SlideShare una empresa de Scribd logo
GASES
GASES IDEALES
Dr. Edson Yupanqui Torres
• Son capaces de adquirir cualquier forma, ocupan todo el volumen de sus
recipientes.
• Son compresibles y también se expanden.
• Pueden mezclarse con todo tipo de elementos con mucha facilidad
• Tienen una densidad mucho menor que los sólidos y los líquidos.
CARACTERÍSTICAS FÍSICAS DE LOS GASES
ESTADO GASEOSO
Los gases se pueden considerar como el más fascinante entre los tres estados de
agregación de la materia.
Si la temperatura aumenta entonces... el volumen aumenta
Temperatura
baja
Temperatura
alta
Gas
Mercurio
Expansión de un gas
Tubo de
ensayo
CLASIFICACIÓN DE LOS GASES
GASES IDEALES
. Se dan a presiones bajas y
temperaturas elevadas,
condiciones que corresponden a
grandes volúmenes molares.
. Se desprecia el volumen de la
molécula gaseosa.
. No sufren atracciones ni
repulsiones entre sus moléculas.
. No se condensan.
. Tienden a un volumen cero.
GASES REALES
. Se dan a presiones altas y
temperaturas bajas, condiciones
que corresponden a pequeños
volúmenes molares.
. Se considera el volumen de la
molécula gaseosa.
. Sufren atracciones y repulsiones
entre sus moléculas.
. Se condensan.
. No alcanzan un volumen igual a
cero, por que se licuefactan, es
decir pasan de gas a líquido.
TEORÍA CINÉTICO MOLECULAR DE LOS GASES
IDEALES
1. Un gas se compone de moléculas separadas una de la otra por
distancias más grandes que sus propias dimensiones. Dichas
moléculas pueden ser consideradas gráficamente como puntos; es
decir, su volumen puede ser despreciable.
2. Las moléculas de los gases siempre están en un continuo
movimiento desordenado y chocando en todas direcciones unas con
otras. Los choques entre las moléculas del gas son perfectamente
elásticos.
3. Las moléculas de los gases no ejercen fuerzas de atracción o
repulsión entre ellas.
4. La energía cinética promedio de las moléculas del gas es
directamente proporcional a su temperatura absoluta. Cualquier
gas a la misma temperatura tiene la misma energía cinética.
Unidades de presión
1 Pascal (Pa) = 1 N/m2
1 atm = 760 mmHg = 760 torr
1 atm = 101,325 Pa
Barómetro
Presión =
Fuerza
Área
(Fuerza = masa × aceleración)
Estas afirmaciones introducen conceptos como: presión,
temperatura, movimiento molecular y energía cinética.
Pab = Patm ± Pman
5.2
Manómetros usados para medir la presión
Mercurio
Vacío
Los siguientes son elementos que pueden existir como
gases a una temperatura de 25°C y 1 atm de presión
5.1
5.1
Elementos que existen como gases a una temperatura de 25°C y 1 atm de presión
LEYES DE LOS PROCESOS RESTRINGIDOS
LEY DE BOYLE
Enunciado: “A temperatura constante el volumen de una masa dada
de un gas varía inversamente con la presión”. Se trata de un
proceso ISOTÉRMICO.
Cdo: T= Cte y n = Cte, entonces: P α 1/ V
P V = K Ec. De Boyle
Gráfico : P vs V y P vs 1/V
T1
T2
Isotermas
(1)
(2)
En el punto (1) : P1 x V1 = K
En el punto (2) : P2 x V2 = K
Igualando ambas ecuaciones:
P1 x V1 = P2 x V2
Ordenando:
1
2
2
1
V
V
P
P
=






=
m
m
V
P
V
P
1
2
2
1






=





1
2
2
1
V
m
P
V
m
P
A menor P mayor V
A mayor P menor V
En función de la densidad (ρ):
Si: ρ = m / V
Entonces: P1 x ρ2 = P2 x ρ1
2
1
2
1
ρ
ρ
=
P
P
Una muestra de cloro en estado gaseoso ocupa un
volumen de 946 mL y se encuentra a una presión de
726 mmHg. ¿Cuál es la presión que se necesita para
que el volumen disminuya a 154 mL si la temperatura
de la muestra es constante?
P1 x V1 = P2 x V2
P1 = 726 mmHg
V1 = 946 mL
P2 = ?
V2 = 154 mL
P2 =
P1 x V1
V2
726 mmHg x 946 mL
154 mL
= = 4460 mmHg
P x V = constante
LEY DE CHARLES
Enunciado: “A presión constante, el volumen de una masa dada de gas
varía directamente con la temperatura absoluta”. Se trata de un
proceso ISOBÁRICO.
Cdo: P = Cte y n = Cte; entonces: V α T
K
T
V
= Ec. de Charles
Gráfico: V vs T
(1)
(2)
Isóbaras
En el punto (1) : V1 / T1 = K
En el punto (2) : V2 / T2 = K
Igualando:
2
2
1
1
T
V
T
V
=
2
1
2
1
T
T
V
V
=






=
m
m
V
T
V
T
2
2
1
1
Ordenando: A menor T menor V
A mayor T mayor V
En función de la densidad: ρ






=





2
2
1
1
V
m
T
V
m
T Si: ρ = m/V
Entonces: T1x ρ1 = T2 x ρ2
1
2
2
1
ρ
ρ
=
T
T
Una muestra de monóxido de carbono en estado
gaseoso se encuentra a una temperatura de 125°C. Si
el volumen inicial de la muestra es de 3,2 litros, ¿Qué
temperatura debe tener el sistema si se quiere reducir
el volumen a 1,54 litros, si la presión es constante?
V1 = 3,20 L
T1 = 398,15 K
V2 = 1,54 L
T2 = ?
T2 =
V2 x T1
V1
1,54 L x 398,15 K
3,20 L
= = 192 K
5.3
V1 /T1 = V2 /T2
T1 = 125 (0
C) + 273,15 (K) = 398,15 K
LEY DE GAY-LUSSAC
Enunciado: “A volumen constante la presión ejercida por una masa dada de gas
varía directamente con la temperatura absoluta”. Se trata de un proceso
ISOCÖRICO o ISOMËTRICO.
Cdo: V = Cte y n = Cte, entonces: P α T
Luego: P = K x T
K
T
P
= Ec. De Gay-Lussac
Gráfico: P vs T
P
T
(1)
(2)
Isócoras
V1
V2
V3
T
T1 T2
P1
P2
En el punto (1) : P1 / T1 = K
En el punto (2) : P2 / T2 = K
Igualando:
2
2
1
1
T
P
T
P
=
A menor T menor P
A mayor T mayor P
Ordenando:
2
1
2
1
T
T
P
P
=
El aire en un tanque se encontraba a una presión de 620 mm Hg y 23 ºC.
S e expuso al sol con lo que su temperatura aumentó a 50 ºC. ¿Cuál fue
la presión que presentó entonces el tanque?.
SOLUCIÓN
Datos
Condición (1)
P1 = 620 mm Hg
T1 = 23 ºC + 273 = 296 ºK
Condición (2)
T2 = 50 ºC + 273 = 323 ºK
P2 = ?
1
21
2
2
1
2
1
T
TP
P
T
T
P
P ×
=⇒=
Como el V = Cte y n = Cte
La fórmula a usar es:
(1)
Reemplazando valores en (1):
K
KmmHg
P
º296
º323630
2
×
=
P2 = 676,55 mm Hg
El argón es un gas inerte que se usa en algunas
bombillas para retrasar la vaporización del filamento.
Cierto foco contiene argón a 1,2 atm de presión y
cambia de temperatura desde 18°C hasta 85°C. ¿Cuál
es la presión final del argón en atm si el volumen del
sistema es constante?
P1
T1
P2
T2
=
P2 = P1 x
T2
T1
= 1,20 atm x 358 K
291 K
= 1,48 atm
SOLUCIÓN
Condición inicial(1)
P1 = 1,2 atm
T1 = 18ºC + 273 = 291 K
Condición final (2)
P2 = ?
T2 = 85ºC + 273 = 358 K
(Ley de Gay-Lussac)
LEY DE AVOGADRO
Enunciado: “A presión y temperatura constante el volumen de un gas es
directamente proporcional al número de moles del gas”.
Cdo: P = Cte y T = Cte, entonces: V α n
Luego: V = K x n
Entonces:
K
n
V
= Ec. De Avogadro
Gráfico: V vs n
V
n
(1)
(2)
n1 n2
V2
V1
En el punto (1) : V1 / n1 = K
En el punto (2) : V2 / n2 = K
Igualando:
2
2
1
1
n
V
n
V
=
2
1
2
1
n
n
V
V
=






