1.- Integral de un Número                                        dx      1    x−a
∫ Kdx = Kx + c                                          ∫x   2
                                                                 −a 2
                                                                      =    ln
                                                                        2a x + a
                                                                                  +C

2.- Integral de una potencia                                 dx        1     a+x
             X n +1                                     ∫a   2
                                                              −x  2
                                                                    = ln
                                                                      2a a − x
                                                                                     +C
 ∫ X n dx =
             n +1                                            dx       1          x
3.- Integral de
                  1                                     ∫ x 2 + a 2 = a arctan a + C
                  x                                     11.- Integrales del tipo
   1                                                           dx
 ∫ x dx = x dx = ln X + c
             −1
                                                        ∫ x 2 − a 2 = ln x + x − a
                                                                                   2    2


4.- Integral de un múltiplo de una potencia
                                                               dx                x
 ∫
               X n +1                                 ∫ a 2 − x 2 =arcsen a
   KX n = K   n +1 = K ∫ X
                                n
                       
                      
                                                                 dx
5.- Integral de una suma                                ∫    x +a2    2
                                                                          = ln x + x 2 + a 2
(se sacan las integrales de cada elemento de la suma)
                                                        12. Integrales del tipo cuando lo de abajo es
6.- Integral de Polinomio entre Monomio                               dx
                                                        T.C.P ∫ 2
   x3 + x 2 + x      (             )
                       x 3 + x 2 + x ( x −3 )                    Ax + Bx + C
∫ x3             =∫
                                1                                dx               dx            1
7.- Integral Mediante Logaritmo                         ∫ Ax 2 + Bx + C = ∫ ( x ± p)2 = − x ± p
   d                                                    Caso II Integrales del tipo cuando lo de abajo no
       U
   dx = ln U                                                                dx
∫ U                                                     Es T.C.P. ∫ 2
                                                                     Ax + Bx + C
                                                                                     solamente se completa
8.- Integral mediante Raíz Cuadrada                     El T.C.P y queda de alguna de las formas ya vistas.
   d                                                                                    dx
       U                                                13.Integrales del tipo ∫                  cuando
   dx = 2 U                                                                        Ax 2 + Bx + C
∫ U                                                     Es T.C.P.
9.- Integral de función exponencial                               dx                 dx           dx
              e ax + b                                  ∫ Ax 2 + Bx + C = ∫ ( x + C ) 2 = ∫ x + C = ln x + C + c
∫ e dx = a + C
    ax + b

                                                        Caso II cuando no es T.C.P
10. Integrales del tipo
                                                                 dx                B
                                                        ∫ Ax 2 + Bx + C = ln x ± 2 + Ax + Bx + C + c
                                                                                       2




                              ax + b
14. Integrales del tipo ∫
                            Ax + Bx + C
                              2


       ax + b        a                       a                    dx
∫ Ax               =     ln Ax 2 + Bx + C +      ( − B ) + b  ∫ 2
       2
        + Bx + C 2 A                         2 A              Ax + Bx + C
                      ax + b
15. Integral del ∫
                    Ax 2 + Bx + C
        ax + b         a                        a                    dx
∫ Ax 2 + Bx + C =  2 A 2 Ax + Bx + C +  2 A ( − B ) + b ∫ Ax 2 + Bx + C
                                    2

                                                               
INTEGRACIÓN TRIGONOMETRICA INMEDIATA
                                                                      cos α
∫ senUdu = − cos U + c                                    6. senα =
                                                                      cot α
∫ cos Udu = senU + c                                      7. sec α =
                                                                        1
                                                                     cos α
∫ sec Udu = tan U + c
      2
                                                          8. sec α cos α = 1
                                                                        1
∫ csc Udu = − cot U + c                                   9. cos α =
         2
                                                                      sec α
                                                                         1
∫ sec U tan Udu = sec U + c                               10. csc α =
                                                                       senα
∫ csc U cot Udu = − csc U + c                             11. csc αsenα = 1
                                                                         1
                                                          12. senα =
∫ tan Udu = − ln cos U + c                                             csc α

