SlideShare una empresa de Scribd logo
Ley de Gauss
Clase 5 03/Enero/2015
Ley de Gauss
 Este ley permite calcular fácilmente los campos eléctricos que resultan de
distribuciones simétricas de la carga, tales como una corteza esférica o
una línea infinita.
 Además se entiende por superficie cerrada aquella que divide el espacio
en dos regiones diferentes, la interior y la exterior a dicha superficie como
se denota a continuación.
Ley de Gauss
Dipolo eléctrico encerrado en
una superficie de forma
arbitraria. El numero de líneas
que abandonan la superficie es
exactamente igual al número
de líneas que entran en ella sin
que importe donde se dibuje la
superficie, siempre que se
encierren dentro de ella ambas
cargas del dipolo.
Ley de Gauss
Para superficies que encierran
otras distribuciones de carga,
como el que se muestra en la
figura, el numero neto de líneas
que sale por cualquier
superficie que encierra las
cargas es proporcional a la
carga encerrada dentro de
dicha superficie. Este es un
enunciado cualitativo de la ley
de Gauss.
Ley de Gauss
 Nota. Para contar el numero neto de líneas que salen de la superficie,
cuéntese cualquier línea que cruce desde el interior como +1 y cualquier
penetración desde el exterior como -1. Así pues para la superficie indicada
el balance total de las líneas que cruzan al superficie es cero.
Flujo eléctrico
 Las unidades del flujo son 𝑁 ∙ 𝑚2
/𝐶 . Como el campo eléctrico es
proporcional al número de líneas por unidad de área, el flujo eléctrico es
proporcional a número de líneas de campo que atraviesan el área.
Líneas de campo correspondientes
a un campo eléctrico uniforme
que E que atraviesa un área A
perpendicular al campo. El
producto EA es el flujo 𝜙 a través
del área.
EA  A
E
Flujo eléctrico
Líneas de campo correspondientes a un campo eléctrico uniforme
perpendicular al área 𝐴1, pero que forma un ángulo 𝜃 con el
vector unitario 𝑛 normal al área 𝐴2 . Cuando E no es perpendicular
al área es 𝐸 𝑛 𝐴 , siendo 𝐸 𝑛 = 𝐸𝑐𝑜𝑠𝜃 la componente de E
perpendicular al área. El flujo que atraviesa 𝐴2 es el mismo que
pasa por 𝐴1
n

E1A
2A2 1cosA A 
La superficie del área 𝐴2 no es perpendicular al campo
eléctrico E. Sin embargo, el numero de líneas que
atraviesan el área 𝐴2 es el mismo que atraviesa el área
𝐴1 , que es perpendicular a E. Las áreas están
relacionadas por : 𝐴2 𝑐𝑜𝑠𝜃 = 𝐴1
Flujo eléctrico
 En donde 𝜃 es el ángulo existente entre E y el vector unitario 𝑛
perpendicular a la superficie 𝐴2. Por lo tanto el flujo de una superficie viene
definido por :
 En donde 𝐸 𝑛 = 𝐸 ∙ 𝑛 es la componente de E perpendicular, o normal, a la
superficie.
cos nE nA EA E A    
Flujo eléctrico
 La figura siguiente muestra una superficie de forma arbitraria sobre el cual el campo E
puede variar.
iA
in
E
Si el área ∆𝐴𝑖 del elemento de área que
elegimos es suficientemente pequeño
podemos considerarle como un plano y la
variación del campo eléctrico a través del
elemento puede despreciarse. Por lo tanto el
flujo eléctrico a través de ese elemento es:
0
lim
Definición de flujo electrico
i
ii i
A
i S
E n A E ndA
 
    
Enunciado cuantitativo de la Ley de
Gauss
 La siguiente figura muestra una superficie esférica de radio 𝑅 con su centro en la carga
puntual 𝑄. El campo eléctrico en un punto cualquiera de la superficie perpendicular a la
superficie se denota de la siguiente manera:
2n
kQ
E
R

Una superficie esférica puntual que
incluye la carga puntual 𝑄 . (a) El
mismo numero de líneas de campo
eléctrico que pasa a través de esta
superficie que incluya 𝑄. (b) El flujo se
calcula fácilmente para una superficie
esférica. Es igual al producto de 𝐸 𝑛 por
el área superficial, es decir 𝐸 𝑛4𝜋𝑅2
Enunciado cuantitativo de la Ley de
Gauss
 Por lo tanto el flujo neto de E a través de esta superficie esférica es:
 𝜙 𝑛𝑒𝑡𝑜 = 𝑆
𝐸 𝑛 𝑑𝐴 = 𝐸 𝑛 𝑆
𝑑𝐴
 En donde 𝐸 𝑛 puede salir de la integral por ser constante en todos los
puntos. La integral de 𝑑𝐴 extendida a toda la superficie es precisamente el
área total, igual a 4𝜋𝑅2. Con este valor y sustituyendo 𝑘𝑄/𝑅2 por 𝐸 𝑛 se
obtiene:
 𝜙 𝑛𝑒𝑡𝑜 = 𝑆
𝐸 𝑛 𝑑𝐴 = 4𝜋𝑘𝑄𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟
Enunciado cuantitativo de la Ley de
Gauss
 Por lo tanto el flujo neto a través de cualquier superficie es igual a 4𝜋𝑘
veces la carga neta dentro de la superficie.:
 𝜙 𝑛𝑒𝑡𝑜 = 𝑆
𝐸 𝑛 𝑑𝐴 = 4𝜋𝑘𝑄𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟
 Esta propiedad del campo eléctrico es la que ha hecho posible dibujar un
numero fijo de líneas de fuerza desde una carga y conseguir que la
densidad de líneas se a proporcional a la intensidad del campo.
Enunciado cuantitativo de la Ley de
Gauss
 Es costumbre escribir la constante de Coulomb 𝑘 en función de otra
constante 𝜖0, denominada permitividad del espacio libre (permitividad del
vacío):
 Por lo tanto el valor de 𝜀0 en unidades del SI es
0
1
4
k


 
12 2 2
0 9 2 2
1 1
8.85 10 /
4 4 8.99 10 /
C N m
K N m C

 

    
 
