SlideShare una empresa de Scribd logo
1 de 15
REPÚBLICA BOLIVARIANA DE VENEZUELA
MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN
UNIVERSIDAD POLITECNICA TERRITORIAL ANDRÉS ELOY BLANCO
BARQUISIMETO – ESTADO LARA
CONJUNTOS
MARÍA GIL
SECCIÓN: AD0105
DEFINICIÓN DE CONJUNTOS
Un conjunto es la agrupación
de diferentes elementos que
comparten entre sí
características y propiedades
semejantes. Estos elementos
pueden ser sujetos u objetos,
tales como números,
canciones, meses, personas,
etc. Por ejemplo: el conjunto
de números primos o el
conjunto de planetas del
sistema solar.
OPERACIONES CON CONJUNTOS
Las operaciones con conjuntos
también conocidas como
álgebra de conjuntos, nos
permiten realizar operaciones
sobre los conjuntos para
obtener otro conjunto. De las
operaciones con conjuntos
veremos las siguientes unión,
intersección, diferencia,
diferencia simétrica y
complemento.
UNIÓN DE CONJUNTOS
Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que
contendrá a todos los elementos que queremos unir pero sin que se repitan. Es decir dado un
conjunto A y un conjunto B, la unión de los conjuntos A y B será otro conjunto formado por
todos los elementos de A, con todos los elementos de B sin repetir ningún elemento.
Ejemplo
Dados dos conjuntos A={1,2,3,4,5,6,7,} y B={8,9,10,11} la
unión de estos conjuntos será
A∪B={1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de
Venn se tendría lo siguiente:
También se puede graficar del siguiente modo:
INTERSECCIÓN DE CONJUNTOS
Es la operación que nos permite formar un conjunto, sólo con los elementos comunes involucrados en la
operación. Es decir dados dos conjuntos A y B, la de intersección de los conjuntos A y B, estará formado por los
elementos de A y los elementos de B que sean comunes, los elementos no comunes A y B, será excluidos. El
símbolo que se usa para indicar la operación de intersección es el siguiente: ∩.
Ejemplo
Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la
intersección de estos conjuntos será A∩B={4,5}. Usando
diagramas de Venn se tendría lo siguiente:
Ejemplo
Dados dos conjuntos A={x/x estudiantes que juegan fútbol} y B={x/x estudiantes
que juegan básquet}, la intersección será F∩B={x/x estudiantes que juegan
fútbol y básquet}. Usando diagramas de Venn se tendría lo siguiente:
DIFERENCIA DE CONJUNTOS
Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que
tendrá todos los elementos que pertenecen al primero pero no al segundo. Es decir dados dos conjuntos A y B, la
diferencia de los conjuntos entra A y B, estará formado por todos los elementos de A que no pertenezcan a B. El
símbolo que se usa para esta operación es el mismo que se usa para la resta o sustracción, que es el siguiente: -.
Ejemplo
Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la
diferencia de estos conjuntos será A-B={1,2,3}. Usando
diagramas de Venn se tendría lo siguiente:
Ejemplo
Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la
diferencia de estos conjuntos será B-A={6,7,8,9}. Usando
diagramas de Venn se tendría lo siguiente:
DIFERENCIA DE SIMÉTRICA DE CONJUNTOS
Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto
resultante es el que tendrá todos los elementos que no sean comunes a ambos conjuntos. Es decir
dados dos conjuntos A y B, la diferencia simétrica estará formado por todos los elementos no
comunes a los conjuntos A y B. El símbolo que se usa para indicar la operación de diferencia
simétrica es el siguiente: △.
Ejemplo
Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia
simétrica de estos conjuntos será A △ B={1,2,3,6,7,8,9}. Usando
diagramas de Venn se tendría lo siguiente:
Ejemplo
Dados dos conjuntos F={x/x estudiantes que juegan fútbol} y B={x/x
estudiantes que juegan básquet}, la diferencia simétrica será F △
B={x/x estudiantes que sólo juegan fútbol y básquet}. Usando
diagramas de Venn se tendría lo siguiente:
COMPLEMENTO DE UN CONJUNTO
Es la operación que nos permite formar un conjunto con todos los elementos del conjunto de referencia o universal, que no
están en el conjunto. Es decir dado un conjunto A que esta incluido en el conjunto universal U, entonces el conjunto
complemento de A es el conjunto formado por todos los elementos del conjunto universal pero sin considerar a los
elementos que pertenezcan al conjunto A. En esta operación el complemento de un conjunto se denota con un apostrofe
sobre el conjunto que se opera, algo como esto A' en donde el conjunto A es el conjunto del cual se hace la operación de
complemento.
