juego en MatemáticasEl Juego en Matemáticas
El Juego en Matemáticas
 
Momento El Bosque Ardilla
Momento El Bosque ArdillaMomento El Bosque Ardilla
Momento El Bosque Ardilla
 
Mediciones errores
Mediciones erroresMediciones errores
Mediciones errores
 
Sucesiones progresiones
Sucesiones progresionesSucesiones progresiones
Sucesiones progresiones
 
5c64c5002dcd7def69c3982201f64574
5c64c5002dcd7def69c3982201f645745c64c5002dcd7def69c3982201f64574
5c64c5002dcd7def69c3982201f64574
 
Cinemática
CinemáticaCinemática
Cinemática
 
Guia basica matematicas 4
Guia basica matematicas 4Guia basica matematicas 4
Guia basica matematicas 4
 
Movimiento rectilineo y cinematica
Movimiento rectilineo y cinematicaMovimiento rectilineo y cinematica
Movimiento rectilineo y cinematica
 
Parro ju lius (reparado)
Parro ju lius (reparado)Parro ju lius (reparado)
Parro ju lius (reparado)
 
Notación Científica y conversiones de unidades
Notación Científica y conversiones de unidadesNotación Científica y conversiones de unidades
Notación Científica y conversiones de unidades
 
Pendulo
PenduloPendulo
Pendulo
 

Último

la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscaeliseo91
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdfDemetrio Ccesa Rayme
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxYadi Campos
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxzulyvero07
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñotapirjackluis
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfMaritzaRetamozoVera
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arteRaquel Martín Contreras
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxKarlaMassielMartinez
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 

Último (20)

la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fisca
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdf
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arte
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 