 Por lo tanto al ley de Gauss es válida para todas las superficies y
distribuciones de carga. Puede utilizarse para calcular el campo eléctrico
en algunas distribuciones espaciales de carga con altos grados de
simetría. En los campos eléctricos que resultan de distribuciones de carga
estática, la ley de Gauss y la ley de Coulomb son equivalentes. Sin
embargo la ley de Gauss es mas general, pues también puede aplicarse a
distribuciones de carga no estáticas.
 Por lo tanto utilizaremos que
 𝜙 𝐸 = 𝐸𝑟 ∙ 𝑑𝐴 =
𝑄 𝑛𝑒𝑡𝑎
𝜀0
Problemas
 Problema 1
 Cuando se mide el campo eléctrico en cualquier parte sobre la superficie
de un cascarón esférico delgado con 0.750 m de radio, se ve que es igual
a 890 N/C y apunta radialmente hacia el centro de la esfera? a) ¿Cuál es
la carga neta dentro de la superficie de la esfera? b) ¿Qué puede concluir
acerca de la naturaleza y distribución de la carga dentro del cascarón
esférico?
Problemas
 Solución inciso a
 De acuerdo a la siguiente figura tenemos que:
rE
rE
rE
rE
rE
rE
rE
rE rE
r Datos
𝐸𝑟 = 890𝑁/𝐶
𝑟 = 0.750 𝑚
Problemas
 Por la ley de Gauss tenemos:
𝜙 𝐸 = 𝐸𝑟 ∙ 𝑑𝐴 = 𝐸𝑟 ∙ 𝑑𝐴𝑐𝑜𝑠 180° =
𝑄 𝑛𝑒𝑡𝑎
𝜀0
⇒
⟹ −𝐸𝑟 𝑑𝐴 =
𝑄 𝑛𝑒𝑡𝑎
𝜀0
⟹ − 890 4𝜋 0.750 2 =
𝑄 𝑛𝑒𝑡𝑎
8.85×10−12
∴ 𝑄 𝑛𝑒𝑡𝑎 = −55.7 × 10−9
= −55.7𝑛𝐶
Problemas
 Solución Inciso b
 Que la carga neta que actúa dentro de la superficie de la esfera esta
cargada negativamente.
Problemas
 Problema 2
 Cuatro superficies cerradas, 𝑆1 𝑎 𝑆4, junto con las cargas −2𝑄, 𝑄 𝑦 − 𝑄 se
dibujan en la siguiente figura. Encuentre el flujo eléctrico a través de cada
superficie.
Problemas
 Solución
 Nos piden: 𝜙 𝐸 a través de cada superficie = ?
 𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆1
= 𝐸 ∙ 𝑑 𝐴 =
𝑄 𝑛𝑒𝑡𝑎
𝜀0
 por la ley de Gauss
 ∴ 𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆1
=
−2𝑄+𝑄
𝜀0
=
−𝑄
𝜀0
Problemas
 Solución
 Nos piden: 𝜙 𝐸 a través de cada superficie = ?
 𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆2
= 𝐸 ∙ 𝑑 𝐴 =
𝑄 𝑛𝑒𝑡𝑎
𝜀0
 por la ley de Gauss
 ∴ 𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆2
=
+𝑄−𝑄
𝜀0
= 0
Problemas
 Solución
 Nos piden: 𝜙 𝐸 a través de cada superficie = ?
 𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆3
= 𝐸 ∙ 𝑑 𝐴 =
𝑄 𝑛𝑒𝑡𝑎
𝜀0
 por la ley de Gauss
 ∴ 𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆3
=
−2𝑄+𝑄−𝑄
𝜀0
=
−2𝑄
𝜀0
Problemas
 Solución
 Nos piden: 𝜙 𝐸 a través de cada superficie = ?
 𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆4
= 𝐸 ∙ 𝑑 𝐴 =
𝑄 𝑛𝑒𝑡𝑎
𝜀0
 por la ley de Gauss
 ∴ 𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆4
=
0
𝜀0
= 0
Problemas
 Problema 3
 Consideremos un campo eléctrico uniforme 𝐸 = 2𝑘𝑁/𝐶 𝑖. (a) ¿Cuál es el
flujo de este campo que atraviesa un cuadrado de 10 cm de lado cuyo
plano es paralelo al plano 𝑦𝑧? (b) ¿Cual es el flujo que atraviesa el mismo
cuadrado si la normal a su plano forma un ángulo de 30° con el eje 𝑥?
Problemas
 Solución inciso a
 La definición del campo eléctrico es 𝜙 = 𝑆
𝐸 ∙ 𝑛𝑑𝐴. Nosotros podemos
aplicar esta definición para encontrar el flujo eléctrico.
 Por lo tanto aplicando esta definición tenemos que:
 𝜙 = 𝑆
2𝑘𝑁/𝐶 𝑖 ∙ 𝑖𝑑𝐴 = 2𝑘𝑁/𝐶 𝑆
𝑑𝐴
 𝜙 = 2𝑘𝑁/𝐶 0.1𝑚 2
= 20𝑁 ∙ 𝑚2
/𝐶
𝑃𝑙𝑎𝑛𝑜 𝑦𝑧
𝐿 = 10𝑐𝑚
𝑥
𝑦
𝑧
Problemas
 Solución inciso b
 Procedemos de la misma forma que el inciso a, tenemos que:
 𝑖 ∙ 𝑛 = 𝑐𝑜𝑠30°
 𝜙 = 𝑆
2𝑘𝑁/𝐶 𝑖 ∙ 𝑛𝑑𝐴 =
2𝑘𝑁
𝐶
𝑐𝑜𝑠30°𝑑𝐴
 𝜙 = 2𝑘𝑁/𝐶 0.1𝑚 2 𝑐𝑜𝑠30° = 17.3𝑁 ∙ 𝑚2/𝐶
𝑃𝑙𝑎𝑛𝑜 𝑦𝑧
𝐿 = 10𝑐𝑚
𝑥
𝑦
𝑧

Más contenido relacionado

La actualidad más candente

Capacitancia. ing. carlos moreno (ESPOL)
Capacitancia. ing. carlos moreno (ESPOL)Capacitancia. ing. carlos moreno (ESPOL)
Capacitancia. ing. carlos moreno (ESPOL)
Francisco Rivas
 
438809165-electricidad-caipitulo-28-docx.pdf
438809165-electricidad-caipitulo-28-docx.pdf438809165-electricidad-caipitulo-28-docx.pdf
438809165-electricidad-caipitulo-28-docx.pdf
JerryMezaGutirrez
 
Ejercicios campo electrico y carga puntual
Ejercicios campo electrico y carga puntualEjercicios campo electrico y carga puntual
Ejercicios campo electrico y carga puntual
Alain Francisco Rodriguez
 
Problemas resueltos-cap-28-fisica-serway
Problemas resueltos-cap-28-fisica-serwayProblemas resueltos-cap-28-fisica-serway
Problemas resueltos-cap-28-fisica-serway
Esteban Esteb
 
Solucionario fisica sears vol 2
Solucionario fisica sears vol 2Solucionario fisica sears vol 2
Solucionario fisica sears vol 2
Karl Krieger
 
Campo electrico distribuciones continuas de carga clase 4 TE
Campo electrico distribuciones continuas de carga clase 4 TECampo electrico distribuciones continuas de carga clase 4 TE
Campo electrico distribuciones continuas de carga clase 4 TE
Tensor
 
Clase 10LBS
Clase 10LBSClase 10LBS
Clase 10LBS
Tensor
 
Ecuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de LaplaceEcuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de Laplace
Kike Prieto
 
Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)
Francisco Rivas
 
Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02
ayoyototal123
 
Flujo eléctrico
Flujo eléctricoFlujo eléctrico
Flujo eléctrico
Robert Comas
 
Trabajo ecuaciones
Trabajo ecuacionesTrabajo ecuaciones
Trabajo ecuaciones
Miguel Doria
 
2 campos electrostaticos
2 campos electrostaticos2 campos electrostaticos
2 campos electrostaticos
Francisco Sandoval
 
