SlideShare una empresa de Scribd logo
1 de 17
Geometría Analítica Alejandro Aguilera
Ing. Electrónica C.I 24.089.903
Plano y Recta en el Espacio
En geometría euclidiana, la recta o la línea recta se extiende en una misma dirección por
tanto tiene una sola dimensión y contiene infinitos puntos; se puede considerar que está
compuesta de infinitos segmentos. Dicha recta también se puede describir como una
sucesión continua e indefinida de puntos extendidos en una sola dimensión, es decir, no
posee principio ni fin.
Es uno de los entes geométricos fundamentales, junto al punto y el plano. Son considerados
conceptos apriorísticos ya que su definición solo es posible a partir de la descripción de las
características de otros elementos similares. Un ejemplo de las dificultades de la definición
de la recta a partir de puntos es la llamada paradoja de Zenón de la dicotomía que ilustraba
la desaparición de la recta al dividirla en puntos. Así, es posible elaborar definiciones
basándose en los postulados característicos que determinan relaciones entre los entes
fundamentales. Las rectas se suelen denominar con una letra minúscula.
Un plano es un sistema bidimensional, donde se encuentran coordenadas cartesianas, que
corresponden a un tipo de coordenadas denominadas ortogonales. Este plano cartesiano se
constituye como un espacio euclídeo, y donde pueden ser representadas funciones, a partir
de gráficos, como las que se utilizan en geometría analítica o en física. Dentro del plano
cartesiano, las coordenadas utilizan como referencia unos ejes denominados ortogonales, y
estos ejes se cortan entre sí en un punto de origen. De este modo, las coordenadas
cartesianas responden y se definen de acuerdo a la distancia respecto del origen que poseen
las proyecciones ortogonales, de acuerdo a los ejes.
 Ecuación vectorial de la recta
Sea P(x1, y1) es un punto de la recta r y su vector director, el vector tiene
igual dirección que , luego es igual a multiplicado por un escalar:
 Ecuaciones paramétricas de la recta
Operando en la ecuación vectorial de la recta llegamos a la igualdad:
Esta igualdad se verifica si:
 Ecuaciones implícitas de la recta
Una recta puede venir determinada por la intersección de los planos.
Si en las ecuaciones continuas de la recta quitamos denominadores y pasamos todo
al primer miembro, obtenemos también lasecuaciones implícitas.
Ejemplos
1Hallar las ecuaciones paramétricas, en forma continua e implícitas de la recta
que pasa por el punto A = (1, 2, 1) y cuyo vector director es .
2Hallar las ecuaciones paramétricas, en forma continua e implícita de la recta
que pasa por los puntos A(1, 0, 1) y B(0, 1, 1).
3Sea r la recta de ecuación:
¿Pertenecen a r los puntos A(0, −2, −2) y B(3, 2, 6)?
4Dada la recta r:
Hallar las ecuaciones en forma continua y paramétrica.
Ecuación vectorial
Un plano queda determinado por un punto P y un par de vectores con distinta
dirección. Para que el punto P pertenezca al plano π el vector tiene que ser
coplanario con y .
 Ecuaciones paramétricas del plano
Operando en la ecuación vectorial del plano llegamos a la igualdad:
Esta igualdad se verifica si:
 Ecuación general o implícita del plano
Un punto está en el plano π si tiene solución el sistema:
