SlideShare una empresa de Scribd logo
1 de 6
Instituto Universitario de Tecnología
Antonio Jose de Sucre
Construcción Civil
Julieth Lozada
Sección S4
Barquisimeto, Julio 2015
Movimiento Armónico Simple
Física se ha idealizado un tipo de movimiento oscilatorio, en el que se considera que
sobre el sistema no existe la acción de las fuerzas de rozamiento, es decir, no existe
disipación de energía y el movimiento se mantiene invariable, sin necesidad de
comunicarle energía exterior a este. Este movimiento se llama MOVIMIENTO ARMONICO
SIMPLE (MAS).
Un ejemplo de este movimiento se puede encontrar a partir del desplazamiento de un
punto cualquiera alrededor de toda la longitud de una circunferencia.
Elementos:
1. Oscilación o vibración: es el movimiento realizado desde cualquier posición hasta
regresar de nuevo a ella pasando por las posiciones intermedias.
2. Elongación: es el desplazamiento de la partícula que oscila desde la posición
de equilibrio hasta cualquier posición en un instante dado.
3. Amplitud: es la máxima elongación, es decir, el desplazamiento máximo a partir de la
posición de equilibrio.
4. Periodo: es el tiempo requerido para realizar una oscilación o vibración completa. Se
designa con la letra "t".
5. Frecuencia: es el número de oscilación o vibración realizadas en la unidad de tiempo.
6. Posición de equilibrio: es la posición en la cual no actúa ninguna fuerza neta sobre la
partícula oscilante.
Fórmulas:
x = A . cos . w . t
x = elongación
r = A = radio
t = tiempo
w = velocidad angular
Vx = - V . sen Ø
V = w . r
h = w . t
w . t = V = Vector representativo de la velocidad lineal.
Vx = proyección de "Y" sobre el eje "X"
h = ángulo
Vx = -2 . F . A . sen (2 . )
Vx = + w " A2 - x2
Ax = - w2 . A . cos. w . t
Ax = - Ac . cos Ø
Ac = proyección de aceleración sobre el eje horizontal
Ac = w2 . x
Ac = aceleración centrípeta
t = 2 " mk
T = period
Sistema de Masa-Resorte
El resorte es un elemento muy común en máquinas. Tiene una longitud normal, en
ausencia de fuerzas externas. Cuando se le aplican fuerzas se deforma alargándose o
acortándose en una magnitud “x” llamada “deformación”. Cada resorte se caracteriza
mediante una constante “k” que es igual a la fuerza por unidad de deformación que hay
que aplicarle. La fuerza que ejercerá el resorte es igual y opuesto a la fuerza externa
aplicada (si el resorte deformado está en reposo) y se llama fuerza recuperadora
elástica.
Dicha fuerza recuperadora elástica es igual a:
F = -k * x
El sistema masa resorte está compuesto por una masa puntual, un resorte ideal una
colgante y un punto de sujeción del resorte.
El resorte ideal puede ser un resorte de alto coeficiente de elasticidad y que no se
deforma en el rango de estiramiento del resorte. La ecuación de fuerzas del sistema masa
resorte es: m a = – k x donde x es la posición (altura) de la masa respecto a la línea de
equilibrio de fuerzas del sistema, k es la constante de elasticidad del resorte y m la masa
del cuerpo que es sometido a esta oscilación. Esta ecuación puede escribirse como: m d2
x/d t2 = – k x cuya solución es x = Am sin (w t + ø), donde: Am es la máxima amplitud de
la oscilación, w es la velocidad angular que se calcula como ( k /m) 0,5. La constante ø es
conocida como ángulo de desfase que se utiliza para ajustar la ecuación para que calce
con los datos que el observador indica.
De la ecuación anterior se puede despejar el periodo de oscilación del sistema que es
dado por: T = 2 pi (m/k)0,5 A partir de la ecuación de posición se puede determinar la
rapidez con que se desplaza el objeto: Vs = valor absoluto de ( dx /dt). Vs = |Am (k/m) 0,5
* cos (wt + ø) |. En la condición de equilibrio la fuerza ejercida por la atracción
gravitacional sobre la masa colgante es cancelada por la fuerza que ejerce el resorte a ser
deformado. A partir de esta posición de equilibrio se puede realizar un estiramiento lento
hasta llegar a la amplitud máxima deseada y esta es la que se utilizará como Am de la
ecuación de posición del centro de masa de la masa colgante. Si se toma como posición
inicial la parte más baja, la constante de desfase será – pi/2, pues la posición se
encuentra en la parte más baja de la oscilación.
Péndulo Simple y Oscilaciones
Un péndulo es un objeto suspendido de un punto, de modo que puede oscilar. Es muy
fácil construir un péndulo y con él se puede estudiar las propiedades que le pertenecen.
Lo que se leerá más adelante consiste en un trabajo de física, el cual, da a conocer el
estudio de las relaciones que existen entre el período de un péndulo:
Su masa
Su amplitud
Su largo
DESCRIPCIÓN TEÓRICA
PERÍODO: Se define como el tiempo que se demora en realizar una oscilación completa.
Para determinar el período se utiliza la siguiente expresión T/ N° de Osc. (Tiempo
