SlideShare una empresa de Scribd logo
Cantidad de movimiento!! Integrantes: Saúl Alejandro González molina Kevin Christopher  olivera alemán
cantidad de movimiento!! En Mecánica Clásica la forma más usual de introducir la cantidad de movimiento es mediante su definición como el producto de la masa de un cuerpo material por su velocidad, para luego analizar su  relación con la ley de Newton a través del teorema del impulso y la variación de la cantidad de movimiento. No obstante, luego del desarrollo de la Física Moderna, esta manera de hacerlo no resultó la más conveniente para abordar esta magnitud fundamental.
El defecto principal es que esta forma esconde el concepto inherente a la magnitud, que resulta ser una propiedad de cualquier ente físico con o sin masa, necesaria para describir las interacciones. Los modelos actuales consideran que no sólo los cuerpos masivos poseen cantidad de movimiento, también resulta ser un atributo de los campos y los fotones. Para abordar el tema con un enfoque más moderno primero se deben analizar las interacciones en sus diferentes manifestaciones de acuerdo a los modelos clásicos convencionales:
La primera, que resulta clásica en mecánica racional, es considerar el choque entre cuerpos materiales, aceptando implícitamente que entre ellos no hay fuerzas atractivas o repulsivas, siendo fortuito el encuentro. Aquí aparece la cuestión sobre choque elástico perfecto y choque plástico con pérdida de energía.
El siguiente tipo, campo-partícula sin pérdida de energía (choque elástico), resulta de considerar que cada partícula posee un campo asociado capaz de interactuar con la otra, modificando sus trayectorias, velocidades y energías. Un ejemplo típico es el estudio de fuerzas centrales en mecánica analítica. En este modelo se considera que los campos actúan instantáneamente, es decir a velocidad infinita, perdiendo su significado como ente físico real, para ser un formalismo auxiliar que simplifica su análisis. En esta categoría están la Ley de Coulomb y la Ley de gravitación universal de Newton.
El caso de interacción campo-partícula con pérdida de energía resulta más complejo pues aparece un tercer participante, un fotón con la energía disipada. Un ejemplo importante e ilustrativo que permite explicar el espectro continuo de emisión de rayos x, es el estudio de la radiación de frenado que ocurre con electrones rápidos obligados a cambiar bruscamente de dirección por acción del campo eléctrico de un  núcleo atómico, con pérdida de energía por emisión de radiación (fotón de radiación x).
La interacción radiación-materia es el caso más ilustrativo de la limitación de la definición usual de la cantidad de movimiento (p=mv). El efecto Compton, que ocurre entre fotones de rayos x o rayos gamma con electrones cuasi libres, es explicado convenientemente si el fotón posee una cantidad de movimiento cuyo módulo está dado por:                 p=, siendo h la constante de Planck y v la frecuencia.
Los cuatro casos descriptos tienen en común la transferencia de energía durante la interacción y/o cambios de dirección del movimiento. A los efectos de poder predecir las consecuencias de una interacción de acuerdo a lo mostrado por la experiencia, es necesario hacer extensivo el concepto de cantidad de movimiento a todos los entes físicos capaces de transferir energía, siendo una magnitud vectorial con dirección y sentido de la velocidad de la partícula y cuyo comportamiento responde a leyes de conservación.  Esta magnitud, que nos permitirá calcular el estado final de los participantes luego de una interacción, resulta ser:  Para partículas masivas p=mv Para fotones en el vacío p=c
 cantidad de movimiento en      Mecánica newtoniana  Históricamente el concepto de cantidad de movimiento surgió en el contexto de la mecánica newtoniana en estrecha relación con el concepto de velocidad y el de masa. En mecánica newtoniana se define la cantidad de movimiento lineal como el producto de la masa por la velocidad: P=MV La idea intuitiva tras esta definición está en que la "cantidad de movimiento" dependía tanto de la masa como de la velocidad: si se imagina una mosca y un camión, ambos moviéndose a 40 km/h, la experiencia cotidiana dice que la mosca es fácil de detener con la mano mientras que el camión no, aunque los dos vayan a la misma velocidad. Esta intuición llevó a definir una magnitud que fuera proporcional tanto a la masa del objeto móvil como a su velocidad.
CANTIDAD DE MOVIMIENTO EN UN     MEDIO CONTINUO Cantidad de movimiento de un medio continuo Si estamos interesados en averiguar la cantidad de movimiento de, por ejemplo, un fluido que se mueve según un campo de velocidades es necesario sumar la cantidad de movimiento de cada partícula del fluido, es decir, de cada diferencial de masa o elemento infinitesimal:
Cantidad de movimiento en   mecánica relativista La constancia de la velocidad de la luz en todos los sistemas inerciales tiene como consecuencia que la fuerza aplicada y la aceleración adquirida por un cuerpo material no sean coliniales en general, por lo cual la ley de Newton expresada como F=ma no es la más adecuada. La ley fundamental de la mecánica relativista aceptada es F=dp/dt. El Principio de Relatividad establece que las leyes de la Física conserven su forma en los sistemas inerciales (los fenómenos siguen las mismas leyes). Aplicando este Principio en la ley F=dp/dt se obtiene el concepto de masa relativista, variable con la velocidad del cuerpo, si se mantiene la definición clásica (newtoniana) de la cantidad de movimiento.
En el enfoque geométrico de la mecánica relativista, puesto que el intervalo de tiempo efectivo percibido por una partícula que se mueve con respecto a un observador difiere del tiempo medido por el observador. Eso hace que la derivada temporal del momento lineal respecto a la coordenada temporal del observador inercial y la fuerza medida por él no coincidan. Para que la fuerza sea la derivada temporal del momento es necesario emplear la derivada temporal respecto al tiempo propio de la partícula. Eso conduce a redefinir la cantidad de movimiento en términos de la masa y la velocidad medida por el observador con la corrección asociada a la dilatación de tiempo experimentada por la partícula. Así, la expresión relativista de la cantidad de movimiento de una partícula medida por un observador inercial viene dada por:
donde v2,c2 son respectivamente el módulo al cuadrado de la velocidad de la partícula y la velocidad de la luz al cuadrado y γ es el factor de Lorentz. Además, en mecánica relativista, cuando se consideran diferentes observadores en diversos estados de movimiento surge el problema de relacionar los valores de las medidas realizadas por ambos. Eso sólo es posible si en lugar de considerar vectores tridimensionales se consideran cuadrivectores que incluyan coordenadas espaciales y temporales. Así, el momento lineal definido anteriormente junto con la energía constituye el cuadrivector momento-energía o cuadrimomentoP:
Gracias por su atención espero  que les haya agradado