Este sistema tiene que ser compatible determinado en las incógnitas λ y µ· Por tanto
el determinante de la matriz ampliada del sistema con la columna de los términos
independientes tiene que ser igual a cero.
Desarrollamos el determinante.
Damos los valores:
Sustituimos:
Realizamos las operaciones y le damos a D el valor:
Obtenemos la ecuación general de plano:
 Vector normal
El vector es un vector normal al plano, es decir, perpendicular al
plano.
Si P(x0, y0, z0) es un punto del plano, el vector es
perpendicular al vector , y por tanto el producto escalar es cero.
De este modo también podemos determinar la ecuación general del plano, a partir
de un punto y un vector normal.
 Ecuación canónica o segmentaria del plano
Sean los puntos A(a, 0, 0), B(0, b, 0) y C(0, 0, c), la ecuación canónica viene dada
por:
Ejercicios
1Hallar las ecuaciones paramétricas e implícitas del plano que pasa por el punto
A(1, 1, 1) y tiene como vectores directores a y .
2Hallar las ecuaciones paramétricas e implícitas del plano que pasa por los puntos
A(−1, 2, 3) y B(3, 1, 4) y contiene al vector .
3Hallar las ecuaciones paramétricas e implícitas del plano que pasa por los puntos
A(−1, 1, −1), B(0, 1, 1) y C(4, −3, 2).
4Sea π el plano de ecuaciones paramétricas:
Se pide comprobar si los puntos A (2, 1, 9/2) y B(0, 9, −1) pertenecen al plano.
5Hallar la ecuación segmentaria del plano que pasa por los puntos A(1, 1, 0), B(1,
0, 1) y C(0, 1, 1).
Dividiendo por −2 obtenemos la ecuación segmentaria:
6Hallar la ecuación de la recta r, que pasa por el punto (1, 0, 0) y es perpendicular al
plano x − y − z + 2 = 0.
Por ser la recta perpendicular al plano, el vector normal del plano, ,
será el vector director de la recta que pasa por el punto (1, 0, 0).
7Hallar la ecuación del plano que pasa por el punto A(2, 0, 1 y contiene a la recta
de ecuación:
De la ecuación de la recta obtenemos el punto B y el vector .
 Coordenadas del punto medio de un segmento
Sean A (x1, y1, z1) y B (x2, y2, z2) los extremos de un segmento, el punto medio del
segmento viene dado por:
Ejemplo
Dados los puntos A(3, −2, 5) y B(3, 1, 7) , hallar las coordenadas del punto medio del
segmento que determinan.
Coordenadas del baricentro de un triángulo
Sean A (x1, y1, z1), B (x2, y2, z2) y C (x3, y3, z3) los vértices de un triángulo,
las coordenadas del baricentro son:
Ejemplo
Sean A = (1, −1, 3), B = (3, 2, -2) y C = (−1, 4, 1) los vértices de un triángulo.
Determinar las coordenadas del baricentro.
 Puntos alineados
Tres o más puntos esán alineados si están en una misma recta, y por tanto el rango de
los vectores determinados por ellos es 1.
Ejemplo
Comprobar si los puntos A(2, 3, 1), B(5, 4, 3) y C(2, 1, 2) estánalineados.
Los puntos no están alineados.
 Puntos coplanarios
Dos o más vectores son coplanarios si son linealmente dependientes, y por tanto
sus componentes son proporcionales y surango es 2.
Dos o más puntos son coplanarios, si los vectores determinados por ellos también
son coplanarios.
Ejemplo
Comprobar si los puntos A(1, 2, 3), B(4, ,7, 8), C(3, 5, 5), D(−1, −2, −3) y E(2, 2, 2)
son coplanarios.
Los puntos A, B, C, D y E son coplanarios si:
Los puntos A, B, C, D y E no son coplanarios.