empleado dividido por el número de oscilaciones).
FRECUENCIA: Se define como el número de oscilaciones que se generan en un
segundo. Para determinar la frecuencia se utiliza la siguiente ecuación N° de Osc. / T
(número de oscilaciones dividido del tiempo)
AMPLITUD: Se define como la máxima distancia que existe entre la posición de equilibrio
y la máxima altura.
CICLO: Se define como la vibración completa del cuerpo que se da cuando el cuerpo
parte de una posición y retorna al mismo punto.
OSCILACIÓN: Se define como el movimiento que se realiza siempre al mismo punto fijo
LEYES DEL PENDULO
El periodo de un péndulo es independiente de su amplitud. Esto significa que si se tienen
2 péndulos iguales (longitud y masa), pero uno de ellos tiene una amplitud de recorrido
mayor que el otro, en ambas condiciones la medida del periodo de estos péndulos es el
mismo.
El periodo de un péndulo es directamente proporcional a la raíz cuadrada de su longitud.
Esto significa que el periodo de un péndulo puede aumentar o disminuir de acuerdo a la
raíz cuadrada de la longitud de ese péndulo.
Péndulo Simple: Un péndulo simple se define como una partícula de masa m suspendida
del punto O por un hilo inextensible de longitud l y de masa despreciable.
Si la partícula se desplaza a una posición ð0 (ángulo que hace el hilo con la vertical) y
luego se suelta, el péndulo comienza a oscilar.
Oscilación – Amplitud – Período y Frecuencia:
A continuación estudiaremos una serie de procesos que ocurren durante la oscilación de
los péndulos y que permiten enunciar las leyes del péndulo.
Daremos previamente los siguientes conceptos:
Longitud del péndulo (L): es la distancia entre el punto de suspensión y el centro de
gravedad del péndulo.
Oscilación simple: es la trayectoria descrita entre dos posiciones extremas (arco AB).
Oscilación completa o doble oscilación: es la trayectoria realizada desde una posición
extrema hasta volver a ella, pasando por la otra extrema (arco ABA).
Angulo de amplitud o amplitud (alfa): es el ángulo formado por la posición de reposo
(equilibrio) y una de las posiciones extremas.
Período o tiempo de oscilación doble (T): es el tiempo que emplea el péndulo en efectuar
una oscilación doble.
Tiempo de oscilación simple (t): es el tiempo que emplea el péndulo en efectuar una
oscilación simple.
Elongación (e): Distancia entre la posición de reposo OR y cualquier otra posición.
Máxima elongación: distancia entre la posición de reposo y la posición extrema o de
máxima amplitud.
Frecuencia (f): Es el número de oscilaciones en cada unidad de tiempo.
f=número de oscilaciones/tiempo
Hidrostática
La hidrostática es la rama de la mecánica de fluidos que estudia los fluidos en estado de
reposo; es decir, sin que existan fuerzas que alteren su movimiento o posición.
Reciben el nombre de fluidos aquellos cuerpos que tienen la propiedad de adaptarse a la
forma del recipiente que los contiene. A esta propiedad se le da el nombre de fluidez.
Son fluidos tanto los líquidos como los gases, y su forma puede cambiar fácilmente por
escurrimiento debido a la acción de fuerzas pequeñas.
Los principales teoremas que respaldan el estudio de la hidrostática son el principio de
Pascal y el principio de Arquímedes.
Principio de Pascal
En física, el principio de Pascal es una ley enunciada por el físico y matemático
francés Blaise Pascal (1623-1662).
El principio de Pascal afirma que la presión aplicada sobre un fluido no
compresible contenido en un recipiente indeformable se transmite con igual intensidad en
todas las direcciones y a todas partes del recipiente.
Este tipo de fenómeno se puede apreciar, por ejemplo en la prensa hidráulica la cual
funciona aplicando este principio.
Definimos compresibilidad como la capacidad que tiene un fluido para disminuir el
volumen que ocupa al ser sometido a la acción de fuerzas.
Principio de Arquímedes
El principio de Arquímedes afirma que todo cuerpo sólido sumergido total o parcialmente
en un fluido experimenta un empuje vertical y hacia arriba con una fuerza igual al peso
del volumen de fluido desalojado.
El objeto no necesariamente ha de estar completamente sumergido en dicho fluido, ya
que si el empuje que recibe es mayor que el peso aparente del objeto, éste flotará y
estará sumergido sólo parcialmente.
Propiedades de los fluidos
Las propiedades de un fluido son las que definen el comportamiento y características del
mismo tanto en reposo como en movimiento.
Existen propiedades primarias y propiedades secundarias del fluido.
Propiedades primarias o termodinámicas:
Densidad
Presión
Temperatura
Energía interna
Entalpía
Entropía
Calores específicos
Propiedades secundarias
Caracterizan el comportamiento específico de los fluidos.
Viscosidad
Conductividad térmica
Tensión superficial
Compresión

