SlideShare una empresa de Scribd logo
1 de 8
Descargar para leer sin conexión
377
Interferencia causada por hemólisis en la determinación de 25
constituyentes bioquímicos en el autoanalizador ADVIA 1800
Hemolysis interference in the determination of 25 biochemical constituents using ADVIA
1800 autoanalyzer
Ítalo Moisés Saldaña O1,a
1
Departamento de Patología Clínica, Servicio de Bioquímica, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Perú.
a
Tecnólogo Médico- Químico farmacéutico.
Resumen
Introducción.Lainterferenciaporhemólisiseslaprincipalcausaderechazopreanalíticodemuestrasdesueroenellaboratorioclínico.
Objetivos.Conocerycuantificarlaposibleinterferenciaproducidaporhemólisisenlamediciónrutinariade25constituyentesbioquímicos
en el autoanalizador ADVIA 1800, empleando para ello el criterio de interferencia clínicamente relevante, cuando se supera el máximo
error sistemático deseable. Diseño. Estudio descriptivo comparativo. Institución. Hospital Edgardo Rebagliati Martins, EsSalud, Lima,
Perú. Material biológico. Muestras sanguíneas proveniente de sujetos voluntarios. Intervenciones. Se añadieron cantidades crecientes
de hemoglobina (0,26 g/L, 0,53 g/L, 1,05 g/L, 2,10 g/L, 3,25 g/L, 4,30 g/L y 5,25 g/L) a siete diferentes alícuotas de una mezcla de
suerosysedeterminóenellasporduplicadolainfluenciadelinterferenteenlos25constituyentes.SesiguióelprotocolodelaSociedad
Española de Química Clínica. Principal medida de resultados. Porcentaje relativo de desviación de la concentración del constituyente
por influencia de la hemólisis, con respecto a la muestra sin interferente. Resultados. Los constituyentes urea, creatinina, ácido
úrico, bilirrubina total, colesterol HDL, colesterol LDL, triglicéridos, calcio y gammaglutamiltransferasa no presentaron interferencia,
mientras que se observó interferencia para glucosa, proteínas, albúmina, colesterol, potasio, fósforo, magnesio, deshidrogenasa
láctica, creatinfosfoquinasa, aspartato aminotransferasa, alanino aminotransferasa, lipasa, sodio, cloro, fosfatasa alcalina y amilasa.
Conclusiones. De los 25 constituyentes estudiados, 16 presentaron interferencia clínicamente significativa. Se recomienda que cada
laboratorio investigue los efectos de dicha interferencia empleando sus propios métodos, reactivos o instrumentos.
Palabras clave. Hemólisis; Interferencia por Hemólisis; Errores sistemáticos.
Abstract
Introduction. Hemolysis interference is the main cause of pre analytical rejection of serum samples in clinical laboratory. Objectives.
To identify and quantify possible hemolysis interferences in the routine measurement of 25 biochemical constituents using ADVIA
1800 autoanalyzer, by clinical relevant interference criterion when the maximum desirable systematic error is exceeded. Design.
Comparative descriptive study. Institution. Hospital Edgardo Rebagliati Martins, EsSalud, Lima, Peru. Biologic material. Blood samples
collected from volunteer subjects. Interventions. Increasing amounts of hemoglobin (0.26 g/L, 0.53 g/L, 1.05 g/L, 2.10 g/L, 3.25 g/L,
4.30 g/L, and 5.25 g/L) were added to seven different aliquots of sera mixture and influence of interfering influence in 25 constituents
was determined by duplicate. The Spanish Society of Clinical Chemistry protocol was followed. Main outcome measure. Hemolysis-
related relative percentage deviation of the constituent concentration compared with the sample without interference. Results. Urea,
creatinine, uric acid, total bilirubin, HDL cholesterol, LDL cholesterol, triglycerides, calcium, and gamma glutamyl transferase showed
no interference. Interference was observed for glucose, protein, albumin, cholesterol, potassium, phosphorus, magnesium, lactic
dehydrogenase, creatine phosphokinase, aspartate aminotransferase, alanine aminotransferase, lipase, sodium, chlorine, alkaline
phosphatase and amylase. Conclusions. Out of 25 constituentss studied, 16 had clinical significant interference. It is recommended
that each laboratory investigate this interference effects using their own methods, reagents or instruments.
Keywords. Hemolysis; Hemolysis Interference; Bias, Systematic.
An Fac med. 2015;76(4):377-84 / http://dx.doi.org/10.15381/anales.v76i4.11407
INTRODUCCIÓN
Las interferencias analíticas pueden
causar errores clínicamente significati-
vos en los resultados de una magnitud
biológica, las cuales conducen a diag-
nósticos equivocados, análisis o ex-
ploraciones adicionales inapropiadas y
tratamientos innecesarios o potencial-
mente desfavorables para los pacientes.
Se define la interferencia analítica
como el efecto de un constituyente en
la exactitud de medida de otro cons-
tituyente o el efecto que se produce
en cualquier etapa de su determina-
ción (1,2)
.
La interferencia por hemólisis es la
principal causa de rechazo preanalítico
de muestras de suero, el cual conlleva a
un gasto extra de reactivos, un mayor
desgaste de los equipos y demora en la
emisión de resultados (3)
.
La prevalencia de muestras hemoli-
zadas en diversos estudios es muy va-
riable, oscila entre 0,05 y 3,3%. Esta
variabilidad puede deberse a las dis-
tintas formas de realizar el ensayo para
investigar interferencia por hemólisis y
378
An Fac med. 2015;76(4):377-84
a los varios criterios para establecer el
límite de error máximo admisible para
este tipo de interferencia (4,5)
.
La calidad analítica de los resulta-
dos de un laboratorio se puede estimar
por medio de indicadores como la im-
precisión, el error sistemático (ES) y el
error total (ET), comparándolos con
las especificaciones de la calidad esta-
blecidas. El grado de cumplimiento de
dichas especificaciones no solo asegu-
ra la calidad de los resultados sino que
también es esencial para asegurar la in-
terpretación y utilización de los datos
de laboratorio por los clínicos.
La Organización Mundial de la Sa-
lud, con sustentación en las recomen-
daciones de la Sociedad Alemana de
Química Clínica, define interferencia
clínicamente relevante cuando se su-
pera el error sistemático deseable (6)
.
La hemólisis es el proceso de des-
trucción de los hematíes con la con-
siguiente liberación del contenido
intracelular en el plasma, alterando
su composición. La principal molécu-
la intracelular es la hemoglobina, que
tiene un espectro de absorción carac-
terístico del grupo Hem, con un pico
de 400 nm y varios picos entre 500 y
600 nm, lo que produce un color rojizo
en el plasma proporcional a la cantidad
de hemoglobina liberada. La hemólisis
puede haber sido originada in vivo por
diversas alteraciones en los hematíes u
otras causas, o in vitro por una extrac-
ción o manejo de la muestra de sangre
inadecuada. Solo la hemólisis in vitro
es considerada como interferencia (7,8)
.
La hemólisis tiene un marcado
efecto en aquellos analitos de elevada
concentración intracelular, los cuales
pueden mostrar un sesgo positivo como
resultado de la liberación de estos cons-
tituyentes desde el compartimento in-
tracelular hasta el plasma sanguíneo.
En el proceso de hemólisis también
se libera líquido intracelular hacia el
espacio extracelular, lo cual puede ori-
ginar un sesgo negativo en ciertos cons-
tituyentes como resultado del proceso
de dilución.
La hemólisis también puede produ-
cir interferencia espectral cuando la
absorbancia de la hemoglobina y del
cromógeno producido en la reacción se
solapan, debido a que la hemoglobina
tiene una elevada absorbancia, entre
400 y 600 nm, por lo que puede inter-
ferir en procedimientos con lecturas en
esa región del espectro.
Además, el grupo hemo, el hierro, la
adenilato cinasa, las proteasas y otros
componentes intracelulares liberados
en el proceso de hemólisis, pueden in-
terferir en diversas reacciones quími-
cas (7,8)
.
El objetivo del presente estudio es
conocer y cuantificar la posible interfe-
rencia producida por la hemólisis en la
medición rutinaria de 25 constituyen-
tes bioquímicos en el autoanalizador
ADVIA 1800, empleando para ello el
criterio de interferencia clínicamente
relevante, cuando se supera el máximo
error sistemático deseable.
MÉTODOS
Los 25 constituyentes investigados
fueron valorados en el analizador
ADVIA 1800 con reactivos y calibra-
Tabla 1. Métodos y concentración sérica de los constituyentes investigados.
Constituyente Método
Concentración sérica del
constituyente en estudio
Glucosa
Urea
Creatinina
Ácido úrico
Proteínas
Albúmina
Bilirrubina total
Colesterol total
HDL colesterol
LDL colesterol
Triglicéridos
Sodio
Potasio
Cloro
Calcio
Fósforo
Magnesio
LDH
CK
AST
ALT
FAL
GGT
Amilasa
Lipasa
Hexocinasa
Ureasa con GLDH
Creatininasa
Uricasa/peroxidasa
Biuret