∫ cot Udu = ln senU + c                                            LEY DE ORO
                                                                   13. sen 2α + cos 2 α = 1
∫ sec Udu = ln sec U + tan U + c                                   14. cos 2 α = 1 − sen 2α
∫ csc Udu = ln csc U − cot U + c                                   15. sen 2α = 1 − cos 2 α
IDENTIDADES TRIGONOMETRICAS                                       16. 1 + cot 2 α = csc 2 α
           senα                                                   17. 1 = csc 2 α − cot 2 α
1. tan α =
           cos α                                                  18. cot 2 α = csc 2 α − 1
2. senα = tan α cos α                                             19. tan 2 α + 1 = sec 2 α
           senα                                                   20. tan 2 α = sec 2 α − 1
3. cos α =
           tan α                                                  21. 1 = sec 2 α − tan 2 α
           cos α                                                  22. tan α cot α = 1
4. cot α =
           senα                                                                   1
5. cot αsenα = cos α                                              23. tan α =
                                                                                cot α
                                                                                  1
                                                                  24. cot α =
                                                                                tan α
INTEGRACIÓN POR SUSTITUCIÓN TRIGONOMETRICA
  x2 − a2                                    x2 + a2                          a2 − x2
x = a sec y                                x = a tan y                      x = aseny
dx = a sec y tan ydy                       dx = a sec 2 ydy                 dx = a cos ydy
  x 2 − a 2 = a tan y                       x 2 + a 2 = a sec y               a 2 − x 2 = a cos y

FORMULA DE ABATIMIENTO DEGRADADO                                           IntegracíonporPartes
                1          n −1
∫ sen xdx = − n sen
     n                  n −1

                             n ∫
                                 sen n − 2 xdx
                               x cos x +                                   ∫ Udv = UV − ∫ Vdu
            1            n −1                                              Factorización
∫ cos xdx = n cos xsenx + n ∫ cos xdx
     n           n −1              n−2
                                                                           a 3 − b3 = (a − b)(a 2 + ab + b 2 )
                                                                           a 3 + b3 = (a + b)(a 2 − ab + b 2 )




DERIVADA                                                          REGLAS DE DERIVACION
1) DERIVADA DE UNA CONSTANTE                          d
                                                         Kx = K
  d                                                   dx
     c=0
  dx
                                                    Derivada de un Múltiplo de una potencia de X
2) Regla de la potencia                                d
                                                          mx n = nmx n −1
  d n                                                  dx
     U = nU n −1
  dx                                                Derivada de un Producto
3) Regla de la suma o resta                            d         d       d
  d                                                       UV = U    V +V    U
     [ f ( x ) + g ( x ) ] = d f ( x) + d g ( x)       dx        dx      dx
  dx                         dx         dx

4) Derivada de una raíz
                                                    Derivada de un Cociente
   d      Dx( u )                                                    d      d
       u=                                                        V      U −U V
   dx     2 u                                          d U           dx     dx         Derivada de Una Raíz
                                                            =
   d n     Dx( u )                                     dx V              V2
       u=
   dx     nn ( u )                                  Cuadrada.
                   n −1

                                                            d
                                                               U
                                                      d     dx
5) Regla del Producto                                    u=
  Dx (
     UV                )=UDxV      +VDxU              dx    2 u
6) Regla del Cociente                               Derivada de un exponencial
     U  VDxU − UDxV                                 d u       d
  Dx  =                                                e = eu    u
    V       V2                                      dx        dx
     K − KDxV                                       Derivada Logarítmica Natural
  Dx =
     V     V2
    U DxU                                                       d
  Dx =                                                             U
     K    K                                           d         dx
                                                         ln U =
7) Regla de la Cadena                                 dx         U
  d
     [ g ( x ) ] n = n[ g ( x ) ] n −1. d g ( x )
  dx                                   dx           Derivadas Trigonometricas
Leyes de Los Exponentes Racionales.                   d
                                                         senU    = +cosU
                                                                            d
                                                                               U
                                                      dx                    dx
      x = x1 / 2                                      d                     d
               m                                         cosU    = −senU       U
  n
      am = a       n                                  dx                   dx
                                                      d                      d
                                                         tan U   = +sec 2 U     U
      −m               1                              dx                     dx
  a        n
               =                                      d                      d
                   n
                       am                                cot U   = −csc 2 U     U
                                                      dx                     dx
                                                      d                        d
                           m                             secU    = +secU tan U    U
  (n a ) m = a                 n
                                                      dx                       dx
                                                      d                        d
Derivada de un Número                                 dx
                                                         cscU    = −cscU cot U
                                                                               dx
                                                                                  U

