SlideShare una empresa de Scribd logo
Tema 9 Reacciones de intercambio de electrones o reacciones redox
1.- Introducción La combustión de la madera, la producción de electricidad en una pila, la acción de la lejía sobre la ropa, la obtención de metales en los altos hornos o la corrosión de los metales son procesos de oxidación-reducción. Así, las reacciones redox tienen una gran importancia económica y están presentes en muchos procesos cotidianos. Inicialmente se consideraba oxidación a los procesos en los que una sustancia ganaba oxígeno: 4 FeO  +  O 2     2 Fe 2 O 3 Reducción, por contra, era aquella reacción en la que una sustancia perdía oxígeno: CuO  +  H 2     Cu  +  H 2 O
Este concepto se aumentó cuando se observó  que muchas veces cuando el oxígeno reacciona con un compuesto que contiene hidrógeno , en lugar de combinarse con el compuesto , lo que hace es quitarle hidrógeno para formar agua Por ello el concepto de oxidación se extendió para incluir la eliminación de hidrógeno y reducción a la adición de hidrógeno Oxidación:  CH3CH2OH   CH3CHO + H2 Reducción: CH2CH2 + H2   CH3CH3 Más tarde los químicos se dieron cuenta que casi todos los elementos no metálicos producían reacciones análogas a las del oxígeno Al observar las estructuras electrónicas se vio que lo que se producía es un intercambio de electrones
Actualmente: Se conoce como oxidación al proceso por el que una sustancia pierde electrones. Se llama reducción a la transformación por la que una sustancia gana electrones  Siempre que se produce una  oxidación  debe producirse  simultáneamente  una  reducción . Cada una de estas reacciones se denomina  semirreacción  Por ello decimos que se produce una reacción redox Oxidante: es una sustancia que produce la oxidación de otra ( por tanto él se reduce) Reductor: es una sustancia que produce la reducción de otra ( por tanto él se oxida) El concepto de oxidante y reductor es relativo depende de con qué se enfrente
2.-ESTADO DE OXIDACIÓN (E.O.) (O NÚMERO DE OXIDACIÓN).  “ Es la carga que tendría un átomo si todos sus enlaces fueran iónicos , es decir, considerando todos los enlaces covalentes polares como si en vez de tener fracciones de carga tuvieran cargas completas”. En el caso de enlaces covalentes polares habría que suponer que la pareja de electrones compartidos están totalmente desplazados hacia el elemento más electronegativo. El E.O. no tiene porqué ser la carga real que tiene un átomo, aunque a veces coincide. .  Unas sencillas reglas permiten determinar el estado de oxidación de un elemento en un compuesto:
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Un elemento se oxida cuando aumenta su estado de oxidación y se reduce cuando disminuye su número de oxidación. En toda reacción de oxidación-reducción se pueden distinguir dos semirreacciones, una de oxidación y otra de reducción. Por ejemplo, en la reacción: CuSO 4 +  Zn    ZnSO 4 +  Cu El zinc se oxida, pasando de estado de oxidación  0  a  +2  y el cobre se reduce, al pasar su número de oxidación de  +2  a  0 .
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
2.-AJUSTE DE REACCIONES POR EL METODO DEL ION-ELECTRON Es aplicable a reacciones que transcurren en disolución acuosa y se basa en descomponer la reacción redox en dos semirreacciones entre los iones de la disolución   Dos casos según la reacción sea en medio ácido o básico a) Medio ácido: 1.- Descomponer los iones que existan en disolución 2.- Formular las semiecuaciones de oxidación y reducción igualando los elementos que no sean oxígeno o hidrógeno 3.- Igualar en cada una de dichas ecuaciones el numero de átomos de oxigeno añadiendo al miembro en que exista menos cantidad de este elemento tantas moléculas de agua como átomos de oxigeno haya en defecto
4.- Igualar a continuación él hidrogeno añadiendo al miembro en que este en defecto el hidrogeno necesario en forma de H+ 5.- Ajustar estas semirreacciones electrónicamente, de manera que haya el mismo numero de cargas en los dos miembros, lo cual se logra añadiendo el numero necesario de electrones 6.- Multiplicar las semiecuaciones de oxidación y reducción por un numero que iguale el numero de electrones cedidos o captados 7.- Sumar las dos semiecuaciones para obtener la ecuación redox ionica total 8.- Volver a formar la reacción total
En medio básico es igual pero Para igualar el oxigeno han de añadirse tantas moléculas de agua como átomos de oxigeno existan en exceso , en el otro se añade el doble de iones OH- Para igualar el hidrogeno se añaden al miembro donde exista defecto tantas moléculas de agua como átomos de hidrogeno falten y en el otro miembro el mismo numero de iones OH- 3.-ESTEQUIOMETRIA REDOX La masa equivalente en un proceso redox es el cociente entre la masa molecular y el número de electrones que aparecen en la semirreacción. M E =  M/e- El  heptaoxodicromato(VI) de potasio, o dicromato potásico, se reduce a cromo(III) según la semirreacción, sin ajustar: K2Cr2O7 + 6e-   2Cr2+  La masa equivalente resultará:294.2/6= 49.036
valoración redox   es similar a la valoración ácido base. Hay que determinar el número de moles de especie oxidante y reductora que reaccionan entre sí  Otra manera, al igual que en ácido-base, el concepto de masa equivalente, y el de normalidad. :  De esta manera:  neq(oxidante ) = neq(reductora) Es decir:    V (ox.)  x  N (ox.) = V (red.)  x  N (red.)   Las volumetrías redox se suelen denominar por el nombre del compuesto que actúa como oxidante. Así, las volumetrías realizadas con permanganato potásico se llaman "permanganimetrías", con yodo "yodometrías" "dicromatometrías", etc. La determinación del punto  final puede hacerse potenciométricamente o mediante el uso de un indicador redox
Los indicadores redox son sustancias cuya forma presenta diferente color que la reducida. Cada indicador muestra su viraje o cambio de color a un potencial determinado 4 .- PILAS VOLTAICAS (CÉLULAS GALVÁNICAS). Si se introduce una barra de Zn en una disolución de CuSO 4  (Cu 2+  + SO 4 2– ) se producirá espontáneamente la siguiente reacción: Cu2+  (aq)  + Zn  (s)     Cu  (s)  + Zn2+  (aq) El Zn se oxida (pierde electrones) y el Cu2+ se reduce (los gana). Si hacemos que las reacciones de oxidación y reducción se produzcan en recipientes separados (semiceldas), y las conectamos ente sí para que los electrones perdidos en la oxidación del Zn circulen por el exterior y sean los que producen la reducción del Cu2+  a Cu, tendremos una pila, puesto  que la circulación e electrones es precisamente la corriente eléctrica.
Electrodos. Se llama así a cada barra metálica sumergida en una disolución del mismo metal. En una pila hay dos electrodos: Ánodo : Se lleva a cabo la  oxidación  (allí van los aniones). En el ejemplo anterior sería el electrodo de Zn. Cátodo : Se lleva a cabo la  reducción  (allí van los cationes). En el ejemplo anterior sería el electrodo de Cu. Pila Daniell. Consta de dos semiceldas, una con un electrodo de Cu en una disolución de CuSO4 y otra con un electrodo de Zn en una disolución de ZnSO4. Están unidas por un puente salino que evita que se acumulen cargas del mismo signo en cada semicelda.
A
Entre los dos electrodos se genera una diferencia de potencial que se puede medir con un voltímetro. Representación esquemática de una pila La pila anterior se representaría:  Ánodo || puenteSalino| Cátodo Zn  (s)  | ZnSO4  (aq)  || CuSO4  (aq)  | Cu  (s) Pila Daniell. (Imagen cedida por © Ed. Santillana. 2º de Bachillerato)
 