Más contenido relacionado

La actualidad más candente

Movimiento Armónico Simple (introducción)
Movimiento Armónico Simple (introducción)Movimiento Armónico Simple (introducción)
Movimiento Armónico Simple (introducción)Cris Rafael
 
Movimiento ArmóNico Simple
Movimiento ArmóNico SimpleMovimiento ArmóNico Simple
Movimiento ArmóNico Simpleguest8ae586
 
Aplicaciones del M.A.S
Aplicaciones del M.A.SAplicaciones del M.A.S
Aplicaciones del M.A.Smariearevalo16
 
Movimiento armónico simple
Movimiento armónico simpleMovimiento armónico simple
Movimiento armónico simpleGonzalo V.
 
Movimiento periodico-sergio-gonzalez
Movimiento periodico-sergio-gonzalezMovimiento periodico-sergio-gonzalez
Movimiento periodico-sergio-gonzalezPilar Blanco Moure
 
Movimiento armónico simple
Movimiento armónico simpleMovimiento armónico simple
Movimiento armónico simpleYuri Milachay
 
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.SDINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.SJOSE LEAL OVIEDO
 
Cap3 movimiento armonico simple
Cap3 movimiento armonico simpleCap3 movimiento armonico simple
Cap3 movimiento armonico simpleAbel JaguaR Acua
 
movimiento armonico simple
movimiento armonico simplemovimiento armonico simple
movimiento armonico simplecraquenzz
 
Cap3 movimiento armonico simple 2
Cap3 movimiento armonico simple 2Cap3 movimiento armonico simple 2
Cap3 movimiento armonico simple 2Abel JaguaR Acua
 
Movimiento armónico simple
Movimiento armónico simpleMovimiento armónico simple
Movimiento armónico simpleOzz Man
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simpleSaer C
 
CAPITULO VIII : MOVIMIENTO ARMONICO SIMPLE
CAPITULO VIII : MOVIMIENTO ARMONICO SIMPLECAPITULO VIII : MOVIMIENTO ARMONICO SIMPLE
CAPITULO VIII : MOVIMIENTO ARMONICO SIMPLECarlos Levano
 
Diapositivas de trabajo y nergia
Diapositivas de trabajo y nergiaDiapositivas de trabajo y nergia
Diapositivas de trabajo y nergiavictor calderon
 
Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234victor calderon
 
Trabajo y energía victor
Trabajo y energía victorTrabajo y energía victor
Trabajo y energía victorvictor calderon
 

La actualidad más candente (20)

Movimiento Armónico Simple (introducción)
Movimiento Armónico Simple (introducción)Movimiento Armónico Simple (introducción)
Movimiento Armónico Simple (introducción)
 
Movimiento ArmóNico Simple
Movimiento ArmóNico SimpleMovimiento ArmóNico Simple
Movimiento ArmóNico Simple
 
Aplicaciones del M.A.S
Aplicaciones del M.A.SAplicaciones del M.A.S
Aplicaciones del M.A.S
 
Movimiento armónico simple
Movimiento armónico simpleMovimiento armónico simple
Movimiento armónico simple
 
Movimiento periodico-sergio-gonzalez
Movimiento periodico-sergio-gonzalezMovimiento periodico-sergio-gonzalez
Movimiento periodico-sergio-gonzalez
 
Movimiento armónico simple
Movimiento armónico simpleMovimiento armónico simple
Movimiento armónico simple
 
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.SDINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
DINAMICA ROTACIONA y ELASTICIDAD - MOVIMIENTO OSCILATORIO - M.A.S
 
Cap3 movimiento armonico simple
Cap3 movimiento armonico simpleCap3 movimiento armonico simple
Cap3 movimiento armonico simple
 
FISICA
FISICAFISICA
FISICA
 
movimiento armonico simple
movimiento armonico simplemovimiento armonico simple
movimiento armonico simple
 
