República Bolivariana de Venezuela
Ministerio del poder popular para la Educación superior
Universidad Politécnica Territorial de Lara Andrés Eloy Blanco
Barquisimeto, Edo-Lara
Integrantes:
Mendoza Bárbara C.I 27.212.144
Materia:
Matemática
Sección: AD0103
Marzo, 2021
Un conjunto o colección lo forman unos elementos de la misma naturaleza, es decir, elementos
diferenciados entre sí pero que poseen en común ciertas propiedades o características, y que pueden
tener entre ellos, o con los elementos de otros conjuntos, ciertas relaciones.
Un conjunto puede tener un número finito o infinito de elementos, en matemáticas es común denotar
a los elementos mediante letras minúsculas y a los conjuntos por letras mayúsculas.
Ejemplo:
C = {a, b, c, d, e, f, g, h}
Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten
realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con
conjuntos veremos las siguientes unión, intersección, diferencia, diferencia simétrica y
complemento.
Es la operación que nos permite unir dos o más conjuntos para
formar otro conjunto que contendrá a todos los elementos que
queremos unir pero sin que se repitan. Es decir dado un conjunto A
y un conjunto B, la unión de los conjuntos A y B será otro conjunto
formado por todos los elementos de A, con todos los elementos de
B sin repetir ningún elemento. El símbolo que se usa para indicar la
operación de unión es el siguiente: ∪. Cuando usamos diagramas de
Venn, para representar la unión de conjuntos, se sombrean los
conjuntos que se unen o se forma uno nuevo. Luego se escribe por
fuera la operación de unión.
Ejemplo
Dados dos conjuntos A={1,2,3,4,5,6,7,} y B={8,9,10,11} la unión de
estos conjuntos será A∪B={1,2,3,4,5,6,7,8,9,10,11}. Usando
diagramas de Venn se tendría lo siguiente
También se puede graficar del siguiente
modo
Es la operación que nos permite formar un conjunto,
en donde de dos conjuntos el conjunto resultante es el
que tendrá todos los elementos que no sean comunes
a ambos conjuntos. Es decir dados dos conjuntos A y
B, la diferencia simétrica estará formado por todos
los elementos no comunes a los conjuntos A y B. El
símbolo que se usa para indicar la operación de
diferencia simétrica es el siguiente: △.
Ejemplo 1.
Dados dos conjuntos A={1,2,3,4,5} y
B={4,5,6,7,8,9} la diferencia simétrica de estos
conjuntos será A △ B={1,2,3,6,7,8,9}. Usando
diagramas de Venn se tendría lo siguiente:
Es la operación que nos permite formar un
conjunto, sólo con los elementos comunes
involucrados en la operación. Es decir dados dos
conjuntos A y B, la de intersección de los conjuntos
A y B, estará formado por los elementos de A y los
elementos de B que sean comunes, los elementos no
comunes A y B, será excluidos. El símbolo que se
usa para indicar la operación de intersección es el
siguiente: ∩.
Ejemplo
Dados dos conjuntos A={1,2,3,4,5} y
B={4,5,6,7,8,9} la intersección de estos conjuntos
será A∩B={4,5}. Usando diagramas de Venn se
tendría lo siguiente:
Es la operación que nos permite formar un conjunto, en donde de
dos conjuntos el conjunto resultante es el que tendrá todos los
elementos que pertenecen al primero pero no al segundo. Es decir
dados dos conjuntos A y B, la diferencia de los conjuntos entra A y
B, estará formado por todos los elementos de A que no pertenezcan
a B. El símbolo que se usa para esta operación es el mismo que se
usa para la resta o sustracción, que es el siguiente: -.
Ejemplo
Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia
de estos conjuntos será A-B={1,2,3}. Usando diagramas de Venn se
tendría lo siguiente:
Los números reales son el conjunto que incluye los números naturales, enteros, racionales e irracionales. Se
representa con la letra ℜ.