Más contenido relacionado

La actualidad más candente

Coordenadas polares
Coordenadas polaresCoordenadas polares
Coordenadas polaresgasparjose94
 
Epicicloide
EpicicloideEpicicloide
Epicicloidenelson
 
Repaso transformaciones isometricas
Repaso transformaciones isometricasRepaso transformaciones isometricas
Repaso transformaciones isometricasSita Yani's
 
Vectores tangente unitario y normal unitario
Vectores tangente unitario y normal unitarioVectores tangente unitario y normal unitario
Vectores tangente unitario y normal unitarioRodolfo Alcantara Rosales
 
Ecuaciones paramétricas
Ecuaciones paramétricas  Ecuaciones paramétricas
Ecuaciones paramétricas claudiabolivar3
 
Proyecto geometria analitica
Proyecto geometria  analiticaProyecto geometria  analitica
Proyecto geometria analiticaPer13
 
Vectores Problemas
Vectores   ProblemasVectores   Problemas
Vectores Problemasguest229a344
 
Presentación Recta
Presentación Recta Presentación Recta
Presentación Recta Teremariel1
 
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.Luis Vargas
 
Cónicas, ecuaciones paramétricas y coordenadas polares.math
Cónicas, ecuaciones paramétricas y coordenadas polares.mathCónicas, ecuaciones paramétricas y coordenadas polares.math
Cónicas, ecuaciones paramétricas y coordenadas polares.mathsantiagoantonio24
 
planos y rectas en el espacio
planos y rectas en el espacioplanos y rectas en el espacio
planos y rectas en el espaciojesus ferrer
 
Inversa de una matriz
Inversa de una matrizInversa de una matriz
Inversa de una matrizalgebra
 
Geometría Descriptiva I - Intersección de dos planos cualesquiera
Geometría Descriptiva I - Intersección de dos planos cualesquieraGeometría Descriptiva I - Intersección de dos planos cualesquiera
Geometría Descriptiva I - Intersección de dos planos cualesquieraFrancis Duarte
 
Ejercicios plano tangente
Ejercicios plano tangenteEjercicios plano tangente
Ejercicios plano tangenteUNEFA
 

La actualidad más candente (20)

Coordenadas polares
Coordenadas polaresCoordenadas polares
Coordenadas polares
 
Epicicloide
EpicicloideEpicicloide
Epicicloide
 
Repaso transformaciones isometricas
Repaso transformaciones isometricasRepaso transformaciones isometricas
Repaso transformaciones isometricas
 
Rectas en el espacio
Rectas en el espacioRectas en el espacio
Rectas en el espacio
 
Planos y rectas
Planos y rectas Planos y rectas
Planos y rectas
 
Capítulo 6. Álgebra vectorial
Capítulo 6. Álgebra vectorialCapítulo 6. Álgebra vectorial
Capítulo 6. Álgebra vectorial
 
VECTORES EN R2
VECTORES EN R2VECTORES EN R2
VECTORES EN R2
 
Vectores tangente unitario y normal unitario
Vectores tangente unitario y normal unitarioVectores tangente unitario y normal unitario
Vectores tangente unitario y normal unitario
 
Ecuaciones paramétricas
Ecuaciones paramétricas  Ecuaciones paramétricas
Ecuaciones paramétricas
 
Proyecto geometria analitica
Proyecto geometria  analiticaProyecto geometria  analitica
Proyecto geometria analitica
 
Vectores Problemas
Vectores   ProblemasVectores   Problemas
Vectores Problemas
 
Presentación Recta
Presentación Recta Presentación Recta
Presentación Recta
 
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
 
Completo calculo-3-listo-para-imprimir
Completo calculo-3-listo-para-imprimirCompleto calculo-3-listo-para-imprimir
Completo calculo-3-listo-para-imprimir
 
Cónicas, ecuaciones paramétricas y coordenadas polares.math
Cónicas, ecuaciones paramétricas y coordenadas polares.mathCónicas, ecuaciones paramétricas y coordenadas polares.math
Cónicas, ecuaciones paramétricas y coordenadas polares.math
 
planos y rectas en el espacio
planos y rectas en el espacioplanos y rectas en el espacio
planos y rectas en el espacio
 
Inversa de una matriz
Inversa de una matrizInversa de una matriz
Inversa de una matriz
 
Geometría Descriptiva I - Intersección de dos planos cualesquiera
Geometría Descriptiva I - Intersección de dos planos cualesquieraGeometría Descriptiva I - Intersección de dos planos cualesquiera
Geometría Descriptiva I - Intersección de dos planos cualesquiera
 
Ejercicios plano tangente
Ejercicios plano tangenteEjercicios plano tangente
Ejercicios plano tangente
 
Sistemas de ecuaciones lineales
Sistemas de ecuaciones linealesSistemas de ecuaciones lineales
Sistemas de ecuaciones lineales
 

Similar a Recta y Planos En el espacio

Unidad 2 y 3 calculo vectorial
Unidad 2  y 3 calculo vectorialUnidad 2  y 3 calculo vectorial
Unidad 2 y 3 calculo vectorialAndy Hernandez
 
Rectas y planos en el espacio
Rectas y planos en el espacioRectas y planos en el espacio
Rectas y planos en el espacioRamirez1Andrea
 
Plano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdfPlano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdfpedrobriceooliva
 
