SlideShare una empresa de Scribd logo
1 de 27
Descargar para leer sin conexión
Método Elemento de Contorno
Youssef Rassed Departamento de Ingeniería de Estructuras,
Universidad del Cairo, Giza Egipto. Doctorado
Traducción y adaptación por Pedro González Cordero,
Universidad Central deVenezuela.Maestría
Resumen y Objetivos
En el presente trabajo demuestra la resolución de ecuaciones en
derivadas parciales lineales que han sido formuladas como ecuaciones
integrales (en forma de integral sobre el Contorno). Veremos la regla de
integración por partes y luego demostraremos la forma generalizada para
la segunda identidad de las funciones de Green’s. Por lo tanto los
principales objetivos de esta explicación son:
1. Para revisar la filosofía que hay detrás de la regla de integración por
partes.
2. Para generalizar la formulación de la integración por partes y llegar a la
forma de segunda identidad Green’s para sistema multidimensionales.
3. Para revisar la reglas de la notación indicial.
4. Para derivar la formulación de la ecuación integral para la ecuación de
Laplace.
5. Para extender la formulación por encima de la ecuación de Poisson’s.
6. Para dar una visión general de las diferentes áreas de investigación
posibles en el Método de Elementos de Contorno.
Introducción
En esta explicación se describe la dificultad de
los elementos de contorno.También
destacamos las diferentes fuentes de errores
que aparecen en los códigos de los elementos
de contorno.
Vamos a demostrar que la idea básica detrás de
los elementos de contornos es la misma
integración por partes, que es muy bien
conocido por la mayoría de las personas con
cierto conocimientos de cálculo.
Integración por partes
Considere u y v como dos funciones de la variable
independiente x en el un espacio unidimensional.Ver
figura 1.
La siguiente formula de integración por partes es muy
conocida en el ámbito de la matemáticas.
𝑢 𝑥 𝑑𝑣 𝑥
𝑥=𝑥2
𝑥=𝑥1
= 𝑢 𝑥 𝑣 𝑥
𝑥 = 𝑥2
𝑥 = 𝑥1
− 𝑣 𝑥 𝑑𝑢 𝑥
𝑥=𝑥2
𝑥=𝑥1
la ecuación (1) puede re-escribirse de una manera más
conveniente
𝑢 𝑥 𝑣 𝑥 𝑑𝑥
𝑥=𝑥2
𝑥=𝑥1
= 𝑢 𝑥 𝑣 𝑥
𝑥 = 𝑥2
𝑥 = 𝑥1
− 𝑣 𝑥 𝑢 𝑥 𝑑𝑥
𝑥=𝑥2
𝑥=𝑥1
Donde (●)′ denota la derivada de (●) con respecto a x
Contorno
Dominio
Fig. 1
ec(1)
ec(2)
Ahora examinaremos las antiguas formulas con
mayor profundidad. Consideramos el primer termino:
𝑢 𝑥 𝑣 𝑥
𝑥 = 𝑥2
𝑥 = 𝑥1
= 𝑢 𝑥 𝑣 𝑥 𝑎𝑡 𝑥=𝑥2
− 𝑢 𝑥 𝑣 𝑥 𝑎𝑡 𝑥=𝑥1
Esto parece extraño como el término es el resultado
de un proceso de integración, que siempre implica
suma.Ahora la pregunta es: ¿de donde vino el signo
menos en la ultima ecuación?
La respuesta es simple ya que este termino
originalmente es la suma de (u,v,n) en los puntos x1
y x2 en los extremos (teniendo en cuenta que n es la
normal en el contorno del problema, véase figura 2) Contorno
Dominio
Cuerpo
ec(3)
Fig. 2
Por lo tanto este termino se puede volver a re-escribir de la siguiente
manera:
𝑢 𝑥 𝑣 𝑥
𝑥 = 𝑥2
𝑥 = 𝑥1
= 𝑢 𝑥 𝑣 𝑥 𝑎𝑡 𝑥=𝑥2
+ 𝑢 𝑥 𝑣 𝑥 𝑎𝑡 𝑥=𝑥1
→ 𝑢 𝑥 𝑣 𝑥 𝑛 𝑥
𝑥=𝑥1,𝑥2
→ 𝑢 𝑥 𝑣 𝑥 𝑛 𝑥 𝑑Γ
Γ
El siguiente termino en el miembro izquierdo de la ecuación (2) es una
integración sobre el dominio, que puede ser escrita en la forma más
generalizada como sigue:
𝑣 𝑥 𝑢,
𝑥 𝑑𝑥
𝑥=𝑥2
𝑥=𝑥1
= 𝑣 𝑥 𝑢,
𝑥 𝑑Ω
Ω
De los resultados de las ecuaciones (4) y (5), la ecuación (2) puede ser
re-escrito en una forma más generalizada, así:
𝑢 𝑥 𝑣,
𝑥 𝑑Ω
Ω
= 𝑢 𝑥 𝑣 𝑥 𝑛 𝑥 𝑑Γ − 𝑣 𝑥 𝑢,
𝑥 𝑑Ω
ΩΓ
ec(4)
ec(5)
ec(6)
Esta es la segunda identidad de Green`s para problemas unidimensionales.
Para derivadas superiores, la ecuación (6) la podemos generalizar aun más,
como sigue:
𝑢 𝑥 𝑣,,
𝑥 𝑑Ω
Ω
= 𝑢 𝑥 𝑣,
𝑥 𝑛 𝑥 𝑑Γ − 𝑣,
𝑥 𝑢,
𝑥 𝑑Ω
ΩΓ
Aplicando la integración por partes de la segunda integral en el miembro
derecho de la ecuación (7), como se muestra:
𝑣,
𝑥 𝑢,
𝑥 𝑑Ω
Ω
= 𝑢,
𝑥 𝑣 𝑥 𝑛 𝑥 𝑑Γ − 𝑣 𝑥 𝑢,,
𝑥 𝑑Ω
ΩΓ
Así mismo la formulación final puede escribirse de esta forma:
𝑢 𝑥 𝑣,,
𝑥 𝑑Ω
Ω
= 𝑢 𝑥 𝑣,
𝑥 𝑛 𝑥 − 𝑢,
𝑥 𝑣 𝑥 𝑛 𝑥 𝑑Γ − 𝑣 𝑥 𝑢,,
𝑥 𝑑Ω
ΩΓ
ec(7)
ec(8)
ec(9)
Cuando Γ=(x1, x2) es el contorno del dominio Ω=(x1 x2) Antes de
seguir adelante, es importante tener en cuenta lo siguiente:
1- La principal idea de la integración por partes, ya sea en la ecuación (6)
o (9), es la de intercambiar el operador diferencial de la función v para la
función u.
2- Al hacer tal intercambio aparecen algunos términos del contorno
(recordar el primer termino en el lado derecho de la ecuación (6) o (9)).
3- En la ecuación (6) la integración por partes se realiza una sola vez. Por
lo tanto el ultimo dominio de la integral en el lado derecho tiene signo
negativo; mientras que cuando la integración por partes se lleva a cabo
dos veces aparece esta integral con un signo positivo como en la ecuación
(9). Generalmente el signo de la integral es igual a (-1)m donde m es el
numero de veces que la integración por partes se lleva a cabo.
Comúnmente, en el BEM la integración por partes se lleva a cabo dos
veces, sin embargo, en algunos casos se lleva a cabo solo una vez o hasta
cuatro veces.
Si las ecuaciones (6) y (9) se generalizan a un sistema dimensional
superior (por ejemplo 2D o 3D) se obtiene la siguiente forma
(considérese la Figura 2) [1]:
𝑢𝐿𝑣𝑑Ω
Ω
= 𝑢𝐿∗
𝑣𝑑Ω
Γ
+ 𝑣
Ω
𝐿 𝑎𝑑𝑗
𝑢𝑑Ω ec(10)
Donde L es un operador diferencial, Ladj es la
adjunta del operador diferencial, y L* es un