Verde de bromocresol
Oxidación por vanadato
CHOD,Trinder
Eliminación/catalasa. Directo
Eliminación/catalasa. Directo
GPO, Trinder sin blanco de suero
Potenciometría indirecta
Potenciometría indirecta
Potenciometría indirecta
o-cresolftaleìna complexona
Fosfomolibdato UV
Azul de xilidilo
Lactato/NAD
IFCC, activado con NAC
IFCC modificado
IFCC modificado
IFCC modificado
IFCC modificado
pNPG7 bloqueado con etilideno
Cinética colorimétrica
6,66 mmol/L (120 mg/dL)
10,79 mmol/L (65 mg/dL)
128,18 µmol/L (1,45 mg/dL)
255,76 µmol/L (4,3 mg/dL)
58,1 g/L (5,81 g/dL)
28 g/L (2,8 g/dL)
10,43 µmol/L (0,61 mg/dL)
3,57 mmol/L (138 mg/dL)
0,85 mmol/L (32,75 mg/dL)
2,25 mmol/L (87 mg/dL)
1,55 mmol/L (137 mg/dL)
133 mmol/L (133 mEq/L)
3,79 mmol/L (3,79 mEq/L)
100 mmol/L (100mEq/L)
1,91 mmol/L (7,62 mg/dL)
1,13 mmol/L (3,50 mg/dL)
0,76 mmol/L (1,86 mg/dL)
235 U/L
182 U/L
42 U/L
32,5 U/L
127,5 U/L
123,5 U/L
93,5 U/L
45,5 U/L
* GLDH: glutamato deshidrogenasa, CHOD: colesterol-oxidasa, GPO: glicerol fosfato oxidasa, UV: ultravioleta, LDH:
lactato deshidrogenasa, CK: creatina cinasa, IFCC: Federación Internacional de Química Clínica,
NAC:N-acetil-L-cisteína, AST: aspartato aminotransferasa, ALT: alanina aminotransferasa, FAL: fosfatasa alcalina,
GGT: gammaglutamiltransferasa, pNPG7: p-nitrofenil-maltoheptaósido.
379
Interferencia causada por hemólisis en la determinación de 25 constituyentes bioquímicos en el autoanalizador ADVIA 1800
Ítalo Moisés Saldaña O
dores de Siemens®
. Para la medición de
hemoglobina se utilizó un contador de
células sanguíneas SYSMEX XE-2100
de Roche Diagnostics®
, mediante el
método SLS (sulfato láurico de sodio).
Ambos analizadores fueron cali-
brados previamente de acuerdo a las
recomendaciones del fabricante. El
programa de control de calidad interno
incluyó la evaluación de sueros contro-
les BIO-RAD®
de 2 niveles de decisión,
que se procesaron diariamente, y una
muestra quincenal de control de cali-
dad externo internacional (RIQAS).
En la tabla 1 se muestra los consti-
tuyentes analizados, los métodos en los
que se basan las mediciones de los dis-
tintos analitos y la concentración sérica
basal (sin interferente) de los constitu-
yentes en estudio.
El estudio es descriptivo compara-
tivo, donde se compara el valor medi-
do de la magnitud en una muestra sin
interferente con los valores obtenidos
cuando se adicionan a la muestra con-
centraciones conocidas del interferen-
te. Para lo cual se ha seguido el pro-
tocolo de la Comisión de Metrología
y Sistemas Analíticos de la Sociedad
Española de Química Clínica (8)
.
Para la preparación del hemolizado,
se centrifugó a 1 200 g durante 10 mi-
nutos 5 mL de sangre total hepariniza-
da. Posteriormente se eliminó el plasma
y se reemplazó con 10 mL de solución
salina (NaCl 154 mmol/L); se invirtió
el tubo varias veces, se centrifugó por
10 minutos a 1 200 x g y se decantó el
sobrenadante. Este proceso de lavado
con solución salina se repitió 2 veces
más. En el último lavado se desechó el
sobrenadante y se adicionó al paquete
globular 2,5 mL de agua desionizada.
Se mezcló invirtiendo el tubo varias ve-
ces. La solución así preparada fue con-
gelada a -20 ºC por 13 horas, al cabo de
lo cual se descongeló, agitó y centrifugó
30 minutos a 1 200 x g. Se descartó el
sedimento (eliminación de estromas
celulares) y se cuantificó en el sobre-
nadante la concentración de hemo-
globina libre por el método de sulfato
láurico de sodio. La concentración de
hemoglobina de la solución de partida
fue 10,5 g/dL.
Para la preparación del suero base,
se recolectó 25 mL de un pool de sueros
libre de hemólisis, lipemia o ictericia,
proveniente de sujetos voluntarios de
ambos sexos, sin importar la edad, y sin
patologías conocidas.
Para conseguir varios grados de he-
mólisis, se añadió cantidades crecientes
del hemolizado a siete diferentes alí-
cuotas del pool de sueros (suero base).
En esta preparación, la mezcla libre de
hemolizado se igualó en volumen a las
alícuotas con interferente, utilizando
agua destilada. Se obtuvo siete mues-
tras con concentraciones crecientes de
hemoglobina y una basal sin interferen-
te.
Se pudo medir la hemoglobina en las
tres últimas diluciones (6a
, 7a
, 8a
) y se
determinó la concentración de hemo-
globina teórica en las soluciones 1a
, 2a
,
3a
, 4a
y 5a
, ya que estos valores estuvie-
ron por debajo del límite de detección
del analizador hematológico. Las con-
centraciones resultantes de las alícuo-
tas fueron: 1a
0 g/L, 2a
0,26 g/L, 3a
0,53
g/L, 4a
1,05 g/L, 5a
2,10 g/L, 6a
3,25 g/L,
7a
4,30 g/L y 8a
5,25 g/L (figura 1).
Cada una de las diluciones se analizó
por duplicado de forma independiente,
y pudo determinarse así el porcentaje
de variación en la concentración de
cada analito ensayado en función del
incremento en el grado de hemólisis de
las muestras.
La evaluación de las interferen-
cias se realizó mediante el método de
Glick y col (9)
, expresándose los resul-
tados como un porcentaje del resul-
tado original. Para ello, se hace una
representación gráfica de esta relación
mediante un interferograma, en el que
se representa (C/CO
) x 100 frente a la
concentración de hemoglobina de cada
alícuota, donde (CO
) es la concentra-
ción inicial sin interferente y (C) la
concentración medida experimental-
mente del constituyente en estudio.
Las interferencias se compararon con
las actuales especificaciones de calidad
analítica para el máximo error sistemá-
tico deseable (MESD), derivada de la
variación biológica intraindividual. Se
consideró a la interferencia como clíni-
camente relevante cuando era superior
al MESD (10,11)
.
Para el caso puntual de la bilirrubina
total, esta se trata de una variable que
primero disminuye su valor y luego, a
medida que aumenta la concentración
del interferente, aumenta. Es decir,
existe una relación de no linealidad,
lo que indica que la interferencia en
este caso depende no solo de la canti-
dad de hemoglobina sino también de la
concentración de bilirrubina. Para tal
efecto se procedió a realizar un ensayo,
basado en el modelo de Kroll (12)
, que
utiliza una regresión múltiple con tres
variables independientes: la concentra-
ción del constituyente, la concentra-
ción del interferente y el producto de
los dos o la interacción constituyente-
interferente:
Figura 1. Alícuotas con cantidades crecientes del interferente (hemoglobina).
380
An Fac med. 2015;76(4):377-84
C= β0
+ β1
CO
+ β2
I+β3
CO
I
Donde CO
= concentración inicial
o teórica del constituyente en estudio,
C = concentración experimental o
medida, e I = concentración del inter-
ferente; el coeficiente β0
representa el
intercepto de la regresión múltiple y ha
de ser próximo a cero; el coeficiente β1
indica si el método es o no válido para
dicho analito y ha de ser próximo a la
unidad. Los coeficientes β2
y β3
repre-
sentan la interferencia independiente
y dependiente de la concentración del
constituyente, respectivamente; el va-
lor de cada uno de estos coeficientes
está relacionado con la magnitud de la
interferencia y su signo con la dirección
de la interferencia, ya sea positiva o ne-
gativa.
El diseño del experimento para este
modelo es una matriz ortogonal con
concentraciones progresivamente cre-
cientes del constituyente (0,2 mg/dL,
0,5 mg/dL, 1,0 mg/dL y 2 mg/dL de bi-
lirrubina) y del interferente (0 g/L, 0,26
g/L, 0,53 g/L, 1,05 g/L, 2,1 g/L, 3,25
g/L, 4,3 g/L, 5,25 g/L de hemoglobina).
Es decir, se preparó 32 muestras dife-
rentes, logrando conformar una matriz
de cuatro concentraciones del cons-
tituyente y ocho concentraciones de
hemoglobina.
Si los coeficientes β2
o β3
son dis-
tintos de cero, existe interferencia
independiente o dependiente de la
concentración del constituyente res-
pectivamente. En algunos casos, am-
bos coeficientes son distintos de cero
debido a una interferencia mixta de-
pendiente e independiente de la con-
centración del constituyente. Si dichos
coeficientes no son distintos de cero,
no existen tales interferencias.
Con relación al análisis estadístico,
se determinó el promedio y la impreci-
sión (coeficiente de variación) de los
duplicados de la concentración de los
constituyentes estudiados para cada
Tabla 2. Porcentaje relativo de desviación de la concentración del constituyente con respecto al resultado inicial por
influencia de la hemólisis y especificaciones para el máximo error sistemático deseable.
Constituyente
Error sistemático
deseable % (+/-)
Hemoglobina (g/L)
0,0 0,26 0,53 1,05 2,10 3,25 4,30 5,25
Glucosa*
Urea
Creatinina
Ácido úrico
Proteínas*
Albúmina*
Bilirrubina total
Colesterol total*
HDL colesterol
LDL colesterol
Triglicéridos
Sodio*
Potasio*
Cloro*