La palabra real se usa para distinguir estos números del número imaginario i, que es igual a la raíz cuadrada
de -1, o √-1.
• Orden: Todos los números
reales tienen un orden:
• Integral: La característica de
integridad de los números
reales es que no hay espacios
vacíos en este conjunto de
números. Esto significa que
cada conjunto que tiene un
límite superior, tiene un
límite más pequeño.
• Infinitud: Los
números
irracionales y
racionales son
infinitamente
numerosos, es decir,
no tienen final, ya
sea del lado positivo
como del negativo.
• Expansión decimal: Un
número real es una
cantidad que puede ser
expresada como una
expansión decimal
infinita. Se usan en
mediciones de cantidades
continuas, como la
longitud y el tiempo
1. Números Naturales De la necesidad de
contar objetos surgieron los números
naturales. Estos son los números con los
que estamos más cómodos: 1, 2, 3, 4, 5,
6, ...hasta el infinito. El conjunto de los
números naturales se designa con la letra
mayúscula N.
2. Números Enteros: El conjunto de los números enteros
comprende los números naturales y sus números simétricos.
Esto incluye los enteros positivos, el cero y los enteros
negativos. Los números negativos se denotan con un signo
"menos" (-). Se designa por la letra mayúscula Z y se
representa como:
3. Números Racionales Los números
fraccionarios surgen por la necesidad de medir
cantidades continuas y las divisiones inexactas.
Medir magnitudes continuas tales como la
longitud, el volumen y el peso, llevó al hombre
a introducir las fracciones. El conjunto de
números racionales se designa con la letra Q:
4. Números Irracionales: Los números irracionales
comprenden los números que no pueden expresarse
como la división de enteros en el que el denominador
es distinto de cero. Se representa por la letra
mayúscula I.
Desigualdad matemática es una proposición de relación de orden existente entre dos expresiones
algebraicas conectadas a través de los signos: desigual que ≠, mayor que >, menor que <, menor o
igual que ≤, así como mayor o igual que ≥, resultando ambas expresiones de valores distintos.
• mayor que >
• Menor que <
• Menor o igual que ≤
• Mayor o igual que ≥
Es el valor que tiene un número más allá de su signo. Esto quiere decir que el valor absoluto, que
también se conoce como módulo, es la magnitud numérica de la cifra sin importar si su signo es positivo
o negativo.
El valor absoluto o módulo de un número real cualquiera es el mismo número pero con signo positivo.
En otras palabras, es el valor numérico sin tener en cuenta su signo, ya sea positivo o negativo. Por
ejemplo, el valor absoluto del número −4−4 se representa como |−4||−4| y equivale a 44, y el valor
absoluto de 44 se representa como |4||4|, lo cual también equivale a 44.
La desigualdad | x | < 4 significa que la distancia
entre x y 0 es menor que 4.
Así, x > -4 Y x < 4. El conjunto solución es .
Cuando se resuelven desiguales de valor absoluto, hay dos
casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor
absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor
absoluto es negativa.
La solución es la intersección de las soluciones de estos
dos casos.
La desigualdad | x | > 4 significa que la distancia entre x y
0 es mayor que 4
Así, x < -4 O x > 4. El conjunto solución es .
Cuando se resuelven desiguales de valor absoluto, hay
dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor
absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor
absoluto es negativa.
• https://www.google.com/search?q=Desigualdades.&rlz=1C1CHBD_esVE772VE772&
oq=Desigualdades.&aqs=chrome..69i57j0l4j0i30l5.1949j0j4&sourceid=chrome&ie=
UTF-8
• https://www.upaebvirtual.edu.ve/ead_adm/mod/book/view.php?id=5557
• https://www.smartick.es/blog/matematicas/numeros/valor-absoluto/
• https://www.smartick.es/blog/matematicas/numeros/valor-absoluto/
• https://www.varsitytutors.com/hotmath/hotmath_help/spanish/topics/absolute-
value-
inequalities#:~:text=La%20desigualdad%20%7C%20x%20%7C%20%3E%204,0%20es
%20mayor%20que%204.&text=conjunto%20soluci%C3%B3n%20es%20.-
,Cuando%20se%20resuelven%20desigualdes%20de%20valor%20absoluto%2C%20h
ay%20dos%20casos,de%20valor%20absoluto%20es%20positiva.