TIPOS DE ELECTRODOS
 
 
Pilas comerciales. Hay varios tipos conocidos:  Salinas (suelen ser de Zn/C) Alcalinas(suelen ser de Zn/Mn) Recargables (suelen ser de Cd/Ni) De Mercurio o de botón (suelen ser de Zn/Hg) Salina    Alcalina    De  mercurio (Imágenes cedidas por © Grupo ANAYA. S.A. Química 2º Bachillerato)
POTENCIAL DE REDUCCIÓN. ESCALA DE POTENCIALES. Las pilas producen una diferencia de potencial ( Δ Epila) que puede considerarse como la diferencia entre los potenciales de reducción de los dos electrodos que la conforman: Consideraremos que cada semirreacción de reducción viene dada por un potencial de reducción.  Como en el cátodo se produce la reducción, en todas las pilas  Ecatodo > Eánodo . Cada pareja de sustancia oxidante-reductora tendrá una mayor o menor tendencia a estar en su forma oxidada o reducida.  El que se encuentre en una u otra forma dependerá de la otra pareja de sustancia oxidante-reductora. ¿Qué especie se reducirá?  Sencillamente, la que tenga un mayor potencial de reducción.
El potencial eléctrico de un electrodo, sin embargo, no puede determinarse de forma absoluta, así que se calculan haciendo referencia a un electrodo especial: el electrodo de hidrógeno  . Potencial de reducción normal de electrodo es la diferencia de potencial, a 25 ºC, entre el electrodo considerado y el electrodo normal de hidrógeno, cuando las especies iónicas están presentes con una concentración de 1 M y las especies gaseosas a una presión de 1 atm. La serie electroquímica es un sistema ordenado de reacciones de reducción en las que el potencial normal de reducción aumenta  . Los potenciales de oxidación tendrán signo contrario y con la reacción inversa
Una transformación se producirá espontáneamente cuando disminuya la energía libre de  Gibbs . DG  < 0 Puesto que en una reacción redox la energía libre equivale al trabajo eléctrico: DG  =  W  = -  q  ·  E Empleando los valores normales, se puede escribir: DG<  0 = -  q  ·  E< 0 El signo negativo indica que se trata de un trabajo cedido por la reacción, el sistema suministra trabajo eléctrico a su entorno. Para que la reacción sea espontánea, la fuerza electromotriz de la reacción deberá ser positiva, ya que así disminuirá la energía libre. Con los potenciales de reducción de la serie electroquímica  es posible determinar la fuerza electromotriz de la reacción y, por tanto, la espontaneidad de la reacción redox.