Más contenido relacionado

La actualidad más candente

Informe de laboratorio Física, segunda ley de Newton.
Informe de laboratorio Física, segunda ley de Newton.Informe de laboratorio Física, segunda ley de Newton.
Informe de laboratorio Física, segunda ley de Newton.
Alejandro Flores
 
Magnitud escalar y vectorial
Magnitud escalar y vectorialMagnitud escalar y vectorial
Magnitud escalar y vectorial
Instituto Juan Pablo Segundo
 
Informe Ondas Estacionarias En Una Cuerda
Informe Ondas Estacionarias En Una CuerdaInforme Ondas Estacionarias En Una Cuerda
Informe Ondas Estacionarias En Una Cuerdaguest9ba94
 
Dinámica
DinámicaDinámica
Dinámica
icano7
 
Tipos de Fluidos
Tipos de FluidosTipos de Fluidos
Tipos de Fluidos
chicocerrato
 
Ley de hooke para los resortes.pptx maria
Ley de hooke para los resortes.pptx mariaLey de hooke para los resortes.pptx maria
Ley de hooke para los resortes.pptx maria
Maria Meza
 
21157029 laboratorio-circuitos-r-c
21157029 laboratorio-circuitos-r-c21157029 laboratorio-circuitos-r-c
21157029 laboratorio-circuitos-r-c
Andrey Alexander
 
Elasticidad ppt
Elasticidad pptElasticidad ppt
Elasticidad ppt
edberzhitoh123
 
Energia y Fluidos
Energia y FluidosEnergia y Fluidos
Energia y Fluidos
DaniMachado10
 
unidades
unidadesunidades
unidades
lili24033
 
M fluidos problemas
M fluidos problemasM fluidos problemas
M fluidos problemasmabeni
 
Cantidad de Movimiento Lineal
Cantidad de Movimiento LinealCantidad de Movimiento Lineal
Cantidad de Movimiento Lineal
JuanNicaraguaAguiler
 
El péndulo simple
El péndulo simpleEl péndulo simple
El péndulo simple
eder doria villalba
 
Fuerzas De La Naturaleza
Fuerzas De La NaturalezaFuerzas De La Naturaleza
Fuerzas De La Naturaleza
marianosuarez
 
01 viscosidad y_mecanismo_del_transporte
01 viscosidad y_mecanismo_del_transporte01 viscosidad y_mecanismo_del_transporte
01 viscosidad y_mecanismo_del_transporte
ABELELIASTORRESMORA
 