Límite matemático concepto intuitivo

  • 1. 0.1 Noción intuitiva de límite 1 Noción intuitiva de límite Cada rama de las matemáticas tiene conceptos que resultan centrales para el desarrollo de la misma. Nosotros empezamos el estudio del cálculo infinitesimal, que está compuesto del cálculo diferen- cial y del cálculo integral. Los conceptos fundamentales en cálculo, la derivada y la integral, son definidos a partir de otro, todavía más fundamental: el concepto de límite. 0.1 Noción intuitiva de límite Nosotros utilizamos los límites muy frecuentemente, pero no los reconocemos como tales simple- mente porque no estamos acostumbrados a pensar en términos de ellos. Ejemplo 1 ¿Cómo medimos la velocidad de un coche? • Cuando viajamos en un coche es común revisar frecuentemente el velocímetro. • Supongamos que la velocidad que éste indica es de 45 km/hr. • Nosotros podemos calcular la velocidad promedio ¯v de un móvil dividiendo la distancia d recorrida por él entre el tiempo t que le tomó recorrerla. • En un instante, es decir, en un punto del tiempo, la distancia recorrida es cero. • ¿Cómo, entonces, medimos la velocidad para indicarla en el velocímetro? Ejemplo 2 Imagina que tienes que llenar un vaso con agua. Abres el grifo del agua y ésta sale a razón de 30 mililitros por segundo. Sabiendo que la capacidad del vaso es de 300 ml, ¿Cuánto tiempo requieres para llenarlo? • Como cada segundo se vierten 30 ml de agua al vaso, en t = 10 segundos está a su capacidad máxima. • Lo interesante de esto es que notemos que conforme el valor de t se acerca a 10 el volumen de agua vertido en el vaso se aproxima cada vez más a 300 ml. Ejemplo 3 Imagina que deseas calcular el valor exacto del número π. Sabiendo que el área del círculo unitario (de radio 1) es igual a π, vamos a encontrar una forma de ir aproximando el valor de esta constante geométrica. • Ya sabes que el área de un círculo de radio 1 es igual a π unidades cuadradas. • Entonces, podemos ir dibujando polígonos regulares en el círculo unitario (es decir, de radio 1), calcular el área de cada uno, y después aumentar el número de lados del polígono. • Sea n el número de lados del polígono dibujado en el círculo unitario, y hagamos que n vayan creciendo. Cuando n sea infinito, obtedremos el valor exacto del número π. Efraín Soto A. www.aprendematematicas.org.mx
  • 2. 0.1 Noción intuitiva de límite 2 • Decimos que π es el valor del límite al cual tiende el área del polígono inscrito en el círculo unitario. n = 5 A5 n = 6 A6 n = 7 A7 n = 8 A8 n = 9 A9 n = 10 A10 • Observa que conforme hacemos crecer el número de lados n, el área An del polígono de n lados se acerca cada vez más al área de la círculo, que es igual a π, dado que su radio es 1. • El polígono regular que vamos dibujando inscrito al círculo tiene su propia área. Si hacemos que el número de lados de este polígono crezca mucho, su área cada vez se acercará a la del círculo. • Un matemático diría: «el límite del área del polígono inscrito a la circunferencia unitaria cuando su número de lados tiende a infinito es π.» Ejemplo 4 Luisa tiene una cuerda de un metro de largo. Como está aburrida y quiere matar el ocio, empieza a cortar la cuerda por la mitad exactamente. De los dos trozos que obtuvo, uno lo coloca en una mesa que está junto a ella y el otro trozo lo vuelve a partir por la mitad; de nuevo un trozo lo coloca en la mesa y el otro lo vuelve a cortar por la mitad. Si ella realiza n cortes, ¿Cuál es la longitud de cuerda que está en la mesa? [?] • Observa que cada vez corta la mitad de lo que le queda en la mano. • En el primer corte tiene medio metro en cada trozo. • Después de cortar la segunda vez tiene un cuarto. • Después de cortar la tercera vez tiene un octavo de metro, y así sucesivamente. • Esto es, 1 2 + 1 4 + 1 8 + 1 16 + · · · + 1 2n 1 2 + 1 22 + 1 23 + 1 24 + · · · + 1 2n Efraín Soto A. www.aprendematematicas.org.mx