=





⇒





=
2
2
1
1
2
2
1
1
V
m
n
V
m
n
m
m
V
n
V
n
Ordenando
A mayor n mayor V
A menor n menor V
En función de la densidad: ρ
Si: ρ = m / V
1
2
2
1
2211
ρ
ρ
ρρ =⇒×=×
n
n
nnFinalmente:
ECUACIÓN DE ESTADO DE LOS GASES
IDEALES
Una ecuación que relaciona la temperatura, presión, volumen moles o masa de una
sustancia gaseosa, recibe el nombre de ecuación de estado. Relacionando las
siguientes leyes:
Ley de Boyle: V α 1 / P (T y n constantes)
Ley de Charles: V α T (P y n constantes)
Ley de Avogadro : V α n (T y P constantes)
Entonces:
P
TnR
V
P
Tn
V
××
=⇒
×
α
Donde: PV = nRT (1)
Si: n = m / M, entonces: PVM = mRT (2)
Si: ρ = m / V, entonces: PM = ρRT (3)
Cuando en una muestra la temperatura es 0°C y la
presión es 1 atm, se dice que ésta se encuentra en
condiciones normales de presión y temperatura.
Se ha demostrado que en condiciones normales
de presión y temperatura, 1 mol de un gas ideal
ocupa 22,414 litros de volumen.
CONDICIONES NORMALES (CN O PTN)
Cuando:
P = 1 atm
T = 0 ºC = 273 ºK
Entonces:
1 mol-g gas a CN = 22,414 L
1 mol-kg gas a CN = 22,414 m3
1 mol-lb gas a CN = 359 pies3
VALORES DE LA CONSTANTE
UNIVERSAL DE LOS GASES: R
Los valores de “R”, se obtienen de la ecuación (1): PV = nRT, a
condiciones normales.
Kmol
atmL
Kmol
Latm
Tn
VP
R
º
082056,0
º15,2731
414,221
×
×
=
×
×
=
×
×
=
Otros valores de
“R”:
Kmol
mmHgL
R
º
36,62
×
×
=
Kmol
dmKPa
R
º
314,8
3
×
×
=
Rlbmol
piepulb
R
º
lg/
73,10
32
×−
×
=
¿Cuál es el volumen en litros que ocupan 49,8 gramos
de ácido clorhídrico (HCL) a presión y temperatura
normales?
PV = nRT
V =
nRT
P
T = 0 0
C = 273,15 K
P = 1 atm
n = 49,8 g x
1 mol HCl
36,45 g HCl
= 1,37 mol
V =
1 atm
1,37 mol x 0,0821 x 273,15 KL•atm
mol•K
V = 30,6 L
Un contenedor de 2,1 litros contiene 4,65 gramos de
un gas a 1 atm de presión a 27°C. ¿Cuál es la
molaridad del gas?
dRT
P
M =
d = m
V
4,65 g
2,10 L
= = 2,21
g
L
M =
2,21
g
L
1 atm
x 0,0821 x 300,15 KL•atm
mol•K
M = 54,6 g/mol
LEY GENERAL O COMBINADA DE LOS GASES
En una ley general de los gases intervienen las tres variables: temperatura,
presión y volumen, para un sistema cerrado a condición inicial (1) y
final (2):
Estado inicial (1) : P1V1 = nRT1
Estado final (2) : P2V2 = nRT2
Dividiendo (1) entre (2): si, n = Cte y R = Cte.
2
1
22
11
2
1
22
11
T
T
VP
VP
TRn
TRn
VP
VP
=
×
×
⇒
××
××
=
×
×
Finalmente:
2
22
1
11
T
VP
T
VP ×
=
×
En función de las densidades: ρ (1) y (2):
12
21
2
1
TP
TP
×
×
=
ρ
ρ
Un litro de oxígeno tiene una masa de 1,43 g a 0ºC y a 760 mm Hg.
Calcular la densidad del oxígeno a 25ºC y 725 mm Hg.
SOLUCIÓN
Condiciones iniciales (1)
ρ1 = 1,43 g/L
T1 = 0ºC + 273= 273 ºK
P1 = 760 mm Hg
Condiciones finales (2)
ρ2 = ?
T2 = 25ºC + 273 = 298 ºK
P2 = 725 mm Hg
12
21
2
1
TP
TP
×
×
=
ρ
ρ
La fórmula es:
(1)
Reemplazando valores en (1):
KmmHg
KmmHgLg
TP
TP
º298760
º273725/43,1
2
21
121
2
×
××
=⇒
×
××
= ρ
ρ
ρ
ρ2 = 1,25 g/L
LEY DE DALTON DE LAS PRESIONES PARCIALES
PA PB
PT = PA + PB + …
LEYES RELACIONADAS CON MEZCLAS
GASEOSAS
“A temperatura y volumen constante, la presión total ejercida por
una mezcla de gases, es igual a la suma de las presiones parciales
de cada uno de los gases que constituyen la mezcla”
Presión parcial: es la presión que cada gas ejercería, si se encontrara
solo ocupando todo el volumen que ocupa la mezcla gaseosa.
Cdo: T = Cte y V = Cte, entonces:
Ptotal
(1)
Considerar un caso en el cual dos gases, A y B, se
encuentran en un contenedor de volumen V.
PA =
nART
V
PB =
nBRT
V
nA es el número de moles de A
nB es el número de moles de B
PT = PA + PB + …
(2)
Reemplazando (2) en (1):
( )... ...T A B T A B
RT RT RT RT RT
n n n n n n
V V V V V
= + + ⇒ = + +
Entonces:
nT = nA + nB + … (3)
Dividiendo la presión parcial de cada gas (pA,B) entre la presión total (PT):
A
A A A A
A T
T T T T
T
RT
n
p p n nV p P
RTP P n nn
V
= ⇒ = ⇒ =
B
B B B B
B T
T T T T
T
RT
n
p p n nV p P
RTP P n nn
V
= ⇒ = ⇒ =
BA
A
T
A
A
nn
n
n
n
X
+
==
(3)
FRACCIÓN MOLAR (x):
Fracción =
Fracción
De presión Molar
BA
B
T
B
B
nn
n
n
n
X
+
==
Propiedad de las fracciones molares:
XA + XB + … = 1 (5)
(4)
Reemplazando (4) en (3), tenemos:
pA = XA x PT
pB = XB x PT
pC = XC x PT
Una muestra de gas natural contiene: 8,24 moles de CH4, 0,421 moles
de C2H6, y 0,116 moles de C3H8. Si la presión total de los gases es de
1,37 atm, ¿Cuál es la presión parcial del propano (C3H8)?
SOLUCIÓN
Datos
nA = 8,24 mol
nB = 0,421 mol
nC = 0,116 mol
PT = 1,37 atm
1º. Cálculo de XC ( propano) :
0132,0
116,0421,024,8
116,0
=
++
=
++
=
CBA
C
C
nnn
n
X
2º. Cálculo de la presión parcial del propano: pC
pC = XC x PT = 0,0132 x 1,37 atm
pC = 0,0181 atm
(6)
2KClO3 (s) 2KCl (s) + 3O2 (g)
Contenedor de oxígeno y
vapor de agua
RECOLECCIÓN DE GASES SOBRE LÍQUIDOS
Es una de la aplicación más útil de la Ley de Dalton, en los que intervienen la
colección de los gases sobre agua, donde el vapor de agua se encuentra presente
mezclados con los gases colectados. En dichos cálculos debe hacerse una
corrección por el vapor de agua presente.
Rx qca de desprendimiento de gas
Donde:
PT = Pgh = PO2 + PVH2O
Generalizando:
PT = Pgh = Pgs + PvH2O
Pgs = Pgh – PvH2O
Cdo: Pgh = PT = Patm
Patm = Pgh = PT = Pgs + PVH2O
RECOLECCIÓN DE HIDRÓGENO EN AGUA
PRESIÓN DE VAPOR DEL AGUA
Se recibió 0,0052 moles de H2 (g) sobre agua a 27ºC y 807 mm Hg. Calcule el
volumen que ocupará el hidrógeno. Si PvH2O (27ºC) = 27 mm Hg.
SOLUCIÓN
T = 27ºC + 273 = 300 K
Pgh = 807 mm Hg
V = ?
n = 0,0052 mol
PvH2O (27ºC) = 27 mm Hg.
Fórmula:
Pgh = Pgs + PvH2O
Pgs = Pgh – PvH2O
Pgs = 807 mm Hg – 27 mm Hg
Pgs = 780 mm Hg.
Cálculo del volumen de H2 (g):
PV = nRT
mLL
mmHg
K
Kmol
LmmHg
mol
P
TRn
V 1251248,0
780
3004,620052,0
==
×
×
×
×
=
××
=
HUMEDAD RELATIVA: Hr
Es el contenido de vapor de agua que contiene el gas.
%100%
2
2
×=
OvH
OH
P
p
Hr
pH2O = Presión parcial del agua gaseosa
PvH2O = Presión de vapor o tensión de vapor del agua en equilibrio con
su líquido (tablas)
¿Cuántos miligramos de vapor de agua contiene un frasco de 2L lleno
de aire al 70% de humedad y a 25ºC?. Si PvH2O (25ºC) = 23,76 mm Hg.
SOLUCIÓN
m= ? H2O
V = 2 L
%Hr = 70%
T = 25ºC + 273 = 298 K
PvH2O (25ºC) = 23,76 mm Hg
Por fórmula: %Hr= (pH2O / PvH2O) x 100%
70% = (pH2O / 23,76 mmHg) x 100%
pH2O = 16,6 mmHg
Cálculo del V:
PVM = mRT, entonces : m = (MPV)/
RTm = [18 g/mol x 16,6 mmHg x 2 L] / [62,4 (mmHg x L / mol x K) x 298 K]
m = 0,03213 g = 32,13 mg
LEY DE AMAGAT O LEY DE LOS
VOLUMENES PARCIALES
Enunciado: “A temperatura y presión constante, el volumen total ocupado
por una mezcla gaseosa es igual a la suma de los volúmenes parciales de sus
gases componentes”.
Volumen parcial (v): es el volumen que ocupará aquel componente gaseoso si el
solo estuviera presente a la misma temperatura y presión que tiene la mezcla.
Cdo: T = Cte y P = Cte, VT = vA + vB + … (1)
Si: VT = nTRT/ P ; vA = nART/P vB = nB RT/ P (2)
Reemplazando (2) en (1):
nTRT/ P = nART/ P + nBRT/ P + …
nTRT/ P = (nA + nB + …) RT/ P
Entonces:
nT = nA + nB + … (3)
Dividiendo el volumen parcial (vA,B) entre el volumen total (VT):
T
T
A
A
T
A
T
A
T
A
T
A
V
n
n
v
n
n
V
v
P
RT
n
P
RT
n
V
v
×=⇒=⇒=
B
B B B B
B T
T T T T
T
RT
n
v v n nP v V
RTV V n nn
P
= ⇒ = ⇒ = ×
A A
A
T A B
n n
X
n n n
= =
+ BA
B
T
B
B
nn
n
n
n
X
+
==
FRACCIÓN MOLAR (X)
(4)
(5)
Propiedad de las fracciones molares:
XA + XB + … = 1 (6)
Fracción de = Fracción
Volumen molar
Reemplazando (5) en (4):
vA = XA x VT
vB = XB x VT
vC = XC x VT
A
B
A
B
B
A
M
M
ρ
ρ
µ
µ
==
(7)
LEY DE GRAHAM DE LA DIFUSIÓN GASEOSA
“A presión y temperatura constante las velocidades de difusión de
dos gases diferentes son inversamente proporcionales a las raíces
cuadradas de sus masa moleculares o densidades”
Se sabe que:
μ = V / t (2) o μ= d / t (3)
(1)
A
B
A
B
B
A
B
A
M
M
d
d
V
V
ρ
ρ
===Cdo: tA = tB, se tiene: (4)
P = Cte
T = Cte
Dos globos del mismo tamaño y material se llenan respectivamente con hidrógeno
y oxígeno gaseoso a la misma temperatura y presión. Si el oxígeno escapa con una
rapidez de 65 mL/h. Calcular la rapidez con que escapará el hidrógeno.
SOLUCIÓN
Datos
μO2 = 65 mL/h
μH2 = ?
O2 → M = 32 g/mol
H2 → M = 2 g/mol
molg
molg
hmL
M
M
M
M
H
O
OH
H
O
O
H
/2
/32
/65
2
2
22
2
2
2
2
==⇒= µµ
µ
µ
μH2 = 260 mL / h
LA QUÍMICA EN ACCIÓN:
El buceo y las leyes de los gases
P V
Profundidad
(ft)
Presión
(atm)
0 1
33 2
66 3
5.6
GASES REALES
Gas ideal
PV / RT= 1
Fuerzas de repulsión
Fuerzas de atracción
Gas ideal
Gas real
PV / RT ≠ 1
PV / RT = Z
Entonces:
Z = 1→ Gas ideal
Z ≠ 1 → Gas real
Luego:
PV = ZRT → n = 1 mol
PV = ZnRT → “n” moles
Z = Factor de compresibilidad
Demostración del efecto de las fuerzas de presión
producidas por un gas (atracciones y repulsiones
moleculares
5.8
Ecuación de Van der Waals
para gases reales
P + (V – nb) = nRTan2
V2( )
}
Presión
corregida
}
Volumen
corregido
GRACIAS POR SU ATENCIÓN