Mecánica de fluidos semana 1
Mecánica de fluidos semana 1Mecánica de fluidos semana 1
Mecánica de fluidos semana 1
Moisés Galarza Espinoza
 
Informe Dilatacion Termica (1)
Informe Dilatacion Termica (1)Informe Dilatacion Termica (1)
Informe Dilatacion Termica (1)guestc78626e
 
Cantidad de movimiento diapositivas
Cantidad de movimiento diapositivasCantidad de movimiento diapositivas
Cantidad de movimiento diapositivas
fisicageneral
 

La actualidad más candente (20)

Upn moo s09
Upn moo s09Upn moo s09
Upn moo s09
 
Informe de laboratorio Física, segunda ley de Newton.
Informe de laboratorio Física, segunda ley de Newton.Informe de laboratorio Física, segunda ley de Newton.
Informe de laboratorio Física, segunda ley de Newton.
 
Magnitud escalar y vectorial
Magnitud escalar y vectorialMagnitud escalar y vectorial
Magnitud escalar y vectorial
 
Informe Ondas Estacionarias En Una Cuerda
Informe Ondas Estacionarias En Una CuerdaInforme Ondas Estacionarias En Una Cuerda
Informe Ondas Estacionarias En Una Cuerda
 
Dinámica
DinámicaDinámica
Dinámica
 
Cantidad de movimiento
Cantidad de movimientoCantidad de movimiento
Cantidad de movimiento
 
Tipos de Fluidos
Tipos de FluidosTipos de Fluidos
Tipos de Fluidos
 
Ley de hooke para los resortes.pptx maria
Ley de hooke para los resortes.pptx mariaLey de hooke para los resortes.pptx maria
Ley de hooke para los resortes.pptx maria
 
21157029 laboratorio-circuitos-r-c
21157029 laboratorio-circuitos-r-c21157029 laboratorio-circuitos-r-c
21157029 laboratorio-circuitos-r-c
 
Elasticidad ppt
Elasticidad pptElasticidad ppt
Elasticidad ppt
 
Energia y Fluidos
Energia y FluidosEnergia y Fluidos
Energia y Fluidos
 
unidades
unidadesunidades
unidades
 
M fluidos problemas
M fluidos problemasM fluidos problemas
M fluidos problemas
 
Cantidad de Movimiento Lineal
Cantidad de Movimiento LinealCantidad de Movimiento Lineal
Cantidad de Movimiento Lineal
 
El péndulo simple
El péndulo simpleEl péndulo simple
El péndulo simple
 
Fuerzas De La Naturaleza
Fuerzas De La NaturalezaFuerzas De La Naturaleza
Fuerzas De La Naturaleza
 
01 viscosidad y_mecanismo_del_transporte
01 viscosidad y_mecanismo_del_transporte01 viscosidad y_mecanismo_del_transporte
01 viscosidad y_mecanismo_del_transporte
 
Mecánica de fluidos semana 1
Mecánica de fluidos semana 1Mecánica de fluidos semana 1
Mecánica de fluidos semana 1
 
Informe Dilatacion Termica (1)
Informe Dilatacion Termica (1)Informe Dilatacion Termica (1)
Informe Dilatacion Termica (1)
 
Cantidad de movimiento diapositivas
Cantidad de movimiento diapositivasCantidad de movimiento diapositivas
Cantidad de movimiento diapositivas
 

Destacado

Cantidad de movimiento (p)
Cantidad de movimiento (p)Cantidad de movimiento (p)
Cantidad de movimiento (p)
Netali
 
MOMENTO LINEAL: Fisica Conceptual-ESPOL
MOMENTO LINEAL: Fisica Conceptual-ESPOLMOMENTO LINEAL: Fisica Conceptual-ESPOL
MOMENTO LINEAL: Fisica Conceptual-ESPOLESPOL
 
CANTIDAD DE MOVIMIENTO LINEAL
CANTIDAD DE MOVIMIENTO LINEALCANTIDAD DE MOVIMIENTO LINEAL
CANTIDAD DE MOVIMIENTO LINEAL
Axel Mac
 
Momento lineal e Impulso
Momento lineal e ImpulsoMomento lineal e Impulso
Momento lineal e Impulso
icano7
 
Conservación de la cantidad de movimiento
Conservación de la cantidad de movimientoConservación de la cantidad de movimiento
Conservación de la cantidad de movimiento
Yuri Milachay
 
Cantidad de movimiento
Cantidad de movimientoCantidad de movimiento
Cantidad de movimiento
Yuri Milachay
 