Cap 1 Vectores Rectas Enel Plano Vers 1
Cap 1  Vectores Rectas Enel Plano  Vers 1Cap 1  Vectores Rectas Enel Plano  Vers 1
Cap 1 Vectores Rectas Enel Plano Vers 1guesta80b4af6
 
Cap 1 Vectores Rectas Enel Plano Vers 1.0.0
Cap 1 Vectores Rectas Enel Plano Vers 1.0.0Cap 1 Vectores Rectas Enel Plano Vers 1.0.0
Cap 1 Vectores Rectas Enel Plano Vers 1.0.0guesta80b4af6
 
Plano y recta_en_el_espacio_andy_molina_4_a
Plano y recta_en_el_espacio_andy_molina_4_aPlano y recta_en_el_espacio_andy_molina_4_a
Plano y recta_en_el_espacio_andy_molina_4_aricardocamposlandaeta
 
Plano y recta_en_el_espacio_andy_molina_4_a
Plano y recta_en_el_espacio_andy_molina_4_aPlano y recta_en_el_espacio_andy_molina_4_a
Plano y recta_en_el_espacio_andy_molina_4_aandymolinapernia
 
Plano numerico de joan cortez. unidad 2
Plano numerico de joan cortez. unidad 2Plano numerico de joan cortez. unidad 2
Plano numerico de joan cortez. unidad 2joan cortez
 
Generalidades vectoriales
Generalidades vectorialesGeneralidades vectoriales
Generalidades vectorialesDianaGuillen20
 
Ecuaciones Paramétricas
Ecuaciones ParamétricasEcuaciones Paramétricas
Ecuaciones ParamétricasRominaMndezDunn
 
Presentación Plano Numérico.pptx
Presentación Plano Numérico.pptxPresentación Plano Numérico.pptx
Presentación Plano Numérico.pptxreynerrivero
 
Ecuaciones paramétricas
Ecuaciones paramétricas Ecuaciones paramétricas
Ecuaciones paramétricas KariannaBravo
 

Similar a Recta y Planos En el espacio (20)

Teoria ayuda 3
Teoria   ayuda 3Teoria   ayuda 3
Teoria ayuda 3
 
Unidad 2 y 3 calculo vectorial
Unidad 2  y 3 calculo vectorialUnidad 2  y 3 calculo vectorial
Unidad 2 y 3 calculo vectorial
 
Plano Numerico.docx
Plano Numerico.docxPlano Numerico.docx
Plano Numerico.docx
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
U1_VECTORES EN EL ESPACIO
U1_VECTORES EN EL ESPACIOU1_VECTORES EN EL ESPACIO
U1_VECTORES EN EL ESPACIO
 
Geometraenelespacio 160807232856
Geometraenelespacio 160807232856Geometraenelespacio 160807232856
Geometraenelespacio 160807232856
 
Rectas y planos en el espacio
Rectas y planos en el espacioRectas y planos en el espacio
Rectas y planos en el espacio
 
Plano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdfPlano Numérico - Pedro Briceño.pdf
Plano Numérico - Pedro Briceño.pdf
 
Cap 1 Vectores Rectas Enel Plano Vers 1
Cap 1  Vectores Rectas Enel Plano  Vers 1Cap 1  Vectores Rectas Enel Plano  Vers 1
Cap 1 Vectores Rectas Enel Plano Vers 1
 
Cap 1 Vectores Rectas Enel Plano Vers 1.0.0
Cap 1 Vectores Rectas Enel Plano Vers 1.0.0Cap 1 Vectores Rectas Enel Plano Vers 1.0.0
Cap 1 Vectores Rectas Enel Plano Vers 1.0.0
 
Geometria analitica
Geometria analiticaGeometria analitica
Geometria analitica
 
ECUACIÓN DE LA RECTA
ECUACIÓN DE LA RECTAECUACIÓN DE LA RECTA
ECUACIÓN DE LA RECTA
 
Plano y recta_en_el_espacio_andy_molina_4_a
Plano y recta_en_el_espacio_andy_molina_4_aPlano y recta_en_el_espacio_andy_molina_4_a
Plano y recta_en_el_espacio_andy_molina_4_a
 