Calcio
Fósforo*
Magnesio*
LDH*
CK*
AST*
ALT*
FAL*
GGT
α-Amilasa*
Lipasa*
2,34
5,57
3,96
4,87
1,36
1,43
8,95
4,10
5,61
5,46
9,57
0,23
1,81
0,47
0,82
3,38
1,84
4,26
11,51
6,54
11,48
6,72
11,06
7,40
11,31
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0.0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,4
0,0
- 0,3
-1,2
0.5
0,4
- 5,0
1,8
0,0
0,6
0,4
0,0
2,1
0,0
0,2
0,9
1,6
16,4
2,8
2,4
4,6
- 5,1
- 1,2
1,1
0,0
1,3
0,0
- 0,3
-1,2
0.3
0,5
- 5,8
1,8
0,0
0,0
1,5
0,0
5,3
0,0
0,2
1,6
1,1
32,3
6,3
10,7
9,2
- 5,1
- 2,0
0,5
1,1
1,3
0,0
- 0,3
-3,5
0,9
0,9
- 8,3
2,2
0,0
0,6
2,6
0,0
9,3
-1,0
0,1
2,7
1,9
58,3
10,5
20,2
10,8
- 8,2
- 3,2
-0,53
5,5
1,7
0,0
- 0,3
- 3,5
1,6
1,3
-0,8
5,1
0,0
2,3
4,4
-0,38
18,0
-0,8
0,5
4,0
1,9
112
20,7
33,3
12,3
-11,0
-2,0
-1,6
12,1
1,7
0,0
0,3
- 4,7
2,8
3,8
0,0
5,1
0,0
2,3
4,7
-0,38
25,5
-0,5
0,0
6,6
3,8
156
31,4
50,0
20,0
-15,3
-1,2
- 3,2
18,7
2,5
1,5
0,3
- 4,7
5,2
5,9
0,8
6,9
0,0
3,4
6,6
-0,38
32,0
-0,5
0,7
8,6
7,5
192
39,7
63,1
20,0
-17,6
-2,4
- 4,8
25,3
3,8
1,5
0,7
- 4,7
6,1
7,5
1,65
8,3
0,0
3,4
7,7
-0,38
41,1
-0,5
0,2
10,9
5,4
240
46,8
82,1
23,1
-25,5
-4,0
- 9,1
30,8
Los resultados son comparados con las especificaciones de inexactitud deseable, los que exceden dichas especificaciones están marcados en
negrita y cursiva.
(*) Constituyentes en las que se encuentra interferencia.
381
Interferencia causada por hemólisis en la determinación de 25 constituyentes bioquímicos en el autoanalizador ADVIA 1800
Ítalo Moisés Saldaña O
aspartato aminotransferasa, alanino
aminotransferasa, lipasa, sodio, cloro,
fosfatasa alcalina y amilasa.
La imprecisión expresada en térmi-
nos de coeficiente de variación presen-
tó un valor mínimo de 0% y máximo
de 3,6% para todos los constituyentes
analizados por duplicado.
En la tabla 2 se expone los por-
centajes relativos de desviación de la
concentración del constituyente con
respecto al resultado inicial, las espe-
cificaciones de calidad analítica para
el máximo error sistemático deseable
y las alícuotas donde se detecta la in-
Figura 2. Interferogramas donde se muestra el efecto del agregado de cantidades crecientes del interferente sobre la concentración original
(porcentaje de cambio) de los 25 constituyentes en estudio.
alícuota. Para el caso particular de la
bilirrubina, se realizó el análisis de re-
gresión múltiple, el cálculo de los co-
eficientes de dicha regresión y la pro-
babilidad de que los coeficientes fueran
significativamente diferentes de cero,
para p< 0,05. Para el análisis estadísti-
co se empleó el software SPSS versión
21 (SPSS Inc., Chicago, IL, EE. UU.).
RESULTADOS
Utilizando el criterio de máximo error
sistemático deseable, basados en estu-
dios de variabilidad biológica (10,11)
, en
el presente estudio se encontró inter-
ferencia clínicamente relevante en 16
constituyentes de los 25 estudiados.
Los constituyentes urea, creatinina,
ácido úrico, bilirrubina total, coleste-
rol HDL, colesterol LDL, triglicéridos,
calcio y gammaglutamil transferasa no
presentaron interferencia debida a he-
mólisis en todas las alícuotas con con-
centraciones crecientes de hemoglobi-
na empleadas en el ensayo.
Se observó interferencia para glu-
cosa, proteínas, albumina, colesterol,
potasio, fósforo, magnesio, deshidro-
genasa láctica, creatinfosfoquinasa,
382
An Fac med. 2015;76(4):377-84
terferencia clínicamente relevante para
cada uno de los constituyentes.
En la figura 2 se representa los in-
terferogramas (9)
, donde se aprecia el
efecto de la adición de cantidades cre-
cientes del interferente (hemoglobina)
sobre la concentración de los analitos
estudiados.
Para el caso de la bilirrubina, se ob-
tuvo la siguiente ecuación de regresión
múltiple:
C= –0,014 + 0,944CO
– 0,06 I +
0,04 CO
I
En nuestro estudio, el valor del co-
eficiente β0
= -0,014 estuvo próximo a
cero, mientras que el coeficiente β1
=
0,944 se acercó a la unidad, por lo que
puede decirse que este método es vá-
lido para la evaluación de esta técnica
analítica. Los coeficientes β2
y β3
no
resultaron significativamente distintos
de cero (p>0,05), lo que confirma la
no interferencia de hemoglobina hasta
una concentración de 5,25 g/L para la
determinación de bilirrubina total. Re-
sultados que son detallados en la tabla
3.
DISCUSIÓN
La interferencia analítica por hemólisis
es un problema que afecta a todos los
laboratorios. Siempre se cuestiona la
exactitud de los resultados cuando se
analiza este tipo de muestras. La solu-
ción no está en solo añadir comenta-
rios como ‘muestra hemolizada’ a los
reportes de laboratorio; es importante
también conocer la cantidad y el signo
posible de dicha interferencia.
Los primeros estudios publicados so-
bre el efecto de la hemólisis considera-
ban como interferencia significativa un
10% de variación sobre el resultado de
la muestra sin interferente. Este crite-
rio, utilizado por muchos fabricantes en
sus estudios de evaluación, es más per-
misivo en las magnitudes con pequeña
variabilidad biológica y puede ser me-
nos permisivo en aquellas con elevada
variabilidad intraindividual o interindi-
vidual (1,6)
.
Nuestros resultados indican que, si
hubiéramos utilizado el criterio ante-
riormente mencionado, algunos cons-
tituyentes no hubieran sido detectados
como sensibles a la presencia del inter-
ferente. Lo que sugiere que la signifi-
cación del efecto de la hemólisis debe
establecerse en cada laboratorio y para
cada magnitud de acuerdo con sus pro-
pias especificaciones de calidad.
Ante la presencia de hemólisis con
una concentración de hemoglobina
igual o mayor a 0,53 g/L, los resulta-
dos de potasio, deshidrogenasa láctica
y aspartato aminotransferasa se vieron
afectados, lo que se traduce en una
pérdida de fiabilidad en los resultados
obtenidos para los analitos, inclusive
cuando se presenta hemólisis ligera.
Diversos estudios han encontrado que
dicha interferencia es debida a las ma-
yores concentraciones de estos consti-
tuyentes en el interior del hematíe que
en el suero (5,14,15)
.
En cuanto al colesterol, que usa la
reacción de Trinder como reacción in-
dicadora, hemos obtenido interferencia
al igual que otros estudios (14,15)
, lo cual
parece lógico dado las propiedades seu-
doperoxidasa de la hemoglobina.
En el caso de los triglicéridos y el áci-
do úrico que también usan la reacción
de Trinder como reacción indicadora,
no hemos obtenido interferencia signi-
ficativa, resultado que concuerda con
Lippi y Caballero (5,14)
, pero que discre-
pan con Steen y Castaño, que obtuvie-
ron interferencia para ambos constitu-
yentes (15,16)
.
Para el caso de las lipoproteínas de
alta densidad (HDL) y de baja densi-
dad (LDL) determinadas mediante el
método directo, se advirtió interferen-
cia nula para ambos casos, resultado
similar a lo citado por Aguilar (12)
.
En similitud con los resultados de
otros estudios (5,14,15,17)
, encontramos
interferencia debida a la hemólisis en la
medición de la actividad de la enzima
fosfatasa alcalina, que se detecta a una
concentración igual o mayor de 1,05
g/L de hemoglobina, atribuida a una
interferencia espectral.
Para el caso concreto de la amilasa,
esta presentó interferencia en la última
alícuota, correspondiente a una con-
centración de hemoglobina de 5,25 g/L,
resultado que no coincide con Aguilar,
quien determinó interferencia no sig-
nificativa para dicho analito en el au-
toanalizador Sistema Modular Roche/
Hitachi SWA. Sin embargo, en este
estudio se utilizó como última alícuota
una concentración de hemoglobina de
5,11 g/L (13)
.
En el caso de los electrolitos, el úni-
co que presentó efecto nulo por hemó-
lisis fue el calcio, resultado que coinci-
de con otros estudios (5,13-15,17)
.
Nuestros resultados para la albúmi-
na y las proteínas coinciden con los de
Steen (15)
, pero no con los publicados
por Aguilar (13)
. Hay que considerar
que el principio del método para dosar
proteínas se basa en la formación de un
complejo morado como consecuencia
de la interacción de los enlaces peptí-
dicos de las proteínas con los iones de
cobre del reactivo de Biuret, que se
mide a 545 nanómetros (nm) como re-
acción de punto final, longitud de onda
que coincide con los puntos de máxima
Tabla 3. Análisis de los coeficientes de regresión múltiple resultantes de la interferencia de la
hemoglobina con bilirrubina total (R2
= 0,994).
Variable Coeficiente Valor del coeficiente Nivel p*
Intercepto β0
-0,014 0,578
Bilirrubina total β1
0,944 0,000
Interferente (hemoglobina) β2
-0,006 0,498
Bilirrubina total – Interferente β3
0,004 0,650
* Valores de p < 0,05 son considerados significativamente diferentes de cero.
383