Fuerza, trabajo, potencia y energia m.
Fuerza, trabajo, potencia y energia m.Fuerza, trabajo, potencia y energia m.
Fuerza, trabajo, potencia y energia m.Michel Lizarazo
 
Impulso y cantidad de movimiento
Impulso y cantidad de movimientoImpulso y cantidad de movimiento
Impulso y cantidad de movimiento
Moisés Galarza Espinoza
 
Conservacion de la cantidad de movimiento
Conservacion de la cantidad de movimientoConservacion de la cantidad de movimiento
Conservacion de la cantidad de movimiento
Moisés Galarza Espinoza
 
Balance de movimiento lineal
Balance de movimiento linealBalance de movimiento lineal
Balance de movimiento lineal
JESTRIDD
 
Exposición de cálculo grupo 1
Exposición de cálculo grupo 1Exposición de cálculo grupo 1
Exposición de cálculo grupo 1
Guillermo Machado S
 
Ley de conservación del momentum lineal
Ley de conservación del momentum linealLey de conservación del momentum lineal
Ley de conservación del momentum linealsanmarinocollege
 
Impulso y cantidad de movimiento
Impulso y cantidad de movimientoImpulso y cantidad de movimiento
Impulso y cantidad de movimiento
Yenny Apellidos
 
Impulsos y colisiones
Impulsos y colisionesImpulsos y colisiones
Impulsos y colisionesCamila Alfaro
 
Biofisica del hueso y el musculo
Biofisica del hueso y el musculoBiofisica del hueso y el musculo
Biofisica del hueso y el musculo
Gaston Ramos
 
Biofisica: Bioelasticidad
Biofisica: BioelasticidadBiofisica: Bioelasticidad
Biofisica: Bioelasticidad
Jorge Enrique Silva Fiestas
 
Conservación de la Cantidad de Movimiento Lineal
Conservación de la Cantidad de Movimiento LinealConservación de la Cantidad de Movimiento Lineal
Conservación de la Cantidad de Movimiento Lineal
Vane Pazmiño
 

Destacado (20)

Cantidad de movimiento (p)
Cantidad de movimiento (p)Cantidad de movimiento (p)
Cantidad de movimiento (p)
 
MOMENTO LINEAL: Fisica Conceptual-ESPOL
MOMENTO LINEAL: Fisica Conceptual-ESPOLMOMENTO LINEAL: Fisica Conceptual-ESPOL
MOMENTO LINEAL: Fisica Conceptual-ESPOL
 
CANTIDAD DE MOVIMIENTO LINEAL
CANTIDAD DE MOVIMIENTO LINEALCANTIDAD DE MOVIMIENTO LINEAL
CANTIDAD DE MOVIMIENTO LINEAL
 
Momento lineal e Impulso
Momento lineal e ImpulsoMomento lineal e Impulso
Momento lineal e Impulso
 
Impulso y cantidad de movimiento
Impulso y cantidad de movimientoImpulso y cantidad de movimiento
Impulso y cantidad de movimiento
 
Conservación de la cantidad de movimiento
Conservación de la cantidad de movimientoConservación de la cantidad de movimiento
Conservación de la cantidad de movimiento
 
Cantidad de movimiento
Cantidad de movimientoCantidad de movimiento
Cantidad de movimiento
 
Fuerza, trabajo, potencia y energia m.
Fuerza, trabajo, potencia y energia m.Fuerza, trabajo, potencia y energia m.
Fuerza, trabajo, potencia y energia m.
 
Impulso y cantidad de movimiento
Impulso y cantidad de movimientoImpulso y cantidad de movimiento
Impulso y cantidad de movimiento
 
Conservacion de la cantidad de movimiento
Conservacion de la cantidad de movimientoConservacion de la cantidad de movimiento
Conservacion de la cantidad de movimiento
 
Balance de movimiento lineal
Balance de movimiento linealBalance de movimiento lineal
Balance de movimiento lineal
 
Exposición de cálculo grupo 1
Exposición de cálculo grupo 1Exposición de cálculo grupo 1
Exposición de cálculo grupo 1
 
Ley de conservación del momentum lineal
Ley de conservación del momentum linealLey de conservación del momentum lineal
Ley de conservación del momentum lineal
 
La relatividad 2
La relatividad 2La relatividad 2
La relatividad 2
 
Impulso y cantidad de movimiento
Impulso y cantidad de movimientoImpulso y cantidad de movimiento
Impulso y cantidad de movimiento
 
Impulsos y colisiones
Impulsos y colisionesImpulsos y colisiones
Impulsos y colisiones
 