Ejemplo
Dado el conjunto Universal U={1,2,3,4,5,6,7,8,9} y el conjunto A={1,2,9}, el conjunto A' estará formado por los
siguientes elementos A'={3,4,5,6,7,8}. Usando diagramas de Venn se tendría lo siguiente:
NÚMEROS REALES
Los números reales son cualquier número que corresponda a un punto en la recta real y pueden
clasificarse en números naturales, enteros, racionales e irracionales. En otras palabras, cualquier número
real está comprendido entre menos infinito y más infinito y podemos representarlo en la recta real. Los números
reales son todos los números que encontramos más frecuentemente dado que los números complejos no se
encuentran de manera accidental, sino que tienen que buscarse expresamente.
Los números reales se representan mediante la letra R ↓
Dominio de los números reales
Entonces, tal y como hemos dicho, los números reales son los números comprendidos entre los extremos infinitos. Es decir, no incluiremos estos infinitos en el conjunto.
Dominio de los números reales.
Números reales en la recta real
Esta recta recibe el nombre de recta real dado que podemos representar en ella todos los números reales. Línea real:
CLASIFICACIÓN DE LOS NÚMEROS REALES
•Números naturales
Los números naturales es el primer conjunto de números que
aprendemos de pequeños. Este conjunto no tiene en cuenta el
número cero (0) excepto que se especifique lo contrario (cero
neutral).
Expresión:
•Números enteros
Los números enteros son todos los números naturales e incluyen el
cero (0) y todos los números negativos.
Expresión:
•Números racionales
Los números racionales son las fracciones que pueden formarse a
partir de los números enteros y naturales. Entendemos las fracciones
como cocientes de números enteros.
Expresión:
•Números irracionales
Los números irracionales son números decimales que no pueden
expresarse ni de manera exacta ni de manera periódica.
Expresión:
EJEMPLOS DE NUMEROS REALES
En el siguiente ejemplo sobre los números reales, comprueba que los siguientes números
corresponden a punto en la recta real.
•Números naturales: 1,2,3,4…
•Números enteros: …,-4,-3,-2,-1, 0, 1, 2, 3, 4…
•Números racionales: cualquier fracción de números enteros.
•Números irracionales:
DESIGUALDADES DE NUMEROS
REALES
En matemáticas, una desigualdad es una relación de orden que se da entre dos valores
cuando estos son distintos (en caso de ser iguales, lo que se tiene es una igualdad).
Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o
los reales, entonces pueden ser comparados.
• La notación a < b significa a es menor que b;
• La notación a > b significa a es mayor que b
DESIGUALDADES DE NUMEROS REALES
Estas relaciones se conocen como desigualdades estrictas, puesto que a no puede ser
igual a b; también puede leerse como "estrictamente menor que" o "estrictamente
mayor que“
La notación a ≤ b significa a es menor o igual que b;
La notación a ≥ b significa a es mayor o igual que b;
estos tipos de desigualdades reciben el nombre de desigualdades amplias (o no
estrictas).
La notación a ≪ b significa a es mucho menor que b;
La notación a ≫ b significa a es mucho mayor que b; esta relación indica por lo
general una diferencia de varios órdenes de magnitud.
La notación a ≠ b significa que a no es igual a b. Tal expresión no indica si uno es
mayor que el otro, o siquiera si son comparables.
DEFINICIÓN DE VALOR ABSOLUTO
La noción de valor absoluto se utiliza en el terreno de las matemáticas para nombrar al valor que tiene
un número más allá de su signo. Esto quiere decir que el valor absoluto, que también se conoce
como módulo, es la magnitud numérica de la cifra sin importar si su signo es positivo o negativo.
Ejemplo: 3 es el valor absoluto de +3 y de -3.
El valor absoluto está vinculado con las nociones de magnitud, distancia y norma en diferentes contextos
matemáticos y físicos. El concepto de valor absoluto de un número real puede generalizarse a muchos
otros objetos matemáticos, como son los cuaterniones, anillos ordenados, cuerpos o espacios vectoriales.
DESIGUALDADES CON VALOR ABSOLUTO
Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con
una variable dentro.
Desigualdades de valor absoluto (<):
La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4.
Así, x > -4 Y x < 4. El conjunto solución es
.
Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
La solución es la intersección de las soluciones de estos dos casos.
En otras palabras, para cualesquiera números reales a y b , si | a | < b , entonces a < b Y a > - b .