Induccion
InduccionInduccion
Induccion
Francisco Rivas
 
Grupo 5 trabajo y energia-ejercicios
Grupo 5 trabajo y energia-ejerciciosGrupo 5 trabajo y energia-ejercicios
Grupo 5 trabajo y energia-ejercicios
etubay
 
Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Laura Cortes
 
Cap. 21 zemanski--carga electrica y campo electrico tarea usac
Cap. 21 zemanski--carga electrica y campo electrico  tarea usacCap. 21 zemanski--carga electrica y campo electrico  tarea usac
Cap. 21 zemanski--carga electrica y campo electrico tarea usac
ELMER ICH
 
Ejercicios cap 25 y 26
Ejercicios cap 25 y 26Ejercicios cap 25 y 26
Ejercicios cap 25 y 26
Matilde Techeira
 
Flujo electrico
Flujo electricoFlujo electrico
Flujo electrico
Enoc Garcerant Campo
 
Ley de gauss clase 5
Ley de gauss clase 5Ley de gauss clase 5
Ley de gauss clase 5
Tensor
 

La actualidad más candente (20)

Capacitancia. ing. carlos moreno (ESPOL)
Capacitancia. ing. carlos moreno (ESPOL)Capacitancia. ing. carlos moreno (ESPOL)
Capacitancia. ing. carlos moreno (ESPOL)
 
438809165-electricidad-caipitulo-28-docx.pdf
438809165-electricidad-caipitulo-28-docx.pdf438809165-electricidad-caipitulo-28-docx.pdf
438809165-electricidad-caipitulo-28-docx.pdf
 
Ejercicios campo electrico y carga puntual
Ejercicios campo electrico y carga puntualEjercicios campo electrico y carga puntual
Ejercicios campo electrico y carga puntual
 
Problemas resueltos-cap-28-fisica-serway
Problemas resueltos-cap-28-fisica-serwayProblemas resueltos-cap-28-fisica-serway
Problemas resueltos-cap-28-fisica-serway
 
Solucionario fisica sears vol 2
Solucionario fisica sears vol 2Solucionario fisica sears vol 2
Solucionario fisica sears vol 2
 
Campo electrico distribuciones continuas de carga clase 4 TE
Campo electrico distribuciones continuas de carga clase 4 TECampo electrico distribuciones continuas de carga clase 4 TE
Campo electrico distribuciones continuas de carga clase 4 TE
 
Clase 10LBS
Clase 10LBSClase 10LBS
Clase 10LBS
 
Ecuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de LaplaceEcuaciones Diferenciales - La Transformada de Laplace
Ecuaciones Diferenciales - La Transformada de Laplace
 
Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)
 
Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02
 
Flujo eléctrico
Flujo eléctricoFlujo eléctrico
Flujo eléctrico
 
Trabajo ecuaciones
Trabajo ecuacionesTrabajo ecuaciones
Trabajo ecuaciones
 
2 campos electrostaticos
2 campos electrostaticos2 campos electrostaticos
2 campos electrostaticos
 
Induccion
InduccionInduccion
Induccion
 
Grupo 5 trabajo y energia-ejercicios
Grupo 5 trabajo y energia-ejerciciosGrupo 5 trabajo y energia-ejercicios
Grupo 5 trabajo y energia-ejercicios
 
Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]
 
Cap. 21 zemanski--carga electrica y campo electrico tarea usac
Cap. 21 zemanski--carga electrica y campo electrico  tarea usacCap. 21 zemanski--carga electrica y campo electrico  tarea usac
Cap. 21 zemanski--carga electrica y campo electrico tarea usac
 
Ejercicios cap 25 y 26
Ejercicios cap 25 y 26Ejercicios cap 25 y 26
Ejercicios cap 25 y 26
 
Flujo electrico
Flujo electricoFlujo electrico
Flujo electrico
 
Ley de gauss clase 5
Ley de gauss clase 5Ley de gauss clase 5
Ley de gauss clase 5
 

Destacado

Problemario Física, Ley Coulomb, Gauss, Potencial Electrico
Problemario Física, Ley Coulomb, Gauss, Potencial ElectricoProblemario Física, Ley Coulomb, Gauss, Potencial Electrico
Problemario Física, Ley Coulomb, Gauss, Potencial Electrico
Amy Avalos Guillen
 
CAMPO ELECTRICO
CAMPO ELECTRICOCAMPO ELECTRICO
CAMPO ELECTRICO
Torimat Cordova
 
Problemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serwayProblemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serway
joaquings
 
Solucionário do Serway, 3 edição em espanhol-Física 3
Solucionário do Serway, 3 edição em espanhol-Física 3Solucionário do Serway, 3 edição em espanhol-Física 3
Solucionário do Serway, 3 edição em espanhol-Física 3
taimaratr
 
3 leyde gauss
3 leyde gauss3 leyde gauss
3 leyde gauss
Montepollo
 
Cálculo y simulación de la densidad de flujo eléctrico de un cable coaxial
Cálculo y simulación de la densidad de flujo eléctrico de un cable coaxialCálculo y simulación de la densidad de flujo eléctrico de un cable coaxial
Cálculo y simulación de la densidad de flujo eléctrico de un cable coaxial
RadioComunicaciones UTPL
 
examen fisica c
examen fisica cexamen fisica c
examen fisica c
johanna20
 
electricidad y magnetismo ejercicios resueltos Capitulo 2
electricidad y magnetismo  ejercicios resueltos  Capitulo 2electricidad y magnetismo  ejercicios resueltos  Capitulo 2
electricidad y magnetismo ejercicios resueltos Capitulo 2
J Alexander A Cabrera
 
Fisica serway vol.2 (solucionario)
Fisica   serway vol.2 (solucionario)Fisica   serway vol.2 (solucionario)
Fisica serway vol.2 (solucionario)
luxeto
 
Topicos em con_problemas
Topicos em con_problemasTopicos em con_problemas
Topicos em con_problemas
Frank Frank Bell
 
Ley De Coulomb Y Campo Elect Niv Cero B.
Ley De Coulomb Y Campo Elect Niv Cero B.Ley De Coulomb Y Campo Elect Niv Cero B.
Ley De Coulomb Y Campo Elect Niv Cero B.
ESPOL
 
Ley de gauss clase 6
Ley de gauss clase 6Ley de gauss clase 6
Ley de gauss clase 6
Tensor
 
Electrostatica.
Electrostatica.Electrostatica.
Electrostatica.
clausgon
 
Fisica serway vol.1 (solucionario)
Fisica   serway vol.1 (solucionario)Fisica   serway vol.1 (solucionario)
Fisica serway vol.1 (solucionario)
luxeto
 
POTENCIAL ELECTRICO
POTENCIAL ELECTRICOPOTENCIAL ELECTRICO
POTENCIAL ELECTRICO
Torimat Cordova
 
Fisica serway vol.3 (solucionario)
Fisica   serway vol.3 (solucionario)Fisica   serway vol.3 (solucionario)
Fisica serway vol.3 (solucionario)mariasousagomes
 