Más contenido relacionado

La actualidad más candente

Reducción oxidación
Reducción oxidaciónReducción oxidación
Reducción oxidación
Pedro Pérez
 
Reduccion oxidacion[1]
Reduccion oxidacion[1]Reduccion oxidacion[1]
Reduccion oxidacion[1]mnilco
 
Espontaneidad Procesos redox
Espontaneidad Procesos redoxEspontaneidad Procesos redox
Espontaneidad Procesos redox
Carlos Broullon
 
Redox1 110328144224-phpapp01
Redox1 110328144224-phpapp01Redox1 110328144224-phpapp01
Redox1 110328144224-phpapp01
StefanyCC
 
Transferencia de electrones
Transferencia de electronesTransferencia de electrones
Transferencia de electrones
milagroslov
 
Electroquimica
ElectroquimicaElectroquimica
Electroquimica
SistemadeEstudiosMed
 
Tema 10 - Reacciones de transferencia de electrones
Tema 10 - Reacciones de transferencia de electronesTema 10 - Reacciones de transferencia de electrones
Tema 10 - Reacciones de transferencia de electrones
José Miranda
 
Reacciones redox
Reacciones redoxReacciones redox
Reacciones redox
rosaburone
 
Electroquimica
ElectroquimicaElectroquimica
Electroquimica
branny14
 
Electrólisis
ElectrólisisElectrólisis
Electrólisis
Alexis Recalde
 
Estructura atómica
Estructura atómicaEstructura atómica
Estructura atómica
fisicayquimica-com-es
 
41 ejercicios.de.reacciones.transferencia.electrones.con.solucion (1)
41 ejercicios.de.reacciones.transferencia.electrones.con.solucion (1)41 ejercicios.de.reacciones.transferencia.electrones.con.solucion (1)
41 ejercicios.de.reacciones.transferencia.electrones.con.solucion (1)Alberto Gonzalez Isorna
 
Equilibrios de solubilidad
Equilibrios de solubilidadEquilibrios de solubilidad
Equilibrios de solubilidad
Torbi Vecina Romero
 
8.0 8.1 sistemas biologicos de oxido reduccion
8.0 8.1 sistemas biologicos de oxido reduccion8.0 8.1 sistemas biologicos de oxido reduccion
8.0 8.1 sistemas biologicos de oxido reduccion
Raul hermosillo
 
Ejercicios libro soluciones
Ejercicios libro solucionesEjercicios libro soluciones
Ejercicios libro solucionesmariavarey
 
Leyes de Faraday de la electrolisis
Leyes de Faraday de la electrolisisLeyes de Faraday de la electrolisis
Leyes de Faraday de la electrolisis
Andres Mendoza
 

La actualidad más candente (20)

Importan cia de las reacciones redox
Importan cia de las reacciones redoxImportan cia de las reacciones redox
Importan cia de las reacciones redox
 
Reducción oxidación
Reducción oxidaciónReducción oxidación
Reducción oxidación
 
Reduccion oxidacion[1]
Reduccion oxidacion[1]Reduccion oxidacion[1]
Reduccion oxidacion[1]
 
Espontaneidad Procesos redox
Espontaneidad Procesos redoxEspontaneidad Procesos redox
Espontaneidad Procesos redox
 
Exposicon redox
Exposicon redoxExposicon redox
Exposicon redox
 
Redox1 110328144224-phpapp01
Redox1 110328144224-phpapp01Redox1 110328144224-phpapp01
Redox1 110328144224-phpapp01
 
Transferencia de electrones
Transferencia de electronesTransferencia de electrones
Transferencia de electrones
 
Importan cia de las reacciones redox
Importan cia de las reacciones redoxImportan cia de las reacciones redox
Importan cia de las reacciones redox
 
Electroquimica
ElectroquimicaElectroquimica
Electroquimica
 
Tema 10 - Reacciones de transferencia de electrones
Tema 10 - Reacciones de transferencia de electronesTema 10 - Reacciones de transferencia de electrones
Tema 10 - Reacciones de transferencia de electrones
 
Reacciones redox
Reacciones redoxReacciones redox
Reacciones redox
 
Electroquimica
ElectroquimicaElectroquimica
Electroquimica
 
Electrólisis
ElectrólisisElectrólisis
Electrólisis
 
Estructura atómica
Estructura atómicaEstructura atómica
Estructura atómica
 
Electroquímica.ppt 3 °
Electroquímica.ppt 3 °Electroquímica.ppt 3 °
Electroquímica.ppt 3 °
 
41 ejercicios.de.reacciones.transferencia.electrones.con.solucion (1)
41 ejercicios.de.reacciones.transferencia.electrones.con.solucion (1)41 ejercicios.de.reacciones.transferencia.electrones.con.solucion (1)
41 ejercicios.de.reacciones.transferencia.electrones.con.solucion (1)
 