Interferencia causada por hemólisis en la determinación de 25 constituyentes bioquímicos en el autoanalizador ADVIA 1800
Ítalo Moisés Saldaña O
absorbancia de la hemoglobina, lo cual
parece ser la causa para dicha interfe-
rencia.
Al igual que otros estudios (5,13,14)
,
encontramos una sobreestimación en
los resultados de actividad de la enzi-
ma creatinfosfoquinasa, interferencia
que ha sido atribuida a la liberación de
la adenilatoquinasa intracelular, como
consecuencia de la hemólisis.
La gammaglutamiltransferasa no se
vio afectada por la hemólisis en todas las
alícuotas empleadas en el estudio, resul-
tado semejante a lo obtenido por Agui-
lar, quien empleó la misma metodología
pero diferente autoanalizador (13)
.
Destaca en nuestros resultados la
interferencia para glucosa a concen-
traciones de hemoglobina igual o ma-
yor de 4,30 g/L, dato que discrepa con
Aguilar y Caballero (13,14)
, quienes en
diferentes analizadores no encontraron
interferencia, a pesar que en estos dos
estudios emplearon la misma metodo-
logía (hexocinasa).
Para la determinación de creatinina
se usó la técnica enzimática de creati-
ninasa, la cual presentó interferencia
nula para hemólisis en todas las dilu-
ciones de hemoglobina empleadas en
nuestro estudio, resultados que con-
cuerdan con Aguilar, quien utilizó la
misma metodología pero diferente ana-
lizador (13)
. Es importante señalar que
Murray reporta interferencia a partir de
una concentración de hemoglobina de
1g/L para esta determinación, utilizan-
do la metodología de Jaffé cinético (7,19)
.
El estudio de valoración de inter-
ferencia por hemólisis debe realizarse
con una muestra que tenga una con-
centración del analito próxima a los
valores de decisión clínica. En algunos
casos, el efecto de la interferencia no
solo depende de la concentración de
la sustancia interferente, sino también
de la concentración del constituyente,
como fue el caso de la bilirrubina. En
nuestro estudio nos ha resultado impo-
sible obtener un pool de sueros cuyas
concentraciones estén todas próximas
a los valores de decisión clínica.
La interferencia espectral por he-
mólisis se produce cuando el espectro
de absorción del interferente y la del
cromógeno producido en la reacción se
solapan; muchos instrumentos de uso
corriente emplean diferentes técnicas
para la corrección de las interferencias
espectrales. Estas técnicas involucran
el uso de un blanco de muestra, el aná-
lisis bicromáticos o mediante la correc-
ción de Allen (7)
, todo esto sumado a
las diferentes metodologías o reactivos
que se emplean para medir los diferen-
tes constituyentes, además del empleo
de diferentes criterios para establecer el
límite de error máximo admisible para
establecer interferencia significativa,
pueden ser causas de la discordancia
de resultados en los diferentes estudios
para este tipo de interferencia.
Es interesante notar que metodolo-
gías teóricamente idénticas o muy se-
mejantes brindan resultados distintos
ante la presencia de hemólisis, lo que
nos indicaría que el análisis de interfe-
rencia aquí realizado no puede ser gene-
ralizado para otros reactivos o equipos.
Es recomendable que cada laboratorio
investigue los efectos de dicha interfe-
rencia empleando sus propios reactivos,
métodos o instrumentos.
La mayoría de los actuales autoa-
nalizadores tiene la capacidad de de-
tectar la hemólisis en las muestras de
suero mediante índices séricos que
se correlacionan linealmente con las
concentraciones del interferente. Los
índices pueden ser usados para detec-
tar la interferencia generando tablas de
tolerancia, con índices de decisión que
indican cuándo hay una interferencia.
En nuestro medio, a pesar de contar
con estos equipos, no se hace uso de
esta tecnología por desconocimiento
o por la excusa de consumo de tiem-
po de proceso del analizador y necesi-
dad de reactivos específicos en algún
caso (6,8,13)
.
Podemos concluir que las muestras
hemolizadas son un problema impor-
tante en todos los laboratorios. Las
principales causas que la originan son la
extracción o manejo de la muestra de
sangre de forma inadecuada, especial-
mente en áreas de alta presión asisten-
cial como en las unidades de cuidados
intensivos y los servicios de emergencia.
Los laboratorios deben asegurar la
detección de la hemólisis y tener esta-
blecidas las acciones que se van a tomar
frente a estas muestras.
AGRADECIMIENTOS
Al Licenciado Tecnólogo Médico Artu-
ro Arzapalo Poma por su tiempo y apor-
tes durante el desarrollo del presente
trabajo.
REFERENCIAS BIBLIOGRÁFICAS
1.	 Castaño JL. Estudio de las interferencias analí-
ticas endógenas en química clínica. Quím Clín.
1994;13:84–92.
2.	 Castaño JL. Criterios para la valoración de la sig-
nificación analítica y clínica de las interferencias
en bioquímica clínica. Quím Clín. 1995;14:107–9.
3.	 Clinical and Laboratory Standards Institute. Inter-
ference Testing in Clinical Chemistry; Approved
Guideline-Second Edition. EP7-A2. USA 2010.
4.	 Lippi G, Blanckaert N, Bonini P, Green S, Kitchen
S, Palicka V, et al. Haemolysis: an overview of the
leading cause of unsuitable specimens in clinical
laboratories.ClinChemLabMed.2008;46:764–72.
doi: 10.1515/CCLM.2008.
5.	 Lippi G, Salvagno GL, Montagnana M, Brocco
G, Guidi GC. Influence of hemolysis on routine
clinical chemistry testing. Clin Chem Lab Med.
2006;44:311–6.
6.	 GómezRiojaR,AlsinaKirchnerMJ,AlvarezFunes
V, Barba Meseguer N, Cortés Rius M, 345 Llopis
Díaz MA, Martínez Bru C. Hemólisis en las mues-
trasparadiagnóstico.RevLabClin.2009;2(4):185-
95. doi: 10.1016/j.labcli.2009.08.002
7.	 Kaplan L, Pesce A. Interferencias en el análisis
espectral.En:KaplanL,PesceA.QuímicaClínica,
teoría, análisis y correlación. Buenos Aires: Ed.
Médica Panamericana; 1988:1163-76.
8.	 Sociedad Española de Bioquímica Clínica y Pato-
logía Molecular. Procedimiento para el estudio de
lainterferenciaporhemólisis,bilirrubinayturbidez
y para la verificación de los índices de hemólisis,
ictericiaylipemia.ComisióndeMetrologíaySiste-
mas Analíticos. Documento Técnico 2013.
9.	 Glick MR, Ryder KW, Jackson SA. Graphical
comparisons of interferences in clinical chemistry
instrumentation. Clin Chem. 1986;32:470-5.
10.	 Ricós C, García Lario JV, Álvarez V, Cava F,
Doménech MV, Hernández A, et al. Biological
variationdatabase.The2014update.[Consultado
8/7/2014]. Disponible en: http://www. westgard.
com/biodatabase1.htm.
11.	 SociedadEspañoladeBioquímicaClínicayPatolo-
gía Molecular. Comité de garantía de la Calidad y
AcreditacióndeLaboratorios.Comisióndecalidad
Analítica. Base de datos De variación biológica.
Actualización del año 2014: Disponible en http://
www.seqc.es/es/Sociedad/51/102.
384
An Fac med. 2015;76(4):377-84
12.	 Castaño J, Ventura S. Recomendaciones para
el estudio de las interferencias dependientes de
la concentración del constituyente. Quím Clín.
2001;20(4):257–60.
13.	 García Aguilar GD, Pico Picos MA, Quintana
Hidalgo L, Cabrera Argany A, Lorenzo Medina M,
AguilarDoresteJA.Utilidaddelosíndicesséricos
para la valoración de las interferencias causadas
por la hemólisis y la bilirrubina en la medición de
distintos constituyentes bioquímicos. Quím Clín.
2007;26:196–201.
14.	 Caballero Sarmiento R. Estudio de las interferen-
cias producidas por la hemólisis en la medición
de 18 constituyentes séricos en un ADVIA 2400.
Quím Clín. 2007;26:20–2.
15.	 SteenG,VermeerHJ,NausAJ,GoevaertsB,Agri-
colaPT,SchoenmakersCH.Multicenterevaluation
of the interference of hemoglobin, bilirubin and
lipids on Synchron LX-20 assays. Clin Chem Lab
Med. 2006;44:413–9.
16.	 CastañoJL,AraquistainJLInterferenciascausadas
por la bilirrubina, hemoglobina y hemólisis en la
determinaciónde15constituyentesséricos.Quìm
Clín. 1989;8:47-55.
17.	 Ji JZ, Meng QH. Evaluation of the interference of
hemoglobin, bilirubin, and lipids on Roche Cobas
6000assays.ClinChimActa.2011Aug17;412(17-
18):1550–3. doi: 10.1016/j.cca.2011.04.034. 
18.	 Grafmeyer D, Bondon M, Manchon M, Levillain P.
The influence of bilirubin, hemolysis and turbidity
on 20 analytical tests performed on automatic
analysers. Results of an interlaboratory study. Eur
J Clin Chem Clin Biochem. 1995;33:31-52.
19.	 MurrayRL.Creatinina.EnKaplanL,PesceA,Quí-
micaClínica,teoría,análisisycorrelación.Buenos
Aires: Ed. Médica Panamericana; 1988.
Artículo recibido el 3 de marzo de 2015 y aceptado
para publicación el 6 de junio de 2015.
Conflicto de intereses:
El autor declara no tener ningún conflicto de
intereses.
Correspondencia:
Ítalo Moisés Saldaña Orejón
Departamento de Patología Clínica, Servicio de
Bioquímica, Hospital Nacional Edgardo Rebagliati
Martins, EsSalud, Lima, Perú
imso_biochemical@yahoo.es