Ley de gauss
Ley de gaussLey de gauss
Problemas de p f-e
Problemas de p f-eProblemas de p f-e
Problemas de p f-e
joaquings
 
ley de gauss
ley de gaussley de gauss
ley de gauss
rilara
 
Fisica ii
Fisica iiFisica ii

Destacado (20)

Problemario Física, Ley Coulomb, Gauss, Potencial Electrico
Problemario Física, Ley Coulomb, Gauss, Potencial ElectricoProblemario Física, Ley Coulomb, Gauss, Potencial Electrico
Problemario Física, Ley Coulomb, Gauss, Potencial Electrico
 
CAMPO ELECTRICO
CAMPO ELECTRICOCAMPO ELECTRICO
CAMPO ELECTRICO
 
Problemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serwayProblemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serway
 
Solucionário do Serway, 3 edição em espanhol-Física 3
Solucionário do Serway, 3 edição em espanhol-Física 3Solucionário do Serway, 3 edição em espanhol-Física 3
Solucionário do Serway, 3 edição em espanhol-Física 3
 
3 leyde gauss
3 leyde gauss3 leyde gauss
3 leyde gauss
 
Cálculo y simulación de la densidad de flujo eléctrico de un cable coaxial
Cálculo y simulación de la densidad de flujo eléctrico de un cable coaxialCálculo y simulación de la densidad de flujo eléctrico de un cable coaxial
Cálculo y simulación de la densidad de flujo eléctrico de un cable coaxial
 
examen fisica c
examen fisica cexamen fisica c
examen fisica c
 
electricidad y magnetismo ejercicios resueltos Capitulo 2
electricidad y magnetismo  ejercicios resueltos  Capitulo 2electricidad y magnetismo  ejercicios resueltos  Capitulo 2
electricidad y magnetismo ejercicios resueltos Capitulo 2
 
Fisica serway vol.2 (solucionario)
Fisica   serway vol.2 (solucionario)Fisica   serway vol.2 (solucionario)
Fisica serway vol.2 (solucionario)
 
Topicos em con_problemas
Topicos em con_problemasTopicos em con_problemas
Topicos em con_problemas
 
Ley De Coulomb Y Campo Elect Niv Cero B.
Ley De Coulomb Y Campo Elect Niv Cero B.Ley De Coulomb Y Campo Elect Niv Cero B.
Ley De Coulomb Y Campo Elect Niv Cero B.
 
Ley de gauss clase 6
Ley de gauss clase 6Ley de gauss clase 6
Ley de gauss clase 6
 
Electrostatica.
Electrostatica.Electrostatica.
Electrostatica.
 
Fisica serway vol.1 (solucionario)
Fisica   serway vol.1 (solucionario)Fisica   serway vol.1 (solucionario)
Fisica serway vol.1 (solucionario)
 
POTENCIAL ELECTRICO
POTENCIAL ELECTRICOPOTENCIAL ELECTRICO
POTENCIAL ELECTRICO
 
Fisica serway vol.3 (solucionario)
Fisica   serway vol.3 (solucionario)Fisica   serway vol.3 (solucionario)
Fisica serway vol.3 (solucionario)
 
Ley de gauss
Ley de gaussLey de gauss
Ley de gauss
 
Problemas de p f-e
Problemas de p f-eProblemas de p f-e
Problemas de p f-e
 
ley de gauss
ley de gaussley de gauss
ley de gauss
 
Fisica ii
Fisica iiFisica ii
Fisica ii
 

Similar a Ley de gauss clase 5 ok TE

Ley de gauss clase 5 ok
Ley de gauss clase 5 okLey de gauss clase 5 ok
Ley de gauss clase 5 ok
Tensor
 
Clase LG5
Clase LG5Clase LG5
Clase LG5
Tensor
 
Electromagnetismo: Ley de Gauss
Electromagnetismo: Ley de GaussElectromagnetismo: Ley de Gauss
Electromagnetismo: Ley de Gauss
Diego Casso
 
Ley de gauss clase 5 ok
Ley de gauss clase 5 okLey de gauss clase 5 ok
Ley de gauss clase 5 ok
Tensor
 
Ley de gauss_distribuciones continuas de carga
Ley de gauss_distribuciones continuas de cargaLey de gauss_distribuciones continuas de carga
Ley de gauss_distribuciones continuas de carga
Heinert Julio Carranza
 
FÍSICA - FLUJO ELÉCTRICO Y LEY DE GAUSS.
FÍSICA - FLUJO ELÉCTRICO Y LEY DE GAUSS.FÍSICA - FLUJO ELÉCTRICO Y LEY DE GAUSS.
FÍSICA - FLUJO ELÉCTRICO Y LEY DE GAUSS.
CarlosAlfredoMalavCa
 
Ley de Gauss.pdf
Ley de Gauss.pdfLey de Gauss.pdf
Ley de Gauss.pdf
StephanieRobertaPCas
 
Ley de gauss clase 5 ok
Ley de gauss clase 5 okLey de gauss clase 5 ok
Ley de gauss clase 5 ok
Tensor
 
Presentacion 3_ ley de Gauss.pptx
Presentacion 3_ ley de Gauss.pptxPresentacion 3_ ley de Gauss.pptx
Presentacion 3_ ley de Gauss.pptx
LauraPuentes29
 
Ley de gauss clase 5 ok
Ley de gauss clase 5 okLey de gauss clase 5 ok
Ley de gauss clase 5 ok
Tensor
 
3. ley de gauss 8hrs
3.  ley de gauss   8hrs3.  ley de gauss   8hrs
3. ley de gauss 8hrs
ifrancot
 
3. ley de gauss 8hrs
3.  ley de gauss   8hrs3.  ley de gauss   8hrs
3. ley de gauss 8hrs
ifrancot
 
GaussAmpere.ppt
GaussAmpere.pptGaussAmpere.ppt
GaussAmpere.ppt
erickSANTACRUZ4
 
Ley de gauss
Ley de gaussLey de gauss
Ley de gauss
Germán Rivero Pintos
 
Clase de la semana 3: La ley de Gauss
Clase de la semana 3: La ley de GaussClase de la semana 3: La ley de Gauss
Clase de la semana 3: La ley de Gauss
Yuri Milachay
 
Capítulo III (68) de física II Ley de Gauss - definitivo
Capítulo III (68) de física II   Ley de Gauss - definitivoCapítulo III (68) de física II   Ley de Gauss - definitivo
Capítulo III (68) de física II Ley de Gauss - definitivo
LUIS POWELL
 
Ley de gauss
Ley de gaussLey de gauss
Ley de gauss
Christian Alcoser
 
Campo electrico de cargas puntuales
Campo electrico de cargas puntualesCampo electrico de cargas puntuales
Campo electrico de cargas puntuales
Damaris Marquinez
 
FLUJOELECTRICOYLALEYDEGAUSSOPTA2011.pptx
FLUJOELECTRICOYLALEYDEGAUSSOPTA2011.pptxFLUJOELECTRICOYLALEYDEGAUSSOPTA2011.pptx
FLUJOELECTRICOYLALEYDEGAUSSOPTA2011.pptx
CarlosNolazco2
 
Presentación1
Presentación1Presentación1
Presentación1
danireyes16
 

Similar a Ley de gauss clase 5 ok TE (20)