Equilibrios de solubilidad
Equilibrios de solubilidadEquilibrios de solubilidad
Equilibrios de solubilidad
 
8.0 8.1 sistemas biologicos de oxido reduccion
8.0 8.1 sistemas biologicos de oxido reduccion8.0 8.1 sistemas biologicos de oxido reduccion
8.0 8.1 sistemas biologicos de oxido reduccion
 
Ejercicios libro soluciones
Ejercicios libro solucionesEjercicios libro soluciones
Ejercicios libro soluciones
 
Leyes de Faraday de la electrolisis
Leyes de Faraday de la electrolisisLeyes de Faraday de la electrolisis
Leyes de Faraday de la electrolisis
 

Destacado

Balanceo por redox
Balanceo por redoxBalanceo por redox
Balanceo por redox
Luis Contreras León
 
Reacciones redox
Reacciones redoxReacciones redox
Reacciones redox
Ángela Santana
 
Tema 4 balanceo de reacciones redox 2.pptm
Tema 4 balanceo de reacciones redox 2.pptmTema 4 balanceo de reacciones redox 2.pptm
Tema 4 balanceo de reacciones redox 2.pptmmtapizque
 
6 Reacciones Redox Y Poder Reductor
6 Reacciones Redox Y Poder Reductor6 Reacciones Redox Y Poder Reductor
6 Reacciones Redox Y Poder Reductorapaulinamv
 
Oxido reduccion (redox)
Oxido reduccion (redox)Oxido reduccion (redox)
Oxido reduccion (redox)Karla94olyo
 
Reacciones de Óxido - Reducción (QM22 - PDV 2013)
Reacciones de Óxido - Reducción (QM22 - PDV 2013)Reacciones de Óxido - Reducción (QM22 - PDV 2013)
Reacciones de Óxido - Reducción (QM22 - PDV 2013)Matias Quintana
 
Unidad5 redox presentacion
Unidad5 redox presentacionUnidad5 redox presentacion
Unidad5 redox presentacion
Francisco Rodríguez Pulido
 
Reacciones de Redox (Oxidación - Reducción)
Reacciones de Redox (Oxidación - Reducción)Reacciones de Redox (Oxidación - Reducción)
Reacciones de Redox (Oxidación - Reducción)Iskra Santana
 
Practica de redox en laboratorio
Practica de redox  en laboratorioPractica de redox  en laboratorio
Practica de redox en laboratorio
Waltr Quispe Castro
 
Reacciones químicas- informe de laboratorio
Reacciones químicas- informe de laboratorioReacciones químicas- informe de laboratorio
Reacciones químicas- informe de laboratorio
Lu G.
 
Tipos de reacciones de óxido reducción
Tipos de reacciones de óxido reducciónTipos de reacciones de óxido reducción
Tipos de reacciones de óxido reducciónGio Alvarez Osorio
 
Reacciones de oxidacion-reduccion (redox)
Reacciones de oxidacion-reduccion (redox)Reacciones de oxidacion-reduccion (redox)
Reacciones de oxidacion-reduccion (redox)
Luis Seijo
 
Reacciones de óxido-reducción (redox)
Reacciones de óxido-reducción (redox)Reacciones de óxido-reducción (redox)
Reacciones de óxido-reducción (redox)
Jesús Bautista
 

Destacado (20)

Tema 9: Reacciones redox
Tema 9: Reacciones redoxTema 9: Reacciones redox
Tema 9: Reacciones redox
 
Balanceo por redox
Balanceo por redoxBalanceo por redox
Balanceo por redox
 
Ejercicio b)
Ejercicio b)Ejercicio b)
Ejercicio b)
 
Reacciones redox
Reacciones redoxReacciones redox
Reacciones redox
 
Tema 4 balanceo de reacciones redox 2.pptm
Tema 4 balanceo de reacciones redox 2.pptmTema 4 balanceo de reacciones redox 2.pptm
Tema 4 balanceo de reacciones redox 2.pptm
 
Electroquimica
ElectroquimicaElectroquimica
Electroquimica
 
Redox
RedoxRedox
Redox
 
6 Reacciones Redox Y Poder Reductor
6 Reacciones Redox Y Poder Reductor6 Reacciones Redox Y Poder Reductor
6 Reacciones Redox Y Poder Reductor
 
Oxido reduccion (redox)
Oxido reduccion (redox)Oxido reduccion (redox)
Oxido reduccion (redox)
 
Reacciones de Óxido - Reducción (QM22 - PDV 2013)
Reacciones de Óxido - Reducción (QM22 - PDV 2013)Reacciones de Óxido - Reducción (QM22 - PDV 2013)
Reacciones de Óxido - Reducción (QM22 - PDV 2013)
 
Unidad5 redox presentacion
Unidad5 redox presentacionUnidad5 redox presentacion
Unidad5 redox presentacion
 
Reacciones de transferencia de electrones
Reacciones de transferencia de electronesReacciones de transferencia de electrones
Reacciones de transferencia de electrones
 
