EJERCICIOS DE
ESTADÍSTICA:
SEMINARIO 7
Trabajo realizado por Inmaculada Begines
Caballero
Grupo 1 Valme, 1º Enfermeria
PROBLEMA 1: En la sala de pediatría de un hospital, el 60% de
los pacientes son niñas. De los niños el 35% son menores de 24
meses. El 20% de las niñas tienen menos de 24 meses. Un
pediatra que ingresa a la sala selecciona un infante al azar.
A=Niña B=Niño M=Menos de 24 meses
P(A)=0,6 P(M/A)=0,2
P(B)=0,4 P(M/B)=0,35
a.)Determine el valor de la probabilidad de que sea
menor de 24 meses.
Calculamos la probabilidad total que seria
P(M).
P(M)=P(M/A) x P(A) + P(M/B) x P(B)
P(M)=(0,2x0,6) + (0,35x0,4)=0,26
Solución: La probabilidad de que sea menor
de 24 meses es del 26%
b.) Si el infante resulta ser menor de 24 meses.
Determine la probabilidad que sea una niña.
Para ello aplicamos el teorema de Bayer.
P(M/A) x P(A)
P(A/M)=
P(M/A) x P(A) + P(M/B) x P(B)
P(A/M)=0,46
Solución: La probabilidad de que un infante
menor de 24 meses sea niña es del 46%.
PROBLEMA 2: Un 15% de los pacientes atendidos en la
Consulta de Enfermería del Centro de Salud de el
Cachorro padecen hipertensión arterial (A) y el 25%
hiperlipemia (B). El 5% son hipertensos e hiperlipémicos.
A=Hipertension arterial B=Hiperlipemia C=
ambas
a.) Cuál es la probabilidad de A, B y de la de
unión.
P(A)= 0,15
P(B)= 0,25
P(C)= 0,05
b.) Representa la situación en un diagrama de Venn
0,10
0,200,05
0,65
c.) Calcula la probabilidad de que una persona al
azar no padezca ni a ni b.
Probabilidad total es 0,10+0,20+0,03= 0,35
La probabilidad de que una persona no
padezca ni una ni otra seria:
1 - Ptotal= 1 - 0,35=0,65
Solución:La probabilidad de que una
persona no padezca ninguna de las dos es
65%.
PROBLEMA 3: Una compañía de transporte público tiene
tres líneas en una ciudad, de forma que el 45% de los
autobuses cubre el servicio de la línea 1, el 25% cubre la
línea 2 y el 30% cubre el servicio de la línea 3. Se sabe que la
probabilidad de que, diariamente, un autobús se averíe es
del 2%, 3% y 1% respectivamente, para cada línea.
B=Autobuses línea 1 P(B)=0,45
C=Autobuses línea 2 P(C)=0,25
D=Autobuses línea 3 P(D)=0,30
A=Avería
P(A/B)=0,02
P(A/C)=0,03
P(A/D)=0,01
a.) Calcular la probabilidad de que, en un día, un
autobús sufra una avería
Para ello calculamos la probabilidad total.
Ptotal=P(A)=P(A/B) x P(B) + P(A/C) x P(C) + P(A/D) x
P(D)
Ptotal= ((0,02x0,45) + (0,03x0,25) + (0,01x0,30)
Ptotal=P(A)=0,0195
Solución=La probabilidad de que, en un dia, un
autobús sufra una averia es del 1,95%.
b.) Calcular la probabilidad de que, en un día, un
autobús no sufra una avería
Para ello tendríamos que hacer 1-Ptotal
1 - Ptotal= 1 – P(A)= 1 – 0,0195
1 – Ptotal= 0,9805
Solución:La probabilida de que, en un
dia, un autobús sufra una averia es del
98,05%
c.) ¿De qué línea de transporte es más probable que
un autobús sufra una avería?
Para averiguarlo aplicamos el teorema de
Bayer.
O Línea 1:
P(A/B) x P(B)
P(B/A)=
P(A/B)xP(B) + P(A/C)xP(C) +
P(A/D)xP(D)
P(B/A)=0,46
O Línea 2:
P(A/C) x P(C)
P(C/A)=
P(A/C)xP(C) + P(A/B)xP(B) + P(A/D)xP(D)
P(C/A)=0,38
O Línea 3:
P(A/D) x P(D)
P(D/A)=
P(A/D)xP(D) + P(A/C)xP(C) + P(A/B)xP(B)
P(D/A)= 0,15
Solución problema 3:
Es mas probable que sufra un accidente la
línea de transporte une ya que es la que
tiene mayor riesgo de sufrirlo pues esta
tiene un 46% mientras que la 2 un 38% y la
3 un 15%.
PROBLEMA 4: La probabilidad de que A dé en el blanco
es 1/4 y la de B es 2/5.Si A y B disparan,
¿Cuál es la probabilidad de que pegue en el blanco?
P(A)= 0,25 P(B)=0,4
Para averiguarlo, como son sucesos
independientes utilizamos la probabilidad de
intersección.
P(A∩B)=P(A) x P(B)
P(A∩B)= 0,1
Solución: La probabilidad de que pegue en el
blanco es del 10%.

Seminario 7 estadistica

  • 1.