Plano y recta_en_el_espacio_andy_molina_4_a
Plano y recta_en_el_espacio_andy_molina_4_aPlano y recta_en_el_espacio_andy_molina_4_a
Plano y recta_en_el_espacio_andy_molina_4_a
 
Plano numerico de joan cortez. unidad 2
Plano numerico de joan cortez. unidad 2Plano numerico de joan cortez. unidad 2
Plano numerico de joan cortez. unidad 2
 
Generalidades vectoriales
Generalidades vectorialesGeneralidades vectoriales
Generalidades vectoriales
 
Ecuaciones Paramétricas
Ecuaciones ParamétricasEcuaciones Paramétricas
Ecuaciones Paramétricas
 
Presentación Plano Numérico.pptx
Presentación Plano Numérico.pptxPresentación Plano Numérico.pptx
Presentación Plano Numérico.pptx
 
Calse modelo
Calse modeloCalse modelo
Calse modelo
 
Ecuaciones paramétricas
Ecuaciones paramétricas Ecuaciones paramétricas
Ecuaciones paramétricas
 

Último

30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptELENA GALLARDO PAÚLS
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.DaluiMonasterio
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfMaryRotonda1
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfMARIAPAULAMAHECHAMOR
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxinformacionasapespu
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docxAleParedes11
 

Último (20)

30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdf
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdf
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
 