Reacciones Redox
Reacciones RedoxReacciones Redox
Reacciones Redox
 
Reacciones de Redox (Oxidación - Reducción)
Reacciones de Redox (Oxidación - Reducción)Reacciones de Redox (Oxidación - Reducción)
Reacciones de Redox (Oxidación - Reducción)
 
Practica de redox en laboratorio
Practica de redox  en laboratorioPractica de redox  en laboratorio
Practica de redox en laboratorio
 
Reacciones químicas- informe de laboratorio
Reacciones químicas- informe de laboratorioReacciones químicas- informe de laboratorio
Reacciones químicas- informe de laboratorio
 
Tipos de reacciones de óxido reducción
Tipos de reacciones de óxido reducciónTipos de reacciones de óxido reducción
Tipos de reacciones de óxido reducción
 
Reacciones de oxidacion-reduccion (redox)
Reacciones de oxidacion-reduccion (redox)Reacciones de oxidacion-reduccion (redox)
Reacciones de oxidacion-reduccion (redox)
 
Reacciones de óxido-reducción (redox)
Reacciones de óxido-reducción (redox)Reacciones de óxido-reducción (redox)
Reacciones de óxido-reducción (redox)
 
Reacciones de oxidación y reducción
Reacciones de oxidación y reducciónReacciones de oxidación y reducción
Reacciones de oxidación y reducción
 

Similar a Tema 9

Reacciones redox01 quimica aaaaaaaaaaaaaa
Reacciones redox01 quimica aaaaaaaaaaaaaaReacciones redox01 quimica aaaaaaaaaaaaaa
Reacciones redox01 quimica aaaaaaaaaaaaaa
AlexcyLaura1
 
Fundamento teórico electrólisis y rédox
Fundamento teórico electrólisis y rédoxFundamento teórico electrólisis y rédox
Fundamento teórico electrólisis y rédox
Lucía Mendoza
 
Tema 10 resumen
Tema 10 resumenTema 10 resumen
Tema 10 resumen
José Miranda
 
Tema 10 resumen
Tema 10 resumenTema 10 resumen
Tema 10 resumen
José Miranda
 
electroquimica.ppt
electroquimica.pptelectroquimica.ppt
electroquimica.ppt
MelanyPachacute
 
Unidad IV. Electroquímica
Unidad IV. ElectroquímicaUnidad IV. Electroquímica
Unidad IV. Electroquímica
betsaytf
 
Tema pilas galvanicas
Tema pilas galvanicasTema pilas galvanicas
Tema pilas galvanicas
universidad de nariño
 
Tema 10
Tema 10Tema 10
Tema 10
José Miranda
 
T5 reacciones redox fq 4º eso
T5 reacciones redox fq 4º esoT5 reacciones redox fq 4º eso
T5 reacciones redox fq 4º eso
Víctor M. Jiménez Suárez
 
Quimica
QuimicaQuimica
2q 07 redox
2q 07 redox2q 07 redox
2q 07 redoxCAL28
 
Importanciadelasreaccionesredox
ImportanciadelasreaccionesredoxImportanciadelasreaccionesredox
Importanciadelasreaccionesredox
Profra.alma maite barajas
 
Reacciones transferencia electrones
Reacciones transferencia electronesReacciones transferencia electrones
Reacciones transferencia electronesLoli Méndez
 
Reacciones transferencia electrones
Reacciones transferencia electronesReacciones transferencia electrones
Reacciones transferencia electronesLoli Méndez
 
BALANCEO DE ECUACIONES QUÍMICAS POR EL%2.docx
BALANCEO DE ECUACIONES QUÍMICAS POR EL%2.docxBALANCEO DE ECUACIONES QUÍMICAS POR EL%2.docx
BALANCEO DE ECUACIONES QUÍMICAS POR EL%2.docx
YulizaAngelicaGalvez
 

Similar a Tema 9 (20)

Reacciones redox01 quimica aaaaaaaaaaaaaa
Reacciones redox01 quimica aaaaaaaaaaaaaaReacciones redox01 quimica aaaaaaaaaaaaaa
Reacciones redox01 quimica aaaaaaaaaaaaaa
 
Fundamento teórico electrólisis y rédox
Fundamento teórico electrólisis y rédoxFundamento teórico electrólisis y rédox
Fundamento teórico electrólisis y rédox
 
Tema 10 resumen
Tema 10 resumenTema 10 resumen
Tema 10 resumen
 
Tema 10 resumen
Tema 10 resumenTema 10 resumen
Tema 10 resumen
 
electroquimica.ppt
electroquimica.pptelectroquimica.ppt
electroquimica.ppt
 
Unidad IV. Electroquímica
Unidad IV. ElectroquímicaUnidad IV. Electroquímica
Unidad IV. Electroquímica
 
Tema pilas galvanicas
Tema pilas galvanicasTema pilas galvanicas
Tema pilas galvanicas
 