Más contenido relacionado

La actualidad más candente

Gases
GasesGases
Gases
anmohexl
 
ECUACIÓN DE ESTADO DEL VIRIAL
ECUACIÓN DE ESTADO DEL VIRIALECUACIÓN DE ESTADO DEL VIRIAL
ECUACIÓN DE ESTADO DEL VIRIAL
Boris Chicoma Larrea
 
DIAGRAMA DE FASE
DIAGRAMA DE FASEDIAGRAMA DE FASE
DIAGRAMA DE FASE
Carlos Jara Benites
 
problemas-de-gases-ideales
problemas-de-gases-idealesproblemas-de-gases-ideales
problemas-de-gases-ideales
Anita Pinedo
 
Compuestos de cordinadinacion 2
Compuestos de cordinadinacion 2Compuestos de cordinadinacion 2
Compuestos de cordinadinacion 2
mnilco
 
Equilibrio quimico: constante de equilibrio
Equilibrio quimico: constante de equilibrioEquilibrio quimico: constante de equilibrio
Equilibrio quimico: constante de equilibrio
Román Castillo Valencia
 
30870179 ecuaciones-de-estado
30870179 ecuaciones-de-estado30870179 ecuaciones-de-estado
30870179 ecuaciones-de-estado
Ramon Antonio Cedeño
 
Ley de los gases ideales (1)
Ley de los gases ideales (1)Ley de los gases ideales (1)
Ley de los gases ideales (1)
Victor Botello
 
Ejercicios tipo examen
Ejercicios tipo examenEjercicios tipo examen
Ejercicios tipo examen
Rodolfo Alvarez Manzo
 
Diapositivas gas ideal+reales
Diapositivas gas ideal+realesDiapositivas gas ideal+reales
Diapositivas gas ideal+reales
oriel arancibia
 
Ejercicios resueltos de Gases
Ejercicios resueltos de GasesEjercicios resueltos de Gases
Ejercicios resueltos de Gases
Ing. Esp. Rafael Atacho
 
Mezclas de gases ideales
Mezclas de gases idealesMezclas de gases ideales
Mezclas de gases ideales
Juan Jose Durango
 
ecuación de van der wals
ecuación de van der walsecuación de van der wals
ecuación de van der wals
Memucho Jara
 
Termoquímica
TermoquímicaTermoquímica
Termoquímica
Rodolfo Alvarez Manzo
 
Problemas resueltos-de-gases
Problemas resueltos-de-gasesProblemas resueltos-de-gases
Problemas resueltos-de-gases
Kinesiología Sección Cuatro
 
Cinetica Quimica
Cinetica QuimicaCinetica Quimica
Cinetica Quimica
Cinta García
 
EJERCICIOS RESUELTOS TERMOQUIMICA
EJERCICIOS RESUELTOS TERMOQUIMICAEJERCICIOS RESUELTOS TERMOQUIMICA
EJERCICIOS RESUELTOS TERMOQUIMICA
Quo Vadis
 
Equilibrio químico power point química
Equilibrio químico power point químicaEquilibrio químico power point química
Equilibrio químico power point química
Gianmarco Bonetto Paredes
 
ejercicios de estequiometria resueltos.pdf
ejercicios de estequiometria resueltos.pdfejercicios de estequiometria resueltos.pdf
ejercicios de estequiometria resueltos.pdf
MaryangelRiveros
 
Leyes de los gases
Leyes de los gasesLeyes de los gases
Leyes de los gases
amerycka
 

La actualidad más candente (20)

Gases
GasesGases
Gases
 
ECUACIÓN DE ESTADO DEL VIRIAL
ECUACIÓN DE ESTADO DEL VIRIALECUACIÓN DE ESTADO DEL VIRIAL
ECUACIÓN DE ESTADO DEL VIRIAL
 
DIAGRAMA DE FASE
DIAGRAMA DE FASEDIAGRAMA DE FASE
DIAGRAMA DE FASE
 
problemas-de-gases-ideales
problemas-de-gases-idealesproblemas-de-gases-ideales
problemas-de-gases-ideales
 
Compuestos de cordinadinacion 2
Compuestos de cordinadinacion 2Compuestos de cordinadinacion 2
Compuestos de cordinadinacion 2
 
Equilibrio quimico: constante de equilibrio
Equilibrio quimico: constante de equilibrioEquilibrio quimico: constante de equilibrio
Equilibrio quimico: constante de equilibrio
 
30870179 ecuaciones-de-estado
30870179 ecuaciones-de-estado30870179 ecuaciones-de-estado
30870179 ecuaciones-de-estado
 
Ley de los gases ideales (1)
Ley de los gases ideales (1)Ley de los gases ideales (1)
Ley de los gases ideales (1)
 
Ejercicios tipo examen
Ejercicios tipo examenEjercicios tipo examen
Ejercicios tipo examen
 
Diapositivas gas ideal+reales
Diapositivas gas ideal+realesDiapositivas gas ideal+reales
Diapositivas gas ideal+reales
 
