Prof. William Pachas Gutierrez
Es la figura que esta formado por segmentos de
rectas unidos por sus extremos dos a dos.
Vértice
  Medida del
 ángulo central
                            θ B
                              α                    Diagonal


                                               µ
           A
           γ φ              ω
                                               β C

                   Centro

  Medida del                                          Medida del
ángulo externo                                       ángulo interno
                    ε                    δ ρ
                  E ω                     D
                                  Lado
PRIMERA PROPIEDAD
Numéricamente: Lados, vértices, ángulos interiores,
ángulos exteriores y ángulos centrales son iguales.

         • Lados
         • Vértices
         • Ángulos interiores
         • Ángulos exteriores
         • Ángulos centrales
SEGUNDA PROPIEDAD

A partir de un vértice de un polígono, se pueden
trazar (n-3 ) diagonales.

Ejemplo:




        ND = (n-3) = (5-3) = 2 diagonales
TERCERA PROPIEDAD

El número total de diagonales que se puede trazar en
un polígono:           n(n − 3 )
                  ND =
                           2
Ejemplo:




                     5(5 − 3 )
              ND =             = 5 diagonales
                        2
CUARTA PROPIEDAD

 Suma de las medidas de los ángulos interiores de un
 polígono:
                S∠i =180°(n-2)
             Donde (n-2) es número de triángulos

Ejemplo:
                                       Suma de las medidas de los
                                      ángulos interiores del triangulo


               180º             180º


                        180º


S∠i = 180º x número de triángulos = 180º(5-2) = 540º
QUINTA PROPIEDAD
Suma de las medidas de los ángulos exteriores de un
polígono es 360º
                     S∠e = 360°
                         θ


  Ejemplo:                                  µ
             γ




                                      ρ
                    ω

                 θ + γ + ω + ρ + µ = 360º

Polígonos

  • 1.
  • 2.
    Es la figuraque esta formado por segmentos de rectas unidos por sus extremos dos a dos.
  • 3.
    Vértice Medidadel ángulo central θ B α Diagonal µ A γ φ ω β C Centro Medida del Medida del ángulo externo ángulo interno ε δ ρ E ω D Lado
  • 4.
    PRIMERA PROPIEDAD Numéricamente: Lados,vértices, ángulos interiores, ángulos exteriores y ángulos centrales son iguales. • Lados • Vértices • Ángulos interiores • Ángulos exteriores • Ángulos centrales
  • 5.
    SEGUNDA PROPIEDAD A partirde un vértice de un polígono, se pueden trazar (n-3 ) diagonales. Ejemplo: ND = (n-3) = (5-3) = 2 diagonales
  • 6.
    TERCERA PROPIEDAD El númerototal de diagonales que se puede trazar en un polígono: n(n − 3 ) ND = 2 Ejemplo: 5(5 − 3 ) ND = = 5 diagonales 2
  • 7.
    CUARTA PROPIEDAD Sumade las medidas de los ángulos interiores de un polígono: S∠i =180°(n-2) Donde (n-2) es número de triángulos Ejemplo: Suma de las medidas de los ángulos interiores del triangulo 180º 180º 180º S∠i = 180º x número de triángulos = 180º(5-2) = 540º
  • 8.
    QUINTA PROPIEDAD Suma delas medidas de los ángulos exteriores de un polígono es 360º S∠e = 360° θ Ejemplo: µ γ ρ ω θ + γ + ω + ρ + µ = 360º