Más contenido relacionado

La actualidad más candente

Aseguramiento analitico de la calidad
Aseguramiento analitico de la calidadAseguramiento analitico de la calidad
Aseguramiento analitico de la calidadamcamero
 
Control de calidad en qc
Control de calidad en qcControl de calidad en qc
Control de calidad en qcRodolfoOrtiz36
 
Proteínas plasmáticas. electroforesis de proteínas séricas
Proteínas plasmáticas. electroforesis de proteínas séricasProteínas plasmáticas. electroforesis de proteínas séricas
Proteínas plasmáticas. electroforesis de proteínas séricasYanina G. Muñoz Reyes
 
Interpretacion de hemograma automatizado
Interpretacion de hemograma automatizadoInterpretacion de hemograma automatizado
Interpretacion de hemograma automatizadoScarlet Rojas
 
Tecnicas de laboratorio
Tecnicas de laboratorioTecnicas de laboratorio
Tecnicas de laboratoriorosmatri
 
Determinacion de-la-creatinina (3)
Determinacion de-la-creatinina (3)Determinacion de-la-creatinina (3)
Determinacion de-la-creatinina (3)JOHAS25
 

La actualidad más candente (20)

Tecnicas
TecnicasTecnicas
Tecnicas
 
Control de calidad en bioquimica
Control de calidad en bioquimicaControl de calidad en bioquimica
Control de calidad en bioquimica
 
Pruebas Cruzadas
Pruebas CruzadasPruebas Cruzadas
Pruebas Cruzadas
 
Aseguramiento analitico de la calidad
Aseguramiento analitico de la calidadAseguramiento analitico de la calidad
Aseguramiento analitico de la calidad
 
Pruebas cruzadas
Pruebas cruzadasPruebas cruzadas
Pruebas cruzadas
 
3.2 Recuentos globulares
3.2 Recuentos  globulares3.2 Recuentos  globulares
3.2 Recuentos globulares
 
Bioquimica Clinica
Bioquimica ClinicaBioquimica Clinica
Bioquimica Clinica
 
Control de calidad en qc
Control de calidad en qcControl de calidad en qc
Control de calidad en qc
 
31011 pcr latex
31011 pcr latex31011 pcr latex
31011 pcr latex
 
Proteínas plasmáticas. electroforesis de proteínas séricas
Proteínas plasmáticas. electroforesis de proteínas séricasProteínas plasmáticas. electroforesis de proteínas séricas
Proteínas plasmáticas. electroforesis de proteínas séricas
 
Aferesis en medicina transfusional
Aferesis en medicina transfusionalAferesis en medicina transfusional
Aferesis en medicina transfusional
 
Interpretacion de hemograma automatizado
Interpretacion de hemograma automatizadoInterpretacion de hemograma automatizado
Interpretacion de hemograma automatizado
 
1 d inmunoensayos
1 d inmunoensayos1 d inmunoensayos
1 d inmunoensayos
 
Tecnicas de laboratorio
Tecnicas de laboratorioTecnicas de laboratorio
Tecnicas de laboratorio
 
Mini+atlas espanhol pdf
Mini+atlas espanhol pdfMini+atlas espanhol pdf
Mini+atlas espanhol pdf
 
Inmunodifusion radial
Inmunodifusion radialInmunodifusion radial
Inmunodifusion radial
 
Determinacion de-la-creatinina (3)
Determinacion de-la-creatinina (3)Determinacion de-la-creatinina (3)
Determinacion de-la-creatinina (3)
 
Automatizacion en bioquimica
Automatizacion en bioquimicaAutomatizacion en bioquimica
Automatizacion en bioquimica
 
recuento_manual_eritrocitos
recuento_manual_eritrocitosrecuento_manual_eritrocitos
recuento_manual_eritrocitos
 
Determinación de Hemoglobina A2
Determinación de Hemoglobina A2Determinación de Hemoglobina A2
Determinación de Hemoglobina A2
 

Similar a Interferencia causada por hemolisis

Interferencia en las determinaciones de 24 constituyentes bioquímicos en turb...
Interferencia en las determinaciones de 24 constituyentes bioquímicos en turb...Interferencia en las determinaciones de 24 constituyentes bioquímicos en turb...
Interferencia en las determinaciones de 24 constituyentes bioquímicos en turb...Italo Saldaña
 
Interferencia en las determinaciones de 24 constituyentes bioquímicos en el a...
Interferencia en las determinaciones de 24 constituyentes bioquímicos en el a...Interferencia en las determinaciones de 24 constituyentes bioquímicos en el a...
Interferencia en las determinaciones de 24 constituyentes bioquímicos en el a...Italo Moisés Saldaña Orejón
 
Ecuaciones_para_eliminar_la_interferencia_de_suero.pdf
Ecuaciones_para_eliminar_la_interferencia_de_suero.pdfEcuaciones_para_eliminar_la_interferencia_de_suero.pdf
Ecuaciones_para_eliminar_la_interferencia_de_suero.pdfRembert Cari Hojeda
 
Factores Preanaliticos
Factores PreanaliticosFactores Preanaliticos
Factores Preanaliticos80208020
 
Veracidad de una analizador de gasometria
Veracidad de una analizador de gasometriaVeracidad de una analizador de gasometria
Veracidad de una analizador de gasometriaItalo Saldaña
 
Veracidad de un analizador de gasometría para determinar glucemia, respecto a...
Veracidad de un analizador de gasometría para determinar glucemia, respecto a...Veracidad de un analizador de gasometría para determinar glucemia, respecto a...
Veracidad de un analizador de gasometría para determinar glucemia, respecto a...Italo Moisés Saldaña Orejón
 
Derivación y validación de una ecuación para estimar el colesterol
Derivación y validación de una ecuación para estimar el colesterolDerivación y validación de una ecuación para estimar el colesterol
Derivación y validación de una ecuación para estimar el colesterolItalo Saldaña
 
Derivación y validación de una ecuación para estimar el colesterol ligado a l...
Derivación y validación de una ecuación para estimar el colesterol ligado a l...Derivación y validación de una ecuación para estimar el colesterol ligado a l...
Derivación y validación de una ecuación para estimar el colesterol ligado a l...Italo Moisés Saldaña Orejón
 
1967 5656-1-pb
1967 5656-1-pb1967 5656-1-pb
1967 5656-1-pbValegft
 
Reporte de practicas y servicio (1) kristian
Reporte de practicas y servicio (1) kristianReporte de practicas y servicio (1) kristian
Reporte de practicas y servicio (1) kristianKristian Toreto
 
Bioquimica Clínica y orina.pdf
Bioquimica Clínica y orina.pdfBioquimica Clínica y orina.pdf
Bioquimica Clínica y orina.pdfDarwinVrb
 
Valores clinica sangre y orina
Valores  clinica sangre y orina Valores  clinica sangre y orina
Valores clinica sangre y orina Cristhian Zavala
 
Tp 14 bioquimica clinica sangre y orina
Tp  14 bioquimica clinica sangre y orinaTp  14 bioquimica clinica sangre y orina
Tp 14 bioquimica clinica sangre y orinamaye0428
 
(2015-3-24)analítica sanguínea en urgencias (doc)
(2015-3-24)analítica sanguínea en urgencias (doc)(2015-3-24)analítica sanguínea en urgencias (doc)
(2015-3-24)analítica sanguínea en urgencias (doc)UDMAFyC SECTOR ZARAGOZA II
 
Alteraciones de la coagulacion medidos por tromboelastografia almidón 6% vs h...
Alteraciones de la coagulacion medidos por tromboelastografia almidón 6% vs h...Alteraciones de la coagulacion medidos por tromboelastografia almidón 6% vs h...
Alteraciones de la coagulacion medidos por tromboelastografia almidón 6% vs h...Lupita Alvarado
 
Examenes complementarios
Examenes complementariosExamenes complementarios
Examenes complementariosKale13
 
Interpretacion de laboratorios
Interpretacion de laboratoriosInterpretacion de laboratorios
Interpretacion de laboratoriosRonaldReyes67
 

Similar a Interferencia causada por hemolisis (20)

Interferencia en las determinaciones de 24 constituyentes bioquímicos en turb...
Interferencia en las determinaciones de 24 constituyentes bioquímicos en turb...Interferencia en las determinaciones de 24 constituyentes bioquímicos en turb...
Interferencia en las determinaciones de 24 constituyentes bioquímicos en turb...
 