Ejercicios resueltos de Gases
Ejercicios resueltos de GasesEjercicios resueltos de Gases
Ejercicios resueltos de Gases
 
Mezclas de gases ideales
Mezclas de gases idealesMezclas de gases ideales
Mezclas de gases ideales
 
ecuación de van der wals
ecuación de van der walsecuación de van der wals
ecuación de van der wals
 
Termoquímica
TermoquímicaTermoquímica
Termoquímica
 
Problemas resueltos-de-gases
Problemas resueltos-de-gasesProblemas resueltos-de-gases
Problemas resueltos-de-gases
 
Cinetica Quimica
Cinetica QuimicaCinetica Quimica
Cinetica Quimica
 
EJERCICIOS RESUELTOS TERMOQUIMICA
EJERCICIOS RESUELTOS TERMOQUIMICAEJERCICIOS RESUELTOS TERMOQUIMICA
EJERCICIOS RESUELTOS TERMOQUIMICA
 
Equilibrio químico power point química
Equilibrio químico power point químicaEquilibrio químico power point química
Equilibrio químico power point química
 
ejercicios de estequiometria resueltos.pdf
ejercicios de estequiometria resueltos.pdfejercicios de estequiometria resueltos.pdf
ejercicios de estequiometria resueltos.pdf
 
Leyes de los gases
Leyes de los gasesLeyes de los gases
Leyes de los gases
 

Destacado

Gases quimica
Gases quimicaGases quimica
Gases quimica
kacalaba
 
Ecuaciones de estado
Ecuaciones de estadoEcuaciones de estado
Ecuaciones de estado
Jesus Bermudez Jaimes
 
Leyes de los gases
Leyes de los gases Leyes de los gases
Leyes de los gases
Paco_MS
 
67786760 ejercicios-resueltos-de-gases-ideales-y-gases-reales-roldan
67786760 ejercicios-resueltos-de-gases-ideales-y-gases-reales-roldan67786760 ejercicios-resueltos-de-gases-ideales-y-gases-reales-roldan
67786760 ejercicios-resueltos-de-gases-ideales-y-gases-reales-roldan
trabajo independiente
 
VARIABLES QUE AFECTAN ALOS GASES
VARIABLES QUE AFECTAN ALOS GASESVARIABLES QUE AFECTAN ALOS GASES
VARIABLES QUE AFECTAN ALOS GASES
berlyu
 
Gases reales
Gases realesGases reales
Gases reales
DanieIgarcia
 
Gas real
Gas realGas real
Gas real
Maria Naza Paez
 
Gases reales
Gases realesGases reales
CLASE DE ESTADO GASEOSO
CLASE DE ESTADO GASEOSOCLASE DE ESTADO GASEOSO
CLASE DE ESTADO GASEOSO
Elias Navarrete
 
ESTADO GASEOSO
ESTADO GASEOSOESTADO GASEOSO
ESTADO GASEOSO
Elias Navarrete
 
Gases ideales
Gases idealesGases ideales
Gases ideales
Gabriela Díaz Jorge
 
EL ESTADO GASEOSO: GASES REALES E IDEALES Y PRESION, TEMPERATURA Y VOLUMEN
EL ESTADO GASEOSO: GASES REALES E IDEALES Y PRESION, TEMPERATURA Y VOLUMENEL ESTADO GASEOSO: GASES REALES E IDEALES Y PRESION, TEMPERATURA Y VOLUMEN
EL ESTADO GASEOSO: GASES REALES E IDEALES Y PRESION, TEMPERATURA Y VOLUMEN
Bray Batista
 
Ecuaciones de estado. Ejercicios resueltos
Ecuaciones de estado. Ejercicios resueltosEcuaciones de estado. Ejercicios resueltos
Ecuaciones de estado. Ejercicios resueltos
David Escobar
 
ESTADO GASEOSO
ESTADO GASEOSOESTADO GASEOSO
ESTADO GASEOSO
Elias Navarrete
 

Destacado (14)

Gases quimica
Gases quimicaGases quimica
Gases quimica
 
Ecuaciones de estado
Ecuaciones de estadoEcuaciones de estado
Ecuaciones de estado
 
Leyes de los gases
Leyes de los gases Leyes de los gases
Leyes de los gases
 
67786760 ejercicios-resueltos-de-gases-ideales-y-gases-reales-roldan
67786760 ejercicios-resueltos-de-gases-ideales-y-gases-reales-roldan67786760 ejercicios-resueltos-de-gases-ideales-y-gases-reales-roldan
67786760 ejercicios-resueltos-de-gases-ideales-y-gases-reales-roldan
 
VARIABLES QUE AFECTAN ALOS GASES
VARIABLES QUE AFECTAN ALOS GASESVARIABLES QUE AFECTAN ALOS GASES
VARIABLES QUE AFECTAN ALOS GASES
 
Gases reales
Gases realesGases reales
Gases reales
 
Gas real
Gas realGas real
Gas real
 
Gases reales
Gases realesGases reales
Gases reales
 
CLASE DE ESTADO GASEOSO
CLASE DE ESTADO GASEOSOCLASE DE ESTADO GASEOSO
CLASE DE ESTADO GASEOSO
 
ESTADO GASEOSO
ESTADO GASEOSOESTADO GASEOSO
ESTADO GASEOSO
 
Gases ideales
Gases idealesGases ideales
Gases ideales
 
EL ESTADO GASEOSO: GASES REALES E IDEALES Y PRESION, TEMPERATURA Y VOLUMEN
EL ESTADO GASEOSO: GASES REALES E IDEALES Y PRESION, TEMPERATURA Y VOLUMENEL ESTADO GASEOSO: GASES REALES E IDEALES Y PRESION, TEMPERATURA Y VOLUMEN
EL ESTADO GASEOSO: GASES REALES E IDEALES Y PRESION, TEMPERATURA Y VOLUMEN
 
Ecuaciones de estado. Ejercicios resueltos
Ecuaciones de estado. Ejercicios resueltosEcuaciones de estado. Ejercicios resueltos
Ecuaciones de estado. Ejercicios resueltos
 
ESTADO GASEOSO
ESTADO GASEOSOESTADO GASEOSO
ESTADO GASEOSO
 

Similar a Gases ideales.

LOS gases ideales termodinamica I BIOFISICA
LOS gases ideales termodinamica I BIOFISICALOS gases ideales termodinamica I BIOFISICA
LOS gases ideales termodinamica I BIOFISICA
VanessaGuizellyOLVEA
 
Teoria de los gases ideales comportamiento
Teoria de los gases ideales comportamientoTeoria de los gases ideales comportamiento
Teoria de los gases ideales comportamiento
IrisNairaRamirez
 
ESTADOGASPPT
ESTADOGASPPTESTADOGASPPT
ESTADOGASPPT
YuleimyLucas
 
H:\documents and settings\administrador\escritorio\espinosa\mis documentos\qu...
H:\documents and settings\administrador\escritorio\espinosa\mis documentos\qu...H:\documents and settings\administrador\escritorio\espinosa\mis documentos\qu...
H:\documents and settings\administrador\escritorio\espinosa\mis documentos\qu...
fixon
 
Leyes de los gases
Leyes de los gasesLeyes de los gases
Leyes de los gases
SistemadeEstudiosMed
 
Leyesdelosgases
LeyesdelosgasesLeyesdelosgases
Leyesdelosgases
SistemadeEstudiosMed
 
ESTADO GASEOSO como bases de quimica general
ESTADO GASEOSO como bases de quimica generalESTADO GASEOSO como bases de quimica general
ESTADO GASEOSO como bases de quimica general
EliasDavidArceApaza
 
Gases ejercicios resueltos
Gases ejercicios resueltos Gases ejercicios resueltos
Gases ejercicios resueltos
Pedro Marcerlo Araya Flores
 
Teoria cinetica molecular_qg_rvb_2010
Teoria cinetica molecular_qg_rvb_2010Teoria cinetica molecular_qg_rvb_2010
Teoria cinetica molecular_qg_rvb_2010
Wagner Santoyo
 
FISICO QUIMICA SEMANA 02 GASES.pptx
FISICO QUIMICA SEMANA 02 GASES.pptxFISICO QUIMICA SEMANA 02 GASES.pptx
FISICO QUIMICA SEMANA 02 GASES.pptx
LuisMiguelPaucaChoqu
 
Gases ideales presentación.pdf
Gases ideales presentación.pdfGases ideales presentación.pdf
Gases ideales presentación.pdf
JavierOrellanaSalaza1
 
Ley general del estado gaseoso
Ley general del estado gaseosoLey general del estado gaseoso
Ley general del estado gaseoso
Erik Orozco Valles
 
Leyes de los gases
Leyes de los gases Leyes de los gases
Leyes de los gases
Kelly Espinoza
 
Tfb03 gases i
Tfb03   gases iTfb03   gases i
Gases Ideales (1).pptx
Gases Ideales (1).pptxGases Ideales (1).pptx
Gases Ideales (1).pptx
CarlosAbrahamDiazQui
 