Ley de gauss clase 5 ok
Ley de gauss clase 5 okLey de gauss clase 5 ok
Ley de gauss clase 5 ok
 
Clase LG5
Clase LG5Clase LG5
Clase LG5
 
Electromagnetismo: Ley de Gauss
Electromagnetismo: Ley de GaussElectromagnetismo: Ley de Gauss
Electromagnetismo: Ley de Gauss
 
Ley de gauss clase 5 ok
Ley de gauss clase 5 okLey de gauss clase 5 ok
Ley de gauss clase 5 ok
 
Ley de gauss_distribuciones continuas de carga
Ley de gauss_distribuciones continuas de cargaLey de gauss_distribuciones continuas de carga
Ley de gauss_distribuciones continuas de carga
 
FÍSICA - FLUJO ELÉCTRICO Y LEY DE GAUSS.
FÍSICA - FLUJO ELÉCTRICO Y LEY DE GAUSS.FÍSICA - FLUJO ELÉCTRICO Y LEY DE GAUSS.
FÍSICA - FLUJO ELÉCTRICO Y LEY DE GAUSS.
 
Ley de Gauss.pdf
Ley de Gauss.pdfLey de Gauss.pdf
Ley de Gauss.pdf
 
Ley de gauss clase 5 ok
Ley de gauss clase 5 okLey de gauss clase 5 ok
Ley de gauss clase 5 ok
 
Presentacion 3_ ley de Gauss.pptx
Presentacion 3_ ley de Gauss.pptxPresentacion 3_ ley de Gauss.pptx
Presentacion 3_ ley de Gauss.pptx
 
Ley de gauss clase 5 ok
Ley de gauss clase 5 okLey de gauss clase 5 ok
Ley de gauss clase 5 ok
 
3. ley de gauss 8hrs
3.  ley de gauss   8hrs3.  ley de gauss   8hrs
3. ley de gauss 8hrs
 
3. ley de gauss 8hrs
3.  ley de gauss   8hrs3.  ley de gauss   8hrs
3. ley de gauss 8hrs
 
GaussAmpere.ppt
GaussAmpere.pptGaussAmpere.ppt
GaussAmpere.ppt
 
Ley de gauss
Ley de gaussLey de gauss
Ley de gauss
 
Clase de la semana 3: La ley de Gauss
Clase de la semana 3: La ley de GaussClase de la semana 3: La ley de Gauss
Clase de la semana 3: La ley de Gauss
 
Capítulo III (68) de física II Ley de Gauss - definitivo
Capítulo III (68) de física II   Ley de Gauss - definitivoCapítulo III (68) de física II   Ley de Gauss - definitivo
Capítulo III (68) de física II Ley de Gauss - definitivo
 
Ley de gauss
Ley de gaussLey de gauss
Ley de gauss
 
Campo electrico de cargas puntuales
Campo electrico de cargas puntualesCampo electrico de cargas puntuales
Campo electrico de cargas puntuales
 
FLUJOELECTRICOYLALEYDEGAUSSOPTA2011.pptx
FLUJOELECTRICOYLALEYDEGAUSSOPTA2011.pptxFLUJOELECTRICOYLALEYDEGAUSSOPTA2011.pptx
FLUJOELECTRICOYLALEYDEGAUSSOPTA2011.pptx
 
Presentación1
Presentación1Presentación1
Presentación1
 

Más de Tensor

Libertad
LibertadLibertad
Libertad
Tensor
 
Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)
Tensor
 
Metodo de la bisección
Metodo de la bisecciónMetodo de la bisección
Metodo de la bisección
Tensor
 
Transito vehicular
Transito vehicularTransito vehicular
Transito vehicular
Tensor
 
Teoria de colas
Teoria de colasTeoria de colas
Teoria de colas
Tensor
 
Practica 7 2016
Practica 7 2016Practica 7 2016
Practica 7 2016
Tensor
 
Practica 6 2016
Practica 6 2016Practica 6 2016
Practica 6 2016
Tensor
 
Game maker
Game makerGame maker
Game maker
Tensor
 
Practica 5 2016
Practica 5 2016Practica 5 2016
Practica 5 2016
Tensor
 
Procesamiento de archivos
Procesamiento de archivosProcesamiento de archivos
Procesamiento de archivos
Tensor
 
Cadenas y funciones de cadena
Cadenas y funciones de cadenaCadenas y funciones de cadena
Cadenas y funciones de cadena
Tensor
 
Simulación en promodel clase 04
Simulación en promodel clase 04Simulación en promodel clase 04
Simulación en promodel clase 04
Tensor
 
Reduccion de orden
Reduccion de ordenReduccion de orden
Reduccion de orden
Tensor
 
Variación+de+parametros
Variación+de+parametrosVariación+de+parametros
Variación+de+parametros
Tensor
 
Coeficientes indeterminados enfoque de superposición
Coeficientes indeterminados   enfoque de superposiciónCoeficientes indeterminados   enfoque de superposición
Coeficientes indeterminados enfoque de superposición
Tensor
 
Bernoulli y ricatti
Bernoulli y ricattiBernoulli y ricatti
Bernoulli y ricatti
Tensor
 
Practica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicioPractica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicio
Tensor
 
Clase 14 ondas reflejadas
Clase 14 ondas reflejadasClase 14 ondas reflejadas
Clase 14 ondas reflejadas
Tensor
 
Ondas em
Ondas emOndas em
Ondas em
Tensor
 
Clase 7 ondas electromagneticas
Clase 7 ondas electromagneticasClase 7 ondas electromagneticas
Clase 7 ondas electromagneticas
Tensor
 

Más de Tensor (20)

Libertad
LibertadLibertad
Libertad
 
Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)
 
Metodo de la bisección
Metodo de la bisecciónMetodo de la bisección
Metodo de la bisección
 
Transito vehicular
Transito vehicularTransito vehicular
Transito vehicular
 
Teoria de colas
Teoria de colasTeoria de colas
Teoria de colas
 
Practica 7 2016
Practica 7 2016Practica 7 2016
Practica 7 2016
 
Practica 6 2016
Practica 6 2016Practica 6 2016
Practica 6 2016
 
Game maker
Game makerGame maker
Game maker
 
Practica 5 2016
Practica 5 2016Practica 5 2016
Practica 5 2016
 
Procesamiento de archivos
Procesamiento de archivosProcesamiento de archivos
Procesamiento de archivos
 
Cadenas y funciones de cadena
Cadenas y funciones de cadenaCadenas y funciones de cadena
Cadenas y funciones de cadena
 
Simulación en promodel clase 04
Simulación en promodel clase 04Simulación en promodel clase 04
Simulación en promodel clase 04
 
Reduccion de orden
Reduccion de ordenReduccion de orden
Reduccion de orden
 
Variación+de+parametros
Variación+de+parametrosVariación+de+parametros
Variación+de+parametros
 
Coeficientes indeterminados enfoque de superposición
Coeficientes indeterminados   enfoque de superposiciónCoeficientes indeterminados   enfoque de superposición
Coeficientes indeterminados enfoque de superposición
 