  d
     K=0
  dx                                                         d
                                                      m=        f ( x)
Derivada de una Potencia de X                                dx
  d n                                                  f ( x) = y
     x = nx n −1
  dx                                                   y − y1 = m( x − x1 )
Derivada de un Múltiplo de X

Formulas De IntegracióN

  • 1.
    1.- Integral deun Número dx 1 x−a ∫ Kdx = Kx + c ∫x 2 −a 2 = ln 2a x + a +C 2.- Integral de una potencia dx 1 a+x X n +1 ∫a 2 −x 2 = ln 2a a − x +C ∫ X n dx = n +1 dx 1 x 3.- Integral de 1 ∫ x 2 + a 2 = a arctan a + C x 11.- Integrales del tipo 1 dx ∫ x dx = x dx = ln X + c −1 ∫ x 2 − a 2 = ln x + x − a 2 2 4.- Integral de un múltiplo de una potencia dx x ∫  X n +1  ∫ a 2 − x 2 =arcsen a KX n = K   n +1 = K ∫ X n    dx 5.- Integral de una suma ∫ x +a2 2 = ln x + x 2 + a 2 (se sacan las integrales de cada elemento de la suma) 12. Integrales del tipo cuando lo de abajo es 6.- Integral de Polinomio entre Monomio dx T.C.P ∫ 2 x3 + x 2 + x ( ) x 3 + x 2 + x ( x −3 ) Ax + Bx + C ∫ x3 =∫ 1 dx dx 1 7.- Integral Mediante Logaritmo ∫ Ax 2 + Bx + C = ∫ ( x ± p)2 = − x ± p d Caso II Integrales del tipo cuando lo de abajo no U dx = ln U dx ∫ U Es T.C.P. ∫ 2 Ax + Bx + C solamente se completa 8.- Integral mediante Raíz Cuadrada El T.C.P y queda de alguna de las formas ya vistas. d dx U 13.Integrales del tipo ∫ cuando dx = 2 U Ax 2 + Bx + C ∫ U Es T.C.P. 9.- Integral de función exponencial dx dx dx e ax + b ∫ Ax 2 + Bx + C = ∫ ( x + C ) 2 = ∫ x + C = ln x + C + c ∫ e dx = a + C ax + b Caso II cuando no es T.C.P 10. Integrales del tipo dx B ∫ Ax 2 + Bx + C = ln x ± 2 + Ax + Bx + C + c 2 ax + b 14. Integrales del tipo ∫ Ax + Bx + C 2 ax + b a  a   dx ∫ Ax = ln Ax 2 + Bx + C +  ( − B ) + b  ∫ 2 2 + Bx + C 2 A  2 A   Ax + Bx + C ax + b 15. Integral del ∫ Ax 2 + Bx + C ax + b  a   a   dx ∫ Ax 2 + Bx + C =  2 A 2 Ax + Bx + C +  2 A ( − B ) + b ∫ Ax 2 + Bx + C 2     
  • 2.