operador diferencial definido por ni L*=L,i.Aquí
se utiliza la notación, sin embargo, se aclaró
cuando ilustramos utilizando el ejemplo de la
ecuación de Laplace (véase más adelante).
Vale la pena señalar que originalmente la
formulación de la integración por partes se
deriva de segunda identidad de Green’s. Sin
embargo, en las antiguas explicaciones nos
acercábamos a la segunda identidad de Green’s
a través de la integración por partes en aras de
la claridad.
Notación Indicial (tensorial)
En mucha literatura sobre BEM la notación
tensorial es usada. Esta notación fue introducida
por Einstein.Aquí vamos a revisar algunos
principios básicos, los cuales se utilizaran a
partir de ahora y en lo sucesivo. En lo que sigue
vamos a considerar solo el caso de la
formulación en 2D; por lo tanto los índices
pueden variar desde 1 hasta 2. El caso
tridimensional puede ser tratada de una manera
similar pero con índices que varían desde 1
hasta 3.
Vectores y tensores
Notación indicial
Diversas denominaciones
Ejes Vectores unitarios Abreviación
Ox1 ē1 (1,0,0) Eje: Oxi
Ox2 ē2 (0,1,0) Vector unitario ēi
Ox3 ē3 (0,0,1) con i = 1, 2, 3
En la Figura 1.1 las coordenadas
del punto P son: x1 , x2 , x3 o xi
El radio vector de P es
OP= x1 ē1 + x2 ē2 + x3 ē3 = Σ xi · ēi i = 1,2,3
x3
x1
x21
P(x1,x2,x3)
2
3
ē1 ē2
ē3
Fig 3
O
Convención de suma de Einstein:
La expresión OP= x1 ē1 + x2 ē2 + x3 ē3 = Σ xi · ēi para todo i = 1,2,3
para OP puede simplificarse o condensarse aún más de la siguiente
manera:
OP = xi · ei
“ Siempre que un mismo índice ocurra dos veces en un término se
debe sumar automáticamente, dando al índice repetido valores de 1,
2, 3.”
De esta manera la primera expresión para OP puede simplificarse
omitiendo el signo Σ y omitiendo expresiones idénticas que difieren
solamente en el valor de i. La notación provee brevedad y elegancia
en desarrollos.
Ejemplos:
Ā = Ai· ēi = A1ē1 + A2ē2 + A3ē3
lĀl2 = Ai·Ai = A1
2 + A2
2 + A3
2
Ā·Ū = Ai·Ui = A1·U1 + A2 ·U2 + A3 ·U3
𝑝2
= 𝑥1 𝑥 − 𝑥1 𝜉 2
+ 𝑥2 𝑥 − 𝑥2 𝜉 2
= 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉 . 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉 ec(11)
Convención de Einstein
-Un índice repetido se llama “dummy” y puede ser reemplazado
por cualquier otra letra no utilizada en otro lugar de la expresión:
ui·ui = uk·uk = uj·uj en cada caso i, j, k toman valores de 1, 2, 3.
-Un mismo índice no puede ocurrir más de dos veces en el
mismo término:
eiii no es permisible
-Un índice no repetido se llama índice “libre”, éste debe tomar
valores de 1, 2 y 3; pero no se aplica la convención de suma.
Delta de Kronecker
Se define como:
δij = 1 si i=j
δij = 0 si i  j
δ11 = δ22 = δ33 = 1
δ12 = δ21 = δ23 = δ32 = δ31 = δ13 = o
Sean los vectores ortogonales ēi:
ē1· ē1 = ē2· ē2 = ē3 · ē3 = 1
ē1· ē2 = ē2· ē3 = ē3 · ē1 = 0
Estas relaciones pueden reducirse a:
ēi· ēj = δij
ec(12)
El delta de Kronecker puede ser utilizado como operador de
sustitución:
δij·aj = δi1·a1 + δi2·a2 + δi3·a3
Si i = 1 se tiene: δi1 = 1 δi2 = δi3 = 0 ; luego: δij·aj = a1 ,
e igualmente si i = 2: δ2j·aj = a2 y si i = 3 δ3j·aj = a3
Luego : δij·aj = ai
Así, δij operando sobre aj sustituye el índice j por i
Otro ejemplo:
si i = j, es = 0 si i  j;
Luego
𝜕𝑥𝑖
𝜕𝑥𝑗
= 1
𝜕𝑥𝑖
𝜕𝑥𝑗
= 𝛿𝑖𝑗
Derivadas en r
El vector r esta definido por los extremos, el punto ξ (el punto origen) y el punto
x (el punto de campo). En notación indicial, la coma es usada para denotar
derivadas con respecto a las coordenadas del campo, como sigue:
𝜕𝑟
𝜕𝑥𝑖 𝑥
= 𝑟,𝑖 = −
𝜕𝑟
𝜕𝑥𝑖 𝜉
Usando la definición de la ecuación (11) y mediante la diferenciación de ambos
miembros con respecto a las coordenadas del punto de campo, como sigue:
2𝑟
𝜕𝑟
𝜕𝑥𝑗 𝑥
= 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉
𝜕 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉
𝜕𝑥𝑗 𝑥
+ 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉
𝜕 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉
𝜕𝑥𝑗 𝑥
O
𝑟
𝜕𝑟
𝜕𝑥𝑗 𝑥
= 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉
𝜕 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉
𝜕𝑥𝑗 𝑥
ec(13)
ec(14)
ec(15)
Sabiendo que
𝜕 𝑥𝑖 𝑥
𝜕𝑥 𝑗 𝑥
= 𝛿𝑖𝑗 y
𝜕 𝑥𝑖 𝜉
𝜕𝑥 𝑗 𝑥
= 0
Donde
𝜕𝑟
𝜕𝑥𝑗 𝑥
=
𝑥𝑖 𝑥 − 𝑥𝑖 𝜉
𝑟
𝛿𝑖𝑗 =
𝑥𝑖 𝑥 − 𝑥𝑖 𝜉
𝑟
=
𝑟𝑗
𝑟
= 𝑟,𝑗
Tiene que ser que solo un signo menos es la
diferencia entre la derivación con respecto al campo
y aquellos con respecto al punto de origen (vea
ecuación 13). En la mayoría de los libros del método
de elemento de contorno BEM la coma denota las
derivadas con respecto a la coordenada del punto de
campo; de lo contrario, se hará constar de forma
explicita.
ec(17)
ec(16)
Derivadas de Orden Superior de r.
𝑟,𝑖𝑗 =
𝜕𝑟, 𝑖
𝜕𝑥𝑗 𝑥
=
𝜕
𝜕𝑥𝑗 𝑥
𝑟𝑖
𝑟
=
𝜕
𝜕𝑥𝑗 𝑥
𝑥𝑖 𝑥 − 𝑥𝑖 𝜉
𝑟
=
𝑟 𝛿𝑖𝑗 − 0 − 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉 𝑟,𝑗
𝑟2
=
𝛿𝑖𝑗
𝑟
−
𝑟𝑖 𝑟,𝑗
𝑟2
=
𝛿𝑖𝑗 − 𝑟,𝑖 𝑟,𝑗
𝑟
Por defecto, las antiguas derivadas se toman con respecto a la coordenada del
punto de campo. Si estos derivadas fueron tomadas con respecto a la
coordenada del punto origen, conduce a:
𝑟,𝑖𝑗 =
𝜕𝑟,𝑖
𝜕𝑥𝑗 𝜉
=
𝑟,𝑖 𝑟,𝑗 − 𝛿𝑖𝑗
𝑟
Que conducen a los mismos resultados que en la ecuación 18, pero con signo
menos, mencionados anteriormente. Otra derivada de orden superior de r
puede obtenerse en forma similar.