Bernoulli y ricatti
Bernoulli y ricattiBernoulli y ricatti
Bernoulli y ricatti
 
Practica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicioPractica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicio
 
Clase 14 ondas reflejadas
Clase 14 ondas reflejadasClase 14 ondas reflejadas
Clase 14 ondas reflejadas
 
Ondas em
Ondas emOndas em
Ondas em
 
Clase 7 ondas electromagneticas
Clase 7 ondas electromagneticasClase 7 ondas electromagneticas
Clase 7 ondas electromagneticas
 

Último

Power Point: El conflicto inminente (Bosquejo)
Power Point: El conflicto inminente (Bosquejo)Power Point: El conflicto inminente (Bosquejo)
Power Point: El conflicto inminente (Bosquejo)
https://gramadal.wordpress.com/
 
Presentación de la historia de PowerPoint y sus características más relevantes.
Presentación de la historia de PowerPoint y sus características más relevantes.Presentación de la historia de PowerPoint y sus características más relevantes.
Presentación de la historia de PowerPoint y sus características más relevantes.
genesiscabezas469
 
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsadUrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
JorgeVillota6
 
CINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍA
CINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍACINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍA
CINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍA
Fernández Gorka
 
p4s.co Ecosistema de Ecosistemas - Diagrama.pdf
p4s.co Ecosistema de Ecosistemas - Diagrama.pdfp4s.co Ecosistema de Ecosistemas - Diagrama.pdf
p4s.co Ecosistema de Ecosistemas - Diagrama.pdf
DavidCamiloMosquera
 
ELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdf
ELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdfELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdf
ELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdf
DaliaAndrade1
 
TRABAJO FINAL CADENA, DE SUMINISTROS.pdf
TRABAJO FINAL CADENA, DE SUMINISTROS.pdfTRABAJO FINAL CADENA, DE SUMINISTROS.pdf
TRABAJO FINAL CADENA, DE SUMINISTROS.pdf
RojasEstradaEsther
 
REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...
REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...
REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...
carla526481
 
La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptxLa orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
PaolaAlejandraCarmon1
 
Desarrollo-Embrionario-y-Diferenciacion-Celular.pptx
Desarrollo-Embrionario-y-Diferenciacion-Celular.pptxDesarrollo-Embrionario-y-Diferenciacion-Celular.pptx
Desarrollo-Embrionario-y-Diferenciacion-Celular.pptx
TatianaHerrera46
 
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdfCompartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
JimmyDeveloperWebAnd
 
Cuadernillo De Quimica 3 De Secundaria - Trimestre III - Alumno - Omar Chiqu...
Cuadernillo  De Quimica 3 De Secundaria - Trimestre III - Alumno - Omar Chiqu...Cuadernillo  De Quimica 3 De Secundaria - Trimestre III - Alumno - Omar Chiqu...
Cuadernillo De Quimica 3 De Secundaria - Trimestre III - Alumno - Omar Chiqu...
JesusSanchez136180
 
Hablemos de ESI para estudiantes Cuadernillo
Hablemos de ESI para estudiantes CuadernilloHablemos de ESI para estudiantes Cuadernillo
Hablemos de ESI para estudiantes Cuadernillo
Mónica Sánchez
 
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
MiNeyi1
 
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdfEvaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
EfranMartnez8
 
Presentación sector la arenita_paijan pptx
Presentación sector la arenita_paijan pptxPresentación sector la arenita_paijan pptx
Presentación sector la arenita_paijan pptx
Aracely Natalia Lopez Talavera
 
Lecciones 11 Esc. Sabática. El conflicto inminente docx
Lecciones 11 Esc. Sabática. El conflicto inminente docxLecciones 11 Esc. Sabática. El conflicto inminente docx
Lecciones 11 Esc. Sabática. El conflicto inminente docx
Alejandrino Halire Ccahuana
 
MANUAL PARA LA ADMINISTRACION DE SIST. DE AGUA POTABLE 2021.pdf
MANUAL PARA LA ADMINISTRACION DE SIST. DE AGUA POTABLE 2021.pdfMANUAL PARA LA ADMINISTRACION DE SIST. DE AGUA POTABLE 2021.pdf
MANUAL PARA LA ADMINISTRACION DE SIST. DE AGUA POTABLE 2021.pdf
IvanAguilarGalvan1
 
La filosofía presocrática y los filosofos más relvantes del periodo.
La filosofía presocrática y los filosofos más relvantes del periodo.La filosofía presocrática y los filosofos más relvantes del periodo.
La filosofía presocrática y los filosofos más relvantes del periodo.
DobbieElfo
 
Business Plan -rAIces - Agro Business Tech
Business Plan -rAIces - Agro Business TechBusiness Plan -rAIces - Agro Business Tech
Business Plan -rAIces - Agro Business Tech
johnyamg20
 

Último (20)

Power Point: El conflicto inminente (Bosquejo)
Power Point: El conflicto inminente (Bosquejo)Power Point: El conflicto inminente (Bosquejo)
Power Point: El conflicto inminente (Bosquejo)
 
Presentación de la historia de PowerPoint y sus características más relevantes.
Presentación de la historia de PowerPoint y sus características más relevantes.Presentación de la historia de PowerPoint y sus características más relevantes.
Presentación de la historia de PowerPoint y sus características más relevantes.
 
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsadUrkuninaLab.pdfsadsadasddassadsadsadasdsad
UrkuninaLab.pdfsadsadasddassadsadsadasdsad
 
CINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍA
CINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍACINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍA
CINE COMO RECURSO DIDÁCTICO para utilizar en TUTORÍA
 
p4s.co Ecosistema de Ecosistemas - Diagrama.pdf
p4s.co Ecosistema de Ecosistemas - Diagrama.pdfp4s.co Ecosistema de Ecosistemas - Diagrama.pdf
p4s.co Ecosistema de Ecosistemas - Diagrama.pdf
 
ELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdf
ELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdfELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdf
ELEMENTOS DE LA COMPRENSION ORAL-ESCUCHA ACTIVA.pdf
 
TRABAJO FINAL CADENA, DE SUMINISTROS.pdf
TRABAJO FINAL CADENA, DE SUMINISTROS.pdfTRABAJO FINAL CADENA, DE SUMINISTROS.pdf
TRABAJO FINAL CADENA, DE SUMINISTROS.pdf
 
REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...
REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...
REGIMÉN ACADÉMICO PARA LA EDUCACIÓN SECUNDARIA - RESOC-2024-1650-GDEBA-DGC...
 
La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptxLa orientación educativa en el proceso de enseñanza-aprendizaje.pptx
La orientación educativa en el proceso de enseñanza-aprendizaje.pptx
 
Desarrollo-Embrionario-y-Diferenciacion-Celular.pptx
Desarrollo-Embrionario-y-Diferenciacion-Celular.pptxDesarrollo-Embrionario-y-Diferenciacion-Celular.pptx
Desarrollo-Embrionario-y-Diferenciacion-Celular.pptx
 
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdfCompartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
Compartir p4s.co Pitch Hackathon Template Plantilla final.pptx-2.pdf
 
Cuadernillo De Quimica 3 De Secundaria - Trimestre III - Alumno - Omar Chiqu...
Cuadernillo  De Quimica 3 De Secundaria - Trimestre III - Alumno - Omar Chiqu...Cuadernillo  De Quimica 3 De Secundaria - Trimestre III - Alumno - Omar Chiqu...
Cuadernillo De Quimica 3 De Secundaria - Trimestre III - Alumno - Omar Chiqu...
 