    INTEGRACIÓN TRIGONOMETRICA INMEDIATA cos α ∫ senUdu = − cos U + c 6. senα = cot α ∫ cos Udu = senU + c 7. sec α = 1 cos α ∫ sec Udu = tan U + c 2 8. sec α cos α = 1 1 ∫ csc Udu = − cot U + c 9. cos α = 2 sec α 1 ∫ sec U tan Udu = sec U + c 10. csc α = senα ∫ csc U cot Udu = − csc U + c 11. csc αsenα = 1 1 12. senα = ∫ tan Udu = − ln cos U + c csc α ∫ cot Udu = ln senU + c LEY DE ORO 13. sen 2α + cos 2 α = 1 ∫ sec Udu = ln sec U + tan U + c 14. cos 2 α = 1 − sen 2α ∫ csc Udu = ln csc U − cot U + c 15. sen 2α = 1 − cos 2 α IDENTIDADES TRIGONOMETRICAS 16. 1 + cot 2 α = csc 2 α senα 17. 1 = csc 2 α − cot 2 α 1. tan α = cos α 18. cot 2 α = csc 2 α − 1 2. senα = tan α cos α 19. tan 2 α + 1 = sec 2 α senα 20. tan 2 α = sec 2 α − 1 3. cos α = tan α 21. 1 = sec 2 α − tan 2 α cos α 22. tan α cot α = 1 4. cot α = senα 1 5. cot αsenα = cos α 23. tan α = cot α 1 24. cot α = tan α INTEGRACIÓN POR SUSTITUCIÓN TRIGONOMETRICA x2 − a2 x2 + a2 a2 − x2 x = a sec y x = a tan y x = aseny dx = a sec y tan ydy dx = a sec 2 ydy dx = a cos ydy x 2 − a 2 = a tan y x 2 + a 2 = a sec y a 2 − x 2 = a cos y FORMULA DE ABATIMIENTO DEGRADADO IntegracíonporPartes 1 n −1 ∫ sen xdx = − n sen n n −1 n ∫ sen n − 2 xdx x cos x + ∫ Udv = UV − ∫ Vdu 1 n −1 Factorización ∫ cos xdx = n cos xsenx + n ∫ cos xdx n n −1 n−2 a 3 − b3 = (a − b)(a 2 + ab + b 2 ) a 3 + b3 = (a + b)(a 2 − ab + b 2 ) DERIVADA REGLAS DE DERIVACION
  • 3.
    1) DERIVADA DEUNA CONSTANTE d Kx = K d dx c=0 dx Derivada de un Múltiplo de una potencia de X 2) Regla de la potencia d mx n = nmx n −1 d n dx U = nU n −1 dx Derivada de un Producto 3) Regla de la suma o resta d d d d UV = U V +V U [ f ( x ) + g ( x ) ] = d f ( x) + d g ( x) dx dx dx dx dx dx 4) Derivada de una raíz Derivada de un Cociente d Dx( u ) d d u= V U −U V dx 2 u d U dx dx Derivada de Una Raíz = d n Dx( u ) dx V V2 u= dx nn ( u ) Cuadrada. n −1 d U d dx 5) Regla del Producto u= Dx ( UV )=UDxV +VDxU dx 2 u 6) Regla del Cociente Derivada de un exponencial  U  VDxU − UDxV d u d Dx  = e = eu u V  V2 dx dx K − KDxV Derivada Logarítmica Natural Dx = V V2 U DxU d Dx = U K K d dx ln U = 7) Regla de la Cadena dx U d [ g ( x ) ] n = n[ g ( x ) ] n −1. d g ( x ) dx dx Derivadas Trigonometricas Leyes de Los Exponentes Racionales. d senU = +cosU d U dx dx x = x1 / 2 d d m cosU = −senU U n am = a n dx dx d d tan U = +sec 2 U U −m 1 dx dx a n = d d n am cot U = −csc 2 U U dx dx d d m secU = +secU tan U U (n a ) m = a n dx dx d d Derivada de un Número dx cscU = −cscU cot U dx U d K=0 dx d m= f ( x) Derivada de una Potencia de X dx d n f ( x) = y x = nx n −1 dx y − y1 = m( x − x1 ) Derivada de un Múltiplo de X