Más contenido relacionado

La actualidad más candente

Que son los conjuntos numéricos
Que  son los  conjuntos  numéricosQue  son los  conjuntos  numéricos
Que son los conjuntos numéricos
Elmi Rojas Buitrago
 
Calificación de los números reales
Calificación de los números realesCalificación de los números reales
Calificación de los números reales
Franklin Lema
 
Propiedades de los números Reales
Propiedades de los números RealesPropiedades de los números Reales
Propiedades de los números Reales
Kattia Vazquez
 

La actualidad más candente (20)

Numeros reales
Numeros realesNumeros reales
Numeros reales
 
Presentacion de matematicas numeros reales
Presentacion de matematicas numeros realesPresentacion de matematicas numeros reales
Presentacion de matematicas numeros reales
 
Numeros reales
Numeros realesNumeros reales
Numeros reales
 
Que son los conjuntos numéricos
Que  son los  conjuntos  numéricosQue  son los  conjuntos  numéricos
Que son los conjuntos numéricos
 
Conjuntos numericos
Conjuntos numericosConjuntos numericos
Conjuntos numericos
 
Numeros reales
Numeros realesNumeros reales
Numeros reales
 
Juan aponte ( numeros reales y plano numerico)ya
Juan aponte ( numeros reales y plano numerico)yaJuan aponte ( numeros reales y plano numerico)ya
Juan aponte ( numeros reales y plano numerico)ya
 
Números reales
Números realesNúmeros reales
Números reales
 
Numeros reales
Numeros realesNumeros reales
Numeros reales
 
Guia 1 conjuntos numéricos y transformaciones
Guia 1 conjuntos numéricos y transformacionesGuia 1 conjuntos numéricos y transformaciones
Guia 1 conjuntos numéricos y transformaciones
 
LOS NUMEROS RACIONALES
LOS NUMEROS RACIONALESLOS NUMEROS RACIONALES
LOS NUMEROS RACIONALES
 
Conjuntos Numericos Intervalos
Conjuntos Numericos   IntervalosConjuntos Numericos   Intervalos
Conjuntos Numericos Intervalos
 
Presentación de números reales. Lilibeth Lameda
Presentación de números reales. Lilibeth LamedaPresentación de números reales. Lilibeth Lameda
Presentación de números reales. Lilibeth Lameda
 
Numeros Reales
Numeros RealesNumeros Reales
Numeros Reales
 
Numeros reales
Numeros realesNumeros reales
Numeros reales
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Números reales
Números realesNúmeros reales
Números reales
 
Calificación de los números reales
Calificación de los números realesCalificación de los números reales
Calificación de los números reales
 
Propiedades de los números Reales
Propiedades de los números RealesPropiedades de los números Reales
Propiedades de los números Reales
 
Conjuntos numericos
Conjuntos numericosConjuntos numericos
Conjuntos numericos
 

Similar a Conjuntos

Similar a Conjuntos (20)

Presentacion matematica scarlet
Presentacion matematica scarletPresentacion matematica scarlet
Presentacion matematica scarlet
 
Matemáticas.pdf
Matemáticas.pdfMatemáticas.pdf
Matemáticas.pdf
 
DOC-20230216-WA0003..pptx
DOC-20230216-WA0003..pptxDOC-20230216-WA0003..pptx
DOC-20230216-WA0003..pptx
 
PRESENTACION DE MATEMATICAS
PRESENTACION DE MATEMATICASPRESENTACION DE MATEMATICAS
PRESENTACION DE MATEMATICAS
 
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docxDefinición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
Definición de Conjuntos.docx UNIDAD 2 YESSENIA DAZA 30353142.docx
 
Conjuntos carlos
Conjuntos carlosConjuntos carlos
Conjuntos carlos
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Unidad 2 de matematica
Unidad 2 de matematicaUnidad 2 de matematica
Unidad 2 de matematica
 
30.803.004.pptx
30.803.004.pptx30.803.004.pptx
30.803.004.pptx
 
Numeros Reales.pptx
Numeros Reales.pptxNumeros Reales.pptx
Numeros Reales.pptx
 
Números reales
Números realesNúmeros reales
Números reales
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
NUMEROS REALES.pptx
NUMEROS REALES.pptxNUMEROS REALES.pptx
NUMEROS REALES.pptx
 
Definicion deconjunto
Definicion deconjuntoDefinicion deconjunto
Definicion deconjunto
 