Conjuntos

  • 1.
    República Bolivariana deVenezuela Ministerio del poder popular para la Educación superior Universidad Politécnica Territorial de Lara Andrés Eloy Blanco Barquisimeto, Edo-Lara Integrantes: Mendoza Bárbara C.I 27.212.144 Materia: Matemática Sección: AD0103 Marzo, 2021
  • 2.
    Un conjunto ocolección lo forman unos elementos de la misma naturaleza, es decir, elementos diferenciados entre sí pero que poseen en común ciertas propiedades o características, y que pueden tener entre ellos, o con los elementos de otros conjuntos, ciertas relaciones. Un conjunto puede tener un número finito o infinito de elementos, en matemáticas es común denotar a los elementos mediante letras minúsculas y a los conjuntos por letras mayúsculas. Ejemplo: C = {a, b, c, d, e, f, g, h} Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos las siguientes unión, intersección, diferencia, diferencia simétrica y complemento.
  • 3.
    Es la operaciónque nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a todos los elementos que queremos unir pero sin que se repitan. Es decir dado un conjunto A y un conjunto B, la unión de los conjuntos A y B será otro conjunto formado por todos los elementos de A, con todos los elementos de B sin repetir ningún elemento. El símbolo que se usa para indicar la operación de unión es el siguiente: ∪. Cuando usamos diagramas de Venn, para representar la unión de conjuntos, se sombrean los conjuntos que se unen o se forma uno nuevo. Luego se escribe por fuera la operación de unión. Ejemplo Dados dos conjuntos A={1,2,3,4,5,6,7,} y B={8,9,10,11} la unión de estos conjuntos será A∪B={1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de Venn se tendría lo siguiente También se puede graficar del siguiente modo Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que no sean comunes a ambos conjuntos. Es decir dados dos conjuntos A y B, la diferencia simétrica estará formado por todos los elementos no comunes a los conjuntos A y B. El símbolo que se usa para indicar la operación de diferencia simétrica es el siguiente: △. Ejemplo 1. Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia simétrica de estos conjuntos será A △ B={1,2,3,6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente:
  • 4.
    Es la operaciónque nos permite formar un conjunto, sólo con los elementos comunes involucrados en la operación. Es decir dados dos conjuntos A y B, la de intersección de los conjuntos A y B, estará formado por los elementos de A y los elementos de B que sean comunes, los elementos no comunes A y B, será excluidos. El símbolo que se usa para indicar la operación de intersección es el siguiente: ∩. Ejemplo Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la intersección de estos conjuntos será A∩B={4,5}. Usando diagramas de Venn se tendría lo siguiente: Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que pertenecen al primero pero no al segundo. Es decir dados dos conjuntos A y B, la diferencia de los conjuntos entra A y B, estará formado por todos los elementos de A que no pertenezcan a B. El símbolo que se usa para esta operación es el mismo que se usa para la resta o sustracción, que es el siguiente: -. Ejemplo Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia de estos conjuntos será A-B={1,2,3}. Usando diagramas de Venn se tendría lo siguiente:
  • 5.