Leyes de los gases.pptx
Leyes de los gases.pptxLeyes de los gases.pptx
Leyes de los gases.pptx
Willy Arenas
 
Leyesdelosgases 131127115455-phpapp02 (1)
Leyesdelosgases 131127115455-phpapp02 (1)Leyesdelosgases 131127115455-phpapp02 (1)
Leyesdelosgases 131127115455-phpapp02 (1)
instituto integrado de comercio
 
02 gases
02 gases02 gases
02 gases
Ronald Realpe
 
1 ecuacion de un gas ideal
1  ecuacion de un gas ideal1  ecuacion de un gas ideal
1 ecuacion de un gas ideal
liceo nacional
 
Física (II Bimestre)
Física (II Bimestre)Física (II Bimestre)
Física (II Bimestre)
Videoconferencias UTPL
 

Similar a Gases ideales. (20)

LOS gases ideales termodinamica I BIOFISICA
LOS gases ideales termodinamica I BIOFISICALOS gases ideales termodinamica I BIOFISICA
LOS gases ideales termodinamica I BIOFISICA
 
Teoria de los gases ideales comportamiento
Teoria de los gases ideales comportamientoTeoria de los gases ideales comportamiento
Teoria de los gases ideales comportamiento
 
ESTADOGASPPT
ESTADOGASPPTESTADOGASPPT
ESTADOGASPPT
 
H:\documents and settings\administrador\escritorio\espinosa\mis documentos\qu...
H:\documents and settings\administrador\escritorio\espinosa\mis documentos\qu...H:\documents and settings\administrador\escritorio\espinosa\mis documentos\qu...
H:\documents and settings\administrador\escritorio\espinosa\mis documentos\qu...
 
Leyes de los gases
Leyes de los gasesLeyes de los gases
Leyes de los gases
 
Leyesdelosgases
LeyesdelosgasesLeyesdelosgases
Leyesdelosgases
 
ESTADO GASEOSO como bases de quimica general
ESTADO GASEOSO como bases de quimica generalESTADO GASEOSO como bases de quimica general
ESTADO GASEOSO como bases de quimica general
 
Gases ejercicios resueltos
Gases ejercicios resueltos Gases ejercicios resueltos
Gases ejercicios resueltos
 
Teoria cinetica molecular_qg_rvb_2010
Teoria cinetica molecular_qg_rvb_2010Teoria cinetica molecular_qg_rvb_2010
Teoria cinetica molecular_qg_rvb_2010
 
FISICO QUIMICA SEMANA 02 GASES.pptx
FISICO QUIMICA SEMANA 02 GASES.pptxFISICO QUIMICA SEMANA 02 GASES.pptx
FISICO QUIMICA SEMANA 02 GASES.pptx
 
Gases ideales presentación.pdf
Gases ideales presentación.pdfGases ideales presentación.pdf
Gases ideales presentación.pdf
 
Ley general del estado gaseoso
Ley general del estado gaseosoLey general del estado gaseoso
Ley general del estado gaseoso
 
Leyes de los gases
Leyes de los gases Leyes de los gases
Leyes de los gases
 
Tfb03 gases i
Tfb03   gases iTfb03   gases i
Tfb03 gases i
 
Gases Ideales (1).pptx
Gases Ideales (1).pptxGases Ideales (1).pptx
Gases Ideales (1).pptx
 
Leyes de los gases.pptx
Leyes de los gases.pptxLeyes de los gases.pptx
Leyes de los gases.pptx
 
Leyesdelosgases 131127115455-phpapp02 (1)
Leyesdelosgases 131127115455-phpapp02 (1)Leyesdelosgases 131127115455-phpapp02 (1)
Leyesdelosgases 131127115455-phpapp02 (1)
 
02 gases
02 gases02 gases
02 gases
 
1 ecuacion de un gas ideal
1  ecuacion de un gas ideal1  ecuacion de un gas ideal
1 ecuacion de un gas ideal
 
Física (II Bimestre)
Física (II Bimestre)Física (II Bimestre)
Física (II Bimestre)
 

Último

García, Francisco. - Las Navas de Tolosa [2024].pdf
García, Francisco. - Las Navas de Tolosa [2024].pdfGarcía, Francisco. - Las Navas de Tolosa [2024].pdf
García, Francisco. - Las Navas de Tolosa [2024].pdf
frank0071
 
introduccion a las Reacciones de alquenos.pptx
introduccion a las Reacciones de alquenos.pptxintroduccion a las Reacciones de alquenos.pptx
introduccion a las Reacciones de alquenos.pptx
sgpizarro
 
Presentación Proyecto de biología Ciencia Ilustrativo Verde Rosa_20240529_053...
Presentación Proyecto de biología Ciencia Ilustrativo Verde Rosa_20240529_053...Presentación Proyecto de biología Ciencia Ilustrativo Verde Rosa_20240529_053...
Presentación Proyecto de biología Ciencia Ilustrativo Verde Rosa_20240529_053...
HANYACANO1
 
MAPA CONCEPTUAL DE OTITIS MEDIA AGUDA Y CRONICA.pdf
MAPA CONCEPTUAL DE OTITIS MEDIA AGUDA Y CRONICA.pdfMAPA CONCEPTUAL DE OTITIS MEDIA AGUDA Y CRONICA.pdf
MAPA CONCEPTUAL DE OTITIS MEDIA AGUDA Y CRONICA.pdf
John144454
 
introduccion a los intermediarios de reaccion.pptx
introduccion a los intermediarios de reaccion.pptxintroduccion a los intermediarios de reaccion.pptx
introduccion a los intermediarios de reaccion.pptx
sgpizarro
 
Introduccion a las teorias de acidos y bases.pptx
Introduccion a las teorias de acidos y bases.pptxIntroduccion a las teorias de acidos y bases.pptx
Introduccion a las teorias de acidos y bases.pptx
NicoleArequipa
 
MÉTODO SIMPLEX EN PROBLEMAS DE MAXIMIZACIÓN Y MINIMIZACIÓN.pptx
MÉTODO SIMPLEX EN PROBLEMAS DE MAXIMIZACIÓN Y MINIMIZACIÓN.pptxMÉTODO SIMPLEX EN PROBLEMAS DE MAXIMIZACIÓN Y MINIMIZACIÓN.pptx
MÉTODO SIMPLEX EN PROBLEMAS DE MAXIMIZACIÓN Y MINIMIZACIÓN.pptx
KEIKOFABIANAZETATEMO
 
Reacciones Químicas en el cuerpo humano.pptx
Reacciones Químicas en el cuerpo humano.pptxReacciones Químicas en el cuerpo humano.pptx
Reacciones Químicas en el cuerpo humano.pptx
PamelaKim10
 
explorando los sistemas mixtos o de transicion
explorando los sistemas mixtos o de transicionexplorando los sistemas mixtos o de transicion
explorando los sistemas mixtos o de transicion
eyusxqmcgrlzirabeh
 
8VO - ESTUDIOS SOCIALES - 1ER - TRIMESTRE.docx
8VO - ESTUDIOS SOCIALES - 1ER - TRIMESTRE.docx8VO - ESTUDIOS SOCIALES - 1ER - TRIMESTRE.docx
8VO - ESTUDIOS SOCIALES - 1ER - TRIMESTRE.docx
YULI557869
 
La doble vida del ATP. DIEGO GOMEZ.pdf 123
La doble vida del ATP. DIEGO GOMEZ.pdf 123La doble vida del ATP. DIEGO GOMEZ.pdf 123
La doble vida del ATP. DIEGO GOMEZ.pdf 123
DiegoGomez400963
 
ANTRAX.pdf historia natural del antrax epidemiologia
ANTRAX.pdf historia natural del antrax epidemiologiaANTRAX.pdf historia natural del antrax epidemiologia
ANTRAX.pdf historia natural del antrax epidemiologia
Daniellaticona
 
Heterociclos; pequeñas y maravillosas estructuras-Química
Heterociclos; pequeñas y maravillosas estructuras-QuímicaHeterociclos; pequeñas y maravillosas estructuras-Química
Heterociclos; pequeñas y maravillosas estructuras-Química
PriyaQuijano
 
Rodríguez, C. - La batalla campal en la Edad Media [2018].pdf
Rodríguez, C. - La batalla campal en la Edad Media [2018].pdfRodríguez, C. - La batalla campal en la Edad Media [2018].pdf
Rodríguez, C. - La batalla campal en la Edad Media [2018].pdf
frank0071
 
Priones, definiciones y la enfermedad de las vacas locas
Priones, definiciones y la enfermedad de las vacas locasPriones, definiciones y la enfermedad de las vacas locas
Priones, definiciones y la enfermedad de las vacas locas
alexandrajunchaya3
 
terapia hormonal de la menopausia.......
terapia hormonal de la menopausia.......terapia hormonal de la menopausia.......
terapia hormonal de la menopausia.......
JosalbertoLpezLpez
 
