Medidas De
Tendencia Central
Media, Mediana, Moda.
Como su nombre indica, una
medida de tendencia central es
la que describe un valor central
para ubicar la localización del
conjunto de datos.
MEDIA
La media de un conjunto de datos
numérico es el valor que se obtiene al
sumar los valores observados (obtenidos) y
al dividir la suma entre el número total de
observaciones.
Si las observaciones provienen de una
muestra se llama media muestral; si
proceden de toda la población, recibe el
nombre de media poblacional.
Ejemplo:
Determinar a partir de una muestra de
14 fósiles, la altura promedio de un
hueso frontal. Para cada fósil en la
muestra, Xi, con i igual al número de la
observación, se mide el hueso en
milímetros (mm) y se obtienen los datos
siguientes.
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14
42 27 25 40 33 31 42 34 35 25 29 30 29 35
Una desventaja de la media es que
puede resultar muy afectada cuando
existen datos inusualmente grandes o
muy pequeños con relación al resto
dentro de un conjunto. Como se ha
señalado, este tipo de datos se llaman
atípicos.
Ejemplo:
Un alumno universitario acaba de
comprar sus libros y observa la cantidad
de páginas que tienen: 247, 312, 198,
780, 175, 286, 293, 258.
¿Cuál es el promedio de páginas que
tienen sus libros?
¿Es esta una buena aproximación para
todos sus libros?
MEDIANA
La mediana es el valor que está justo en
medio de los datos una vez que han
sido ordenados de forma ascendente.
Cuando la muestra tiene un número
impar de datos solo hay un valor en
medio, pero si el número de datos es
par existen dos; en este caso la media
de ambos es la mediana.
La mediana de una muestra se obtiene
al ordenar los datos de menor a mayor,
incluidos los valores que se repiten, de
manera que todos aparezcan en la lista
ordenada. Por tanto:
Mediana= Valor en medio si el número de datos es impar.
Promedio de los valores de en medio si el número
de datos es par.
Ejemplo:
Calcular la mediana para los datos del
ejemplo anterior:
1 2 3 4 5 6 7 8 9 10 11 12 13 14
25 25 27 29 29 30 31 33 34 35 35 40 42 42
MODA
La moda es el valor más frecuente
dentro del conjunto de datos, es decir,
el que tiene mayor frecuencia.
En muchas ocasiones la moda no es
única, pues puede existir más de un
valor con la misma frecuencia dentro
del conjunto de observaciones (datos).
Ejemplo:
Calcular la moda a partir de los
siguientes datos obtenidos en el grupo
de tercer semestre de la licenciatura en
educación preescolar con relación a la
edad:
22 18 19 18 18 20 19 19 21 19
MEDIDAS DE
TENDENCIA CENTRAL
CON DATOS
AGRUPADOS
Media de un conjunto de datos
agrupados
La media de un conjunto de datos
agrupados se calcula al usar las marcas
de clase y las frecuencias relativas
asociadas. Si las marcas de clase son X1,
…, Xn y las frecuencias que
corresponden f1, …, fn entonces la
media es un promedio de las marcas
ponderando por las frecuencias; se
calcula como sigue.
Ejemplo:
Calcular la media de una muestra
que presenta datos agrupados.
Un grupo de 45 alumnos presentan
un examen para ingresar a una
universidad. Las calificaciones se
han agrupado como se muestra en
el siguiente cuadro.
Intervalo de
calificaciones
Número de personas
[0,10) 2
[10,30) 5
[30,50) 8
[50,60) 9
[60,75) 10
[75,90) 9
[90,100) 2
Intervalo de
Calificaciones
Marca de
clase
Xi
Número de
personas
fi
Xi * fi
[0,10) 5 2 10
[10,30) 20 5 100
[30,50) 40 8 320
[50,60) 55 9 495
[60,75) 67.5 10 675
[75,90) 82.5 9 742.5
[90,100) 95 2 190
Xi * fi
10
100
320
495
675
742.5
190
Total:
Mediana de un conjunto de datos
agrupados
La mediana para datos agrupados se
ubica en el intervalo donde la frecuencia
acumulada relativa alcanza al menos 50%;
este intervalo se llama clase mediana y se
obtiene por medio de interpolación.
Sea, Li el limite inferior del intervalo en el
que se alcanza al menos 50% de los datos;
ai, la longitud de dicho intervalo; Fi-1 la
frecuencia acumulada del intervalo
anterior, y fi la frecuencia del intervalo que
se considera.
Ejemplo:
Calcular la mediana de un conjunto de datos
agrupados.
Determinar la mediana de los datos del ejemplo
anterior.
Intervalo de
calificaciones
Número de
personas
[0,10) 2
[10,30) 5
[30,50) 8
[50,60) 9
[60,75) 10
[75,90) 9
[90,100) 2
Intervalo de
Calificaciones
Número de
personas
fi
Frecuencia
acumulada
[0,10) 2 2
[10,30) 5 7
[30,50) 8 15
[50,60) 9 24
[60,75) 10 34
[75,90) 9 43
[90,100) 2 45
Moda de un conjunto de datos
agrupados
La moda es el valor más
frecuente en el conjunto de
datos, se encuentra en el
intervalo de máxima
frecuencia que se llama
clase modal.
L1= limite inferior de la clase modal.
Ai= longitud de la clase modal.
Fi= frecuencia de la clase modal.
Fi-1= frecuencia de la clase anterior a la clase modal.
fi-+1= frecuencia de la clase siguiente a la modal.
Ejemplo:
Calcular la moda de un conjunto de datos
agrupados.
Determinar la moda del conjunto de datos del
ejemplo pasado.