ec(18)
ec(19)
Ecuación de Laplace
Aquí veremos la formulación de la ecuación
Integral para la ecuación de Laplace y de
donde deriva paso a paso. La ecuación de
Laplace gobierna tanto problemas de
ingeniería como de la física, como la torsión
de sólidos y flujo de potencial. La forma
diferencial para esta ecuación se da como
sigue:
𝛻2
𝑢 = 0 ec.(20)
Esta ecuación gobernante se define para un
cierto problema, por ejemplo el problema se
muestra en la Figura 2. La densidad u(x) es el
potencial en cualquier punto x en el interior
del dominio o en el límite. La notación u(x)
denota que u es función de la coordenada del
punto x; por lo tanto es una abreviatura para
la notación 𝑢 𝑥1 𝑥 , 𝑥2 𝑥 . Con el fin de
establecer la forma integral directa para la
ecuación diferencial (20), la siguiente identidad
integral se considera:
𝛻2 𝑢 𝑈∗
Ω
𝑑Ω = 0 ec(21)
Donde U * es una función de peso o funcional. Se ha de
señalar que, si esta función de ponderación se elige para
que sea una función aproximada para minimizar el error
en la solución de u, se dice que la declaración anterior a
ser una declaración residual ponderada como en el caso
del método de elementos finitos. En el caso del BEM,
como veremos más adelante, no necesitamos un estado
residual ponderado será elegido el U * como Kernels
(núcleos) analíticos y exactos. En los próximos pasos de
derivación vamos a seguir los mismos pasos que a partir
de la ecuación (6) por la sustitución de v'' por el 𝛻2
𝑢 y u
(x) por U * para obtener una ecuación similar a la
ecuación (8). Para ello, aplicamos Identidad de Green (o
la integración por partes) a la ecuación (21). Da:
𝑢,𝑎 𝑥 𝑛 𝛼 𝑥 𝑈,𝛼
∗
𝑑Γ − 𝑢,𝛼 𝑥 𝑈,𝛼
∗
𝑑Ω = 0ΩΓ
ec.(22)
Una vez más, la aplicación de la identidad de Green′s a la
segunda integral en la ecuación (22), da la ec. (23):
𝑢,𝛼 𝑥 𝑈,𝛼
∗
𝑑Ω = 𝑢,𝑎 𝑥 𝑛 𝛼 𝑥 𝑈,𝛼
∗
𝑑Γ
Γ
− 𝑢 𝑥 𝑈,𝛼𝛼
∗
𝑑Ω
ΩΩ
Dado que:
𝑞 =
𝜕𝑢
𝜕𝑛
= 𝑢,𝛼 𝑛 𝛼 y 𝑞 = 𝑈,𝛼
∗
𝑛 𝛼 ec.(24)
Donde q es el flujo, se puede reescribir la ec. 23 de la siguiente
forma:
𝑞 𝑥 𝑈∗
𝑑ΓΓ
− 𝑢 𝑥 𝑞∗
𝑑ΓΓ
+ 𝑢 𝑥 𝛻2
𝑈∗
𝑑ΩΩ
= 0 ec. (25)
Se puede observar a partir de la última ecuación que los dos
primeros términos de frontera son integrales (un resultado
similar a la de la ecuación (9)) y la última integral es un término
integral de dominio que contiene el adjuntooperador (que es el
Laplaciano).
La última integral representa el primer tipo de
integrales de dominio que aparecen en la BEM. Es
importante, ahora, para mostrar cómo deshacerse
de este dominio integral.
Antes de considerar el dominio de integridad,
podemos mostrar cómo U * Se puede seleccionar:
Donde u(x)=c (constante) cuando q(x)=0 y:
𝛻2 𝑈∗ 𝑑ΩΩ
= 𝑞∗ 𝑑ΓΓ
ec. 26
que, por definición, es una solución trivial
(satisfaciendo segunda identidad de Green). Sin
embargo, la identidad de la ecuación (26) es muy
útil y nos hará un amplio uso de ella en futuras
explicaciones en la transformación de las integrales
de dominio a la frontera.
Donde 𝑈∗
𝑥 = 𝑐 cuando 𝑞∗
𝑥 = 0 y:
𝑞 𝑥 𝑑Γ = 0Γ
ec. (27)
Recordando la ecuación (25), Con el fin de
deshacerse de la última integrante de dominio
el siguiente caso se podría utilizar:
𝛻2
𝑈∗
𝜉, 𝑥 − 𝛿 𝜉, 𝑥 ec.(28)
Donde 𝛿 𝜉, 𝑥 es el delta de Paul Dirac que
no es una función, que es una distribución o
un funcional. El delta de Dirac se define como
cero en todas partes, excepto en 𝜉 = 𝑥 donde
esta es infinita. La solución particular singular
de la ecuación (28) se llama la solución
fundamental. Ahora el 𝑈∗
𝜉, 𝑥 se llaman
núcleos de dos puntos.
Sustituyendo la ecuación (28) en el último dominio
integral en la ecuación (25) da:
𝑢 𝑥 𝛻2
𝑈∗
Ω
𝜉, 𝑥 𝑑Ω = − 𝑢 𝑥 𝛿 𝜉, 𝑥 𝑑ΩΩ
= −𝑢 𝜉
ec.(29)
donde la ecuación (29) es una propiedad bien conocido de
la distribución delta de Dirac. Se puede observar que el
uso de la distribución delta de Dirac, convertimos la
integral de dominio en un término de salto.Vale la pena
señalar que el punto ξ se trata como un punto interno.
Además, hay que señalar que el signo negativo en el RHS
de la ecuación (28) sólo es para la convención y podría ser
ignorada, sin afectar a la formulación final.
Sustituyendo la ecuación (29) en la ecuación (25) da la ec.
(30):
𝑢 𝜉 + 𝑞∗
𝜉, 𝑥 𝑢 𝑥 𝑑Γ
Γ
= 𝑈∗
𝜉, 𝑥 𝑞 𝑥 𝑑Γ
Γ
que es la ecuación integral de contorno para la ecuación
de Laplace.
Ecuación de Poisson
La ecuación de Poisson esta dada por ec.(31):
𝛻2
𝑢 𝑥 + 𝑏 𝑥 = 0
donde el término b es no homogénea, (x) denota
fuentes internas o de las fuerzas del cuerpo. Con el fin
de obtener la ecuación integral directa de una ecuación
tal, vamos a seguir los mismos pasos que antes. La
ecuación (31) se ponderará el uso de pesas U*:
𝛻2
𝑢 𝑥 + 𝑏 𝑥 𝑈∗
𝑑Ω = 0Ω
ec. (32)
que se puede dividir para dar ec. (33):
𝛻2
𝑢 𝑥 𝑈∗
𝑑Ω
Ω
+ 𝑏 𝑥 𝑈∗
𝑑Ω = 0
Ω
Después de integrar por partes dos veces, la
primera integral dará lugar al mismo resultado que
el de la ecuación (30), mientras que la segunda
integral se mantendrá sin cambios. Por lo tanto la
forma integral final puede obtenerse como sigue la
ec.(34):
𝑢 𝜉 + 𝑞∗
𝜉, 𝑥 𝑢 𝑥 𝑑Γ
Γ
= 𝑈∗
𝜉, 𝑥 𝑞 𝑥 𝑑Γ
Γ
+ 𝑈∗
𝜉, 𝑥 𝑏 𝑥 𝑑Ω
Ω
El último integrante en el lado derecho representa
el segundo tipo de integrales de dominio que
aparecen en la formulación BEM. Esta integral se
puede transformar en el límite usando muchas
técnicas