  • 3. 0.1 Noción intuitiva de límite 3 • En cada corte que hace Luisa a la cuerda, obtiene la mitad del pedazo anterior, y éste lo suma a la longitud que ya tenía en la mesa. • La misma situación práctica nos sugiere una interpretación en una recta numérica, como se muestra a continuación: 1 metro 0 1o 2o 3o 4o · · · Corte • O bien, en una tabla: No. Corte Longitud del corte 0 1 m 1 1/2 m 2 1/22 m 3 1/23 m · · · · · · n 1/2n m • Observa que cada vez que ella corta el trozo de cuerda que le queda en la mano, obtiene otros dos nuevos trozos que tienen el mismo tamaño, porque siempre corta por la mitad. • Entonces, el último trozo que sumó a la cantidad de cuerda que había en la mesa es igual al trozo con el que se quedó en la mano. • Esto significa que la suma de la cuerda que está en la mesa es igual a 1 metro de cuerda (la longitud inicial de la cuerda) menos la longitud del trozo que le quedó en la mano, cuya longitud es igual a la del último trozo que agregó. 1 2 + 1 4 + 1 8 + · · · + 1 2n = 1 − 1 2n = 2n 2n − 1 2n = 2n − 1 2n • Observa que conforme n crece la suma se acerca cada vez más a 1. • Esto es así porque el trozo de cuerda que le queda en la mano es cada vez más pequeño. Ejemplo 5 Un terreno que va a ser repartido entre todos los que llegarán al Castillo de Chato Petter de tal forma que a la primera persona le tocará la mitad del terreno, a la segunda persona la mitad de lo que quede y a la siguiente persona la mitad que quede, y así sucesivamente. Enseguida se muestra la interpretación geométrica de esta situación. • Como a la primer persona le toca la mitad, dividimos el terreno por la mitad. • A la segunda persona le corresponde la mitad de la mitad, es decir, una cuarta parte de todo el terreno. • A la siguiente personal la mitad de lo que quede, y así sucesivamente... • A la persona n-ésima le darán 1/2n del terreno: Efraín Soto A. www.aprendematematicas.org.mx
  • 4. 0.1 Noción intuitiva de límite 4 1a 2a 3a 4a 5a 6a... • Observa que la suma: 1 2 + 1 4 + 1 8 + · · · + 1 2n = 2n − 1 2n se aproxima mucho a 1 cuando el valor de n crece mucho, sin embargo, nunca se hace igual a 1, porque para que eso ocurriera, necesariamente el numerador debería ser igual al denominador, pero eso nunca ocurre, porque se está restando 1 a 2n. • Por otra parte, cuando los valores de n crecen mucho, el número 1 se hace insignificante comparado con 2n, y esto hace que el cociente: 2n − 1 2n se aproxime cada vez más al número 1, pero como ya dijimos, nunca lo iguala. Ejemplo 6 Cuando una piedra cae desde 10 metros de altura, su posición y puede calcularse con la fórmula: y = 10 − 4.905t2 donde t es el tiempo que lleva cayendo. ¿Qué velocidad lleva a los 1.25 segundos después de inciar la caída? • Podemos calcular la altura a la que se encuentra 1.2 segundos después de iniciar la caída: y(1.2) = 10 − 4.905(1.2)2 = 2.9368 metros. • Y cuando ya pasaron 1.25 segundos su altura es: y(1.25) = 10 − 4.905(1.25)2 = 2.3329 metros. • Entonces, entre los primeros 1.2 y 1.25 segundos ha recorrido: y(1.25) − y(1.2) = 2.3329 − 2.9368 = −0.6 metros • Su velocidad promedio en ese intervalo es: ¯v = d t = −0.6 0.05 = −12 m/s • Observa que hemos considerado la piedra justo antes de que pase por t = 1.25. Efraín Soto A. www.aprendematematicas.org.mx