Virus de la Inmunodeficiencia humana (VIH).pdf
Virus de la Inmunodeficiencia humana (VIH).pdfVirus de la Inmunodeficiencia humana (VIH).pdf
Virus de la Inmunodeficiencia humana (VIH).pdf
melaniepalomino1502
 
Teoría del prión y enfermedades relacionadas
Teoría del prión y  enfermedades relacionadasTeoría del prión y  enfermedades relacionadas
Teoría del prión y enfermedades relacionadas
alexandrajunchaya3
 
NEUROQUIMICA es la informacion de como funciona la neuroquimica
NEUROQUIMICA es la informacion de como funciona la neuroquimicaNEUROQUIMICA es la informacion de como funciona la neuroquimica
NEUROQUIMICA es la informacion de como funciona la neuroquimica
DanielNava80
 
ASTERACEAS familia de las.margaritas.pptx
ASTERACEAS familia de las.margaritas.pptxASTERACEAS familia de las.margaritas.pptx
ASTERACEAS familia de las.margaritas.pptx
SilvinaElenaMercado
 

Último (20)

García, Francisco. - Las Navas de Tolosa [2024].pdf
García, Francisco. - Las Navas de Tolosa [2024].pdfGarcía, Francisco. - Las Navas de Tolosa [2024].pdf
García, Francisco. - Las Navas de Tolosa [2024].pdf
 
introduccion a las Reacciones de alquenos.pptx
introduccion a las Reacciones de alquenos.pptxintroduccion a las Reacciones de alquenos.pptx
introduccion a las Reacciones de alquenos.pptx
 
Presentación Proyecto de biología Ciencia Ilustrativo Verde Rosa_20240529_053...
Presentación Proyecto de biología Ciencia Ilustrativo Verde Rosa_20240529_053...Presentación Proyecto de biología Ciencia Ilustrativo Verde Rosa_20240529_053...
Presentación Proyecto de biología Ciencia Ilustrativo Verde Rosa_20240529_053...
 
MAPA CONCEPTUAL DE OTITIS MEDIA AGUDA Y CRONICA.pdf
MAPA CONCEPTUAL DE OTITIS MEDIA AGUDA Y CRONICA.pdfMAPA CONCEPTUAL DE OTITIS MEDIA AGUDA Y CRONICA.pdf
MAPA CONCEPTUAL DE OTITIS MEDIA AGUDA Y CRONICA.pdf
 
introduccion a los intermediarios de reaccion.pptx
introduccion a los intermediarios de reaccion.pptxintroduccion a los intermediarios de reaccion.pptx
introduccion a los intermediarios de reaccion.pptx
 
Introduccion a las teorias de acidos y bases.pptx
Introduccion a las teorias de acidos y bases.pptxIntroduccion a las teorias de acidos y bases.pptx
Introduccion a las teorias de acidos y bases.pptx
 
MÉTODO SIMPLEX EN PROBLEMAS DE MAXIMIZACIÓN Y MINIMIZACIÓN.pptx
MÉTODO SIMPLEX EN PROBLEMAS DE MAXIMIZACIÓN Y MINIMIZACIÓN.pptxMÉTODO SIMPLEX EN PROBLEMAS DE MAXIMIZACIÓN Y MINIMIZACIÓN.pptx
MÉTODO SIMPLEX EN PROBLEMAS DE MAXIMIZACIÓN Y MINIMIZACIÓN.pptx
 
Reacciones Químicas en el cuerpo humano.pptx
Reacciones Químicas en el cuerpo humano.pptxReacciones Químicas en el cuerpo humano.pptx
Reacciones Químicas en el cuerpo humano.pptx
 
explorando los sistemas mixtos o de transicion
explorando los sistemas mixtos o de transicionexplorando los sistemas mixtos o de transicion
explorando los sistemas mixtos o de transicion
 
8VO - ESTUDIOS SOCIALES - 1ER - TRIMESTRE.docx
8VO - ESTUDIOS SOCIALES - 1ER - TRIMESTRE.docx8VO - ESTUDIOS SOCIALES - 1ER - TRIMESTRE.docx
8VO - ESTUDIOS SOCIALES - 1ER - TRIMESTRE.docx
 
La doble vida del ATP. DIEGO GOMEZ.pdf 123
La doble vida del ATP. DIEGO GOMEZ.pdf 123La doble vida del ATP. DIEGO GOMEZ.pdf 123
La doble vida del ATP. DIEGO GOMEZ.pdf 123
 
ANTRAX.pdf historia natural del antrax epidemiologia
ANTRAX.pdf historia natural del antrax epidemiologiaANTRAX.pdf historia natural del antrax epidemiologia
ANTRAX.pdf historia natural del antrax epidemiologia
 
Heterociclos; pequeñas y maravillosas estructuras-Química
Heterociclos; pequeñas y maravillosas estructuras-QuímicaHeterociclos; pequeñas y maravillosas estructuras-Química
Heterociclos; pequeñas y maravillosas estructuras-Química
 
Rodríguez, C. - La batalla campal en la Edad Media [2018].pdf
Rodríguez, C. - La batalla campal en la Edad Media [2018].pdfRodríguez, C. - La batalla campal en la Edad Media [2018].pdf
Rodríguez, C. - La batalla campal en la Edad Media [2018].pdf
 
Priones, definiciones y la enfermedad de las vacas locas
Priones, definiciones y la enfermedad de las vacas locasPriones, definiciones y la enfermedad de las vacas locas
Priones, definiciones y la enfermedad de las vacas locas
 
terapia hormonal de la menopausia.......
terapia hormonal de la menopausia.......terapia hormonal de la menopausia.......
terapia hormonal de la menopausia.......
 
Virus de la Inmunodeficiencia humana (VIH).pdf
Virus de la Inmunodeficiencia humana (VIH).pdfVirus de la Inmunodeficiencia humana (VIH).pdf
Virus de la Inmunodeficiencia humana (VIH).pdf
 
Teoría del prión y enfermedades relacionadas
Teoría del prión y  enfermedades relacionadasTeoría del prión y  enfermedades relacionadas
Teoría del prión y enfermedades relacionadas
 
NEUROQUIMICA es la informacion de como funciona la neuroquimica
NEUROQUIMICA es la informacion de como funciona la neuroquimicaNEUROQUIMICA es la informacion de como funciona la neuroquimica
NEUROQUIMICA es la informacion de como funciona la neuroquimica
 
ASTERACEAS familia de las.margaritas.pptx
ASTERACEAS familia de las.margaritas.pptxASTERACEAS familia de las.margaritas.pptx
ASTERACEAS familia de las.margaritas.pptx
 

Gases ideales.

