Tema 1: Números y operaciones 
Nadia Tronco Zarza 
5º de primaria 
Curso 2014/2015
¿Qué sabemos? 
Los millones 
La propiedad distributiva 
Operaciones combinadas 
Potencias 
Potencias de base 10 
Juegos y vídeos 
Bibliografía 
Índice
Juegos y videos
Esquema 
Números y operaciones 
El Sistema de Numeración Decimal 
( los millones ) 
Operaciones 
combinadas 
Significado de l paréntesis 
Prioridad de las 
operaciones 
Resolución de 
problemas 
La 
multiplicación 
Las potencias 
Propiedad 
distributiva
¿Qué sabemos? 
CM DM UM C D U 
2 3 0 4 2 8 
Doscientos treinta mil cuatrocientos veintiocho 
1 CM = 10 DM = 100 UM = 1000 C = 10000 D = 
= 100000 U
PROPIEDADES DE LA SUMA Y DE 
LA MULTIPLICACIÓN 
POPRIEDAD CONMUTATIVA 
50 + 90 = 90 +50 = 140 
4 x 5 = 5 x 4 = 20 
PROPIEDAD ASOCIATIVA 
( 50 + 90 ) + 60 = 50 + ( 90 + 60 ) = 200 
( 4 x 5 ) x 2 = 4 x ( 5 x 2 ) = 40 
PIORIDAD DE LA MULTIPLICACIÓN 
Cuando en una expresión aritmética aparecen sumas, restas 
y multiplicaciones combinadas, primero se realizan las 
multiplicaciones.
Los millones 
Diez centenas de millar ( 10 CM ) hacen una unidad de millón ( 1 
UMM ) 
DMM UMM CM DM UM C D U 
1 UMM = 10 CM = 1000000 U 
Diez unidades de millón ( 10 UMM ) hacen una decena de 
millón ( 1 DMM ). 
DMM UMM CM DM UM C D U 
1 DMM = 10 UMM = 10000000 U
Los millones 
Así se nombran los números de siete u ocho cifras: 
MILLONES MILES UNIDADES 
CMM DMM UMM CM UM DM C D U 
1 6 8 1 3 5 8 0 
Dieciséis millones ochocientos trece mil quinientos ochenta 
16 813 580 Dieciséis millones ochocientos trece mil quinientos ochenta
La propiedad distributiva 
Producto de una suma por un número 
8 + 4 
( 8 + 4 ) x 5 = 8 x 5 + 4 x 5 
12 x 5 = 40 + 20 
60 = 60
La propiedad distributiva 
Producto de una resta por un número 
4 12 – 4 
( 12 – 4 ) x 5 = 12 x 5 – 4 x 5 
8 x 5 = 60 - 20
La propiedad distributiva 
Para multiplicar el resultado de una suma, o de una resta, por un número, 
podemos operar de dos formas: 
Multiplicar el resultado de la suma, o de la resta, por el número. 
Multiplicar cada sumando por ese mismo número y sumar, o restar, los 
productos obtenidos.
Practica de la multiplicación 
Para multiplicar 4 308 x 264, procedemos de la siguiente forma: 
4 U x 4308 
60 U x 4308 
200 U x 4308 
UMM CM DM UM C D U 
4 
x 
3 
2 
0 
6 
E n la practica, no escribimos los ceros finales de los productos parciales: 
8 
4 
2 
8 
1 
5 
6 
7 
8 
1 
2 
4 
6 
3 
8 
0 
2 
0 
0 
1 1 3 7 3 1 2
Operaciones combinadas 
Observa estas dos expresiones: 
Tres cestas de cinco manzanas, y hemos comido dos manzanas de cada 
cesta. 
3 x ( 5 – 2) 
3 x 3 
M 9
Operaciones combinadas 
Tres cestas de cinco manzanas, y hemos comido dos manzanas 
. 
3 x 5 – 2 
15 - 2 
13
Operaciones combinadas 
Para resolver expresiones con operaciones combinadas, calculamos : 
Primero, las operaciones que están entre paréntesis. 
Después, las multiplicaciones. 
Y por último, las sumas y las restas. 
14 – 2 x ( 8 – 3 ) = 14 – 2 x 5 = 14 – 10 = 4
POTENCIAS 
Una potencia es el resultado de multiplicar un número por si mismo varias 
veces. 
La base es el número que se multiplica y el exponente indica las veces que 
se multiplica. 
Para expresar la multiplicación, además del signo x, se suele utilizar un 
punto ( . ). 
7 . 7 . 7 = 7 3 
EXPONENTE 
BASE 5 3 = 5 x 5 x5 = 125 
Las potencias de exponente 2 reciben el nombre de cuadrados. 
4 2 Cuatro al cuadrado 
4 2 = 4 x 4 = 16
11 . 11 = 112 
Las potencias de exponente 3 reciben el nombre de cubos. 