  • 5. 0.1 Noción intuitiva de límite 5 t 0 1 1.5 2 1.2 1.25 • Vamos a calcular su velocidad justo después de pasar por ahí. • Primero calculamos la altura que tiene esa predra a los 1.3 segundos: y(1.3) = 10 − 4.905(1.3)2 = 1.71055 metros. • Y como y(1.25) = 2.33594, entre los primeros 1.25 y 1.3 segundos ha recorrido: y(1.3) − y(1.25) = 1.71055 − 2.33594 = −0.625388 metros • Y ahora su velocidad es: ¯v = d t = −0.625388 0.05 = −12.5077 m/s • Obviamente, al llevar más tiempo de caída, como está siendo acelerado debido a la gravedad, su velocidad creció. • Pero no hemos medido su velocidad cuando t = 1.25 segundos, sino un poco antes y un poco después. t 0 1 1.5 2 1.2 1.25 1.3 • Podemos calcular el promedio de las dos velocidades y suponer que este promedio está muy cerca de la velocidad que tiene la piedra cuando t = 1.25 segundos: ¯vf = − 12 + 12.5077 2 = −12.2539 m/s • Sin embargo, no estamos seguros de que esta velocidad esté correcta. • Si comparamos otros valores de t poco antes y poco después y volvemos a calcular el prome- dio, el resultado no necesariamente será el mismo. • Vamos a elaborar una tabla, para calcular la altura de la piera para diferentes valores de t antes y después de t = 1.25. • A partir de esos valores vamos a calcular la velocidad alrededor del valor de t = 1.25 para ver cómo cambia. t y(t) ∆d ∆t ¯v 1.2000 2.9368 0.6009 0.0500 −12.0180 1.2250 2.6394 0.3035 0.0250 −12.1400 1.2375 2.4885 0.1526 0.0125 −12.2080 1.2500 2.3359 0.0000 0.0000 – – – – 1.2625 2.1819 0.1540 0.0125 −12.3200 1.2750 2.0263 0.3096 0.0250 −12.3840 1.3000 1.7106 0.6253 0.0500 −12.5060 Efraín Soto A. www.aprendematematicas.org.mx
  • 6. 0.1 Noción intuitiva de límite 6 • De la tabla podemos observar que la velocidad que obtenemos depende cómo nos acerque- mos al punto t = 1.25 s. • Nuestro problema consiste en calcular la velocidad de la piedra en ese instante. • De cualquier manera, el promedio que dimos antes ( ¯vf = −12.229 m/s) parece estar cor- recto. Esa palabra «parece» nos deja con la duda. Sabemos que es una aproximación inteligente, pero nos gustaría conocer con mayor certeza el valor de la velocidad en ese punto. En el siguiente ejemplo utilizaremos un recurso geométrico. Ejemplo 7 Un estudiante de física lanzó una piedra hacia arriba de manera tal que su trayectoria sigue una parábola y la altura y medida en metros puede calcularse con: y(t) = −4.905 t2 + 24.535 t donde t es el tiempo que lleva la piedra en el aire medido en segundos. Interpreta gráficamente la velocidad de la piedra a los dos segundos de haber sido lanzada. • Podemos calcular la posición de la piedra a los dos segundos: y(2) = −4.905 (2)2 + 24.535 (2) = 29.45 metros. • Y su posición a los 2.5 segundos es: y(2.5) = −4.905 (2.5)2 + 24.535 (2.5) = 30.68 metros. • Mientras que su posición después de 1.5 segundos de haber sido lanzada es: y(1.5) = −4.905 (1.5)2 + 24.535 (1.5) = 25.76 metros. • Vamos a graficar esta función en el intervalo 2 ≤ t ≤ 2.5: t 0 1 2 3 y(t) 25 26 27 28 29 30 31 A B C Efraín Soto A. www.aprendematematicas.org.mx
  • 7. 0.1 Noción intuitiva de límite 7 • Recuerda que en el eje vertical tenemos la distancia que recorrió en t segundos. • El eje horizontal está representando al tiempo. • En la gráfica se incluyeron los puntos A(1.5, 25.76), B(2, 29.45) y C(2.5, 30.68). • De la gráfica se deduce inmediatamente que mientras la piedra se movía del punto A al punto B recorrió una mayor distancia que en el trayecto de B a C, a pesar de que utilizó la misma cantidad de tiempo. • Esto nos indica que viajó, en promedio a mayor velocidad en el primer intervalo. • La velocidad se calcula definiendo distancia entre tiempo. • La velocidad promedio a la que viajó el tramo AB es: ¯vAB = 29.45 − 25.76 2.0 − 1.5 = 3.7 0.5 = 7.4 m/s • Por otra parte, la velocidad promedio para el tramo BC es: ¯vBC = 30.68 − 29.45 2.5 − 2.0 = 1.23 0.5 = 2.46 m/s • ¡Vaya diferencia! • Observa que la velocidad promedio en realidad es la pendiente de la recta que pasa por los puntos de interés. • Recuerda que la pendiente de una recta es una razón de dos cantidades: m = y2 − y1 x2 − x1 = ∆y ∆x • Si en el numerador de la pendiente escribimos una distancia y en el denominador tiempo, la pendiente representa una velocidad