Más contenido relacionado

La actualidad más candente

Semana 2 probabilidad conteo
Semana 2 probabilidad conteoSemana 2 probabilidad conteo
Semana 2 probabilidad conteo
Sergio Jurado
 
5. TRIPLE PRODUCTO ESCALAR
5. TRIPLE PRODUCTO ESCALAR5. TRIPLE PRODUCTO ESCALAR
5. TRIPLE PRODUCTO ESCALAR
edvinogo
 
La Integral Definida
La Integral DefinidaLa Integral Definida
La Integral Definida
ERICK CONDE
 

La actualidad más candente (20)

Ejercicios física iii
Ejercicios  física iiiEjercicios  física iii
Ejercicios física iii
 
Practica calificadas de resistencia de materiales
Practica calificadas de resistencia de materialesPractica calificadas de resistencia de materiales
Practica calificadas de resistencia de materiales
 
Semana 2 probabilidad conteo
Semana 2 probabilidad conteoSemana 2 probabilidad conteo
Semana 2 probabilidad conteo
 
Codigos de error sokkia
Codigos de error sokkiaCodigos de error sokkia
Codigos de error sokkia
 
Teoria viga conjugada
Teoria viga conjugadaTeoria viga conjugada
Teoria viga conjugada
 
Ley de coulomb Clase 2 TE
Ley de coulomb Clase 2 TELey de coulomb Clase 2 TE
Ley de coulomb Clase 2 TE
 
flujo y centro cortante en vigas de pared delgada
flujo y centro cortante en vigas de pared delgadaflujo y centro cortante en vigas de pared delgada
flujo y centro cortante en vigas de pared delgada
 
ECUACIONES DIFERENCIALES APLICADO A LA INGENIERIA CIVIL
ECUACIONES DIFERENCIALES APLICADO A LA INGENIERIA CIVILECUACIONES DIFERENCIALES APLICADO A LA INGENIERIA CIVIL
ECUACIONES DIFERENCIALES APLICADO A LA INGENIERIA CIVIL
 
Lineas equipotenciales
Lineas equipotencialesLineas equipotenciales
Lineas equipotenciales
 
04 ef vigas
04 ef vigas04 ef vigas
04 ef vigas
 
19_Libro_Estatica_Problemas_Resueltos.pdf
19_Libro_Estatica_Problemas_Resueltos.pdf19_Libro_Estatica_Problemas_Resueltos.pdf
19_Libro_Estatica_Problemas_Resueltos.pdf
 
5. TRIPLE PRODUCTO ESCALAR
5. TRIPLE PRODUCTO ESCALAR5. TRIPLE PRODUCTO ESCALAR
5. TRIPLE PRODUCTO ESCALAR
 
Problemas resueltos tema 6
Problemas resueltos tema 6Problemas resueltos tema 6
Problemas resueltos tema 6
 
Solucionario primer parcial
Solucionario primer parcial Solucionario primer parcial
Solucionario primer parcial
 
Capituloii campoelectrico-121021135328-phpapp01
Capituloii campoelectrico-121021135328-phpapp01Capituloii campoelectrico-121021135328-phpapp01
Capituloii campoelectrico-121021135328-phpapp01
 
La Integral Definida
La Integral DefinidaLa Integral Definida
La Integral Definida
 
Ejercicio de deformacion simple, termica, area de momentos y torsion
Ejercicio de deformacion simple, termica, area de momentos y torsionEjercicio de deformacion simple, termica, area de momentos y torsion
Ejercicio de deformacion simple, termica, area de momentos y torsion
 
Interpolación matricial
Interpolación matricialInterpolación matricial
Interpolación matricial
 
Solucion de Ecuaciones Diferenciales Ordinarias de Segundo Orden por Métodos ...
Solucion de Ecuaciones Diferenciales Ordinarias de Segundo Orden por Métodos ...Solucion de Ecuaciones Diferenciales Ordinarias de Segundo Orden por Métodos ...
Solucion de Ecuaciones Diferenciales Ordinarias de Segundo Orden por Métodos ...
 
Capitulo iii cinematica de una particula(1)
Capitulo iii cinematica de una particula(1)Capitulo iii cinematica de una particula(1)
Capitulo iii cinematica de una particula(1)
 

Destacado (20)

Presentacion circuitos
Presentacion circuitosPresentacion circuitos
Presentacion circuitos
 
Tema 5 (Problemas)
Tema 5 (Problemas)Tema 5 (Problemas)
Tema 5 (Problemas)
 
El transformador
El transformadorEl transformador
El transformador
 
Historia8 Vo. Conquista De Aca.
Historia8 Vo. Conquista De Aca.Historia8 Vo. Conquista De Aca.
Historia8 Vo. Conquista De Aca.
 