Números Reales y Plano Numérico.pptx
Números Reales y Plano Numérico.pptxNúmeros Reales y Plano Numérico.pptx
Números Reales y Plano Numérico.pptx
 
Numeros reales y plano numerico
Numeros reales y plano numerico Numeros reales y plano numerico
Numeros reales y plano numerico
 
Números Reales.pptx
Números Reales.pptxNúmeros Reales.pptx
Números Reales.pptx
 
Matematica unidad II andrelis perez
Matematica unidad II andrelis perezMatematica unidad II andrelis perez
Matematica unidad II andrelis perez
 
trabajo yoleida.ppt
trabajo yoleida.ppttrabajo yoleida.ppt
trabajo yoleida.ppt
 
Numeros reales.docx
Numeros reales.docxNumeros reales.docx
Numeros reales.docx
 

Último

Tema Identificar Relaciones y Casos de Uso 19-05-24.pdf
Tema Identificar Relaciones y Casos de Uso 19-05-24.pdfTema Identificar Relaciones y Casos de Uso 19-05-24.pdf
Tema Identificar Relaciones y Casos de Uso 19-05-24.pdf
Noe Castillo
 

Último (20)

Tema Identificar Relaciones y Casos de Uso 19-05-24.pdf
Tema Identificar Relaciones y Casos de Uso 19-05-24.pdfTema Identificar Relaciones y Casos de Uso 19-05-24.pdf
Tema Identificar Relaciones y Casos de Uso 19-05-24.pdf
 
Tipologías de vínculos afectivos (grupo)
Tipologías de vínculos afectivos (grupo)Tipologías de vínculos afectivos (grupo)
Tipologías de vínculos afectivos (grupo)
 
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
📝 Semana 09 - Tema 01: Tarea - Redacción del texto argumentativo
 
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdfRESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
 
Lecciones 07 Esc. Sabática. Motivados por la esperanza
Lecciones 07 Esc. Sabática. Motivados por la esperanzaLecciones 07 Esc. Sabática. Motivados por la esperanza
Lecciones 07 Esc. Sabática. Motivados por la esperanza
 
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO SOPA DE LETRAS OLÍMPICA. Por JAVIER SOLIS NOYOLA
 
Como construir los vínculos afectivos (Grupal)
Como construir los vínculos afectivos (Grupal)Como construir los vínculos afectivos (Grupal)
Como construir los vínculos afectivos (Grupal)
 
Sesión de clase Motivados por la esperanza.pdf
Sesión de clase Motivados por la esperanza.pdfSesión de clase Motivados por la esperanza.pdf
Sesión de clase Motivados por la esperanza.pdf
 
2.15. Calendario Civico Escolar 2024.docx
2.15. Calendario Civico Escolar 2024.docx2.15. Calendario Civico Escolar 2024.docx
2.15. Calendario Civico Escolar 2024.docx
 
Sesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdfSesión de clase: Luz desde el santuario.pdf
Sesión de clase: Luz desde el santuario.pdf
 
PATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptx
PATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptxPATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptx
PATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptx
 
a propósito del estado su relevancia y definiciones
a propósito del estado su relevancia y definicionesa propósito del estado su relevancia y definiciones
a propósito del estado su relevancia y definiciones
 
11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx
11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx
11.NEOLIBERALISMO: que es, ventajas, desventajas, consecuenciaspptx
 
LA PRIMERA GUERRA MUNDIAL PARA NIÑOS.pdf
LA PRIMERA GUERRA  MUNDIAL PARA NIÑOS.pdfLA PRIMERA GUERRA  MUNDIAL PARA NIÑOS.pdf
LA PRIMERA GUERRA MUNDIAL PARA NIÑOS.pdf
 
Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )Vínculo afectivo (labor expositivo de grupo )
Vínculo afectivo (labor expositivo de grupo )
 
LA ORALIDAD, DEFINICIÓN Y CARACTERÍSTICAS.pptx
LA ORALIDAD, DEFINICIÓN Y CARACTERÍSTICAS.pptxLA ORALIDAD, DEFINICIÓN Y CARACTERÍSTICAS.pptx
LA ORALIDAD, DEFINICIÓN Y CARACTERÍSTICAS.pptx
 
2. Entornos Virtuales de Aprendizaje.pptx
2. Entornos Virtuales de Aprendizaje.pptx2. Entornos Virtuales de Aprendizaje.pptx
2. Entornos Virtuales de Aprendizaje.pptx
 
Revista Faro Normalista 6, 18 de mayo 2024
Revista Faro Normalista 6, 18 de mayo 2024Revista Faro Normalista 6, 18 de mayo 2024
Revista Faro Normalista 6, 18 de mayo 2024
 
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
IMPLICACIONES BIOÉTICAS ANTE EL TRANSHUMANISMO A PARTIR DEL PENSAMIENTO FILOS...
 