Intervalo de
calificaciones
Número de personas
[0,10) 2
[10,30) 5
[30,50) 8
[50,60) 9
[60,75) 10
[75,90) 9
[90,100) 2

Medidas de-tendencia-central

  • 1.
  • 2.
    Como su nombreindica, una medida de tendencia central es la que describe un valor central para ubicar la localización del conjunto de datos.
  • 3.
    MEDIA La media deun conjunto de datos numérico es el valor que se obtiene al sumar los valores observados (obtenidos) y al dividir la suma entre el número total de observaciones. Si las observaciones provienen de una muestra se llama media muestral; si proceden de toda la población, recibe el nombre de media poblacional.
  • 4.
    Ejemplo: Determinar a partirde una muestra de 14 fósiles, la altura promedio de un hueso frontal. Para cada fósil en la muestra, Xi, con i igual al número de la observación, se mide el hueso en milímetros (mm) y se obtienen los datos siguientes. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 42 27 25 40 33 31 42 34 35 25 29 30 29 35
  • 5.
    Una desventaja dela media es que puede resultar muy afectada cuando existen datos inusualmente grandes o muy pequeños con relación al resto dentro de un conjunto. Como se ha señalado, este tipo de datos se llaman atípicos.
  • 6.
    Ejemplo: Un alumno universitarioacaba de comprar sus libros y observa la cantidad de páginas que tienen: 247, 312, 198, 780, 175, 286, 293, 258. ¿Cuál es el promedio de páginas que tienen sus libros? ¿Es esta una buena aproximación para todos sus libros?
  • 7.
    MEDIANA La mediana esel valor que está justo en medio de los datos una vez que han sido ordenados de forma ascendente. Cuando la muestra tiene un número impar de datos solo hay un valor en medio, pero si el número de datos es par existen dos; en este caso la media de ambos es la mediana.
  • 8.
    La mediana deuna muestra se obtiene al ordenar los datos de menor a mayor, incluidos los valores que se repiten, de manera que todos aparezcan en la lista ordenada. Por tanto: Mediana= Valor en medio si el número de datos es impar. Promedio de los valores de en medio si el número de datos es par.
  • 9.
    Ejemplo: Calcular la medianapara los datos del ejemplo anterior: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 25 25 27 29 29 30 31 33 34 35 35 40 42 42
  • 10.
    MODA La moda esel valor más frecuente dentro del conjunto de datos, es decir, el que tiene mayor frecuencia. En muchas ocasiones la moda no es única, pues puede existir más de un valor con la misma frecuencia dentro del conjunto de observaciones (datos).
  • 11.
    Ejemplo: Calcular la modaa partir de los siguientes datos obtenidos en el grupo de tercer semestre de la licenciatura en educación preescolar con relación a la edad: 22 18 19 18 18 20 19 19 21 19
  • 12.
  • 13.
    Media de unconjunto de datos agrupados La media de un conjunto de datos agrupados se calcula al usar las marcas de clase y las frecuencias relativas asociadas. Si las marcas de clase son X1, …, Xn y las frecuencias que corresponden f1, …, fn entonces la media es un promedio de las marcas ponderando por las frecuencias; se calcula como sigue.
  • 14.
    Ejemplo: Calcular la mediade una muestra que presenta datos agrupados. Un grupo de 45 alumnos presentan un examen para ingresar a una universidad. Las calificaciones se han agrupado como se muestra en el siguiente cuadro.
  • 15.
    Intervalo de calificaciones Número depersonas [0,10) 2 [10,30) 5 [30,50) 8 [50,60) 9 [60,75) 10 [75,90) 9 [90,100) 2
  • 16.
    Intervalo de Calificaciones Marca de clase Xi Númerode personas fi Xi * fi [0,10) 5 2 10 [10,30) 20 5 100 [30,50) 40 8 320 [50,60) 55 9 495 [60,75) 67.5 10 675 [75,90) 82.5 9 742.5 [90,100) 95 2 190
  • 17.
  • 18.
    Mediana de unconjunto de datos agrupados La mediana para datos agrupados se ubica en el intervalo donde la frecuencia acumulada relativa alcanza al menos 50%; este intervalo se llama clase mediana y se obtiene por medio de interpolación. Sea, Li el limite inferior del intervalo en el que se alcanza al menos 50% de los datos; ai, la longitud de dicho intervalo; Fi-1 la frecuencia acumulada del intervalo anterior, y fi la frecuencia del intervalo que se considera.
  • 19.
    Ejemplo: Calcular la medianade un conjunto de datos agrupados. Determinar la mediana de los datos del ejemplo anterior. Intervalo de calificaciones Número de personas [0,10) 2 [10,30) 5 [30,50) 8 [50,60) 9 [60,75) 10 [75,90) 9 [90,100) 2
  • 20.
    Intervalo de Calificaciones Número de personas fi Frecuencia acumulada [0,10)2 2 [10,30) 5 7 [30,50) 8 15 [50,60) 9 24 [60,75) 10 34 [75,90) 9 43 [90,100) 2 45
  • 21.
    Moda de unconjunto de datos agrupados La moda es el valor más frecuente en el conjunto de datos, se encuentra en el intervalo de máxima frecuencia que se llama clase modal.
  • 22.
    L1= limite inferiorde la clase modal. Ai= longitud de la clase modal. Fi= frecuencia de la clase modal. Fi-1= frecuencia de la clase anterior a la clase modal. fi-+1= frecuencia de la clase siguiente a la modal. Ejemplo: Calcular la moda de un conjunto de datos agrupados. Determinar la moda del conjunto de datos del ejemplo pasado.
  • 23.
    Intervalo de calificaciones Número depersonas [0,10) 2 [10,30) 5 [30,50) 8 [50,60) 9 [60,75) 10 [75,90) 9 [90,100) 2