Funciones
FuncionesFunciones
Funciones
 
Problemas temas 8-10
Problemas temas 8-10Problemas temas 8-10
Problemas temas 8-10
 
Calculo del volumen
Calculo del volumenCalculo del volumen
Calculo del volumen
 
Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactasEcuaciones diferenciales exactas
Ecuaciones diferenciales exactas
 
Biografia j. vega
Biografia j. vegaBiografia j. vega
Biografia j. vega
 
Capitulo4 electronica
Capitulo4 electronicaCapitulo4 electronica
Capitulo4 electronica
 
Unidad ii guia de ecuciones diferenciales ordinarias uts
Unidad ii guia de ecuciones diferenciales ordinarias utsUnidad ii guia de ecuciones diferenciales ordinarias uts
Unidad ii guia de ecuciones diferenciales ordinarias uts
 
Vocabulario i
Vocabulario iVocabulario i
Vocabulario i
 
Soli
SoliSoli
Soli
 
Unidad i eliannys hernandez
Unidad i eliannys hernandezUnidad i eliannys hernandez
Unidad i eliannys hernandez
 
Problemas
ProblemasProblemas
Problemas
 
Muralalbah
MuralalbahMuralalbah
Muralalbah
 
Ecuaciones diferenciales exactas
Ecuaciones diferenciales exactasEcuaciones diferenciales exactas
Ecuaciones diferenciales exactas
 
Lasmaquinas
LasmaquinasLasmaquinas
Lasmaquinas
 
éTica 9º 1º
éTica 9º 1ºéTica 9º 1º
éTica 9º 1º
 
Problemario fundamentos de programación
Problemario fundamentos de programaciónProblemario fundamentos de programación
Problemario fundamentos de programación
 

Similar a Explicación método elemento de contorno

1. nociones basicas
1. nociones basicas1. nociones basicas
1. nociones basicas
SALINAS
 
Integral indefinida. Aplicaciones de la integral
Integral indefinida. Aplicaciones de la integralIntegral indefinida. Aplicaciones de la integral
Integral indefinida. Aplicaciones de la integral
jcremiro
 
Derivadas logaritmicas y trigonometricas o exponenciales
Derivadas logaritmicas y trigonometricas o exponencialesDerivadas logaritmicas y trigonometricas o exponenciales
Derivadas logaritmicas y trigonometricas o exponenciales
kevin lopez
 

Similar a Explicación método elemento de contorno (20)

Trigonometricas.pdf
Trigonometricas.pdfTrigonometricas.pdf
Trigonometricas.pdf
 
Integracion. bloque-ll
Integracion. bloque-llIntegracion. bloque-ll
Integracion. bloque-ll
 
1. nociones basicas
1. nociones basicas1. nociones basicas
1. nociones basicas
 
Integral indefinida. Aplicaciones de la integral
Integral indefinida. Aplicaciones de la integralIntegral indefinida. Aplicaciones de la integral
Integral indefinida. Aplicaciones de la integral
 
3 guia integración por partes
3 guia integración por partes3 guia integración por partes
3 guia integración por partes
 
Semana 11.pptx
Semana 11.pptxSemana 11.pptx
Semana 11.pptx
 
Grupo 1 - Números complejos.pptx
Grupo 1 - Números complejos.pptxGrupo 1 - Números complejos.pptx
Grupo 1 - Números complejos.pptx
 
Notas sobre derivadas
Notas sobre derivadasNotas sobre derivadas
Notas sobre derivadas
 
La ecuación diferencial de Legendre
La ecuación diferencial de LegendreLa ecuación diferencial de Legendre
La ecuación diferencial de Legendre
 
Bioquimica-Exposición.PPTX
Bioquimica-Exposición.PPTXBioquimica-Exposición.PPTX
Bioquimica-Exposición.PPTX
 
Diferencias parcial
Diferencias parcialDiferencias parcial
Diferencias parcial
 
Funciones de legendre
Funciones de legendre Funciones de legendre
Funciones de legendre
 
Integracion por partes
Integracion por partesIntegracion por partes
Integracion por partes
 
La transformación fasorial analisis de sistemas
La transformación fasorial analisis de sistemasLa transformación fasorial analisis de sistemas
La transformación fasorial analisis de sistemas
 
Derivadas logaritmicas y trigonometricas o exponenciales
Derivadas logaritmicas y trigonometricas o exponencialesDerivadas logaritmicas y trigonometricas o exponenciales
Derivadas logaritmicas y trigonometricas o exponenciales
 
Derivación funciones logarítmicas
Derivación funciones logarítmicasDerivación funciones logarítmicas
Derivación funciones logarítmicas
 
Matlab
MatlabMatlab
Matlab
 
Unidad 5 calculo
Unidad 5 calculoUnidad 5 calculo
Unidad 5 calculo
 
INTERPOLACIÓN POLINÓMICA.pptx
INTERPOLACIÓN POLINÓMICA.pptxINTERPOLACIÓN POLINÓMICA.pptx
INTERPOLACIÓN POLINÓMICA.pptx
 
Integracion por partes
Integracion por partesIntegracion por partes
Integracion por partes
 

Último

5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
MiNeyi1
 
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
RigoTito
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
EliaHernndez7
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
El Fortí
 

Último (20)

Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIAFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
 
Abril 2024 - Maestra Jardinera Ediba.pdf
Abril 2024 -  Maestra Jardinera Ediba.pdfAbril 2024 -  Maestra Jardinera Ediba.pdf
Abril 2024 - Maestra Jardinera Ediba.pdf
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 