  • 2. • Son capaces de adquirir cualquier forma, ocupan todo el volumen de sus recipientes. • Son compresibles y también se expanden. • Pueden mezclarse con todo tipo de elementos con mucha facilidad • Tienen una densidad mucho menor que los sólidos y los líquidos. CARACTERÍSTICAS FÍSICAS DE LOS GASES ESTADO GASEOSO Los gases se pueden considerar como el más fascinante entre los tres estados de agregación de la materia.
  • 3. Si la temperatura aumenta entonces... el volumen aumenta Temperatura baja Temperatura alta Gas Mercurio Expansión de un gas Tubo de ensayo
  • 4. CLASIFICACIÓN DE LOS GASES GASES IDEALES . Se dan a presiones bajas y temperaturas elevadas, condiciones que corresponden a grandes volúmenes molares. . Se desprecia el volumen de la molécula gaseosa. . No sufren atracciones ni repulsiones entre sus moléculas. . No se condensan. . Tienden a un volumen cero. GASES REALES . Se dan a presiones altas y temperaturas bajas, condiciones que corresponden a pequeños volúmenes molares. . Se considera el volumen de la molécula gaseosa. . Sufren atracciones y repulsiones entre sus moléculas. . Se condensan. . No alcanzan un volumen igual a cero, por que se licuefactan, es decir pasan de gas a líquido.
  • 5. TEORÍA CINÉTICO MOLECULAR DE LOS GASES IDEALES 1. Un gas se compone de moléculas separadas una de la otra por distancias más grandes que sus propias dimensiones. Dichas moléculas pueden ser consideradas gráficamente como puntos; es decir, su volumen puede ser despreciable. 2. Las moléculas de los gases siempre están en un continuo movimiento desordenado y chocando en todas direcciones unas con otras. Los choques entre las moléculas del gas son perfectamente elásticos. 3. Las moléculas de los gases no ejercen fuerzas de atracción o repulsión entre ellas. 4. La energía cinética promedio de las moléculas del gas es directamente proporcional a su temperatura absoluta. Cualquier gas a la misma temperatura tiene la misma energía cinética.
  • 6. Unidades de presión 1 Pascal (Pa) = 1 N/m2 1 atm = 760 mmHg = 760 torr 1 atm = 101,325 Pa Barómetro Presión = Fuerza Área (Fuerza = masa × aceleración) Estas afirmaciones introducen conceptos como: presión, temperatura, movimiento molecular y energía cinética. Pab = Patm ± Pman
  • 7. 5.2 Manómetros usados para medir la presión Mercurio Vacío
  • 8. Los siguientes son elementos que pueden existir como gases a una temperatura de 25°C y 1 atm de presión 5.1
  • 9. 5.1 Elementos que existen como gases a una temperatura de 25°C y 1 atm de presión
  • 10. LEYES DE LOS PROCESOS RESTRINGIDOS LEY DE BOYLE Enunciado: “A temperatura constante el volumen de una masa dada de un gas varía inversamente con la presión”. Se trata de un proceso ISOTÉRMICO. Cdo: T= Cte y n = Cte, entonces: P α 1/ V P V = K Ec. De Boyle Gráfico : P vs V y P vs 1/V T1 T2 Isotermas (1) (2)
  • 11. En el punto (1) : P1 x V1 = K En el punto (2) : P2 x V2 = K Igualando ambas ecuaciones: P1 x V1 = P2 x V2 Ordenando: 1 2 2 1 V V P P =       = m m V P V P 1 2 2 1       =      1 2 2 1 V m P V m P A menor P mayor V A mayor P menor V En función de la densidad (ρ): Si: ρ = m / V Entonces: P1 x ρ2 = P2 x ρ1 2 1 2 1 ρ ρ = P P
  • 12. Una muestra de cloro en estado gaseoso ocupa un volumen de 946 mL y se encuentra a una presión de 726 mmHg. ¿Cuál es la presión que se necesita para que el volumen disminuya a 154 mL si la temperatura de la muestra es constante? P1 x V1 = P2 x V2 P1 = 726 mmHg V1 = 946 mL P2 = ? V2 = 154 mL P2 = P1 x V1 V2 726 mmHg x 946 mL 154 mL = = 4460 mmHg P x V = constante
  • 13. LEY DE CHARLES Enunciado: “A presión constante, el volumen de una masa dada de gas varía directamente con la temperatura absoluta”. Se trata de un proceso ISOBÁRICO. Cdo: P = Cte y n = Cte; entonces: V α T K T V = Ec. de Charles Gráfico: V vs T (1) (2) Isóbaras
  • 14. En el punto (1) : V1 / T1 = K En el punto (2) : V2 / T2 = K Igualando: 2 2 1 1 T V T V = 2 1 2 1 T T V V =       = m m V T V T 2 2 1 1 Ordenando: A menor T menor V A mayor T mayor V En función de la densidad: ρ       =      2 2 1 1 V m T V m T Si: ρ = m/V Entonces: T1x ρ1 = T2 x ρ2 1 2 2 1 ρ ρ = T T
  • 15. Una muestra de monóxido de carbono en estado gaseoso se encuentra a una temperatura de 125°C. Si el volumen inicial de la muestra es de 3,2 litros, ¿Qué temperatura debe tener el sistema si se quiere reducir el volumen a 1,54 litros, si la presión es constante? V1 = 3,20 L T1 = 398,15 K V2 = 1,54 L T2 = ? T2 = V2 x T1 V1 1,54 L x 398,15 K 3,20 L = = 192 K 5.3 V1 /T1 = V2 /T2 T1 = 125 (0 C) + 273,15 (K) = 398,15 K
  • 16. LEY DE GAY-LUSSAC Enunciado: “A volumen constante la presión ejercida por una masa dada de gas varía directamente con la temperatura absoluta”. Se trata de un proceso ISOCÖRICO o ISOMËTRICO. Cdo: V = Cte y n = Cte, entonces: P α T Luego: P = K x T K T P = Ec. De Gay-Lussac Gráfico: P vs T P T (1) (2) Isócoras V1 V2 V3 T T1 T2 P1 P2
  • 17. En el punto (1) : P1 / T1 = K En el punto (2) : P2 / T2 = K Igualando: 2 2 1 1 T P T P = A menor T menor P A mayor T mayor P Ordenando: 2 1 2 1 T T P P =
  • 18. El aire en un tanque se encontraba a una presión de 620 mm Hg y 23 ºC. S e expuso al sol con lo que su temperatura aumentó a 50 ºC. ¿Cuál fue la presión que presentó entonces el tanque?. SOLUCIÓN Datos Condición (1) P1 = 620 mm Hg T1 = 23 ºC + 273 = 296 ºK Condición (2) T2 = 50 ºC + 273 = 323 ºK P2 = ? 1 21 2 2 1 2 1 T TP P T T P P × =⇒= Como el V = Cte y n = Cte La fórmula a usar es: (1) Reemplazando valores en (1): K KmmHg P º296 º323630 2 × = P2 = 676,55 mm Hg
  • 19. El argón es un gas inerte que se usa en algunas bombillas para retrasar la vaporización del filamento. Cierto foco contiene argón a 1,2 atm de presión y cambia de temperatura desde 18°C hasta 85°C. ¿Cuál es la presión final del argón en atm si el volumen del sistema es constante? P1 T1 P2 T2 = P2 = P1 x T2 T1 = 1,20 atm x 358 K 291 K = 1,48 atm SOLUCIÓN Condición inicial(1) P1 = 1,2 atm T1 = 18ºC + 273 = 291 K Condición final (2) P2 = ? T2 = 85ºC + 273 = 358 K (Ley de Gay-Lussac)
  • 20. LEY DE AVOGADRO Enunciado: “A presión y temperatura constante el volumen de un gas es directamente proporcional al número de moles del gas”. Cdo: P = Cte y T = Cte, entonces: V α n Luego: V = K x n Entonces: K n V = Ec. De Avogadro Gráfico: V vs n V n (1) (2) n1 n2 V2 V1
  • 21. En el punto (1) : V1 / n1 = K En el punto (2) : V2 / n2 = K Igualando: 2 2 1 1 n V n V = 2 1 2 1 n n V V =       =      ⇒      = 2 2 1 1 2 2 1 1 V m n V m n m m V n V n Ordenando A mayor n mayor V A menor n menor V En función de la densidad: ρ Si: ρ = m / V 1 2 2 1 2211 ρ ρ ρρ =⇒×=× n n nnFinalmente:
  • 22. ECUACIÓN DE ESTADO DE LOS GASES IDEALES Una ecuación que relaciona la temperatura, presión, volumen moles o masa de una sustancia gaseosa, recibe el nombre de ecuación de estado. Relacionando las siguientes leyes: Ley de Boyle: V α 1 / P (T y n constantes) Ley de Charles: V α T (P y n constantes) Ley de Avogadro : V α n (T y P constantes) Entonces: P TnR V P Tn V ×× =⇒ × α Donde: PV = nRT (1) Si: n = m / M, entonces: PVM = mRT (2) Si: ρ = m / V, entonces: PM = ρRT (3)
  • 23. Cuando en una muestra la temperatura es 0°C y la presión es 1 atm, se dice que ésta se encuentra en condiciones normales de presión y temperatura. Se ha demostrado que en condiciones normales de presión y temperatura, 1 mol de un gas ideal ocupa 22,414 litros de volumen. CONDICIONES NORMALES (CN O PTN) Cuando: P = 1 atm T = 0 ºC = 273 ºK Entonces: 1 mol-g gas a CN = 22,414 L 1 mol-kg gas a CN = 22,414 m3 1 mol-lb gas a CN = 359 pies3