Hablemos de ESI para estudiantes Cuadernillo
Hablemos de ESI para estudiantes CuadernilloHablemos de ESI para estudiantes Cuadernillo
Hablemos de ESI para estudiantes Cuadernillo
 
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
1.- manual-para-la-creacion-33-dias-de-manifestacion-ulises-sampe.pdf
 
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdfEvaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
Evaluacion-Formativa-Nueva Escuela Mexicana NEM-ok.pdf
 
Presentación sector la arenita_paijan pptx
Presentación sector la arenita_paijan pptxPresentación sector la arenita_paijan pptx
Presentación sector la arenita_paijan pptx
 
Lecciones 11 Esc. Sabática. El conflicto inminente docx
Lecciones 11 Esc. Sabática. El conflicto inminente docxLecciones 11 Esc. Sabática. El conflicto inminente docx
Lecciones 11 Esc. Sabática. El conflicto inminente docx
 
MANUAL PARA LA ADMINISTRACION DE SIST. DE AGUA POTABLE 2021.pdf
MANUAL PARA LA ADMINISTRACION DE SIST. DE AGUA POTABLE 2021.pdfMANUAL PARA LA ADMINISTRACION DE SIST. DE AGUA POTABLE 2021.pdf
MANUAL PARA LA ADMINISTRACION DE SIST. DE AGUA POTABLE 2021.pdf
 
La filosofía presocrática y los filosofos más relvantes del periodo.
La filosofía presocrática y los filosofos más relvantes del periodo.La filosofía presocrática y los filosofos más relvantes del periodo.
La filosofía presocrática y los filosofos más relvantes del periodo.
 
Business Plan -rAIces - Agro Business Tech
Business Plan -rAIces - Agro Business TechBusiness Plan -rAIces - Agro Business Tech
Business Plan -rAIces - Agro Business Tech
 