Biofisica del hueso y el musculo
Biofisica del hueso y el musculoBiofisica del hueso y el musculo
Biofisica del hueso y el musculo
 
Biofisica: Bioelasticidad
Biofisica: BioelasticidadBiofisica: Bioelasticidad
Biofisica: Bioelasticidad
 
Dilatación del tiempo (fisica)
Dilatación del tiempo (fisica)Dilatación del tiempo (fisica)
Dilatación del tiempo (fisica)
 
Conservación de la Cantidad de Movimiento Lineal
Conservación de la Cantidad de Movimiento LinealConservación de la Cantidad de Movimiento Lineal
Conservación de la Cantidad de Movimiento Lineal
 

Similar a Cantidad de movimiento!!

Trabajo de fisica de elsena
Trabajo de fisica de elsenaTrabajo de fisica de elsena
Trabajo de fisica de elsenaSofos PAK
 
Traba jo de mecanica y newton
Traba jo de mecanica y newtonTraba jo de mecanica y newton
Traba jo de mecanica y newtonanderson
 
La mecánica
La mecánicaLa mecánica
La mecánicaanderson
 
Mecánica newtoniana.docx
Mecánica newtoniana.docxMecánica newtoniana.docx
Mecánica newtoniana.docx
IsmarMndezPrez1
 
Trabajo en Equipos
Trabajo en EquiposTrabajo en Equipos
Trabajo en Equipos
cidde2010
 
Segunda Ley de Newton - Comprobación Experimental
Segunda Ley de Newton - Comprobación ExperimentalSegunda Ley de Newton - Comprobación Experimental
Segunda Ley de Newton - Comprobación Experimental
Judith Medina Vela
 
Unidad 5: impulso y cantidad de movimiento
Unidad 5: impulso y cantidad de movimientoUnidad 5: impulso y cantidad de movimiento
Unidad 5: impulso y cantidad de movimiento
Javier García Molleja
 
Leyesdenewtooooonn
LeyesdenewtooooonnLeyesdenewtooooonn
Leyesdenewtooooonn
Clau Girón
 
Diapos
DiaposDiapos
Movimiento
MovimientoMovimiento
Movimiento
jfmb2014
 
Las Leyes De Newton
Las Leyes De NewtonLas Leyes De Newton
Las Leyes De NewtonCIITEC-IPN
 
Dinamica del Punto Material exposicion dinamica
Dinamica del Punto Material exposicion dinamicaDinamica del Punto Material exposicion dinamica
Dinamica del Punto Material exposicion dinamica
daalcaba08
 
Mecánica industrial
Mecánica industrialMecánica industrial
Mecánica industrial
byronmontesdeoca
 

Similar a Cantidad de movimiento!! (20)

Trabajo de fisica de elsena
Trabajo de fisica de elsenaTrabajo de fisica de elsena
Trabajo de fisica de elsena
 
Traba jo de mecanica y newton
Traba jo de mecanica y newtonTraba jo de mecanica y newton
Traba jo de mecanica y newton
 
La mecánica
La mecánicaLa mecánica
La mecánica
 
Mecánica newtoniana.docx
Mecánica newtoniana.docxMecánica newtoniana.docx
Mecánica newtoniana.docx
 
mecanica clasica
mecanica clasicamecanica clasica
mecanica clasica
 
Diapositivas
DiapositivasDiapositivas
Diapositivas
 
Mecanica y Segunda Ley de Newton
Mecanica y Segunda Ley de NewtonMecanica y Segunda Ley de Newton
Mecanica y Segunda Ley de Newton
 
Mecanica y Segunda Ley de Newton
Mecanica y Segunda Ley de NewtonMecanica y Segunda Ley de Newton
Mecanica y Segunda Ley de Newton
 
Trabajo en Equipos
Trabajo en EquiposTrabajo en Equipos
Trabajo en Equipos
 
Segunda Ley de Newton - Comprobación Experimental
Segunda Ley de Newton - Comprobación ExperimentalSegunda Ley de Newton - Comprobación Experimental
Segunda Ley de Newton - Comprobación Experimental
 
Unidad 5: impulso y cantidad de movimiento
Unidad 5: impulso y cantidad de movimientoUnidad 5: impulso y cantidad de movimiento
Unidad 5: impulso y cantidad de movimiento
 