Explicación método elemento de contorno

  • 1. Método Elemento de Contorno Youssef Rassed Departamento de Ingeniería de Estructuras, Universidad del Cairo, Giza Egipto. Doctorado Traducción y adaptación por Pedro González Cordero, Universidad Central deVenezuela.Maestría
  • 2. Resumen y Objetivos En el presente trabajo demuestra la resolución de ecuaciones en derivadas parciales lineales que han sido formuladas como ecuaciones integrales (en forma de integral sobre el Contorno). Veremos la regla de integración por partes y luego demostraremos la forma generalizada para la segunda identidad de las funciones de Green’s. Por lo tanto los principales objetivos de esta explicación son: 1. Para revisar la filosofía que hay detrás de la regla de integración por partes. 2. Para generalizar la formulación de la integración por partes y llegar a la forma de segunda identidad Green’s para sistema multidimensionales. 3. Para revisar la reglas de la notación indicial. 4. Para derivar la formulación de la ecuación integral para la ecuación de Laplace. 5. Para extender la formulación por encima de la ecuación de Poisson’s. 6. Para dar una visión general de las diferentes áreas de investigación posibles en el Método de Elementos de Contorno.
  • 3. Introducción En esta explicación se describe la dificultad de los elementos de contorno.También destacamos las diferentes fuentes de errores que aparecen en los códigos de los elementos de contorno. Vamos a demostrar que la idea básica detrás de los elementos de contornos es la misma integración por partes, que es muy bien conocido por la mayoría de las personas con cierto conocimientos de cálculo.
  • 4. Integración por partes Considere u y v como dos funciones de la variable independiente x en el un espacio unidimensional.Ver figura 1. La siguiente formula de integración por partes es muy conocida en el ámbito de la matemáticas. 𝑢 𝑥 𝑑𝑣 𝑥 𝑥=𝑥2 𝑥=𝑥1 = 𝑢 𝑥 𝑣 𝑥 𝑥 = 𝑥2 𝑥 = 𝑥1 − 𝑣 𝑥 𝑑𝑢 𝑥 𝑥=𝑥2 𝑥=𝑥1 la ecuación (1) puede re-escribirse de una manera más conveniente 𝑢 𝑥 𝑣 𝑥 𝑑𝑥 𝑥=𝑥2 𝑥=𝑥1 = 𝑢 𝑥 𝑣 𝑥 𝑥 = 𝑥2 𝑥 = 𝑥1 − 𝑣 𝑥 𝑢 𝑥 𝑑𝑥 𝑥=𝑥2 𝑥=𝑥1 Donde (●)′ denota la derivada de (●) con respecto a x Contorno Dominio Fig. 1 ec(1) ec(2)
  • 5. Ahora examinaremos las antiguas formulas con mayor profundidad. Consideramos el primer termino: 𝑢 𝑥 𝑣 𝑥 𝑥 = 𝑥2 𝑥 = 𝑥1 = 𝑢 𝑥 𝑣 𝑥 𝑎𝑡 𝑥=𝑥2 − 𝑢 𝑥 𝑣 𝑥 𝑎𝑡 𝑥=𝑥1 Esto parece extraño como el término es el resultado de un proceso de integración, que siempre implica suma.Ahora la pregunta es: ¿de donde vino el signo menos en la ultima ecuación? La respuesta es simple ya que este termino originalmente es la suma de (u,v,n) en los puntos x1 y x2 en los extremos (teniendo en cuenta que n es la normal en el contorno del problema, véase figura 2) Contorno Dominio Cuerpo ec(3) Fig. 2
  • 6. Por lo tanto este termino se puede volver a re-escribir de la siguiente manera: 𝑢 𝑥 𝑣 𝑥 𝑥 = 𝑥2 𝑥 = 𝑥1 = 𝑢 𝑥 𝑣 𝑥 𝑎𝑡 𝑥=𝑥2 + 𝑢 𝑥 𝑣 𝑥 𝑎𝑡 𝑥=𝑥1 → 𝑢 𝑥 𝑣 𝑥 𝑛 𝑥 𝑥=𝑥1,𝑥2 → 𝑢 𝑥 𝑣 𝑥 𝑛 𝑥 𝑑Γ Γ El siguiente termino en el miembro izquierdo de la ecuación (2) es una integración sobre el dominio, que puede ser escrita en la forma más generalizada como sigue: 𝑣 𝑥 𝑢, 𝑥 𝑑𝑥 𝑥=𝑥2 𝑥=𝑥1 = 𝑣 𝑥 𝑢, 𝑥 𝑑Ω Ω De los resultados de las ecuaciones (4) y (5), la ecuación (2) puede ser re-escrito en una forma más generalizada, así: 𝑢 𝑥 𝑣, 𝑥 𝑑Ω Ω = 𝑢 𝑥 𝑣 𝑥 𝑛 𝑥 𝑑Γ − 𝑣 𝑥 𝑢, 𝑥 𝑑Ω ΩΓ ec(4) ec(5) ec(6)
  • 7. Esta es la segunda identidad de Green`s para problemas unidimensionales. Para derivadas superiores, la ecuación (6) la podemos generalizar aun más, como sigue: 𝑢 𝑥 𝑣,, 𝑥 𝑑Ω Ω = 𝑢 𝑥 𝑣, 𝑥 𝑛 𝑥 𝑑Γ − 𝑣, 𝑥 𝑢, 𝑥 𝑑Ω ΩΓ Aplicando la integración por partes de la segunda integral en el miembro derecho de la ecuación (7), como se muestra: 𝑣, 𝑥 𝑢, 𝑥 𝑑Ω Ω = 𝑢, 𝑥 𝑣 𝑥 𝑛 𝑥 𝑑Γ − 𝑣 𝑥 𝑢,, 𝑥 𝑑Ω ΩΓ Así mismo la formulación final puede escribirse de esta forma: 𝑢 𝑥 𝑣,, 𝑥 𝑑Ω Ω = 𝑢 𝑥 𝑣, 𝑥 𝑛 𝑥 − 𝑢, 𝑥 𝑣 𝑥 𝑛 𝑥 𝑑Γ − 𝑣 𝑥 𝑢,, 𝑥 𝑑Ω ΩΓ ec(7) ec(8) ec(9)
  • 8. Cuando Γ=(x1, x2) es el contorno del dominio Ω=(x1 x2) Antes de seguir adelante, es importante tener en cuenta lo siguiente: 1- La principal idea de la integración por partes, ya sea en la ecuación (6) o (9), es la de intercambiar el operador diferencial de la función v para la función u. 2- Al hacer tal intercambio aparecen algunos términos del contorno (recordar el primer termino en el lado derecho de la ecuación (6) o (9)). 3- En la ecuación (6) la integración por partes se realiza una sola vez. Por lo tanto el ultimo dominio de la integral en el lado derecho tiene signo negativo; mientras que cuando la integración por partes se lleva a cabo dos veces aparece esta integral con un signo positivo como en la ecuación (9). Generalmente el signo de la integral es igual a (-1)m donde m es el numero de veces que la integración por partes se lleva a cabo. Comúnmente, en el BEM la integración por partes se lleva a cabo dos veces, sin embargo, en algunos casos se lleva a cabo solo una vez o hasta cuatro veces. Si las ecuaciones (6) y (9) se generalizan a un sistema dimensional superior (por ejemplo 2D o 3D) se obtiene la siguiente forma (considérese la Figura 2) [1]: 𝑢𝐿𝑣𝑑Ω Ω = 𝑢𝐿∗ 𝑣𝑑Ω Γ + 𝑣 Ω 𝐿 𝑎𝑑𝑗 𝑢𝑑Ω ec(10)