    Los números realesson el conjunto que incluye los números naturales, enteros, racionales e irracionales. Se representa con la letra ℜ. La palabra real se usa para distinguir estos números del número imaginario i, que es igual a la raíz cuadrada de -1, o √-1. • Orden: Todos los números reales tienen un orden: • Integral: La característica de integridad de los números reales es que no hay espacios vacíos en este conjunto de números. Esto significa que cada conjunto que tiene un límite superior, tiene un límite más pequeño. • Infinitud: Los números irracionales y racionales son infinitamente numerosos, es decir, no tienen final, ya sea del lado positivo como del negativo. • Expansión decimal: Un número real es una cantidad que puede ser expresada como una expansión decimal infinita. Se usan en mediciones de cantidades continuas, como la longitud y el tiempo
  • 6.
    1. Números NaturalesDe la necesidad de contar objetos surgieron los números naturales. Estos son los números con los que estamos más cómodos: 1, 2, 3, 4, 5, 6, ...hasta el infinito. El conjunto de los números naturales se designa con la letra mayúscula N. 2. Números Enteros: El conjunto de los números enteros comprende los números naturales y sus números simétricos. Esto incluye los enteros positivos, el cero y los enteros negativos. Los números negativos se denotan con un signo "menos" (-). Se designa por la letra mayúscula Z y se representa como: 3. Números Racionales Los números fraccionarios surgen por la necesidad de medir cantidades continuas y las divisiones inexactas. Medir magnitudes continuas tales como la longitud, el volumen y el peso, llevó al hombre a introducir las fracciones. El conjunto de números racionales se designa con la letra Q: 4. Números Irracionales: Los números irracionales comprenden los números que no pueden expresarse como la división de enteros en el que el denominador es distinto de cero. Se representa por la letra mayúscula I.
  • 7.
    Desigualdad matemática esuna proposición de relación de orden existente entre dos expresiones algebraicas conectadas a través de los signos: desigual que ≠, mayor que >, menor que <, menor o igual que ≤, así como mayor o igual que ≥, resultando ambas expresiones de valores distintos. • mayor que > • Menor que < • Menor o igual que ≤ • Mayor o igual que ≥
  • 8.
    Es el valorque tiene un número más allá de su signo. Esto quiere decir que el valor absoluto, que también se conoce como módulo, es la magnitud numérica de la cifra sin importar si su signo es positivo o negativo. El valor absoluto o módulo de un número real cualquiera es el mismo número pero con signo positivo. En otras palabras, es el valor numérico sin tener en cuenta su signo, ya sea positivo o negativo. Por ejemplo, el valor absoluto del número −4−4 se representa como |−4||−4| y equivale a 44, y el valor absoluto de 44 se representa como |4||4|, lo cual también equivale a 44.
  • 9.
    La desigualdad |x | < 4 significa que la distancia entre x y 0 es menor que 4. Así, x > -4 Y x < 4. El conjunto solución es . Cuando se resuelven desiguales de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. La solución es la intersección de las soluciones de estos dos casos. La desigualdad | x | > 4 significa que la distancia entre x y 0 es mayor que 4 Así, x < -4 O x > 4. El conjunto solución es . Cuando se resuelven desiguales de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
  • 10.
    • https://www.google.com/search?q=Desigualdades.&rlz=1C1CHBD_esVE772VE772& oq=Desigualdades.&aqs=chrome..69i57j0l4j0i30l5.1949j0j4&sourceid=chrome&ie= UTF-8 • https://www.upaebvirtual.edu.ve/ead_adm/mod/book/view.php?id=5557 •https://www.smartick.es/blog/matematicas/numeros/valor-absoluto/ • https://www.smartick.es/blog/matematicas/numeros/valor-absoluto/ • https://www.varsitytutors.com/hotmath/hotmath_help/spanish/topics/absolute- value- inequalities#:~:text=La%20desigualdad%20%7C%20x%20%7C%20%3E%204,0%20es %20mayor%20que%204.&text=conjunto%20soluci%C3%B3n%20es%20.- ,Cuando%20se%20resuelven%20desigualdes%20de%20valor%20absoluto%2C%20h ay%20dos%20casos,de%20valor%20absoluto%20es%20positiva.