Ondas
Ondas Ondas
Ondas
 
Cap3 movimiento armonico simple 2
Cap3 movimiento armonico simple 2Cap3 movimiento armonico simple 2
Cap3 movimiento armonico simple 2
 
Movimiento armónico simple
Movimiento armónico simpleMovimiento armónico simple
Movimiento armónico simple
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simple
 
Movimiento armónico simple
Movimiento armónico simple  Movimiento armónico simple
Movimiento armónico simple
 
CAPITULO VIII : MOVIMIENTO ARMONICO SIMPLE
CAPITULO VIII : MOVIMIENTO ARMONICO SIMPLECAPITULO VIII : MOVIMIENTO ARMONICO SIMPLE
CAPITULO VIII : MOVIMIENTO ARMONICO SIMPLE
 
Diapositivas de trabajo y nergia
Diapositivas de trabajo y nergiaDiapositivas de trabajo y nergia
Diapositivas de trabajo y nergia
 
Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234
 
Movimiento Armónico Simple
Movimiento Armónico Simple Movimiento Armónico Simple
Movimiento Armónico Simple
 
Trabajo y energía victor
Trabajo y energía victorTrabajo y energía victor
Trabajo y energía victor
 

Similar a MovimientoArmónico

Dinamica rotacional y elasticidad movimiento oscilatorio
Dinamica rotacional y elasticidad   movimiento oscilatorio Dinamica rotacional y elasticidad   movimiento oscilatorio
Dinamica rotacional y elasticidad movimiento oscilatorio desiree movil
 
Movimiento armónico simple
Movimiento armónico simpleMovimiento armónico simple
Movimiento armónico simpleroberthadrian
 
El movimiento armónico simple
El movimiento armónico simpleEl movimiento armónico simple
El movimiento armónico simpleluisv9616
 
Trabajo fisica m.a.s
Trabajo fisica m.a.sTrabajo fisica m.a.s
Trabajo fisica m.a.shectorjose013
 
Trabajo fisica m.a.s
Trabajo fisica m.a.sTrabajo fisica m.a.s
Trabajo fisica m.a.shectorjose013
 
movimiento armónico simple
movimiento armónico simplemovimiento armónico simple
movimiento armónico simpleluisv9616
 
Movimiento armónico
Movimiento armónicoMovimiento armónico
Movimiento armónicoIUTAJS
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simplecesarpinilla91
 
Movimiento armónico simple
Movimiento armónico simpleMovimiento armónico simple
Movimiento armónico simpleMayeiriz Falcon
 
Trabajo y energia en el movimiento armonico simple y rotacional jose fisica1 s2
Trabajo y energia en el movimiento armonico simple y rotacional jose fisica1 s2Trabajo y energia en el movimiento armonico simple y rotacional jose fisica1 s2
Trabajo y energia en el movimiento armonico simple y rotacional jose fisica1 s2JDPVasquez
 
Movimiento armónico simple. Fisica
Movimiento armónico simple. FisicaMovimiento armónico simple. Fisica
Movimiento armónico simple. FisicaGustavoMendoza600
 
Jose gonzalez 23918359- s3 asig 6
Jose gonzalez  23918359- s3 asig 6Jose gonzalez  23918359- s3 asig 6
Jose gonzalez 23918359- s3 asig 6José González
 

Similar a MovimientoArmónico (20)

Grupo1.doc
Grupo1.docGrupo1.doc
Grupo1.doc
 
Dinamica rotacional y elasticidad movimiento oscilatorio
Dinamica rotacional y elasticidad   movimiento oscilatorio Dinamica rotacional y elasticidad   movimiento oscilatorio
Dinamica rotacional y elasticidad movimiento oscilatorio
 
Movimiento armónico simple
Movimiento armónico simpleMovimiento armónico simple
Movimiento armónico simple
 
El movimiento armónico simple
El movimiento armónico simpleEl movimiento armónico simple
El movimiento armónico simple
 
Mas
MasMas
Mas
 
Ricardo Catari
 Ricardo Catari Ricardo Catari
Ricardo Catari
 
Mariangel
MariangelMariangel
Mariangel
 
Trabajo fisica m.a.s
Trabajo fisica m.a.sTrabajo fisica m.a.s
Trabajo fisica m.a.s
 
Trabajo fisica m.a.s
Trabajo fisica m.a.sTrabajo fisica m.a.s
Trabajo fisica m.a.s
 
movimiento armónico simple
movimiento armónico simplemovimiento armónico simple
movimiento armónico simple
 