Tema 10
Tema 10Tema 10
Tema 10
 
T5 reacciones redox fq 4º eso
T5 reacciones redox fq 4º esoT5 reacciones redox fq 4º eso
T5 reacciones redox fq 4º eso
 
Quimica
QuimicaQuimica
Quimica
 
2q 07 redox
2q 07 redox2q 07 redox
2q 07 redox
 
05 redox
05 redox05 redox
05 redox
 
Importanciadelasreaccionesredox
ImportanciadelasreaccionesredoxImportanciadelasreaccionesredox
Importanciadelasreaccionesredox
 
Importan cia de las reacciones redox
Importan cia de las reacciones redoxImportan cia de las reacciones redox
Importan cia de las reacciones redox
 
Apuntes redox
Apuntes redoxApuntes redox
Apuntes redox
 
Oxido reduccion
Oxido reduccionOxido reduccion
Oxido reduccion
 
Reacciones transferencia electrones
Reacciones transferencia electronesReacciones transferencia electrones
Reacciones transferencia electrones
 
Reacciones transferencia electrones
Reacciones transferencia electronesReacciones transferencia electrones
Reacciones transferencia electrones
 
Redox
RedoxRedox
Redox
 
BALANCEO DE ECUACIONES QUÍMICAS POR EL%2.docx
BALANCEO DE ECUACIONES QUÍMICAS POR EL%2.docxBALANCEO DE ECUACIONES QUÍMICAS POR EL%2.docx
BALANCEO DE ECUACIONES QUÍMICAS POR EL%2.docx
 

Más de Julio Sanchez

Tema 13
Tema 13Tema 13
Tema 13
Julio Sanchez
 
Tema 7
Tema 7Tema 7
Tema 6
Tema 6Tema 6
Tema 5
Tema 5Tema 5
Tema 4
Tema 4Tema 4
Tema 3
Tema 3Tema 3
Tema 2
Tema 2Tema 2
Tema 16
Tema 16Tema 16
Tema 16
Julio Sanchez
 
Tema 15
Tema 15Tema 15
Tema 15
Julio Sanchez
 
Tema 7
Tema 7Tema 7
Tema 5
Tema 5Tema 5
Tema 4
Tema 4Tema 4
Tema 4 2ªevaluación
Tema 4 2ªevaluaciónTema 4 2ªevaluación
Tema 4 2ªevaluación
Julio Sanchez
 
Tema 14
Tema 14Tema 14
Tema 14
Julio Sanchez
 
Tema 6
Tema 6Tema 6
Tema 3
Tema 3Tema 3
Tema 13
Tema 13Tema 13
Tema 13
Julio Sanchez
 
Tema 2
Tema 2Tema 2
Sistemas de relacion en vegetales
Sistemas de relacion en vegetalesSistemas de relacion en vegetales
Sistemas de relacion en vegetales
Julio Sanchez
 
Nutricionvegetal 101214115109-phpapp01
Nutricionvegetal 101214115109-phpapp01Nutricionvegetal 101214115109-phpapp01
Nutricionvegetal 101214115109-phpapp01
Julio Sanchez
 

Más de Julio Sanchez (20)

Tema 13
Tema 13Tema 13
Tema 13
 
Tema 7
Tema 7Tema 7
Tema 7
 
Tema 6
Tema 6Tema 6
Tema 6
 
Tema 5
Tema 5Tema 5
Tema 5
 
Tema 4
Tema 4Tema 4
Tema 4
 
Tema 3
Tema 3Tema 3
Tema 3
 
Tema 2
Tema 2Tema 2
Tema 2
 
Tema 16
Tema 16Tema 16
Tema 16
 
Tema 15
Tema 15Tema 15
Tema 15
 
Tema 7
Tema 7Tema 7
Tema 7
 
Tema 5
Tema 5Tema 5
Tema 5
 
Tema 4
Tema 4Tema 4
Tema 4
 
Tema 4 2ªevaluación
Tema 4 2ªevaluaciónTema 4 2ªevaluación
Tema 4 2ªevaluación
 
Tema 14
Tema 14Tema 14
Tema 14
 
Tema 6
Tema 6Tema 6
Tema 6
 
Tema 3
Tema 3Tema 3
Tema 3
 
Tema 13
Tema 13Tema 13
Tema 13
 
Tema 2
Tema 2Tema 2
Tema 2
 
Sistemas de relacion en vegetales
Sistemas de relacion en vegetalesSistemas de relacion en vegetales
Sistemas de relacion en vegetales
 
Nutricionvegetal 101214115109-phpapp01
Nutricionvegetal 101214115109-phpapp01Nutricionvegetal 101214115109-phpapp01
Nutricionvegetal 101214115109-phpapp01
 