Recta y Planos En el espacio

  • 1. Geometría Analítica Alejandro Aguilera Ing. Electrónica C.I 24.089.903 Plano y Recta en el Espacio En geometría euclidiana, la recta o la línea recta se extiende en una misma dirección por tanto tiene una sola dimensión y contiene infinitos puntos; se puede considerar que está compuesta de infinitos segmentos. Dicha recta también se puede describir como una sucesión continua e indefinida de puntos extendidos en una sola dimensión, es decir, no posee principio ni fin. Es uno de los entes geométricos fundamentales, junto al punto y el plano. Son considerados conceptos apriorísticos ya que su definición solo es posible a partir de la descripción de las características de otros elementos similares. Un ejemplo de las dificultades de la definición de la recta a partir de puntos es la llamada paradoja de Zenón de la dicotomía que ilustraba la desaparición de la recta al dividirla en puntos. Así, es posible elaborar definiciones basándose en los postulados característicos que determinan relaciones entre los entes fundamentales. Las rectas se suelen denominar con una letra minúscula. Un plano es un sistema bidimensional, donde se encuentran coordenadas cartesianas, que corresponden a un tipo de coordenadas denominadas ortogonales. Este plano cartesiano se constituye como un espacio euclídeo, y donde pueden ser representadas funciones, a partir de gráficos, como las que se utilizan en geometría analítica o en física. Dentro del plano cartesiano, las coordenadas utilizan como referencia unos ejes denominados ortogonales, y estos ejes se cortan entre sí en un punto de origen. De este modo, las coordenadas cartesianas responden y se definen de acuerdo a la distancia respecto del origen que poseen las proyecciones ortogonales, de acuerdo a los ejes.
  • 2.  Ecuación vectorial de la recta Sea P(x1, y1) es un punto de la recta r y su vector director, el vector tiene igual dirección que , luego es igual a multiplicado por un escalar:
  • 3.  Ecuaciones paramétricas de la recta Operando en la ecuación vectorial de la recta llegamos a la igualdad: Esta igualdad se verifica si:  Ecuaciones implícitas de la recta Una recta puede venir determinada por la intersección de los planos. Si en las ecuaciones continuas de la recta quitamos denominadores y pasamos todo al primer miembro, obtenemos también lasecuaciones implícitas.
  • 4. Ejemplos 1Hallar las ecuaciones paramétricas, en forma continua e implícitas de la recta que pasa por el punto A = (1, 2, 1) y cuyo vector director es . 2Hallar las ecuaciones paramétricas, en forma continua e implícita de la recta que pasa por los puntos A(1, 0, 1) y B(0, 1, 1).
  • 5. 3Sea r la recta de ecuación: ¿Pertenecen a r los puntos A(0, −2, −2) y B(3, 2, 6)? 4Dada la recta r: Hallar las ecuaciones en forma continua y paramétrica.
  • 6.
  • 7. Ecuación vectorial Un plano queda determinado por un punto P y un par de vectores con distinta dirección. Para que el punto P pertenezca al plano π el vector tiene que ser coplanario con y .  Ecuaciones paramétricas del plano Operando en la ecuación vectorial del plano llegamos a la igualdad:
  • 8. Esta igualdad se verifica si:  Ecuación general o implícita del plano Un punto está en el plano π si tiene solución el sistema: Este sistema tiene que ser compatible determinado en las incógnitas λ y µ· Por tanto el determinante de la matriz ampliada del sistema con la columna de los términos independientes tiene que ser igual a cero. Desarrollamos el determinante. Damos los valores:
  • 9. Sustituimos: Realizamos las operaciones y le damos a D el valor: Obtenemos la ecuación general de plano:  Vector normal El vector es un vector normal al plano, es decir, perpendicular al plano. Si P(x0, y0, z0) es un punto del plano, el vector es perpendicular al vector , y por tanto el producto escalar es cero.
  • 10. De este modo también podemos determinar la ecuación general del plano, a partir de un punto y un vector normal.  Ecuación canónica o segmentaria del plano Sean los puntos A(a, 0, 0), B(0, b, 0) y C(0, 0, c), la ecuación canónica viene dada por:
  • 11. Ejercicios 1Hallar las ecuaciones paramétricas e implícitas del plano que pasa por el punto A(1, 1, 1) y tiene como vectores directores a y . 2Hallar las ecuaciones paramétricas e implícitas del plano que pasa por los puntos A(−1, 2, 3) y B(3, 1, 4) y contiene al vector .
  • 12. 3Hallar las ecuaciones paramétricas e implícitas del plano que pasa por los puntos A(−1, 1, −1), B(0, 1, 1) y C(4, −3, 2). 4Sea π el plano de ecuaciones paramétricas: Se pide comprobar si los puntos A (2, 1, 9/2) y B(0, 9, −1) pertenecen al plano.
  • 13. 5Hallar la ecuación segmentaria del plano que pasa por los puntos A(1, 1, 0), B(1, 0, 1) y C(0, 1, 1). Dividiendo por −2 obtenemos la ecuación segmentaria: 6Hallar la ecuación de la recta r, que pasa por el punto (1, 0, 0) y es perpendicular al plano x − y − z + 2 = 0. Por ser la recta perpendicular al plano, el vector normal del plano, , será el vector director de la recta que pasa por el punto (1, 0, 0).
  • 14. 7Hallar la ecuación del plano que pasa por el punto A(2, 0, 1 y contiene a la recta de ecuación: De la ecuación de la recta obtenemos el punto B y el vector .
  • 15.  Coordenadas del punto medio de un segmento Sean A (x1, y1, z1) y B (x2, y2, z2) los extremos de un segmento, el punto medio del segmento viene dado por: Ejemplo Dados los puntos A(3, −2, 5) y B(3, 1, 7) , hallar las coordenadas del punto medio del segmento que determinan. Coordenadas del baricentro de un triángulo Sean A (x1, y1, z1), B (x2, y2, z2) y C (x3, y3, z3) los vértices de un triángulo, las coordenadas del baricentro son:
  • 16. Ejemplo Sean A = (1, −1, 3), B = (3, 2, -2) y C = (−1, 4, 1) los vértices de un triángulo. Determinar las coordenadas del baricentro.  Puntos alineados Tres o más puntos esán alineados si están en una misma recta, y por tanto el rango de los vectores determinados por ellos es 1. Ejemplo Comprobar si los puntos A(2, 3, 1), B(5, 4, 3) y C(2, 1, 2) estánalineados. Los puntos no están alineados.
  • 17.  Puntos coplanarios Dos o más vectores son coplanarios si son linealmente dependientes, y por tanto sus componentes son proporcionales y surango es 2. Dos o más puntos son coplanarios, si los vectores determinados por ellos también son coplanarios. Ejemplo Comprobar si los puntos A(1, 2, 3), B(4, ,7, 8), C(3, 5, 5), D(−1, −2, −3) y E(2, 2, 2) son coplanarios. Los puntos A, B, C, D y E son coplanarios si: Los puntos A, B, C, D y E no son coplanarios.