Movimiento armónico
Movimiento armónicoMovimiento armónico
Movimiento armónico
 
Movimiento armónico simple
Movimiento armónico simpleMovimiento armónico simple
Movimiento armónico simple
 
Unidades cinco y seis
Unidades cinco y seisUnidades cinco y seis
Unidades cinco y seis
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simple
 
Movimiento armónico simple
Movimiento armónico simpleMovimiento armónico simple
Movimiento armónico simple
 
Trabajo y energia en el movimiento armonico simple y rotacional jose fisica1 s2
Trabajo y energia en el movimiento armonico simple y rotacional jose fisica1 s2Trabajo y energia en el movimiento armonico simple y rotacional jose fisica1 s2
Trabajo y energia en el movimiento armonico simple y rotacional jose fisica1 s2
 
Movimiento armónico simple
Movimiento armónico simpleMovimiento armónico simple
Movimiento armónico simple
 
Movimiento armónico simple. Fisica
Movimiento armónico simple. FisicaMovimiento armónico simple. Fisica
Movimiento armónico simple. Fisica
 
Moviminto armonico
Moviminto armonicoMoviminto armonico
Moviminto armonico
 
Jose gonzalez 23918359- s3 asig 6
Jose gonzalez  23918359- s3 asig 6Jose gonzalez  23918359- s3 asig 6
Jose gonzalez 23918359- s3 asig 6
 

Más de julalexandra

Educación Para La Salud
Educación Para La SaludEducación Para La Salud
Educación Para La Saludjulalexandra
 
Productividad y pertinencia en la investigacion univ.
Productividad y pertinencia en la investigacion univ.Productividad y pertinencia en la investigacion univ.
Productividad y pertinencia en la investigacion univ.julalexandra
 

Más de julalexandra (8)

La lengua 4to
La lengua 4toLa lengua 4to
La lengua 4to
 
Educación Para La Salud
Educación Para La SaludEducación Para La Salud
Educación Para La Salud
 
El cerebro
El cerebroEl cerebro
El cerebro
 
Productividad y pertinencia en la investigacion univ.
Productividad y pertinencia en la investigacion univ.Productividad y pertinencia en la investigacion univ.
Productividad y pertinencia en la investigacion univ.
 
Imagenes biologia
Imagenes biologiaImagenes biologia
Imagenes biologia
 
Imagenes salud
Imagenes saludImagenes salud
Imagenes salud
 
Inmunologia
InmunologiaInmunologia
Inmunologia
 
Sistema Fonatorio
Sistema FonatorioSistema Fonatorio
Sistema Fonatorio
 

Último

DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdf
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdfDESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdf
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdfssuser6a4120
 
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdf
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdfHarris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdf
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdffrank0071
 
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA EN EQUINOS.pptx
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA  EN EQUINOS.pptxEXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA  EN EQUINOS.pptx
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA EN EQUINOS.pptxJhonFonseca16
 
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdfvguadarramaespinal
 
Ejercicios de estimulación prenatales.pptx
Ejercicios de estimulación prenatales.pptxEjercicios de estimulación prenatales.pptx
Ejercicios de estimulación prenatales.pptxYahairaVaraDiaz1
 
Procedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdfProcedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdfCarlaLSarita1
 
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)s.calleja
 
HISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPION
HISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPIONHISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPION
HISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPIONAleMena14
 
enfermedades infecciosas diarrea viral bovina presentacion umss
enfermedades infecciosas diarrea viral bovina presentacion umssenfermedades infecciosas diarrea viral bovina presentacion umss
enfermedades infecciosas diarrea viral bovina presentacion umssCinthyaMercado3
 
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdf
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdfHolland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdf
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdffrank0071
 
Campo_magnético_y_fuerzas_magnéticas.pdf
Campo_magnético_y_fuerzas_magnéticas.pdfCampo_magnético_y_fuerzas_magnéticas.pdf
Campo_magnético_y_fuerzas_magnéticas.pdfArturoDavilaObando
 
Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...
Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...
Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...frank0071
 
LOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIA
LOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIALOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIA
LOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIALozadaAcuaMonserratt
 
PIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismo
PIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismoPIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismo
PIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismoArturoDavilaObando
 
Sucesión de hongos en estiércol de vaca experimento
Sucesión de hongos en estiércol de vaca experimentoSucesión de hongos en estiércol de vaca experimento
Sucesión de hongos en estiércol de vaca experimentoFriasMartnezAlanZuri
 
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...ocanajuanpablo0
 
valoracion hemodinamica y respuesta a fluidorerapia
valoracion hemodinamica y respuesta a fluidorerapiavaloracion hemodinamica y respuesta a fluidorerapia
valoracion hemodinamica y respuesta a fluidorerapiaresiutihjaf
 