Interferencia en las determinaciones de 24 constituyentes bioquímicos en el a...
Interferencia en las determinaciones de 24 constituyentes bioquímicos en el a...Interferencia en las determinaciones de 24 constituyentes bioquímicos en el a...
Interferencia en las determinaciones de 24 constituyentes bioquímicos en el a...
 
Ecuaciones_para_eliminar_la_interferencia_de_suero.pdf
Ecuaciones_para_eliminar_la_interferencia_de_suero.pdfEcuaciones_para_eliminar_la_interferencia_de_suero.pdf
Ecuaciones_para_eliminar_la_interferencia_de_suero.pdf
 
Factores Preanaliticos
Factores PreanaliticosFactores Preanaliticos
Factores Preanaliticos
 
Veracidad de una analizador de gasometria
Veracidad de una analizador de gasometriaVeracidad de una analizador de gasometria
Veracidad de una analizador de gasometria
 
Veracidad de un analizador de gasometría para determinar glucemia, respecto a...
Veracidad de un analizador de gasometría para determinar glucemia, respecto a...Veracidad de un analizador de gasometría para determinar glucemia, respecto a...
Veracidad de un analizador de gasometría para determinar glucemia, respecto a...
 
Veracidad de una analizador de gasometria
Veracidad de una analizador de gasometriaVeracidad de una analizador de gasometria
Veracidad de una analizador de gasometria
 
Derivación y validación de una ecuación para estimar el colesterol
Derivación y validación de una ecuación para estimar el colesterolDerivación y validación de una ecuación para estimar el colesterol
Derivación y validación de una ecuación para estimar el colesterol
 
Derivación y validación de una ecuación para estimar el colesterol ligado a l...
Derivación y validación de una ecuación para estimar el colesterol ligado a l...Derivación y validación de una ecuación para estimar el colesterol ligado a l...
Derivación y validación de una ecuación para estimar el colesterol ligado a l...
 
1967 5656-1-pb
1967 5656-1-pb1967 5656-1-pb
1967 5656-1-pb
 
Las dislipidemias
Las dislipidemiasLas dislipidemias
Las dislipidemias
 
Reporte de practicas y servicio (1) kristian
Reporte de practicas y servicio (1) kristianReporte de practicas y servicio (1) kristian
Reporte de practicas y servicio (1) kristian
 
Bioquimica Clínica y orina.pdf
Bioquimica Clínica y orina.pdfBioquimica Clínica y orina.pdf
Bioquimica Clínica y orina.pdf
 
Valores clinica sangre y orina
Valores  clinica sangre y orina Valores  clinica sangre y orina
Valores clinica sangre y orina
 
Tp 14 bioquimica clinica sangre y orina
Tp  14 bioquimica clinica sangre y orinaTp  14 bioquimica clinica sangre y orina
Tp 14 bioquimica clinica sangre y orina
 
(2015-3-24)analítica sanguínea en urgencias (doc)
(2015-3-24)analítica sanguínea en urgencias (doc)(2015-3-24)analítica sanguínea en urgencias (doc)
(2015-3-24)analítica sanguínea en urgencias (doc)
 
Alteraciones de la coagulacion medidos por tromboelastografia almidón 6% vs h...
Alteraciones de la coagulacion medidos por tromboelastografia almidón 6% vs h...Alteraciones de la coagulacion medidos por tromboelastografia almidón 6% vs h...
Alteraciones de la coagulacion medidos por tromboelastografia almidón 6% vs h...
 
Examenes complementarios
Examenes complementariosExamenes complementarios
Examenes complementarios
 
Quimica sanguinea
Quimica sanguineaQuimica sanguinea
Quimica sanguinea
 
Interpretacion de laboratorios
Interpretacion de laboratoriosInterpretacion de laboratorios
Interpretacion de laboratorios
 

Más de Italo Saldaña

Interferencia generada por la lipemia.pptx
Interferencia generada por la lipemia.pptxInterferencia generada por la lipemia.pptx
Interferencia generada por la lipemia.pptxItalo Saldaña
 
Interferencia generada por lipemia.pptx
Interferencia generada por  lipemia.pptxInterferencia generada por  lipemia.pptx
Interferencia generada por lipemia.pptxItalo Saldaña
 
CONOCIMIENTO SOBRE LA VALORACION DE HEMATIES DISMORFICOS.pdf
CONOCIMIENTO SOBRE LA VALORACION DE HEMATIES DISMORFICOS.pdfCONOCIMIENTO SOBRE LA VALORACION DE HEMATIES DISMORFICOS.pdf
CONOCIMIENTO SOBRE LA VALORACION DE HEMATIES DISMORFICOS.pdfItalo Saldaña
 
hematíes dismórficos Italo Moisés Saldaña.pptx
hematíes dismórficos Italo Moisés Saldaña.pptxhematíes dismórficos Italo Moisés Saldaña.pptx
hematíes dismórficos Italo Moisés Saldaña.pptxItalo Saldaña
 
Errores preanalíticos en la recolección de orina de 24 horas
Errores preanalíticos en la recolección de orina de 24 horasErrores preanalíticos en la recolección de orina de 24 horas
Errores preanalíticos en la recolección de orina de 24 horasItalo Saldaña
 
Errores preanalíticos en la recolección de orina de 24 horas
Errores preanalíticos en la recolección de orina de 24 horasErrores preanalíticos en la recolección de orina de 24 horas
Errores preanalíticos en la recolección de orina de 24 horasItalo Saldaña
 
¿Cómo se puede saber indirectamente si el volumen de orina de 24 horas fue re...
¿Cómo se puede saber indirectamente si el volumen de orina de 24 horas fue re...¿Cómo se puede saber indirectamente si el volumen de orina de 24 horas fue re...
¿Cómo se puede saber indirectamente si el volumen de orina de 24 horas fue re...Italo Saldaña
 
Medición directa versus el valor estimado del colesterol de LDL por las ecuac...
Medición directa versus el valor estimado del colesterol de LDL por las ecuac...Medición directa versus el valor estimado del colesterol de LDL por las ecuac...
Medición directa versus el valor estimado del colesterol de LDL por las ecuac...Italo Saldaña
 
iITALO SALDAÑA OREJÓN
iITALO SALDAÑA OREJÓN iITALO SALDAÑA OREJÓN
iITALO SALDAÑA OREJÓN Italo Saldaña
 
Medición directa versus el valor estimado del colesterol de LDL por las ecuac...
Medición directa versus el valor estimado del colesterol de LDL por las ecuac...Medición directa versus el valor estimado del colesterol de LDL por las ecuac...
Medición directa versus el valor estimado del colesterol de LDL por las ecuac...Italo Saldaña
 
Italo Moisés Saldaña- Medición directa versus el valor estimado del colestero...
Italo Moisés Saldaña- Medición directa versus el valor estimado del colestero...Italo Moisés Saldaña- Medición directa versus el valor estimado del colestero...
Italo Moisés Saldaña- Medición directa versus el valor estimado del colestero...Italo Saldaña
 

Más de Italo Saldaña (12)

Interferencia generada por la lipemia.pptx
Interferencia generada por la lipemia.pptxInterferencia generada por la lipemia.pptx
Interferencia generada por la lipemia.pptx
 
Interferencia generada por lipemia.pptx
Interferencia generada por  lipemia.pptxInterferencia generada por  lipemia.pptx
Interferencia generada por lipemia.pptx
 
CONOCIMIENTO SOBRE LA VALORACION DE HEMATIES DISMORFICOS.pdf
CONOCIMIENTO SOBRE LA VALORACION DE HEMATIES DISMORFICOS.pdfCONOCIMIENTO SOBRE LA VALORACION DE HEMATIES DISMORFICOS.pdf
CONOCIMIENTO SOBRE LA VALORACION DE HEMATIES DISMORFICOS.pdf
 
hematíes dismórficos Italo Moisés Saldaña.pptx
hematíes dismórficos Italo Moisés Saldaña.pptxhematíes dismórficos Italo Moisés Saldaña.pptx
hematíes dismórficos Italo Moisés Saldaña.pptx
 
Errores preanalíticos en la recolección de orina de 24 horas
Errores preanalíticos en la recolección de orina de 24 horasErrores preanalíticos en la recolección de orina de 24 horas
Errores preanalíticos en la recolección de orina de 24 horas
 
Errores preanalíticos en la recolección de orina de 24 horas
Errores preanalíticos en la recolección de orina de 24 horasErrores preanalíticos en la recolección de orina de 24 horas
Errores preanalíticos en la recolección de orina de 24 horas
 
¿Cómo se puede saber indirectamente si el volumen de orina de 24 horas fue re...
¿Cómo se puede saber indirectamente si el volumen de orina de 24 horas fue re...¿Cómo se puede saber indirectamente si el volumen de orina de 24 horas fue re...
¿Cómo se puede saber indirectamente si el volumen de orina de 24 horas fue re...
 