  • 9. Donde L es un operador diferencial, Ladj es la adjunta del operador diferencial, y L* es un operador diferencial definido por ni L*=L,i.Aquí se utiliza la notación, sin embargo, se aclaró cuando ilustramos utilizando el ejemplo de la ecuación de Laplace (véase más adelante). Vale la pena señalar que originalmente la formulación de la integración por partes se deriva de segunda identidad de Green’s. Sin embargo, en las antiguas explicaciones nos acercábamos a la segunda identidad de Green’s a través de la integración por partes en aras de la claridad.
  • 10. Notación Indicial (tensorial) En mucha literatura sobre BEM la notación tensorial es usada. Esta notación fue introducida por Einstein.Aquí vamos a revisar algunos principios básicos, los cuales se utilizaran a partir de ahora y en lo sucesivo. En lo que sigue vamos a considerar solo el caso de la formulación en 2D; por lo tanto los índices pueden variar desde 1 hasta 2. El caso tridimensional puede ser tratada de una manera similar pero con índices que varían desde 1 hasta 3.
  • 11. Vectores y tensores Notación indicial Diversas denominaciones Ejes Vectores unitarios Abreviación Ox1 ē1 (1,0,0) Eje: Oxi Ox2 ē2 (0,1,0) Vector unitario ēi Ox3 ē3 (0,0,1) con i = 1, 2, 3 En la Figura 1.1 las coordenadas del punto P son: x1 , x2 , x3 o xi El radio vector de P es OP= x1 ē1 + x2 ē2 + x3 ē3 = Σ xi · ēi i = 1,2,3 x3 x1 x21 P(x1,x2,x3) 2 3 ē1 ē2 ē3 Fig 3 O
  • 12. Convención de suma de Einstein: La expresión OP= x1 ē1 + x2 ē2 + x3 ē3 = Σ xi · ēi para todo i = 1,2,3 para OP puede simplificarse o condensarse aún más de la siguiente manera: OP = xi · ei “ Siempre que un mismo índice ocurra dos veces en un término se debe sumar automáticamente, dando al índice repetido valores de 1, 2, 3.” De esta manera la primera expresión para OP puede simplificarse omitiendo el signo Σ y omitiendo expresiones idénticas que difieren solamente en el valor de i. La notación provee brevedad y elegancia en desarrollos. Ejemplos: Ā = Ai· ēi = A1ē1 + A2ē2 + A3ē3 lĀl2 = Ai·Ai = A1 2 + A2 2 + A3 2 Ā·Ū = Ai·Ui = A1·U1 + A2 ·U2 + A3 ·U3 𝑝2 = 𝑥1 𝑥 − 𝑥1 𝜉 2 + 𝑥2 𝑥 − 𝑥2 𝜉 2 = 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉 . 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉 ec(11)
  • 13. Convención de Einstein -Un índice repetido se llama “dummy” y puede ser reemplazado por cualquier otra letra no utilizada en otro lugar de la expresión: ui·ui = uk·uk = uj·uj en cada caso i, j, k toman valores de 1, 2, 3. -Un mismo índice no puede ocurrir más de dos veces en el mismo término: eiii no es permisible -Un índice no repetido se llama índice “libre”, éste debe tomar valores de 1, 2 y 3; pero no se aplica la convención de suma.
  • 14. Delta de Kronecker Se define como: δij = 1 si i=j δij = 0 si i  j δ11 = δ22 = δ33 = 1 δ12 = δ21 = δ23 = δ32 = δ31 = δ13 = o Sean los vectores ortogonales ēi: ē1· ē1 = ē2· ē2 = ē3 · ē3 = 1 ē1· ē2 = ē2· ē3 = ē3 · ē1 = 0 Estas relaciones pueden reducirse a: ēi· ēj = δij ec(12)
  • 15. El delta de Kronecker puede ser utilizado como operador de sustitución: δij·aj = δi1·a1 + δi2·a2 + δi3·a3 Si i = 1 se tiene: δi1 = 1 δi2 = δi3 = 0 ; luego: δij·aj = a1 , e igualmente si i = 2: δ2j·aj = a2 y si i = 3 δ3j·aj = a3 Luego : δij·aj = ai Así, δij operando sobre aj sustituye el índice j por i Otro ejemplo: si i = j, es = 0 si i  j; Luego 𝜕𝑥𝑖 𝜕𝑥𝑗 = 1 𝜕𝑥𝑖 𝜕𝑥𝑗 = 𝛿𝑖𝑗
  • 16. Derivadas en r El vector r esta definido por los extremos, el punto ξ (el punto origen) y el punto x (el punto de campo). En notación indicial, la coma es usada para denotar derivadas con respecto a las coordenadas del campo, como sigue: 𝜕𝑟 𝜕𝑥𝑖 𝑥 = 𝑟,𝑖 = − 𝜕𝑟 𝜕𝑥𝑖 𝜉 Usando la definición de la ecuación (11) y mediante la diferenciación de ambos miembros con respecto a las coordenadas del punto de campo, como sigue: 2𝑟 𝜕𝑟 𝜕𝑥𝑗 𝑥 = 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉 𝜕 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉 𝜕𝑥𝑗 𝑥 + 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉 𝜕 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉 𝜕𝑥𝑗 𝑥 O 𝑟 𝜕𝑟 𝜕𝑥𝑗 𝑥 = 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉 𝜕 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉 𝜕𝑥𝑗 𝑥 ec(13) ec(14) ec(15)
  • 17. Sabiendo que 𝜕 𝑥𝑖 𝑥 𝜕𝑥 𝑗 𝑥 = 𝛿𝑖𝑗 y 𝜕 𝑥𝑖 𝜉 𝜕𝑥 𝑗 𝑥 = 0 Donde 𝜕𝑟 𝜕𝑥𝑗 𝑥 = 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉 𝑟 𝛿𝑖𝑗 = 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉 𝑟 = 𝑟𝑗 𝑟 = 𝑟,𝑗 Tiene que ser que solo un signo menos es la diferencia entre la derivación con respecto al campo y aquellos con respecto al punto de origen (vea ecuación 13). En la mayoría de los libros del método de elemento de contorno BEM la coma denota las derivadas con respecto a la coordenada del punto de campo; de lo contrario, se hará constar de forma explicita. ec(17) ec(16)
  • 18. Derivadas de Orden Superior de r. 𝑟,𝑖𝑗 = 𝜕𝑟, 𝑖 𝜕𝑥𝑗 𝑥 = 𝜕 𝜕𝑥𝑗 𝑥 𝑟𝑖 𝑟 = 𝜕 𝜕𝑥𝑗 𝑥 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉 𝑟 = 𝑟 𝛿𝑖𝑗 − 0 − 𝑥𝑖 𝑥 − 𝑥𝑖 𝜉 𝑟,𝑗 𝑟2 = 𝛿𝑖𝑗 𝑟 − 𝑟𝑖 𝑟,𝑗 𝑟2 = 𝛿𝑖𝑗 − 𝑟,𝑖 𝑟,𝑗 𝑟 Por defecto, las antiguas derivadas se toman con respecto a la coordenada del punto de campo. Si estos derivadas fueron tomadas con respecto a la coordenada del punto origen, conduce a: 𝑟,𝑖𝑗 = 𝜕𝑟,𝑖 𝜕𝑥𝑗 𝜉 = 𝑟,𝑖 𝑟,𝑗 − 𝛿𝑖𝑗 𝑟 Que conducen a los mismos resultados que en la ecuación 18, pero con signo menos, mencionados anteriormente. Otra derivada de orden superior de r puede obtenerse en forma similar. ec(18) ec(19)