Piccato, P. - Historia mínima de la violencia en México [2022].pdf
Piccato, P. - Historia mínima de la violencia en México [2022].pdfPiccato, P. - Historia mínima de la violencia en México [2022].pdf
Piccato, P. - Historia mínima de la violencia en México [2022].pdffrank0071
 
Teoría de usos y gratificaciones 2024.pptx
Teoría de usos y gratificaciones 2024.pptxTeoría de usos y gratificaciones 2024.pptx
Teoría de usos y gratificaciones 2024.pptxlm24028
 
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanica
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanicaproblemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanica
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanicaArturoDavilaObando
 

Último (20)

DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdf
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdfDESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdf
DESPOTISMO ILUSTRADOO - copia - copia - copia - copia.pdf
 
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdf
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdfHarris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdf
Harris, Marvin. - Caníbales y reyes. Los orígenes de la cultura [ocr] [1986].pdf
 
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA EN EQUINOS.pptx
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA  EN EQUINOS.pptxEXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA  EN EQUINOS.pptx
EXAMEN ANDROLOGICO O CAPACIDAD REPRODUCTIVA EN EQUINOS.pptx
 
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf
4.-ENLACE-QUÍMICO.-LIBRO-PRINCIPAL (1).pdf
 
Ejercicios de estimulación prenatales.pptx
Ejercicios de estimulación prenatales.pptxEjercicios de estimulación prenatales.pptx
Ejercicios de estimulación prenatales.pptx
 
Procedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdfProcedimiento e interpretación de los coprocultivos.pdf
Procedimiento e interpretación de los coprocultivos.pdf
 
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
Ensayo ENRICH (sesión clínica, Servicio de Neurología HUCA)
 
HISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPION
HISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPIONHISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPION
HISTORIA NATURAL DE LA ENFEREMEDAD: SARAMPION
 
enfermedades infecciosas diarrea viral bovina presentacion umss
enfermedades infecciosas diarrea viral bovina presentacion umssenfermedades infecciosas diarrea viral bovina presentacion umss
enfermedades infecciosas diarrea viral bovina presentacion umss
 
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdf
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdfHolland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdf
Holland, Tom - Milenio. El fin del mundo y el origen del cristianismo [2010].pdf
 
Campo_magnético_y_fuerzas_magnéticas.pdf
Campo_magnético_y_fuerzas_magnéticas.pdfCampo_magnético_y_fuerzas_magnéticas.pdf
Campo_magnético_y_fuerzas_magnéticas.pdf
 
Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...
Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...
Sternhell & Sznajder & Asheri. - El nacimiento de la ideología fascista [ocr]...
 
LOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIA
LOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIALOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIA
LOS DISTINTOS MUNICIPIO_SALUDABLE DE BOLIVIA
 
PIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismo
PIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismoPIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismo
PIZARRO-parte4.pdf apuntes de física 3, electricidad y magnetismo
 
Sucesión de hongos en estiércol de vaca experimento
Sucesión de hongos en estiércol de vaca experimentoSucesión de hongos en estiércol de vaca experimento
Sucesión de hongos en estiércol de vaca experimento
 
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
PARES CRANEALES. ORIGEN REAL Y APARENTE, TRAYECTO E INERVACIÓN. CLASIFICACIÓN...
 
valoracion hemodinamica y respuesta a fluidorerapia
valoracion hemodinamica y respuesta a fluidorerapiavaloracion hemodinamica y respuesta a fluidorerapia
valoracion hemodinamica y respuesta a fluidorerapia
 
Piccato, P. - Historia mínima de la violencia en México [2022].pdf
Piccato, P. - Historia mínima de la violencia en México [2022].pdfPiccato, P. - Historia mínima de la violencia en México [2022].pdf
Piccato, P. - Historia mínima de la violencia en México [2022].pdf
 
Teoría de usos y gratificaciones 2024.pptx
Teoría de usos y gratificaciones 2024.pptxTeoría de usos y gratificaciones 2024.pptx
Teoría de usos y gratificaciones 2024.pptx
 
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanica
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanicaproblemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanica
problemas_oscilaciones_amortiguadas.pdf aplicadas a la mecanica
 