  • 24. VALORES DE LA CONSTANTE UNIVERSAL DE LOS GASES: R Los valores de “R”, se obtienen de la ecuación (1): PV = nRT, a condiciones normales. Kmol atmL Kmol Latm Tn VP R º 082056,0 º15,2731 414,221 × × = × × = × × = Otros valores de “R”: Kmol mmHgL R º 36,62 × × = Kmol dmKPa R º 314,8 3 × × = Rlbmol piepulb R º lg/ 73,10 32 ×− × =
  • 25. ¿Cuál es el volumen en litros que ocupan 49,8 gramos de ácido clorhídrico (HCL) a presión y temperatura normales? PV = nRT V = nRT P T = 0 0 C = 273,15 K P = 1 atm n = 49,8 g x 1 mol HCl 36,45 g HCl = 1,37 mol V = 1 atm 1,37 mol x 0,0821 x 273,15 KL•atm mol•K V = 30,6 L
  • 26. Un contenedor de 2,1 litros contiene 4,65 gramos de un gas a 1 atm de presión a 27°C. ¿Cuál es la molaridad del gas? dRT P M = d = m V 4,65 g 2,10 L = = 2,21 g L M = 2,21 g L 1 atm x 0,0821 x 300,15 KL•atm mol•K M = 54,6 g/mol
  • 27. LEY GENERAL O COMBINADA DE LOS GASES En una ley general de los gases intervienen las tres variables: temperatura, presión y volumen, para un sistema cerrado a condición inicial (1) y final (2): Estado inicial (1) : P1V1 = nRT1 Estado final (2) : P2V2 = nRT2 Dividiendo (1) entre (2): si, n = Cte y R = Cte. 2 1 22 11 2 1 22 11 T T VP VP TRn TRn VP VP = × × ⇒ ×× ×× = × × Finalmente: 2 22 1 11 T VP T VP × = × En función de las densidades: ρ (1) y (2): 12 21 2 1 TP TP × × = ρ ρ
  • 28. Un litro de oxígeno tiene una masa de 1,43 g a 0ºC y a 760 mm Hg. Calcular la densidad del oxígeno a 25ºC y 725 mm Hg. SOLUCIÓN Condiciones iniciales (1) ρ1 = 1,43 g/L T1 = 0ºC + 273= 273 ºK P1 = 760 mm Hg Condiciones finales (2) ρ2 = ? T2 = 25ºC + 273 = 298 ºK P2 = 725 mm Hg 12 21 2 1 TP TP × × = ρ ρ La fórmula es: (1) Reemplazando valores en (1): KmmHg KmmHgLg TP TP º298760 º273725/43,1 2 21 121 2 × ×× =⇒ × ×× = ρ ρ ρ ρ2 = 1,25 g/L
  • 29. LEY DE DALTON DE LAS PRESIONES PARCIALES PA PB PT = PA + PB + … LEYES RELACIONADAS CON MEZCLAS GASEOSAS “A temperatura y volumen constante, la presión total ejercida por una mezcla de gases, es igual a la suma de las presiones parciales de cada uno de los gases que constituyen la mezcla” Presión parcial: es la presión que cada gas ejercería, si se encontrara solo ocupando todo el volumen que ocupa la mezcla gaseosa. Cdo: T = Cte y V = Cte, entonces: Ptotal (1)
  • 30. Considerar un caso en el cual dos gases, A y B, se encuentran en un contenedor de volumen V. PA = nART V PB = nBRT V nA es el número de moles de A nB es el número de moles de B PT = PA + PB + … (2) Reemplazando (2) en (1): ( )... ...T A B T A B RT RT RT RT RT n n n n n n V V V V V = + + ⇒ = + + Entonces: nT = nA + nB + … (3)
  • 31. Dividiendo la presión parcial de cada gas (pA,B) entre la presión total (PT): A A A A A A T T T T T T RT n p p n nV p P RTP P n nn V = ⇒ = ⇒ = B B B B B B T T T T T T RT n p p n nV p P RTP P n nn V = ⇒ = ⇒ = BA A T A A nn n n n X + == (3) FRACCIÓN MOLAR (x): Fracción = Fracción De presión Molar BA B T B B nn n n n X + == Propiedad de las fracciones molares: XA + XB + … = 1 (5) (4)
  • 32. Reemplazando (4) en (3), tenemos: pA = XA x PT pB = XB x PT pC = XC x PT Una muestra de gas natural contiene: 8,24 moles de CH4, 0,421 moles de C2H6, y 0,116 moles de C3H8. Si la presión total de los gases es de 1,37 atm, ¿Cuál es la presión parcial del propano (C3H8)? SOLUCIÓN Datos nA = 8,24 mol nB = 0,421 mol nC = 0,116 mol PT = 1,37 atm 1º. Cálculo de XC ( propano) : 0132,0 116,0421,024,8 116,0 = ++ = ++ = CBA C C nnn n X 2º. Cálculo de la presión parcial del propano: pC pC = XC x PT = 0,0132 x 1,37 atm pC = 0,0181 atm (6)
  • 33. 2KClO3 (s) 2KCl (s) + 3O2 (g) Contenedor de oxígeno y vapor de agua RECOLECCIÓN DE GASES SOBRE LÍQUIDOS Es una de la aplicación más útil de la Ley de Dalton, en los que intervienen la colección de los gases sobre agua, donde el vapor de agua se encuentra presente mezclados con los gases colectados. En dichos cálculos debe hacerse una corrección por el vapor de agua presente. Rx qca de desprendimiento de gas Donde: PT = Pgh = PO2 + PVH2O Generalizando: PT = Pgh = Pgs + PvH2O Pgs = Pgh – PvH2O Cdo: Pgh = PT = Patm Patm = Pgh = PT = Pgs + PVH2O
  • 35. PRESIÓN DE VAPOR DEL AGUA
  • 36. Se recibió 0,0052 moles de H2 (g) sobre agua a 27ºC y 807 mm Hg. Calcule el volumen que ocupará el hidrógeno. Si PvH2O (27ºC) = 27 mm Hg. SOLUCIÓN T = 27ºC + 273 = 300 K Pgh = 807 mm Hg V = ? n = 0,0052 mol PvH2O (27ºC) = 27 mm Hg. Fórmula: Pgh = Pgs + PvH2O Pgs = Pgh – PvH2O Pgs = 807 mm Hg – 27 mm Hg Pgs = 780 mm Hg. Cálculo del volumen de H2 (g): PV = nRT mLL mmHg K Kmol LmmHg mol P TRn V 1251248,0 780 3004,620052,0 == × × × × = ×× =
  • 37. HUMEDAD RELATIVA: Hr Es el contenido de vapor de agua que contiene el gas. %100% 2 2 ×= OvH OH P p Hr pH2O = Presión parcial del agua gaseosa PvH2O = Presión de vapor o tensión de vapor del agua en equilibrio con su líquido (tablas) ¿Cuántos miligramos de vapor de agua contiene un frasco de 2L lleno de aire al 70% de humedad y a 25ºC?. Si PvH2O (25ºC) = 23,76 mm Hg. SOLUCIÓN m= ? H2O V = 2 L %Hr = 70% T = 25ºC + 273 = 298 K PvH2O (25ºC) = 23,76 mm Hg Por fórmula: %Hr= (pH2O / PvH2O) x 100% 70% = (pH2O / 23,76 mmHg) x 100% pH2O = 16,6 mmHg Cálculo del V: PVM = mRT, entonces : m = (MPV)/ RTm = [18 g/mol x 16,6 mmHg x 2 L] / [62,4 (mmHg x L / mol x K) x 298 K] m = 0,03213 g = 32,13 mg
  • 38. LEY DE AMAGAT O LEY DE LOS VOLUMENES PARCIALES Enunciado: “A temperatura y presión constante, el volumen total ocupado por una mezcla gaseosa es igual a la suma de los volúmenes parciales de sus gases componentes”. Volumen parcial (v): es el volumen que ocupará aquel componente gaseoso si el solo estuviera presente a la misma temperatura y presión que tiene la mezcla. Cdo: T = Cte y P = Cte, VT = vA + vB + … (1) Si: VT = nTRT/ P ; vA = nART/P vB = nB RT/ P (2) Reemplazando (2) en (1): nTRT/ P = nART/ P + nBRT/ P + … nTRT/ P = (nA + nB + …) RT/ P Entonces: nT = nA + nB + … (3)
  • 39. Dividiendo el volumen parcial (vA,B) entre el volumen total (VT): T T A A T A T A T A T A V n n v n n V v P RT n P RT n V v ×=⇒=⇒= B B B B B B T T T T T T RT n v v n nP v V RTV V n nn P = ⇒ = ⇒ = × A A A T A B n n X n n n = = + BA B T B B nn n n n X + == FRACCIÓN MOLAR (X) (4) (5) Propiedad de las fracciones molares: XA + XB + … = 1 (6) Fracción de = Fracción Volumen molar
  • 40. Reemplazando (5) en (4): vA = XA x VT vB = XB x VT vC = XC x VT A B A B B A M M ρ ρ µ µ == (7) LEY DE GRAHAM DE LA DIFUSIÓN GASEOSA “A presión y temperatura constante las velocidades de difusión de dos gases diferentes son inversamente proporcionales a las raíces cuadradas de sus masa moleculares o densidades” Se sabe que: μ = V / t (2) o μ= d / t (3) (1) A B A B B A B A M M d d V V ρ ρ ===Cdo: tA = tB, se tiene: (4) P = Cte T = Cte
  • 41. Dos globos del mismo tamaño y material se llenan respectivamente con hidrógeno y oxígeno gaseoso a la misma temperatura y presión. Si el oxígeno escapa con una rapidez de 65 mL/h. Calcular la rapidez con que escapará el hidrógeno. SOLUCIÓN Datos μO2 = 65 mL/h μH2 = ? O2 → M = 32 g/mol H2 → M = 2 g/mol molg molg hmL M M M M H O OH H O O H /2 /32 /65 2 2 22 2 2 2 2 ==⇒= µµ µ µ μH2 = 260 mL / h
  • 42. LA QUÍMICA EN ACCIÓN: El buceo y las leyes de los gases P V Profundidad (ft) Presión (atm) 0 1 33 2 66 3 5.6
  • 43. GASES REALES Gas ideal PV / RT= 1 Fuerzas de repulsión Fuerzas de atracción Gas ideal Gas real PV / RT ≠ 1 PV / RT = Z Entonces: Z = 1→ Gas ideal Z ≠ 1 → Gas real Luego: PV = ZRT → n = 1 mol PV = ZnRT → “n” moles Z = Factor de compresibilidad
  • 44. Demostración del efecto de las fuerzas de presión producidas por un gas (atracciones y repulsiones moleculares 5.8
  • 45. Ecuación de Van der Waals para gases reales P + (V – nb) = nRTan2 V2( ) } Presión corregida } Volumen corregido
  • 46. GRACIAS POR SU ATENCIÓN