Leyesdenewtooooonn
LeyesdenewtooooonnLeyesdenewtooooonn
Leyesdenewtooooonn
 
Diapos
DiaposDiapos
Diapos
 
Movimiento
MovimientoMovimiento
Movimiento
 
Las Leyes De Newton
Las Leyes De NewtonLas Leyes De Newton
Las Leyes De Newton
 
Dinámica
DinámicaDinámica
Dinámica
 
Dinamica del Punto Material exposicion dinamica
Dinamica del Punto Material exposicion dinamicaDinamica del Punto Material exposicion dinamica
Dinamica del Punto Material exposicion dinamica
 
Leyes de newton
Leyes de newtonLeyes de newton
Leyes de newton
 
Mecánica industrial
Mecánica industrialMecánica industrial
Mecánica industrial
 
Centro de masa
Centro de masaCentro de masa
Centro de masa
 

Último

CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIACONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
BetzabePecheSalcedo1
 
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptxc3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
Martín Ramírez
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
auxsoporte
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
sandradianelly
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
20minutos
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
ClaudiaAlcondeViadez
 
Educar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdfEducar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdf
Demetrio Ccesa Rayme
 
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
LorenaCovarrubias12
 
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
HuallpaSamaniegoSeba
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
https://gramadal.wordpress.com/
 
Examen Lengua y Literatura EVAU Andalucía.pdf
Examen Lengua y Literatura EVAU Andalucía.pdfExamen Lengua y Literatura EVAU Andalucía.pdf
Examen Lengua y Literatura EVAU Andalucía.pdf
20minutos
 
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
rosannatasaycoyactay
 
Conocemos la ermita de Ntra. Sra. del Arrabal
Conocemos la ermita de Ntra. Sra. del ArrabalConocemos la ermita de Ntra. Sra. del Arrabal
Conocemos la ermita de Ntra. Sra. del Arrabal
Profes de Relideleón Apellidos
 
Septima-Sesion-Ordinaria-del-Consejo-Tecnico-Escolar-y-el-Taller-Intensivo-de...
Septima-Sesion-Ordinaria-del-Consejo-Tecnico-Escolar-y-el-Taller-Intensivo-de...Septima-Sesion-Ordinaria-del-Consejo-Tecnico-Escolar-y-el-Taller-Intensivo-de...
Septima-Sesion-Ordinaria-del-Consejo-Tecnico-Escolar-y-el-Taller-Intensivo-de...
AracelidelRocioOrdez
 
Mauricio-Presentación-Vacacional- 2024-1
Mauricio-Presentación-Vacacional- 2024-1Mauricio-Presentación-Vacacional- 2024-1
Mauricio-Presentación-Vacacional- 2024-1
MauricioSnchez83
 
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
pablomarin116
 
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdfFORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
El Fortí
 
ENSAYO SOBRE LA ANSIEDAD Y LA DEPRESION.docx
ENSAYO SOBRE LA ANSIEDAD Y LA DEPRESION.docxENSAYO SOBRE LA ANSIEDAD Y LA DEPRESION.docx
ENSAYO SOBRE LA ANSIEDAD Y LA DEPRESION.docx
SandraPiza2
 
Fase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría AnalíticaFase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría Analítica
YasneidyGonzalez
 
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIALCUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
DivinoNioJess885
 

Último (20)

CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIACONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
CONCLUSIONES-DESCRIPTIVAS NIVEL PRIMARIA
 
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptxc3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
c3.hu3.p3.p2.Superioridad e inferioridad en la sociedad.pptx
 
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24CALENDARIZACION DEL MES DE JUNIO - JULIO 24
CALENDARIZACION DEL MES DE JUNIO - JULIO 24
 
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdfUn libro sin recetas, para la maestra y el maestro Fase 3.pdf
Un libro sin recetas, para la maestra y el maestro Fase 3.pdf
 
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de MadridHorarios Exámenes EVAU Ordinaria 2024 de Madrid
Horarios Exámenes EVAU Ordinaria 2024 de Madrid
 
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdfTexto_de_Aprendizaje-1ro_secundaria-2024.pdf
Texto_de_Aprendizaje-1ro_secundaria-2024.pdf
 
Educar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdfEducar por Competencias GS2 Ccesa007.pdf
Educar por Competencias GS2 Ccesa007.pdf
 
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptxSemana 10-TSM-del 27 al 31 de mayo 2024.pptx
Semana 10-TSM-del 27 al 31 de mayo 2024.pptx
 
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
Varón de 30 años acude a consulta por presentar hipertensión arterial de reci...
 
Sesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdfSesión: El fundamento del gobierno de Dios.pdf
Sesión: El fundamento del gobierno de Dios.pdf
 
Examen Lengua y Literatura EVAU Andalucía.pdf
Examen Lengua y Literatura EVAU Andalucía.pdfExamen Lengua y Literatura EVAU Andalucía.pdf
Examen Lengua y Literatura EVAU Andalucía.pdf
 
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
3° UNIDAD 3 CUIDAMOS EL AMBIENTE RECICLANDO EN FAMILIA 933623393 PROF YESSENI...
 
Conocemos la ermita de Ntra. Sra. del Arrabal
Conocemos la ermita de Ntra. Sra. del ArrabalConocemos la ermita de Ntra. Sra. del Arrabal
Conocemos la ermita de Ntra. Sra. del Arrabal
 
Septima-Sesion-Ordinaria-del-Consejo-Tecnico-Escolar-y-el-Taller-Intensivo-de...
Septima-Sesion-Ordinaria-del-Consejo-Tecnico-Escolar-y-el-Taller-Intensivo-de...Septima-Sesion-Ordinaria-del-Consejo-Tecnico-Escolar-y-el-Taller-Intensivo-de...
Septima-Sesion-Ordinaria-del-Consejo-Tecnico-Escolar-y-el-Taller-Intensivo-de...
 
Mauricio-Presentación-Vacacional- 2024-1
Mauricio-Presentación-Vacacional- 2024-1Mauricio-Presentación-Vacacional- 2024-1
Mauricio-Presentación-Vacacional- 2024-1
 
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.Friedrich Nietzsche. Presentación de 2 de Bachillerato.
Friedrich Nietzsche. Presentación de 2 de Bachillerato.
 
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdfFORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
FORTI-JUNIO 2024. CIENCIA, EDUCACION, CULTURA,pdf
 
ENSAYO SOBRE LA ANSIEDAD Y LA DEPRESION.docx
ENSAYO SOBRE LA ANSIEDAD Y LA DEPRESION.docxENSAYO SOBRE LA ANSIEDAD Y LA DEPRESION.docx
ENSAYO SOBRE LA ANSIEDAD Y LA DEPRESION.docx
 
Fase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría AnalíticaFase 3; Estudio de la Geometría Analítica
Fase 3; Estudio de la Geometría Analítica
 
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIALCUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
CUENTO EL TIGRILLO DESOBEDIENTE PARA INICIAL
 

Cantidad de movimiento!!