Medición directa versus el valor estimado del colesterol de LDL por las ecuac...
Medición directa versus el valor estimado del colesterol de LDL por las ecuac...Medición directa versus el valor estimado del colesterol de LDL por las ecuac...
Medición directa versus el valor estimado del colesterol de LDL por las ecuac...
 
iITALO SALDAÑA OREJÓN
iITALO SALDAÑA OREJÓN iITALO SALDAÑA OREJÓN
iITALO SALDAÑA OREJÓN
 
Medición directa versus el valor estimado del colesterol de LDL por las ecuac...
Medición directa versus el valor estimado del colesterol de LDL por las ecuac...Medición directa versus el valor estimado del colesterol de LDL por las ecuac...
Medición directa versus el valor estimado del colesterol de LDL por las ecuac...
 
Italo Moisés Saldaña- Medición directa versus el valor estimado del colestero...
Italo Moisés Saldaña- Medición directa versus el valor estimado del colestero...Italo Moisés Saldaña- Medición directa versus el valor estimado del colestero...
Italo Moisés Saldaña- Medición directa versus el valor estimado del colestero...
 
LDL colesterol
LDL colesterolLDL colesterol
LDL colesterol
 

Último

asincronias ventilatorias-ventilacion mecanica
asincronias ventilatorias-ventilacion mecanicaasincronias ventilatorias-ventilacion mecanica
asincronias ventilatorias-ventilacion mecanicaAlexaSosa4
 
Dedo con deformidad en ojal o “boutonnière”
Dedo con deformidad en ojal o “boutonnière”Dedo con deformidad en ojal o “boutonnière”
Dedo con deformidad en ojal o “boutonnière”AdyPunkiss1
 
plan de gestion DE LA UNIDAD DE CUIDADOS INTENSIVOS
plan de gestion DE LA UNIDAD DE CUIDADOS INTENSIVOSplan de gestion DE LA UNIDAD DE CUIDADOS INTENSIVOS
plan de gestion DE LA UNIDAD DE CUIDADOS INTENSIVOSsharmelysullcahuaman
 
seminario patología de los pares craneales 2024.pptx
seminario patología de los pares craneales 2024.pptxseminario patología de los pares craneales 2024.pptx
seminario patología de los pares craneales 2024.pptxScarletMedina4
 
Historia Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en OdontologíaHistoria Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en OdontologíaJorge Enrique Manrique-Chávez
 
Clase 17 Artrologia MMII 3 de 3 (Pie) 2024 (1).pdf
Clase 17 Artrologia MMII 3 de 3 (Pie) 2024 (1).pdfClase 17 Artrologia MMII 3 de 3 (Pie) 2024 (1).pdf
Clase 17 Artrologia MMII 3 de 3 (Pie) 2024 (1).pdfgarrotamara01
 
asma bronquial- nuevo enfoque GINA y GEMA
asma bronquial- nuevo enfoque  GINA y GEMAasma bronquial- nuevo enfoque  GINA y GEMA
asma bronquial- nuevo enfoque GINA y GEMAPatriciaCorrea174655
 
BOLETIN DIA MUNDIAL DE LA HIPERTENSIÓN.pptx
BOLETIN DIA MUNDIAL DE LA  HIPERTENSIÓN.pptxBOLETIN DIA MUNDIAL DE LA  HIPERTENSIÓN.pptx
BOLETIN DIA MUNDIAL DE LA HIPERTENSIÓN.pptxMariaBravoB1
 
10. Protocolo de atencion a victimas de violencia sexual.pptx
10. Protocolo de atencion a victimas de violencia sexual.pptx10. Protocolo de atencion a victimas de violencia sexual.pptx
10. Protocolo de atencion a victimas de violencia sexual.pptxKatherineReyes36006
 
Sistema Nervioso Periférico (1).pdf
Sistema Nervioso Periférico      (1).pdfSistema Nervioso Periférico      (1).pdf
Sistema Nervioso Periférico (1).pdfNjeraMatas
 
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)UDMAFyC SECTOR ZARAGOZA II
 
infografía seminario.pdf.................
infografía seminario.pdf.................infografía seminario.pdf.................
infografía seminario.pdf.................ScarletMedina4
 
Microorganismos presentes en los cereales
Microorganismos presentes en los cerealesMicroorganismos presentes en los cereales
Microorganismos presentes en los cerealesgrupogetsemani9
 
Resumen de tejido Óseo de Histología texto y atlas de Ross.pptx
Resumen de tejido Óseo de Histología texto y atlas de Ross.pptxResumen de tejido Óseo de Histología texto y atlas de Ross.pptx
Resumen de tejido Óseo de Histología texto y atlas de Ross.pptxpatricia03m9
 
TEXTO PRN 8VA ESPAÑOL.pdf reanimacion neonatal
TEXTO PRN 8VA ESPAÑOL.pdf reanimacion neonatalTEXTO PRN 8VA ESPAÑOL.pdf reanimacion neonatal
TEXTO PRN 8VA ESPAÑOL.pdf reanimacion neonatalJanKarlaCanaviriDelg1
 
Anticoncepcion actualización 2024 según la OMS
Anticoncepcion actualización 2024 según la OMSAnticoncepcion actualización 2024 según la OMS
Anticoncepcion actualización 2024 según la OMSferblan28071
 
Uso Racional del medicamento prescripción
Uso Racional del medicamento prescripciónUso Racional del medicamento prescripción
Uso Racional del medicamento prescripciónLas Sesiones de San Blas
 
Atlas de Hematología para estudiantes univbersitarios.pdf
Atlas de Hematología para estudiantes univbersitarios.pdfAtlas de Hematología para estudiantes univbersitarios.pdf
Atlas de Hematología para estudiantes univbersitarios.pdfCarlosNichoRamrez
 
glucólisis anaerobia.pdf
glucólisis                 anaerobia.pdfglucólisis                 anaerobia.pdf
glucólisis anaerobia.pdfLuzElena608762
 
Manejo adecuado del bulto de ropa quirugico
Manejo adecuado del bulto de ropa quirugicoManejo adecuado del bulto de ropa quirugico
Manejo adecuado del bulto de ropa quirugicoAlexiiaRocha
 

Último (20)

asincronias ventilatorias-ventilacion mecanica
asincronias ventilatorias-ventilacion mecanicaasincronias ventilatorias-ventilacion mecanica
asincronias ventilatorias-ventilacion mecanica
 
Dedo con deformidad en ojal o “boutonnière”
Dedo con deformidad en ojal o “boutonnière”Dedo con deformidad en ojal o “boutonnière”
Dedo con deformidad en ojal o “boutonnière”
 
plan de gestion DE LA UNIDAD DE CUIDADOS INTENSIVOS
plan de gestion DE LA UNIDAD DE CUIDADOS INTENSIVOSplan de gestion DE LA UNIDAD DE CUIDADOS INTENSIVOS
plan de gestion DE LA UNIDAD DE CUIDADOS INTENSIVOS
 
seminario patología de los pares craneales 2024.pptx
seminario patología de los pares craneales 2024.pptxseminario patología de los pares craneales 2024.pptx
seminario patología de los pares craneales 2024.pptx
 
Historia Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en OdontologíaHistoria Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en Odontología
 
Clase 17 Artrologia MMII 3 de 3 (Pie) 2024 (1).pdf
Clase 17 Artrologia MMII 3 de 3 (Pie) 2024 (1).pdfClase 17 Artrologia MMII 3 de 3 (Pie) 2024 (1).pdf
Clase 17 Artrologia MMII 3 de 3 (Pie) 2024 (1).pdf
 
asma bronquial- nuevo enfoque GINA y GEMA
asma bronquial- nuevo enfoque  GINA y GEMAasma bronquial- nuevo enfoque  GINA y GEMA
asma bronquial- nuevo enfoque GINA y GEMA
 
BOLETIN DIA MUNDIAL DE LA HIPERTENSIÓN.pptx
BOLETIN DIA MUNDIAL DE LA  HIPERTENSIÓN.pptxBOLETIN DIA MUNDIAL DE LA  HIPERTENSIÓN.pptx
BOLETIN DIA MUNDIAL DE LA HIPERTENSIÓN.pptx
 
10. Protocolo de atencion a victimas de violencia sexual.pptx
10. Protocolo de atencion a victimas de violencia sexual.pptx10. Protocolo de atencion a victimas de violencia sexual.pptx
10. Protocolo de atencion a victimas de violencia sexual.pptx
 
Sistema Nervioso Periférico (1).pdf
Sistema Nervioso Periférico      (1).pdfSistema Nervioso Periférico      (1).pdf
Sistema Nervioso Periférico (1).pdf
 
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
 
infografía seminario.pdf.................
infografía seminario.pdf.................infografía seminario.pdf.................
infografía seminario.pdf.................
 