Tema 9

  • 1. Tema 9 Reacciones de intercambio de electrones o reacciones redox
  • 2. 1.- Introducción La combustión de la madera, la producción de electricidad en una pila, la acción de la lejía sobre la ropa, la obtención de metales en los altos hornos o la corrosión de los metales son procesos de oxidación-reducción. Así, las reacciones redox tienen una gran importancia económica y están presentes en muchos procesos cotidianos. Inicialmente se consideraba oxidación a los procesos en los que una sustancia ganaba oxígeno: 4 FeO + O 2  2 Fe 2 O 3 Reducción, por contra, era aquella reacción en la que una sustancia perdía oxígeno: CuO + H 2  Cu + H 2 O
  • 3. Este concepto se aumentó cuando se observó que muchas veces cuando el oxígeno reacciona con un compuesto que contiene hidrógeno , en lugar de combinarse con el compuesto , lo que hace es quitarle hidrógeno para formar agua Por ello el concepto de oxidación se extendió para incluir la eliminación de hidrógeno y reducción a la adición de hidrógeno Oxidación: CH3CH2OH  CH3CHO + H2 Reducción: CH2CH2 + H2  CH3CH3 Más tarde los químicos se dieron cuenta que casi todos los elementos no metálicos producían reacciones análogas a las del oxígeno Al observar las estructuras electrónicas se vio que lo que se producía es un intercambio de electrones
  • 4. Actualmente: Se conoce como oxidación al proceso por el que una sustancia pierde electrones. Se llama reducción a la transformación por la que una sustancia gana electrones Siempre que se produce una oxidación debe producirse simultáneamente una reducción . Cada una de estas reacciones se denomina semirreacción Por ello decimos que se produce una reacción redox Oxidante: es una sustancia que produce la oxidación de otra ( por tanto él se reduce) Reductor: es una sustancia que produce la reducción de otra ( por tanto él se oxida) El concepto de oxidante y reductor es relativo depende de con qué se enfrente
  • 5. 2.-ESTADO DE OXIDACIÓN (E.O.) (O NÚMERO DE OXIDACIÓN). “ Es la carga que tendría un átomo si todos sus enlaces fueran iónicos , es decir, considerando todos los enlaces covalentes polares como si en vez de tener fracciones de carga tuvieran cargas completas”. En el caso de enlaces covalentes polares habría que suponer que la pareja de electrones compartidos están totalmente desplazados hacia el elemento más electronegativo. El E.O. no tiene porqué ser la carga real que tiene un átomo, aunque a veces coincide. . Unas sencillas reglas permiten determinar el estado de oxidación de un elemento en un compuesto:
  • 6.
  • 7. Un elemento se oxida cuando aumenta su estado de oxidación y se reduce cuando disminuye su número de oxidación. En toda reacción de oxidación-reducción se pueden distinguir dos semirreacciones, una de oxidación y otra de reducción. Por ejemplo, en la reacción: CuSO 4 + Zn  ZnSO 4 + Cu El zinc se oxida, pasando de estado de oxidación 0 a +2 y el cobre se reduce, al pasar su número de oxidación de +2 a 0 .
  • 8.
  • 9. 2.-AJUSTE DE REACCIONES POR EL METODO DEL ION-ELECTRON Es aplicable a reacciones que transcurren en disolución acuosa y se basa en descomponer la reacción redox en dos semirreacciones entre los iones de la disolución Dos casos según la reacción sea en medio ácido o básico a) Medio ácido: 1.- Descomponer los iones que existan en disolución 2.- Formular las semiecuaciones de oxidación y reducción igualando los elementos que no sean oxígeno o hidrógeno 3.- Igualar en cada una de dichas ecuaciones el numero de átomos de oxigeno añadiendo al miembro en que exista menos cantidad de este elemento tantas moléculas de agua como átomos de oxigeno haya en defecto
  • 10. 4.- Igualar a continuación él hidrogeno añadiendo al miembro en que este en defecto el hidrogeno necesario en forma de H+ 5.- Ajustar estas semirreacciones electrónicamente, de manera que haya el mismo numero de cargas en los dos miembros, lo cual se logra añadiendo el numero necesario de electrones 6.- Multiplicar las semiecuaciones de oxidación y reducción por un numero que iguale el numero de electrones cedidos o captados 7.- Sumar las dos semiecuaciones para obtener la ecuación redox ionica total 8.- Volver a formar la reacción total
  • 11. En medio básico es igual pero Para igualar el oxigeno han de añadirse tantas moléculas de agua como átomos de oxigeno existan en exceso , en el otro se añade el doble de iones OH- Para igualar el hidrogeno se añaden al miembro donde exista defecto tantas moléculas de agua como átomos de hidrogeno falten y en el otro miembro el mismo numero de iones OH- 3.-ESTEQUIOMETRIA REDOX La masa equivalente en un proceso redox es el cociente entre la masa molecular y el número de electrones que aparecen en la semirreacción. M E = M/e- El heptaoxodicromato(VI) de potasio, o dicromato potásico, se reduce a cromo(III) según la semirreacción, sin ajustar: K2Cr2O7 + 6e-  2Cr2+ La masa equivalente resultará:294.2/6= 49.036