  • 1. Cantidad de movimiento!! Integrantes: Saúl Alejandro González molina Kevin Christopher olivera alemán
  • 2. cantidad de movimiento!! En Mecánica Clásica la forma más usual de introducir la cantidad de movimiento es mediante su definición como el producto de la masa de un cuerpo material por su velocidad, para luego analizar su  relación con la ley de Newton a través del teorema del impulso y la variación de la cantidad de movimiento. No obstante, luego del desarrollo de la Física Moderna, esta manera de hacerlo no resultó la más conveniente para abordar esta magnitud fundamental.
  • 3. El defecto principal es que esta forma esconde el concepto inherente a la magnitud, que resulta ser una propiedad de cualquier ente físico con o sin masa, necesaria para describir las interacciones. Los modelos actuales consideran que no sólo los cuerpos masivos poseen cantidad de movimiento, también resulta ser un atributo de los campos y los fotones. Para abordar el tema con un enfoque más moderno primero se deben analizar las interacciones en sus diferentes manifestaciones de acuerdo a los modelos clásicos convencionales:
  • 4.
  • 5. La primera, que resulta clásica en mecánica racional, es considerar el choque entre cuerpos materiales, aceptando implícitamente que entre ellos no hay fuerzas atractivas o repulsivas, siendo fortuito el encuentro. Aquí aparece la cuestión sobre choque elástico perfecto y choque plástico con pérdida de energía.
  • 6. El siguiente tipo, campo-partícula sin pérdida de energía (choque elástico), resulta de considerar que cada partícula posee un campo asociado capaz de interactuar con la otra, modificando sus trayectorias, velocidades y energías. Un ejemplo típico es el estudio de fuerzas centrales en mecánica analítica. En este modelo se considera que los campos actúan instantáneamente, es decir a velocidad infinita, perdiendo su significado como ente físico real, para ser un formalismo auxiliar que simplifica su análisis. En esta categoría están la Ley de Coulomb y la Ley de gravitación universal de Newton.
  • 7. El caso de interacción campo-partícula con pérdida de energía resulta más complejo pues aparece un tercer participante, un fotón con la energía disipada. Un ejemplo importante e ilustrativo que permite explicar el espectro continuo de emisión de rayos x, es el estudio de la radiación de frenado que ocurre con electrones rápidos obligados a cambiar bruscamente de dirección por acción del campo eléctrico de un  núcleo atómico, con pérdida de energía por emisión de radiación (fotón de radiación x).
  • 8. La interacción radiación-materia es el caso más ilustrativo de la limitación de la definición usual de la cantidad de movimiento (p=mv). El efecto Compton, que ocurre entre fotones de rayos x o rayos gamma con electrones cuasi libres, es explicado convenientemente si el fotón posee una cantidad de movimiento cuyo módulo está dado por:                 p=, siendo h la constante de Planck y v la frecuencia.
  • 9. Los cuatro casos descriptos tienen en común la transferencia de energía durante la interacción y/o cambios de dirección del movimiento. A los efectos de poder predecir las consecuencias de una interacción de acuerdo a lo mostrado por la experiencia, es necesario hacer extensivo el concepto de cantidad de movimiento a todos los entes físicos capaces de transferir energía, siendo una magnitud vectorial con dirección y sentido de la velocidad de la partícula y cuyo comportamiento responde a leyes de conservación. Esta magnitud, que nos permitirá calcular el estado final de los participantes luego de una interacción, resulta ser: Para partículas masivas p=mv Para fotones en el vacío p=c
  • 10. cantidad de movimiento en Mecánica newtoniana Históricamente el concepto de cantidad de movimiento surgió en el contexto de la mecánica newtoniana en estrecha relación con el concepto de velocidad y el de masa. En mecánica newtoniana se define la cantidad de movimiento lineal como el producto de la masa por la velocidad: P=MV La idea intuitiva tras esta definición está en que la "cantidad de movimiento" dependía tanto de la masa como de la velocidad: si se imagina una mosca y un camión, ambos moviéndose a 40 km/h, la experiencia cotidiana dice que la mosca es fácil de detener con la mano mientras que el camión no, aunque los dos vayan a la misma velocidad. Esta intuición llevó a definir una magnitud que fuera proporcional tanto a la masa del objeto móvil como a su velocidad.
  • 11.
  • 12. CANTIDAD DE MOVIMIENTO EN UN MEDIO CONTINUO Cantidad de movimiento de un medio continuo Si estamos interesados en averiguar la cantidad de movimiento de, por ejemplo, un fluido que se mueve según un campo de velocidades es necesario sumar la cantidad de movimiento de cada partícula del fluido, es decir, de cada diferencial de masa o elemento infinitesimal:
  • 13. Cantidad de movimiento en mecánica relativista La constancia de la velocidad de la luz en todos los sistemas inerciales tiene como consecuencia que la fuerza aplicada y la aceleración adquirida por un cuerpo material no sean coliniales en general, por lo cual la ley de Newton expresada como F=ma no es la más adecuada. La ley fundamental de la mecánica relativista aceptada es F=dp/dt. El Principio de Relatividad establece que las leyes de la Física conserven su forma en los sistemas inerciales (los fenómenos siguen las mismas leyes). Aplicando este Principio en la ley F=dp/dt se obtiene el concepto de masa relativista, variable con la velocidad del cuerpo, si se mantiene la definición clásica (newtoniana) de la cantidad de movimiento.
  • 14. En el enfoque geométrico de la mecánica relativista, puesto que el intervalo de tiempo efectivo percibido por una partícula que se mueve con respecto a un observador difiere del tiempo medido por el observador. Eso hace que la derivada temporal del momento lineal respecto a la coordenada temporal del observador inercial y la fuerza medida por él no coincidan. Para que la fuerza sea la derivada temporal del momento es necesario emplear la derivada temporal respecto al tiempo propio de la partícula. Eso conduce a redefinir la cantidad de movimiento en términos de la masa y la velocidad medida por el observador con la corrección asociada a la dilatación de tiempo experimentada por la partícula. Así, la expresión relativista de la cantidad de movimiento de una partícula medida por un observador inercial viene dada por:
  • 15. donde v2,c2 son respectivamente el módulo al cuadrado de la velocidad de la partícula y la velocidad de la luz al cuadrado y γ es el factor de Lorentz. Además, en mecánica relativista, cuando se consideran diferentes observadores en diversos estados de movimiento surge el problema de relacionar los valores de las medidas realizadas por ambos. Eso sólo es posible si en lugar de considerar vectores tridimensionales se consideran cuadrivectores que incluyan coordenadas espaciales y temporales. Así, el momento lineal definido anteriormente junto con la energía constituye el cuadrivector momento-energía o cuadrimomentoP:
  • 16.
  • 17. Gracias por su atención espero que les haya agradado