Análisis de los factores internos en una Organización
Análisis de los factores internos en una OrganizaciónAnálisis de los factores internos en una Organización
Análisis de los factores internos en una Organización
 

Conjuntos

  • 1. REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN UNIVERSIDAD POLITECNICA TERRITORIAL ANDRÉS ELOY BLANCO BARQUISIMETO – ESTADO LARA CONJUNTOS MARÍA GIL SECCIÓN: AD0105
  • 2. DEFINICIÓN DE CONJUNTOS Un conjunto es la agrupación de diferentes elementos que comparten entre sí características y propiedades semejantes. Estos elementos pueden ser sujetos u objetos, tales como números, canciones, meses, personas, etc. Por ejemplo: el conjunto de números primos o el conjunto de planetas del sistema solar.
  • 3. OPERACIONES CON CONJUNTOS Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos las siguientes unión, intersección, diferencia, diferencia simétrica y complemento.
  • 4. UNIÓN DE CONJUNTOS Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a todos los elementos que queremos unir pero sin que se repitan. Es decir dado un conjunto A y un conjunto B, la unión de los conjuntos A y B será otro conjunto formado por todos los elementos de A, con todos los elementos de B sin repetir ningún elemento. Ejemplo Dados dos conjuntos A={1,2,3,4,5,6,7,} y B={8,9,10,11} la unión de estos conjuntos será A∪B={1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de Venn se tendría lo siguiente: También se puede graficar del siguiente modo:
  • 5. INTERSECCIÓN DE CONJUNTOS Es la operación que nos permite formar un conjunto, sólo con los elementos comunes involucrados en la operación. Es decir dados dos conjuntos A y B, la de intersección de los conjuntos A y B, estará formado por los elementos de A y los elementos de B que sean comunes, los elementos no comunes A y B, será excluidos. El símbolo que se usa para indicar la operación de intersección es el siguiente: ∩. Ejemplo Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la intersección de estos conjuntos será A∩B={4,5}. Usando diagramas de Venn se tendría lo siguiente: Ejemplo Dados dos conjuntos A={x/x estudiantes que juegan fútbol} y B={x/x estudiantes que juegan básquet}, la intersección será F∩B={x/x estudiantes que juegan fútbol y básquet}. Usando diagramas de Venn se tendría lo siguiente:
  • 6. DIFERENCIA DE CONJUNTOS Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que pertenecen al primero pero no al segundo. Es decir dados dos conjuntos A y B, la diferencia de los conjuntos entra A y B, estará formado por todos los elementos de A que no pertenezcan a B. El símbolo que se usa para esta operación es el mismo que se usa para la resta o sustracción, que es el siguiente: -. Ejemplo Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia de estos conjuntos será A-B={1,2,3}. Usando diagramas de Venn se tendría lo siguiente: Ejemplo Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia de estos conjuntos será B-A={6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente:
  • 7. DIFERENCIA DE SIMÉTRICA DE CONJUNTOS Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que no sean comunes a ambos conjuntos. Es decir dados dos conjuntos A y B, la diferencia simétrica estará formado por todos los elementos no comunes a los conjuntos A y B. El símbolo que se usa para indicar la operación de diferencia simétrica es el siguiente: △. Ejemplo Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia simétrica de estos conjuntos será A △ B={1,2,3,6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente: Ejemplo Dados dos conjuntos F={x/x estudiantes que juegan fútbol} y B={x/x estudiantes que juegan básquet}, la diferencia simétrica será F △ B={x/x estudiantes que sólo juegan fútbol y básquet}. Usando diagramas de Venn se tendría lo siguiente:
  • 8. COMPLEMENTO DE UN CONJUNTO Es la operación que nos permite formar un conjunto con todos los elementos del conjunto de referencia o universal, que no están en el conjunto. Es decir dado un conjunto A que esta incluido en el conjunto universal U, entonces el conjunto complemento de A es el conjunto formado por todos los elementos del conjunto universal pero sin considerar a los elementos que pertenezcan al conjunto A. En esta operación el complemento de un conjunto se denota con un apostrofe sobre el conjunto que se opera, algo como esto A' en donde el conjunto A es el conjunto del cual se hace la operación de complemento. Ejemplo Dado el conjunto Universal U={1,2,3,4,5,6,7,8,9} y el conjunto A={1,2,9}, el conjunto A' estará formado por los siguientes elementos A'={3,4,5,6,7,8}. Usando diagramas de Venn se tendría lo siguiente:
  • 9. NÚMEROS REALES Los números reales son cualquier número que corresponda a un punto en la recta real y pueden clasificarse en números naturales, enteros, racionales e irracionales. En otras palabras, cualquier número real está comprendido entre menos infinito y más infinito y podemos representarlo en la recta real. Los números reales son todos los números que encontramos más frecuentemente dado que los números complejos no se encuentran de manera accidental, sino que tienen que buscarse expresamente. Los números reales se representan mediante la letra R ↓ Dominio de los números reales Entonces, tal y como hemos dicho, los números reales son los números comprendidos entre los extremos infinitos. Es decir, no incluiremos estos infinitos en el conjunto. Dominio de los números reales. Números reales en la recta real Esta recta recibe el nombre de recta real dado que podemos representar en ella todos los números reales. Línea real:
  • 10. CLASIFICACIÓN DE LOS NÚMEROS REALES •Números naturales Los números naturales es el primer conjunto de números que aprendemos de pequeños. Este conjunto no tiene en cuenta el número cero (0) excepto que se especifique lo contrario (cero neutral). Expresión: •Números enteros Los números enteros son todos los números naturales e incluyen el cero (0) y todos los números negativos. Expresión: •Números racionales Los números racionales son las fracciones que pueden formarse a partir de los números enteros y naturales. Entendemos las fracciones como cocientes de números enteros. Expresión: •Números irracionales Los números irracionales son números decimales que no pueden expresarse ni de manera exacta ni de manera periódica. Expresión:
  • 11. EJEMPLOS DE NUMEROS REALES En el siguiente ejemplo sobre los números reales, comprueba que los siguientes números corresponden a punto en la recta real. •Números naturales: 1,2,3,4… •Números enteros: …,-4,-3,-2,-1, 0, 1, 2, 3, 4… •Números racionales: cualquier fracción de números enteros. •Números irracionales:
  • 12. DESIGUALDADES DE NUMEROS REALES En matemáticas, una desigualdad es una relación de orden que se da entre dos valores cuando estos son distintos (en caso de ser iguales, lo que se tiene es una igualdad). Si los valores en cuestión son elementos de un conjunto ordenado, como los enteros o los reales, entonces pueden ser comparados. • La notación a < b significa a es menor que b; • La notación a > b significa a es mayor que b
  • 13. DESIGUALDADES DE NUMEROS REALES Estas relaciones se conocen como desigualdades estrictas, puesto que a no puede ser igual a b; también puede leerse como "estrictamente menor que" o "estrictamente mayor que“ La notación a ≤ b significa a es menor o igual que b; La notación a ≥ b significa a es mayor o igual que b; estos tipos de desigualdades reciben el nombre de desigualdades amplias (o no estrictas). La notación a ≪ b significa a es mucho menor que b; La notación a ≫ b significa a es mucho mayor que b; esta relación indica por lo general una diferencia de varios órdenes de magnitud. La notación a ≠ b significa que a no es igual a b. Tal expresión no indica si uno es mayor que el otro, o siquiera si son comparables.
  • 14. DEFINICIÓN DE VALOR ABSOLUTO La noción de valor absoluto se utiliza en el terreno de las matemáticas para nombrar al valor que tiene un número más allá de su signo. Esto quiere decir que el valor absoluto, que también se conoce como módulo, es la magnitud numérica de la cifra sin importar si su signo es positivo o negativo. Ejemplo: 3 es el valor absoluto de +3 y de -3. El valor absoluto está vinculado con las nociones de magnitud, distancia y norma en diferentes contextos matemáticos y físicos. El concepto de valor absoluto de un número real puede generalizarse a muchos otros objetos matemáticos, como son los cuaterniones, anillos ordenados, cuerpos o espacios vectoriales.
  • 15. DESIGUALDADES CON VALOR ABSOLUTO Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable dentro. Desigualdades de valor absoluto (<): La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4. Así, x > -4 Y x < 4. El conjunto solución es . Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. La solución es la intersección de las soluciones de estos dos casos. En otras palabras, para cualesquiera números reales a y b , si | a | < b , entonces a < b Y a > - b .