    EJERCICIOS DE ESTADÍSTICA: SEMINARIO 7 Trabajorealizado por Inmaculada Begines Caballero Grupo 1 Valme, 1º Enfermeria
  • 2.
    PROBLEMA 1: Enla sala de pediatría de un hospital, el 60% de los pacientes son niñas. De los niños el 35% son menores de 24 meses. El 20% de las niñas tienen menos de 24 meses. Un pediatra que ingresa a la sala selecciona un infante al azar. A=Niña B=Niño M=Menos de 24 meses P(A)=0,6 P(M/A)=0,2 P(B)=0,4 P(M/B)=0,35
  • 3.
    a.)Determine el valorde la probabilidad de que sea menor de 24 meses. Calculamos la probabilidad total que seria P(M). P(M)=P(M/A) x P(A) + P(M/B) x P(B) P(M)=(0,2x0,6) + (0,35x0,4)=0,26 Solución: La probabilidad de que sea menor de 24 meses es del 26%
  • 4.
    b.) Si elinfante resulta ser menor de 24 meses. Determine la probabilidad que sea una niña. Para ello aplicamos el teorema de Bayer. P(M/A) x P(A) P(A/M)= P(M/A) x P(A) + P(M/B) x P(B) P(A/M)=0,46 Solución: La probabilidad de que un infante menor de 24 meses sea niña es del 46%.
  • 5.
    PROBLEMA 2: Un15% de los pacientes atendidos en la Consulta de Enfermería del Centro de Salud de el Cachorro padecen hipertensión arterial (A) y el 25% hiperlipemia (B). El 5% son hipertensos e hiperlipémicos. A=Hipertension arterial B=Hiperlipemia C= ambas a.) Cuál es la probabilidad de A, B y de la de unión. P(A)= 0,15 P(B)= 0,25 P(C)= 0,05
  • 6.
    b.) Representa lasituación en un diagrama de Venn 0,10 0,200,05 0,65
  • 7.
    c.) Calcula laprobabilidad de que una persona al azar no padezca ni a ni b. Probabilidad total es 0,10+0,20+0,03= 0,35 La probabilidad de que una persona no padezca ni una ni otra seria: 1 - Ptotal= 1 - 0,35=0,65 Solución:La probabilidad de que una persona no padezca ninguna de las dos es 65%.
  • 8.
    PROBLEMA 3: Unacompañía de transporte público tiene tres líneas en una ciudad, de forma que el 45% de los autobuses cubre el servicio de la línea 1, el 25% cubre la línea 2 y el 30% cubre el servicio de la línea 3. Se sabe que la probabilidad de que, diariamente, un autobús se averíe es del 2%, 3% y 1% respectivamente, para cada línea. B=Autobuses línea 1 P(B)=0,45 C=Autobuses línea 2 P(C)=0,25 D=Autobuses línea 3 P(D)=0,30 A=Avería P(A/B)=0,02 P(A/C)=0,03 P(A/D)=0,01
  • 9.
    a.) Calcular laprobabilidad de que, en un día, un autobús sufra una avería Para ello calculamos la probabilidad total. Ptotal=P(A)=P(A/B) x P(B) + P(A/C) x P(C) + P(A/D) x P(D) Ptotal= ((0,02x0,45) + (0,03x0,25) + (0,01x0,30) Ptotal=P(A)=0,0195 Solución=La probabilidad de que, en un dia, un autobús sufra una averia es del 1,95%.
  • 10.
    b.) Calcular laprobabilidad de que, en un día, un autobús no sufra una avería Para ello tendríamos que hacer 1-Ptotal 1 - Ptotal= 1 – P(A)= 1 – 0,0195 1 – Ptotal= 0,9805 Solución:La probabilida de que, en un dia, un autobús sufra una averia es del 98,05%
  • 11.
    c.) ¿De quélínea de transporte es más probable que un autobús sufra una avería? Para averiguarlo aplicamos el teorema de Bayer. O Línea 1: P(A/B) x P(B) P(B/A)= P(A/B)xP(B) + P(A/C)xP(C) + P(A/D)xP(D) P(B/A)=0,46
  • 12.
    O Línea 2: P(A/C)x P(C) P(C/A)= P(A/C)xP(C) + P(A/B)xP(B) + P(A/D)xP(D) P(C/A)=0,38 O Línea 3: P(A/D) x P(D) P(D/A)= P(A/D)xP(D) + P(A/C)xP(C) + P(A/B)xP(B) P(D/A)= 0,15
  • 13.
    Solución problema 3: Esmas probable que sufra un accidente la línea de transporte une ya que es la que tiene mayor riesgo de sufrirlo pues esta tiene un 46% mientras que la 2 un 38% y la 3 un 15%.
  • 14.
    PROBLEMA 4: Laprobabilidad de que A dé en el blanco es 1/4 y la de B es 2/5.Si A y B disparan, ¿Cuál es la probabilidad de que pegue en el blanco? P(A)= 0,25 P(B)=0,4 Para averiguarlo, como son sucesos independientes utilizamos la probabilidad de intersección. P(A∩B)=P(A) x P(B) P(A∩B)= 0,1 Solución: La probabilidad de que pegue en el blanco es del 10%.