  • 19. Ecuación de Laplace Aquí veremos la formulación de la ecuación Integral para la ecuación de Laplace y de donde deriva paso a paso. La ecuación de Laplace gobierna tanto problemas de ingeniería como de la física, como la torsión de sólidos y flujo de potencial. La forma diferencial para esta ecuación se da como sigue: 𝛻2 𝑢 = 0 ec.(20)
  • 20. Esta ecuación gobernante se define para un cierto problema, por ejemplo el problema se muestra en la Figura 2. La densidad u(x) es el potencial en cualquier punto x en el interior del dominio o en el límite. La notación u(x) denota que u es función de la coordenada del punto x; por lo tanto es una abreviatura para la notación 𝑢 𝑥1 𝑥 , 𝑥2 𝑥 . Con el fin de establecer la forma integral directa para la ecuación diferencial (20), la siguiente identidad integral se considera: 𝛻2 𝑢 𝑈∗ Ω 𝑑Ω = 0 ec(21)
  • 21. Donde U * es una función de peso o funcional. Se ha de señalar que, si esta función de ponderación se elige para que sea una función aproximada para minimizar el error en la solución de u, se dice que la declaración anterior a ser una declaración residual ponderada como en el caso del método de elementos finitos. En el caso del BEM, como veremos más adelante, no necesitamos un estado residual ponderado será elegido el U * como Kernels (núcleos) analíticos y exactos. En los próximos pasos de derivación vamos a seguir los mismos pasos que a partir de la ecuación (6) por la sustitución de v'' por el 𝛻2 𝑢 y u (x) por U * para obtener una ecuación similar a la ecuación (8). Para ello, aplicamos Identidad de Green (o la integración por partes) a la ecuación (21). Da: 𝑢,𝑎 𝑥 𝑛 𝛼 𝑥 𝑈,𝛼 ∗ 𝑑Γ − 𝑢,𝛼 𝑥 𝑈,𝛼 ∗ 𝑑Ω = 0ΩΓ ec.(22)
  • 22. Una vez más, la aplicación de la identidad de Green′s a la segunda integral en la ecuación (22), da la ec. (23): 𝑢,𝛼 𝑥 𝑈,𝛼 ∗ 𝑑Ω = 𝑢,𝑎 𝑥 𝑛 𝛼 𝑥 𝑈,𝛼 ∗ 𝑑Γ Γ − 𝑢 𝑥 𝑈,𝛼𝛼 ∗ 𝑑Ω ΩΩ Dado que: 𝑞 = 𝜕𝑢 𝜕𝑛 = 𝑢,𝛼 𝑛 𝛼 y 𝑞 = 𝑈,𝛼 ∗ 𝑛 𝛼 ec.(24) Donde q es el flujo, se puede reescribir la ec. 23 de la siguiente forma: 𝑞 𝑥 𝑈∗ 𝑑ΓΓ − 𝑢 𝑥 𝑞∗ 𝑑ΓΓ + 𝑢 𝑥 𝛻2 𝑈∗ 𝑑ΩΩ = 0 ec. (25) Se puede observar a partir de la última ecuación que los dos primeros términos de frontera son integrales (un resultado similar a la de la ecuación (9)) y la última integral es un término integral de dominio que contiene el adjuntooperador (que es el Laplaciano).
  • 23. La última integral representa el primer tipo de integrales de dominio que aparecen en la BEM. Es importante, ahora, para mostrar cómo deshacerse de este dominio integral. Antes de considerar el dominio de integridad, podemos mostrar cómo U * Se puede seleccionar: Donde u(x)=c (constante) cuando q(x)=0 y: 𝛻2 𝑈∗ 𝑑ΩΩ = 𝑞∗ 𝑑ΓΓ ec. 26 que, por definición, es una solución trivial (satisfaciendo segunda identidad de Green). Sin embargo, la identidad de la ecuación (26) es muy útil y nos hará un amplio uso de ella en futuras explicaciones en la transformación de las integrales de dominio a la frontera.
  • 24. Donde 𝑈∗ 𝑥 = 𝑐 cuando 𝑞∗ 𝑥 = 0 y: 𝑞 𝑥 𝑑Γ = 0Γ ec. (27) Recordando la ecuación (25), Con el fin de deshacerse de la última integrante de dominio el siguiente caso se podría utilizar: 𝛻2 𝑈∗ 𝜉, 𝑥 − 𝛿 𝜉, 𝑥 ec.(28) Donde 𝛿 𝜉, 𝑥 es el delta de Paul Dirac que no es una función, que es una distribución o un funcional. El delta de Dirac se define como cero en todas partes, excepto en 𝜉 = 𝑥 donde esta es infinita. La solución particular singular de la ecuación (28) se llama la solución fundamental. Ahora el 𝑈∗ 𝜉, 𝑥 se llaman núcleos de dos puntos.
  • 25. Sustituyendo la ecuación (28) en el último dominio integral en la ecuación (25) da: 𝑢 𝑥 𝛻2 𝑈∗ Ω 𝜉, 𝑥 𝑑Ω = − 𝑢 𝑥 𝛿 𝜉, 𝑥 𝑑ΩΩ = −𝑢 𝜉 ec.(29) donde la ecuación (29) es una propiedad bien conocido de la distribución delta de Dirac. Se puede observar que el uso de la distribución delta de Dirac, convertimos la integral de dominio en un término de salto.Vale la pena señalar que el punto ξ se trata como un punto interno. Además, hay que señalar que el signo negativo en el RHS de la ecuación (28) sólo es para la convención y podría ser ignorada, sin afectar a la formulación final. Sustituyendo la ecuación (29) en la ecuación (25) da la ec. (30): 𝑢 𝜉 + 𝑞∗ 𝜉, 𝑥 𝑢 𝑥 𝑑Γ Γ = 𝑈∗ 𝜉, 𝑥 𝑞 𝑥 𝑑Γ Γ que es la ecuación integral de contorno para la ecuación de Laplace.
  • 26. Ecuación de Poisson La ecuación de Poisson esta dada por ec.(31): 𝛻2 𝑢 𝑥 + 𝑏 𝑥 = 0 donde el término b es no homogénea, (x) denota fuentes internas o de las fuerzas del cuerpo. Con el fin de obtener la ecuación integral directa de una ecuación tal, vamos a seguir los mismos pasos que antes. La ecuación (31) se ponderará el uso de pesas U*: 𝛻2 𝑢 𝑥 + 𝑏 𝑥 𝑈∗ 𝑑Ω = 0Ω ec. (32) que se puede dividir para dar ec. (33): 𝛻2 𝑢 𝑥 𝑈∗ 𝑑Ω Ω + 𝑏 𝑥 𝑈∗ 𝑑Ω = 0 Ω
  • 27. Después de integrar por partes dos veces, la primera integral dará lugar al mismo resultado que el de la ecuación (30), mientras que la segunda integral se mantendrá sin cambios. Por lo tanto la forma integral final puede obtenerse como sigue la ec.(34): 𝑢 𝜉 + 𝑞∗ 𝜉, 𝑥 𝑢 𝑥 𝑑Γ Γ = 𝑈∗ 𝜉, 𝑥 𝑞 𝑥 𝑑Γ Γ + 𝑈∗ 𝜉, 𝑥 𝑏 𝑥 𝑑Ω Ω El último integrante en el lado derecho representa el segundo tipo de integrales de dominio que aparecen en la formulación BEM. Esta integral se puede transformar en el límite usando muchas técnicas