GUÍA DE ESTUDIO Nº2 : quot;FUNCIÓN LOGARÍTMICAquot;

                                                     con a>0 ∧ a ≠ l
...
INFLUENCIA DE LOS PARÁMETROS: quot;pquot; y quot;qquot; EN LAS GRÁFICAS DE LAS FUNCIONES DEL
TIPO: F(x) = loga(x - p ) + q...
Observamos que:
a) Si q >0: la gráfica de la función se desplaza.....................................unidades hacia…………………...
♦ F ( x) = log 2 ( x + 3) − 1

                         1
♦ G ( x) = log        x +  − 3,5
                 5
        ...
Próxima SlideShare
Cargando en…5
×

GuíA De Estudio N2 Funcion Logaritmica

1.868 visualizaciones

Publicado el

Publicado en: Empresariales
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
1.868
En SlideShare
0
De insertados
0
Número de insertados
4
Acciones
Compartido
0
Descargas
17
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

GuíA De Estudio N2 Funcion Logaritmica

  1. 1. GUÍA DE ESTUDIO Nº2 : quot;FUNCIÓN LOGARÍTMICAquot; con a>0 ∧ a ≠ l DEFINICIÓN: F(x) = log a x F ( x) = log a x ∧ G ( x) = log  1  x Recordando que:  a Dm F(x) =………………… Im F(x)=………………….. GRÁFICAS: a) F(x) = log2 x log  1  x b) F(x)=  2 c) F(x) = log3 x log  1  x d) F(x)=   3 Todas las gráficas de las funciones logarítmicas del tipo F(x) = loga x tienen esta misma forma y las llamaremos: quot;GRÁFICAS MATRICESquot; ANÁLISIS DE LAS GRÁFICAS MATRICES: 1) La recta X=0 (eje quot;Yquot;) es: ……………………………………………………………………………………… 2) Si a > 1 => la función es: ................................................................................................................................. 3) Si 0<a<l => la función es: ……………………………………………………………………………………….. F ( x) = log a x ∧ G ( x) = log  1  x , las gráficas de F(x) y G(x) son simétricas respecto del eje……. 4) Siendo:  a 5) Todas las gráficas matrices pasan por el punto: ……………………………………………………………….. 1
  2. 2. INFLUENCIA DE LOS PARÁMETROS: quot;pquot; y quot;qquot; EN LAS GRÁFICAS DE LAS FUNCIONES DEL TIPO: F(x) = loga(x - p ) + q CON RESPECTO A LAS GRÁFICAS MATRICES: 1) Influencia de “p” : Graficamos las funciones: ♦ F(x) = log2 x ( p=0) Dm F(x) = ………. Im F(x) =……….. ♦ G(x) = − log 2 ( x − 3) ( p = 3 ) Im G(x) = ……… Dm G(x) = ……… Im H(x)= ………. ♦ H(x) = log2( x + 3) ( p = - 3) Dm H(x) = ……… Observamos que: a) Si p>0, la gráfica de la función se desplaza: ………..unidades hacia la…………………………… b) Si p<0, la gráfica de la función se desplaza: ………..unidades hacia la…………………………… Por este motivo, quot;pquot; es el:......................................................................................………………………. c) El Dm F(x) es: ...................................... y el conjunto Im F(x) es: …………………………………. d) Las gráficas poseen AV. en :........................…...............................................……………………….. 2) Influencia de quot;qquot;: Graficamos las funciones: ♦ F(x) = log2 x (q=0) Dm F(x) = .............. ImF(x) =……….. ♦ G(x) = log2x + l (q=l) DmG(x) = ………. ImG(x) =……… ♦H(x) = log2x-l (q--l) DmH(x) = ………. ImH(x)=……… 2
  3. 3. Observamos que: a) Si q >0: la gráfica de la función se desplaza.....................................unidades hacia………………………… b) Si q <0: la gráfica de la función se desplaza.....................................unidades hacia ……………………….. Por este motivo quot;qquot; es el:………………………………………………………………………………………. c)Dm F(x):................................................................ Im F(x):………………………………………………. d)La AV. es: …………………………………………………………………………………………………….  1 Dada G ( x) = log  x +  − 3,5 , su gráfica será la misma que la de la función EN GENERAL: 5  4 F(x) = …….., desplazada……………. unidades hacia la………………………….y ………….unidades hacia………………………………………………………………………………………………………. APLICACIÓN: Analiza, si la función es Creciente o Decreciente, e indica Dominio, Imagen y Asíntota: 3
  4. 4. ♦ F ( x) = log 2 ( x + 3) − 1  1 ♦ G ( x) = log  x +  − 3,5 5  4 4

×