promedio. • Geométricamente ahora puedes notar la gran diferencia en las velocidad medida entre los puntos A y B comparada con los puntos B y C. • La pendiente de cada segmento en la gráfica nos debe mostrar eso1. Pero no hemos terminado con el problema inicial. Nosotros debemos calcular la velocidad de un objeto que se mueve, pero en un instante. Ejemplo 8 Sabiendo que la pendiente se interpreta como una velocidad, aproxima la velocidad promedio para acercarla cada vez más a la velocidad instantánea. • Utilizaremos la gráfica del ejemplo anterior: 1Los segmentos no están incluidos en la gráfica. Efraín Soto A. www.aprendematematicas.org.mx
  • 8. 0.1 Noción intuitiva de límite 8 t 1 2 3 y(t) 29 30 31 ∆y ∆t B C • Ahora lo que debemos hacer es acercar el punto C al punto B poco a poco para ver cómo se comporta la pendiente de la recta que pasa por B y C. • Pero nosotros sabemos cómo calcular y a partir de t: y(t) = −4.905 t2 + 24.535 t • Así que si hacemos t0 = 2, trataremos de averiguar qué ocurre con la pendiente de la recta conforme los valores de ∆t se acercan a cero. • Esto implica que el punto C se aproxime cada vez más al punto B. • Así podremos calcular la velocidad de esa piedra en el instante t = 2. • Empezamos, si t0 = 2 está fijo y le sumamos la cantidad ∆t, entonces, y se comporta así: y(2 + ∆t) = −4.905 (2 + ∆t)2 + 24.535 (2 + ∆t) = −4.905 4 + 4∆t + (∆t)2 + 49.08 + 24.535 ∆t = −19.62 − 19.62 ∆t − 4.05 (∆t)2 + 49.08 + 24.535 ∆t = 29.46 + 4.915 ∆t − 4.05 (∆t)2 • La última expresión nos indica cómo se comporta y(2 + ∆t). Efraín Soto A. www.aprendematematicas.org.mx
  • 9. 0.1 Noción intuitiva de límite 9 • Cuando ∆t se hace muy pequeño, casi cero, y(2 + ∆t) debe aproximarse a y(2): y(2) = 29.46 + 4.915 (0) − 4.05 (0)2 = 29.46 • Esto está de acuerdo con la intuición. • Observa que y(2 + ∆t) − y(2) representa la distancia que la piedra recorrió durante ∆t se- gundos, a partir de t = 2. • Ahora veamos qué pasa con el cociente [y(2 + ∆t) − y(2)]/(∆t), que es igual a la velocidad promedio: ¯vBC = y(2 + ∆t) − y(2) ∆t = [29.46 + 4.915 ∆t − 4.05 (∆t)2] − 29.46 ∆t = 4.915 − 4.05 ∆t • Cuando ∆t se hace muy pequeño, la velocidad promedio se acerca mucho a la velocidad que debe tener la piedra cuando t = 2 segundos, que en este caso es de: vB = 4.915 − 4.05 (0) = 14.725 m/s. En el ejemplo anterior notamos que la velocidad promedio de la piedra entre los puntos B y C está representada geométricamente por la pendiente de la recta que pasa por esos puntos. Cuando acercamos el punto C al punto B la recta secante a la parábola se va acercando a la tangente a la parábola en el punto B. Precisamente esta es la interpretación geométrica de la velocidad instantánea. Créditos Albert Einstein Todo debe hacerse tan simple como sea posible, pero no más. Este material se extrajo del libro Matemáticas V escrito por Efraín Soto Apolinar. La idea es com- partir estos trucos para que más gente se enamore de las matemáticas, de ser posible, mucho más que el autor. Autor: Efraín Soto Apolinar. Edición: Efraín Soto Apolinar. Composición tipográfica: Efraín Soto Apolinar. Diseño de figuras: Efraín Soto Apolinar. Efraín Soto A. www.aprendematematicas.org.mx
  • 10. 0.1 Noción intuitiva de límite 10 Productor general: Efraín Soto Apolinar. Año de edición: 2010 Año de publicación: Pendiente. Última revisión: 01 de febrero de 2016. Derechos de autor: Todos los derechos reservados a favor de Efraín Soto Apolinar. México. 2010. Espero que estos trucos se distribuyan entre profesores de matemáticas de todos los niveles y sean divulgados entre otros profesores y sus alumnos. Este material es de distribución gratuita. Profesor, agradezco sus comentarios y sugerencias a la cuenta de correo electrónico: efrain@aprendematematicas.org.mx Efraín Soto A. www.aprendematematicas.org.mx