43 Cuatro al cubo 
43 = 4 x 4 x 4 = 64 
4 4 
POTENCIAS

Matematicas

  • 1.
    Tema 1: Númerosy operaciones Nadia Tronco Zarza 5º de primaria Curso 2014/2015
  • 2.
    ¿Qué sabemos? Losmillones La propiedad distributiva Operaciones combinadas Potencias Potencias de base 10 Juegos y vídeos Bibliografía Índice
  • 3.
  • 4.
    Esquema Números yoperaciones El Sistema de Numeración Decimal ( los millones ) Operaciones combinadas Significado de l paréntesis Prioridad de las operaciones Resolución de problemas La multiplicación Las potencias Propiedad distributiva
  • 5.
    ¿Qué sabemos? CMDM UM C D U 2 3 0 4 2 8 Doscientos treinta mil cuatrocientos veintiocho 1 CM = 10 DM = 100 UM = 1000 C = 10000 D = = 100000 U
  • 6.
    PROPIEDADES DE LASUMA Y DE LA MULTIPLICACIÓN POPRIEDAD CONMUTATIVA 50 + 90 = 90 +50 = 140 4 x 5 = 5 x 4 = 20 PROPIEDAD ASOCIATIVA ( 50 + 90 ) + 60 = 50 + ( 90 + 60 ) = 200 ( 4 x 5 ) x 2 = 4 x ( 5 x 2 ) = 40 PIORIDAD DE LA MULTIPLICACIÓN Cuando en una expresión aritmética aparecen sumas, restas y multiplicaciones combinadas, primero se realizan las multiplicaciones.
  • 7.
    Los millones Diezcentenas de millar ( 10 CM ) hacen una unidad de millón ( 1 UMM ) DMM UMM CM DM UM C D U 1 UMM = 10 CM = 1000000 U Diez unidades de millón ( 10 UMM ) hacen una decena de millón ( 1 DMM ). DMM UMM CM DM UM C D U 1 DMM = 10 UMM = 10000000 U
  • 8.
    Los millones Asíse nombran los números de siete u ocho cifras: MILLONES MILES UNIDADES CMM DMM UMM CM UM DM C D U 1 6 8 1 3 5 8 0 Dieciséis millones ochocientos trece mil quinientos ochenta 16 813 580 Dieciséis millones ochocientos trece mil quinientos ochenta
  • 9.
    La propiedad distributiva Producto de una suma por un número 8 + 4 ( 8 + 4 ) x 5 = 8 x 5 + 4 x 5 12 x 5 = 40 + 20 60 = 60
  • 10.
    La propiedad distributiva Producto de una resta por un número 4 12 – 4 ( 12 – 4 ) x 5 = 12 x 5 – 4 x 5 8 x 5 = 60 - 20
  • 11.
    La propiedad distributiva Para multiplicar el resultado de una suma, o de una resta, por un número, podemos operar de dos formas: Multiplicar el resultado de la suma, o de la resta, por el número. Multiplicar cada sumando por ese mismo número y sumar, o restar, los productos obtenidos.
  • 12.
    Practica de lamultiplicación Para multiplicar 4 308 x 264, procedemos de la siguiente forma: 4 U x 4308 60 U x 4308 200 U x 4308 UMM CM DM UM C D U 4 x 3 2 0 6 E n la practica, no escribimos los ceros finales de los productos parciales: 8 4 2 8 1 5 6 7 8 1 2 4 6 3 8 0 2 0 0 1 1 3 7 3 1 2
  • 13.
    Operaciones combinadas Observaestas dos expresiones: Tres cestas de cinco manzanas, y hemos comido dos manzanas de cada cesta. 3 x ( 5 – 2) 3 x 3 M 9
  • 14.
    Operaciones combinadas Trescestas de cinco manzanas, y hemos comido dos manzanas . 3 x 5 – 2 15 - 2 13
  • 15.
    Operaciones combinadas Pararesolver expresiones con operaciones combinadas, calculamos : Primero, las operaciones que están entre paréntesis. Después, las multiplicaciones. Y por último, las sumas y las restas. 14 – 2 x ( 8 – 3 ) = 14 – 2 x 5 = 14 – 10 = 4
  • 16.
    POTENCIAS Una potenciaes el resultado de multiplicar un número por si mismo varias veces. La base es el número que se multiplica y el exponente indica las veces que se multiplica. Para expresar la multiplicación, además del signo x, se suele utilizar un punto ( . ). 7 . 7 . 7 = 7 3 EXPONENTE BASE 5 3 = 5 x 5 x5 = 125 Las potencias de exponente 2 reciben el nombre de cuadrados. 4 2 Cuatro al cuadrado 4 2 = 4 x 4 = 16
  • 17.
    11 . 11= 112 Las potencias de exponente 3 reciben el nombre de cubos. 43 Cuatro al cubo 43 = 4 x 4 x 4 = 64 4 4 POTENCIAS