MovimientoArmónico

  • 1. Instituto Universitario de Tecnología Antonio Jose de Sucre Construcción Civil Julieth Lozada Sección S4 Barquisimeto, Julio 2015
  • 2. Movimiento Armónico Simple Física se ha idealizado un tipo de movimiento oscilatorio, en el que se considera que sobre el sistema no existe la acción de las fuerzas de rozamiento, es decir, no existe disipación de energía y el movimiento se mantiene invariable, sin necesidad de comunicarle energía exterior a este. Este movimiento se llama MOVIMIENTO ARMONICO SIMPLE (MAS). Un ejemplo de este movimiento se puede encontrar a partir del desplazamiento de un punto cualquiera alrededor de toda la longitud de una circunferencia. Elementos: 1. Oscilación o vibración: es el movimiento realizado desde cualquier posición hasta regresar de nuevo a ella pasando por las posiciones intermedias. 2. Elongación: es el desplazamiento de la partícula que oscila desde la posición de equilibrio hasta cualquier posición en un instante dado. 3. Amplitud: es la máxima elongación, es decir, el desplazamiento máximo a partir de la posición de equilibrio. 4. Periodo: es el tiempo requerido para realizar una oscilación o vibración completa. Se designa con la letra "t". 5. Frecuencia: es el número de oscilación o vibración realizadas en la unidad de tiempo. 6. Posición de equilibrio: es la posición en la cual no actúa ninguna fuerza neta sobre la partícula oscilante. Fórmulas: x = A . cos . w . t x = elongación r = A = radio t = tiempo w = velocidad angular Vx = - V . sen Ø V = w . r h = w . t w . t = V = Vector representativo de la velocidad lineal. Vx = proyección de "Y" sobre el eje "X" h = ángulo Vx = -2 . F . A . sen (2 . ) Vx = + w " A2 - x2 Ax = - w2 . A . cos. w . t Ax = - Ac . cos Ø Ac = proyección de aceleración sobre el eje horizontal Ac = w2 . x Ac = aceleración centrípeta t = 2 " mk
  • 3. T = period Sistema de Masa-Resorte El resorte es un elemento muy común en máquinas. Tiene una longitud normal, en ausencia de fuerzas externas. Cuando se le aplican fuerzas se deforma alargándose o acortándose en una magnitud “x” llamada “deformación”. Cada resorte se caracteriza mediante una constante “k” que es igual a la fuerza por unidad de deformación que hay que aplicarle. La fuerza que ejercerá el resorte es igual y opuesto a la fuerza externa aplicada (si el resorte deformado está en reposo) y se llama fuerza recuperadora elástica. Dicha fuerza recuperadora elástica es igual a: F = -k * x El sistema masa resorte está compuesto por una masa puntual, un resorte ideal una colgante y un punto de sujeción del resorte. El resorte ideal puede ser un resorte de alto coeficiente de elasticidad y que no se deforma en el rango de estiramiento del resorte. La ecuación de fuerzas del sistema masa resorte es: m a = – k x donde x es la posición (altura) de la masa respecto a la línea de equilibrio de fuerzas del sistema, k es la constante de elasticidad del resorte y m la masa del cuerpo que es sometido a esta oscilación. Esta ecuación puede escribirse como: m d2 x/d t2 = – k x cuya solución es x = Am sin (w t + ø), donde: Am es la máxima amplitud de la oscilación, w es la velocidad angular que se calcula como ( k /m) 0,5. La constante ø es conocida como ángulo de desfase que se utiliza para ajustar la ecuación para que calce con los datos que el observador indica. De la ecuación anterior se puede despejar el periodo de oscilación del sistema que es dado por: T = 2 pi (m/k)0,5 A partir de la ecuación de posición se puede determinar la rapidez con que se desplaza el objeto: Vs = valor absoluto de ( dx /dt). Vs = |Am (k/m) 0,5 * cos (wt + ø) |. En la condición de equilibrio la fuerza ejercida por la atracción gravitacional sobre la masa colgante es cancelada por la fuerza que ejerce el resorte a ser deformado. A partir de esta posición de equilibrio se puede realizar un estiramiento lento hasta llegar a la amplitud máxima deseada y esta es la que se utilizará como Am de la ecuación de posición del centro de masa de la masa colgante. Si se toma como posición inicial la parte más baja, la constante de desfase será – pi/2, pues la posición se encuentra en la parte más baja de la oscilación. Péndulo Simple y Oscilaciones Un péndulo es un objeto suspendido de un punto, de modo que puede oscilar. Es muy fácil construir un péndulo y con él se puede estudiar las propiedades que le pertenecen. Lo que se leerá más adelante consiste en un trabajo de física, el cual, da a conocer el estudio de las relaciones que existen entre el período de un péndulo: Su masa