  • 12. valoración redox es similar a la valoración ácido base. Hay que determinar el número de moles de especie oxidante y reductora que reaccionan entre sí Otra manera, al igual que en ácido-base, el concepto de masa equivalente, y el de normalidad. : De esta manera: neq(oxidante ) = neq(reductora) Es decir: V (ox.) x N (ox.) = V (red.) x N (red.) Las volumetrías redox se suelen denominar por el nombre del compuesto que actúa como oxidante. Así, las volumetrías realizadas con permanganato potásico se llaman &quot;permanganimetrías&quot;, con yodo &quot;yodometrías&quot; &quot;dicromatometrías&quot;, etc. La determinación del punto final puede hacerse potenciométricamente o mediante el uso de un indicador redox
  • 13. Los indicadores redox son sustancias cuya forma presenta diferente color que la reducida. Cada indicador muestra su viraje o cambio de color a un potencial determinado 4 .- PILAS VOLTAICAS (CÉLULAS GALVÁNICAS). Si se introduce una barra de Zn en una disolución de CuSO 4 (Cu 2+ + SO 4 2– ) se producirá espontáneamente la siguiente reacción: Cu2+ (aq) + Zn (s)  Cu (s) + Zn2+ (aq) El Zn se oxida (pierde electrones) y el Cu2+ se reduce (los gana). Si hacemos que las reacciones de oxidación y reducción se produzcan en recipientes separados (semiceldas), y las conectamos ente sí para que los electrones perdidos en la oxidación del Zn circulen por el exterior y sean los que producen la reducción del Cu2+ a Cu, tendremos una pila, puesto que la circulación e electrones es precisamente la corriente eléctrica.
  • 14. Electrodos. Se llama así a cada barra metálica sumergida en una disolución del mismo metal. En una pila hay dos electrodos: Ánodo : Se lleva a cabo la oxidación (allí van los aniones). En el ejemplo anterior sería el electrodo de Zn. Cátodo : Se lleva a cabo la reducción (allí van los cationes). En el ejemplo anterior sería el electrodo de Cu. Pila Daniell. Consta de dos semiceldas, una con un electrodo de Cu en una disolución de CuSO4 y otra con un electrodo de Zn en una disolución de ZnSO4. Están unidas por un puente salino que evita que se acumulen cargas del mismo signo en cada semicelda.
  • 15. A
  • 16. Entre los dos electrodos se genera una diferencia de potencial que se puede medir con un voltímetro. Representación esquemática de una pila La pila anterior se representaría: Ánodo || puenteSalino| Cátodo Zn (s) | ZnSO4 (aq) || CuSO4 (aq) | Cu (s) Pila Daniell. (Imagen cedida por © Ed. Santillana. 2º de Bachillerato)
  • 17.  
  • 19.  
  • 20.  
  • 21. Pilas comerciales. Hay varios tipos conocidos: Salinas (suelen ser de Zn/C) Alcalinas(suelen ser de Zn/Mn) Recargables (suelen ser de Cd/Ni) De Mercurio o de botón (suelen ser de Zn/Hg) Salina Alcalina De  mercurio (Imágenes cedidas por © Grupo ANAYA. S.A. Química 2º Bachillerato)
  • 22. POTENCIAL DE REDUCCIÓN. ESCALA DE POTENCIALES. Las pilas producen una diferencia de potencial ( Δ Epila) que puede considerarse como la diferencia entre los potenciales de reducción de los dos electrodos que la conforman: Consideraremos que cada semirreacción de reducción viene dada por un potencial de reducción. Como en el cátodo se produce la reducción, en todas las pilas Ecatodo > Eánodo . Cada pareja de sustancia oxidante-reductora tendrá una mayor o menor tendencia a estar en su forma oxidada o reducida. El que se encuentre en una u otra forma dependerá de la otra pareja de sustancia oxidante-reductora. ¿Qué especie se reducirá? Sencillamente, la que tenga un mayor potencial de reducción.
  • 23. El potencial eléctrico de un electrodo, sin embargo, no puede determinarse de forma absoluta, así que se calculan haciendo referencia a un electrodo especial: el electrodo de hidrógeno . Potencial de reducción normal de electrodo es la diferencia de potencial, a 25 ºC, entre el electrodo considerado y el electrodo normal de hidrógeno, cuando las especies iónicas están presentes con una concentración de 1 M y las especies gaseosas a una presión de 1 atm. La serie electroquímica es un sistema ordenado de reacciones de reducción en las que el potencial normal de reducción aumenta . Los potenciales de oxidación tendrán signo contrario y con la reacción inversa
  • 24. Una transformación se producirá espontáneamente cuando disminuya la energía libre de Gibbs . DG < 0 Puesto que en una reacción redox la energía libre equivale al trabajo eléctrico: DG = W = - q · E Empleando los valores normales, se puede escribir: DG< 0 = - q · E< 0 El signo negativo indica que se trata de un trabajo cedido por la reacción, el sistema suministra trabajo eléctrico a su entorno. Para que la reacción sea espontánea, la fuerza electromotriz de la reacción deberá ser positiva, ya que así disminuirá la energía libre. Con los potenciales de reducción de la serie electroquímica es posible determinar la fuerza electromotriz de la reacción y, por tanto, la espontaneidad de la reacción redox.