Ley de gauss clase 5 ok TE

  • 1. Ley de Gauss Clase 5 03/Enero/2015
  • 2. Ley de Gauss  Este ley permite calcular fácilmente los campos eléctricos que resultan de distribuciones simétricas de la carga, tales como una corteza esférica o una línea infinita.  Además se entiende por superficie cerrada aquella que divide el espacio en dos regiones diferentes, la interior y la exterior a dicha superficie como se denota a continuación.
  • 3. Ley de Gauss Dipolo eléctrico encerrado en una superficie de forma arbitraria. El numero de líneas que abandonan la superficie es exactamente igual al número de líneas que entran en ella sin que importe donde se dibuje la superficie, siempre que se encierren dentro de ella ambas cargas del dipolo.
  • 4. Ley de Gauss Para superficies que encierran otras distribuciones de carga, como el que se muestra en la figura, el numero neto de líneas que sale por cualquier superficie que encierra las cargas es proporcional a la carga encerrada dentro de dicha superficie. Este es un enunciado cualitativo de la ley de Gauss.
  • 5. Ley de Gauss  Nota. Para contar el numero neto de líneas que salen de la superficie, cuéntese cualquier línea que cruce desde el interior como +1 y cualquier penetración desde el exterior como -1. Así pues para la superficie indicada el balance total de las líneas que cruzan al superficie es cero.
  • 6. Flujo eléctrico  Las unidades del flujo son 𝑁 ∙ 𝑚2 /𝐶 . Como el campo eléctrico es proporcional al número de líneas por unidad de área, el flujo eléctrico es proporcional a número de líneas de campo que atraviesan el área. Líneas de campo correspondientes a un campo eléctrico uniforme que E que atraviesa un área A perpendicular al campo. El producto EA es el flujo 𝜙 a través del área. EA  A E
  • 7. Flujo eléctrico Líneas de campo correspondientes a un campo eléctrico uniforme perpendicular al área 𝐴1, pero que forma un ángulo 𝜃 con el vector unitario 𝑛 normal al área 𝐴2 . Cuando E no es perpendicular al área es 𝐸 𝑛 𝐴 , siendo 𝐸 𝑛 = 𝐸𝑐𝑜𝑠𝜃 la componente de E perpendicular al área. El flujo que atraviesa 𝐴2 es el mismo que pasa por 𝐴1 n  E1A 2A2 1cosA A  La superficie del área 𝐴2 no es perpendicular al campo eléctrico E. Sin embargo, el numero de líneas que atraviesan el área 𝐴2 es el mismo que atraviesa el área 𝐴1 , que es perpendicular a E. Las áreas están relacionadas por : 𝐴2 𝑐𝑜𝑠𝜃 = 𝐴1
  • 8. Flujo eléctrico  En donde 𝜃 es el ángulo existente entre E y el vector unitario 𝑛 perpendicular a la superficie 𝐴2. Por lo tanto el flujo de una superficie viene definido por :  En donde 𝐸 𝑛 = 𝐸 ∙ 𝑛 es la componente de E perpendicular, o normal, a la superficie. cos nE nA EA E A    
  • 9. Flujo eléctrico  La figura siguiente muestra una superficie de forma arbitraria sobre el cual el campo E puede variar. iA in E Si el área ∆𝐴𝑖 del elemento de área que elegimos es suficientemente pequeño podemos considerarle como un plano y la variación del campo eléctrico a través del elemento puede despreciarse. Por lo tanto el flujo eléctrico a través de ese elemento es: 0 lim Definición de flujo electrico i ii i A i S E n A E ndA       
  • 10. Enunciado cuantitativo de la Ley de Gauss  La siguiente figura muestra una superficie esférica de radio 𝑅 con su centro en la carga puntual 𝑄. El campo eléctrico en un punto cualquiera de la superficie perpendicular a la superficie se denota de la siguiente manera: 2n kQ E R  Una superficie esférica puntual que incluye la carga puntual 𝑄 . (a) El mismo numero de líneas de campo eléctrico que pasa a través de esta superficie que incluya 𝑄. (b) El flujo se calcula fácilmente para una superficie esférica. Es igual al producto de 𝐸 𝑛 por el área superficial, es decir 𝐸 𝑛4𝜋𝑅2
  • 11. Enunciado cuantitativo de la Ley de Gauss  Por lo tanto el flujo neto de E a través de esta superficie esférica es:  𝜙 𝑛𝑒𝑡𝑜 = 𝑆 𝐸 𝑛 𝑑𝐴 = 𝐸 𝑛 𝑆 𝑑𝐴  En donde 𝐸 𝑛 puede salir de la integral por ser constante en todos los puntos. La integral de 𝑑𝐴 extendida a toda la superficie es precisamente el área total, igual a 4𝜋𝑅2. Con este valor y sustituyendo 𝑘𝑄/𝑅2 por 𝐸 𝑛 se obtiene:  𝜙 𝑛𝑒𝑡𝑜 = 𝑆 𝐸 𝑛 𝑑𝐴 = 4𝜋𝑘𝑄𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟
  • 12. Enunciado cuantitativo de la Ley de Gauss  Por lo tanto el flujo neto a través de cualquier superficie es igual a 4𝜋𝑘 veces la carga neta dentro de la superficie.:  𝜙 𝑛𝑒𝑡𝑜 = 𝑆 𝐸 𝑛 𝑑𝐴 = 4𝜋𝑘𝑄𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟  Esta propiedad del campo eléctrico es la que ha hecho posible dibujar un numero fijo de líneas de fuerza desde una carga y conseguir que la densidad de líneas se a proporcional a la intensidad del campo.
  • 13. Enunciado cuantitativo de la Ley de Gauss  Es costumbre escribir la constante de Coulomb 𝑘 en función de otra constante 𝜖0, denominada permitividad del espacio libre (permitividad del vacío):  Por lo tanto el valor de 𝜀0 en unidades del SI es 0 1 4 k     12 2 2 0 9 2 2 1 1 8.85 10 / 4 4 8.99 10 / C N m K N m C           
  • 14.  Por lo tanto al ley de Gauss es válida para todas las superficies y distribuciones de carga. Puede utilizarse para calcular el campo eléctrico en algunas distribuciones espaciales de carga con altos grados de simetría. En los campos eléctricos que resultan de distribuciones de carga estática, la ley de Gauss y la ley de Coulomb son equivalentes. Sin embargo la ley de Gauss es mas general, pues también puede aplicarse a distribuciones de carga no estáticas.  Por lo tanto utilizaremos que  𝜙 𝐸 = 𝐸𝑟 ∙ 𝑑𝐴 = 𝑄 𝑛𝑒𝑡𝑎 𝜀0
  • 15. Problemas  Problema 1  Cuando se mide el campo eléctrico en cualquier parte sobre la superficie de un cascarón esférico delgado con 0.750 m de radio, se ve que es igual a 890 N/C y apunta radialmente hacia el centro de la esfera? a) ¿Cuál es la carga neta dentro de la superficie de la esfera? b) ¿Qué puede concluir acerca de la naturaleza y distribución de la carga dentro del cascarón esférico?
  • 16. Problemas  Solución inciso a  De acuerdo a la siguiente figura tenemos que: rE rE rE rE rE rE rE rE rE r Datos 𝐸𝑟 = 890𝑁/𝐶 𝑟 = 0.750 𝑚
  • 17. Problemas  Por la ley de Gauss tenemos: 𝜙 𝐸 = 𝐸𝑟 ∙ 𝑑𝐴 = 𝐸𝑟 ∙ 𝑑𝐴𝑐𝑜𝑠 180° = 𝑄 𝑛𝑒𝑡𝑎 𝜀0 ⇒ ⟹ −𝐸𝑟 𝑑𝐴 = 𝑄 𝑛𝑒𝑡𝑎 𝜀0 ⟹ − 890 4𝜋 0.750 2 = 𝑄 𝑛𝑒𝑡𝑎 8.85×10−12 ∴ 𝑄 𝑛𝑒𝑡𝑎 = −55.7 × 10−9 = −55.7𝑛𝐶
  • 18. Problemas  Solución Inciso b  Que la carga neta que actúa dentro de la superficie de la esfera esta cargada negativamente.
  • 19. Problemas  Problema 2  Cuatro superficies cerradas, 𝑆1 𝑎 𝑆4, junto con las cargas −2𝑄, 𝑄 𝑦 − 𝑄 se dibujan en la siguiente figura. Encuentre el flujo eléctrico a través de cada superficie.
  • 20. Problemas  Solución  Nos piden: 𝜙 𝐸 a través de cada superficie = ?  𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆1 = 𝐸 ∙ 𝑑 𝐴 = 𝑄 𝑛𝑒𝑡𝑎 𝜀0  por la ley de Gauss  ∴ 𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆1 = −2𝑄+𝑄 𝜀0 = −𝑄 𝜀0
  • 21. Problemas  Solución  Nos piden: 𝜙 𝐸 a través de cada superficie = ?  𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆2 = 𝐸 ∙ 𝑑 𝐴 = 𝑄 𝑛𝑒𝑡𝑎 𝜀0  por la ley de Gauss  ∴ 𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆2 = +𝑄−𝑄 𝜀0 = 0
  • 22. Problemas  Solución  Nos piden: 𝜙 𝐸 a través de cada superficie = ?  𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆3 = 𝐸 ∙ 𝑑 𝐴 = 𝑄 𝑛𝑒𝑡𝑎 𝜀0  por la ley de Gauss  ∴ 𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆3 = −2𝑄+𝑄−𝑄 𝜀0 = −2𝑄 𝜀0
  • 23. Problemas  Solución  Nos piden: 𝜙 𝐸 a través de cada superficie = ?  𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆4 = 𝐸 ∙ 𝑑 𝐴 = 𝑄 𝑛𝑒𝑡𝑎 𝜀0  por la ley de Gauss  ∴ 𝜙 𝐸 𝑎 𝑡𝑟𝑎𝑣é𝑠 𝑆4 = 0 𝜀0 = 0
  • 24. Problemas  Problema 3  Consideremos un campo eléctrico uniforme 𝐸 = 2𝑘𝑁/𝐶 𝑖. (a) ¿Cuál es el flujo de este campo que atraviesa un cuadrado de 10 cm de lado cuyo plano es paralelo al plano 𝑦𝑧? (b) ¿Cual es el flujo que atraviesa el mismo cuadrado si la normal a su plano forma un ángulo de 30° con el eje 𝑥?
  • 25. Problemas  Solución inciso a  La definición del campo eléctrico es 𝜙 = 𝑆 𝐸 ∙ 𝑛𝑑𝐴. Nosotros podemos aplicar esta definición para encontrar el flujo eléctrico.  Por lo tanto aplicando esta definición tenemos que:  𝜙 = 𝑆 2𝑘𝑁/𝐶 𝑖 ∙ 𝑖𝑑𝐴 = 2𝑘𝑁/𝐶 𝑆 𝑑𝐴  𝜙 = 2𝑘𝑁/𝐶 0.1𝑚 2 = 20𝑁 ∙ 𝑚2 /𝐶 𝑃𝑙𝑎𝑛𝑜 𝑦𝑧 𝐿 = 10𝑐𝑚 𝑥 𝑦 𝑧
  • 26. Problemas  Solución inciso b  Procedemos de la misma forma que el inciso a, tenemos que:  𝑖 ∙ 𝑛 = 𝑐𝑜𝑠30°  𝜙 = 𝑆 2𝑘𝑁/𝐶 𝑖 ∙ 𝑛𝑑𝐴 = 2𝑘𝑁 𝐶 𝑐𝑜𝑠30°𝑑𝐴  𝜙 = 2𝑘𝑁/𝐶 0.1𝑚 2 𝑐𝑜𝑠30° = 17.3𝑁 ∙ 𝑚2/𝐶 𝑃𝑙𝑎𝑛𝑜 𝑦𝑧 𝐿 = 10𝑐𝑚 𝑥 𝑦 𝑧