  • 4. Su amplitud Su largo DESCRIPCIÓN TEÓRICA PERÍODO: Se define como el tiempo que se demora en realizar una oscilación completa. Para determinar el período se utiliza la siguiente expresión T/ N° de Osc. (Tiempo empleado dividido por el número de oscilaciones). FRECUENCIA: Se define como el número de oscilaciones que se generan en un segundo. Para determinar la frecuencia se utiliza la siguiente ecuación N° de Osc. / T (número de oscilaciones dividido del tiempo) AMPLITUD: Se define como la máxima distancia que existe entre la posición de equilibrio y la máxima altura. CICLO: Se define como la vibración completa del cuerpo que se da cuando el cuerpo parte de una posición y retorna al mismo punto. OSCILACIÓN: Se define como el movimiento que se realiza siempre al mismo punto fijo LEYES DEL PENDULO El periodo de un péndulo es independiente de su amplitud. Esto significa que si se tienen 2 péndulos iguales (longitud y masa), pero uno de ellos tiene una amplitud de recorrido mayor que el otro, en ambas condiciones la medida del periodo de estos péndulos es el mismo. El periodo de un péndulo es directamente proporcional a la raíz cuadrada de su longitud. Esto significa que el periodo de un péndulo puede aumentar o disminuir de acuerdo a la raíz cuadrada de la longitud de ese péndulo. Péndulo Simple: Un péndulo simple se define como una partícula de masa m suspendida del punto O por un hilo inextensible de longitud l y de masa despreciable. Si la partícula se desplaza a una posición ð0 (ángulo que hace el hilo con la vertical) y luego se suelta, el péndulo comienza a oscilar. Oscilación – Amplitud – Período y Frecuencia: A continuación estudiaremos una serie de procesos que ocurren durante la oscilación de los péndulos y que permiten enunciar las leyes del péndulo. Daremos previamente los siguientes conceptos: Longitud del péndulo (L): es la distancia entre el punto de suspensión y el centro de gravedad del péndulo.
  • 5. Oscilación simple: es la trayectoria descrita entre dos posiciones extremas (arco AB). Oscilación completa o doble oscilación: es la trayectoria realizada desde una posición extrema hasta volver a ella, pasando por la otra extrema (arco ABA). Angulo de amplitud o amplitud (alfa): es el ángulo formado por la posición de reposo (equilibrio) y una de las posiciones extremas. Período o tiempo de oscilación doble (T): es el tiempo que emplea el péndulo en efectuar una oscilación doble. Tiempo de oscilación simple (t): es el tiempo que emplea el péndulo en efectuar una oscilación simple. Elongación (e): Distancia entre la posición de reposo OR y cualquier otra posición. Máxima elongación: distancia entre la posición de reposo y la posición extrema o de máxima amplitud. Frecuencia (f): Es el número de oscilaciones en cada unidad de tiempo. f=número de oscilaciones/tiempo Hidrostática La hidrostática es la rama de la mecánica de fluidos que estudia los fluidos en estado de reposo; es decir, sin que existan fuerzas que alteren su movimiento o posición. Reciben el nombre de fluidos aquellos cuerpos que tienen la propiedad de adaptarse a la forma del recipiente que los contiene. A esta propiedad se le da el nombre de fluidez. Son fluidos tanto los líquidos como los gases, y su forma puede cambiar fácilmente por escurrimiento debido a la acción de fuerzas pequeñas. Los principales teoremas que respaldan el estudio de la hidrostática son el principio de Pascal y el principio de Arquímedes. Principio de Pascal En física, el principio de Pascal es una ley enunciada por el físico y matemático francés Blaise Pascal (1623-1662). El principio de Pascal afirma que la presión aplicada sobre un fluido no compresible contenido en un recipiente indeformable se transmite con igual intensidad en todas las direcciones y a todas partes del recipiente. Este tipo de fenómeno se puede apreciar, por ejemplo en la prensa hidráulica la cual funciona aplicando este principio. Definimos compresibilidad como la capacidad que tiene un fluido para disminuir el volumen que ocupa al ser sometido a la acción de fuerzas. Principio de Arquímedes
  • 6. El principio de Arquímedes afirma que todo cuerpo sólido sumergido total o parcialmente en un fluido experimenta un empuje vertical y hacia arriba con una fuerza igual al peso del volumen de fluido desalojado. El objeto no necesariamente ha de estar completamente sumergido en dicho fluido, ya que si el empuje que recibe es mayor que el peso aparente del objeto, éste flotará y estará sumergido sólo parcialmente. Propiedades de los fluidos Las propiedades de un fluido son las que definen el comportamiento y características del mismo tanto en reposo como en movimiento. Existen propiedades primarias y propiedades secundarias del fluido. Propiedades primarias o termodinámicas: Densidad Presión Temperatura Energía interna Entalpía Entropía Calores específicos Propiedades secundarias Caracterizan el comportamiento específico de los fluidos. Viscosidad Conductividad térmica Tensión superficial Compresión