Microorganismos presentes en los cereales
Microorganismos presentes en los cerealesMicroorganismos presentes en los cereales
Microorganismos presentes en los cereales
 
Resumen de tejido Óseo de Histología texto y atlas de Ross.pptx
Resumen de tejido Óseo de Histología texto y atlas de Ross.pptxResumen de tejido Óseo de Histología texto y atlas de Ross.pptx
Resumen de tejido Óseo de Histología texto y atlas de Ross.pptx
 
TEXTO PRN 8VA ESPAÑOL.pdf reanimacion neonatal
TEXTO PRN 8VA ESPAÑOL.pdf reanimacion neonatalTEXTO PRN 8VA ESPAÑOL.pdf reanimacion neonatal
TEXTO PRN 8VA ESPAÑOL.pdf reanimacion neonatal
 
Anticoncepcion actualización 2024 según la OMS
Anticoncepcion actualización 2024 según la OMSAnticoncepcion actualización 2024 según la OMS
Anticoncepcion actualización 2024 según la OMS
 
Uso Racional del medicamento prescripción
Uso Racional del medicamento prescripciónUso Racional del medicamento prescripción
Uso Racional del medicamento prescripción
 
Atlas de Hematología para estudiantes univbersitarios.pdf
Atlas de Hematología para estudiantes univbersitarios.pdfAtlas de Hematología para estudiantes univbersitarios.pdf
Atlas de Hematología para estudiantes univbersitarios.pdf
 
glucólisis anaerobia.pdf
glucólisis                 anaerobia.pdfglucólisis                 anaerobia.pdf
glucólisis anaerobia.pdf
 
Manejo adecuado del bulto de ropa quirugico
Manejo adecuado del bulto de ropa quirugicoManejo adecuado del bulto de ropa quirugico
Manejo adecuado del bulto de ropa quirugico
 

Interferencia causada por hemolisis

  • 1. 377 Interferencia causada por hemólisis en la determinación de 25 constituyentes bioquímicos en el autoanalizador ADVIA 1800 Hemolysis interference in the determination of 25 biochemical constituents using ADVIA 1800 autoanalyzer Ítalo Moisés Saldaña O1,a 1 Departamento de Patología Clínica, Servicio de Bioquímica, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Perú. a Tecnólogo Médico- Químico farmacéutico. Resumen Introducción.Lainterferenciaporhemólisiseslaprincipalcausaderechazopreanalíticodemuestrasdesueroenellaboratorioclínico. Objetivos.Conocerycuantificarlaposibleinterferenciaproducidaporhemólisisenlamediciónrutinariade25constituyentesbioquímicos en el autoanalizador ADVIA 1800, empleando para ello el criterio de interferencia clínicamente relevante, cuando se supera el máximo error sistemático deseable. Diseño. Estudio descriptivo comparativo. Institución. Hospital Edgardo Rebagliati Martins, EsSalud, Lima, Perú. Material biológico. Muestras sanguíneas proveniente de sujetos voluntarios. Intervenciones. Se añadieron cantidades crecientes de hemoglobina (0,26 g/L, 0,53 g/L, 1,05 g/L, 2,10 g/L, 3,25 g/L, 4,30 g/L y 5,25 g/L) a siete diferentes alícuotas de una mezcla de suerosysedeterminóenellasporduplicadolainfluenciadelinterferenteenlos25constituyentes.SesiguióelprotocolodelaSociedad Española de Química Clínica. Principal medida de resultados. Porcentaje relativo de desviación de la concentración del constituyente por influencia de la hemólisis, con respecto a la muestra sin interferente. Resultados. Los constituyentes urea, creatinina, ácido úrico, bilirrubina total, colesterol HDL, colesterol LDL, triglicéridos, calcio y gammaglutamiltransferasa no presentaron interferencia, mientras que se observó interferencia para glucosa, proteínas, albúmina, colesterol, potasio, fósforo, magnesio, deshidrogenasa láctica, creatinfosfoquinasa, aspartato aminotransferasa, alanino aminotransferasa, lipasa, sodio, cloro, fosfatasa alcalina y amilasa. Conclusiones. De los 25 constituyentes estudiados, 16 presentaron interferencia clínicamente significativa. Se recomienda que cada laboratorio investigue los efectos de dicha interferencia empleando sus propios métodos, reactivos o instrumentos. Palabras clave. Hemólisis; Interferencia por Hemólisis; Errores sistemáticos. Abstract Introduction. Hemolysis interference is the main cause of pre analytical rejection of serum samples in clinical laboratory. Objectives. To identify and quantify possible hemolysis interferences in the routine measurement of 25 biochemical constituents using ADVIA 1800 autoanalyzer, by clinical relevant interference criterion when the maximum desirable systematic error is exceeded. Design. Comparative descriptive study. Institution. Hospital Edgardo Rebagliati Martins, EsSalud, Lima, Peru. Biologic material. Blood samples collected from volunteer subjects. Interventions. Increasing amounts of hemoglobin (0.26 g/L, 0.53 g/L, 1.05 g/L, 2.10 g/L, 3.25 g/L, 4.30 g/L, and 5.25 g/L) were added to seven different aliquots of sera mixture and influence of interfering influence in 25 constituents was determined by duplicate. The Spanish Society of Clinical Chemistry protocol was followed. Main outcome measure. Hemolysis- related relative percentage deviation of the constituent concentration compared with the sample without interference. Results. Urea, creatinine, uric acid, total bilirubin, HDL cholesterol, LDL cholesterol, triglycerides, calcium, and gamma glutamyl transferase showed no interference. Interference was observed for glucose, protein, albumin, cholesterol, potassium, phosphorus, magnesium, lactic dehydrogenase, creatine phosphokinase, aspartate aminotransferase, alanine aminotransferase, lipase, sodium, chlorine, alkaline phosphatase and amylase. Conclusions. Out of 25 constituentss studied, 16 had clinical significant interference. It is recommended that each laboratory investigate this interference effects using their own methods, reagents or instruments. Keywords. Hemolysis; Hemolysis Interference; Bias, Systematic. An Fac med. 2015;76(4):377-84 / http://dx.doi.org/10.15381/anales.v76i4.11407 INTRODUCCIÓN Las interferencias analíticas pueden causar errores clínicamente significati- vos en los resultados de una magnitud biológica, las cuales conducen a diag- nósticos equivocados, análisis o ex- ploraciones adicionales inapropiadas y tratamientos innecesarios o potencial- mente desfavorables para los pacientes. Se define la interferencia analítica como el efecto de un constituyente en la exactitud de medida de otro cons- tituyente o el efecto que se produce en cualquier etapa de su determina- ción (1,2) . La interferencia por hemólisis es la principal causa de rechazo preanalítico de muestras de suero, el cual conlleva a un gasto extra de reactivos, un mayor desgaste de los equipos y demora en la emisión de resultados (3) . La prevalencia de muestras hemoli- zadas en diversos estudios es muy va- riable, oscila entre 0,05 y 3,3%. Esta variabilidad puede deberse a las dis- tintas formas de realizar el ensayo para investigar interferencia por hemólisis y
  • 2. 378 An Fac med. 2015;76(4):377-84 a los varios criterios para establecer el límite de error máximo admisible para este tipo de interferencia (4,5) . La calidad analítica de los resulta- dos de un laboratorio se puede estimar por medio de indicadores como la im- precisión, el error sistemático (ES) y el error total (ET), comparándolos con las especificaciones de la calidad esta- blecidas. El grado de cumplimiento de dichas especificaciones no solo asegu- ra la calidad de los resultados sino que también es esencial para asegurar la in- terpretación y utilización de los datos de laboratorio por los clínicos. La Organización Mundial de la Sa- lud, con sustentación en las recomen- daciones de la Sociedad Alemana de Química Clínica, define interferencia clínicamente relevante cuando se su- pera el error sistemático deseable (6) . La hemólisis es el proceso de des- trucción de los hematíes con la con- siguiente liberación del contenido intracelular en el plasma, alterando su composición. La principal molécu- la intracelular es la hemoglobina, que tiene un espectro de absorción carac- terístico del grupo Hem, con un pico de 400 nm y varios picos entre 500 y 600 nm, lo que produce un color rojizo en el plasma proporcional a la cantidad de hemoglobina liberada. La hemólisis puede haber sido originada in vivo por diversas alteraciones en los hematíes u otras causas, o in vitro por una extrac- ción o manejo de la muestra de sangre inadecuada. Solo la hemólisis in vitro es considerada como interferencia (7,8) . La hemólisis tiene un marcado efecto en aquellos analitos de elevada concentración intracelular, los cuales pueden mostrar un sesgo positivo como resultado de la liberación de estos cons- tituyentes desde el compartimento in- tracelular hasta el plasma sanguíneo. En el proceso de hemólisis también se libera líquido intracelular hacia el espacio extracelular, lo cual puede ori- ginar un sesgo negativo en ciertos cons- tituyentes como resultado del proceso de dilución. La hemólisis también puede produ- cir interferencia espectral cuando la absorbancia de la hemoglobina y del cromógeno producido en la reacción se solapan, debido a que la hemoglobina tiene una elevada absorbancia, entre 400 y 600 nm, por lo que puede inter- ferir en procedimientos con lecturas en esa región del espectro. Además, el grupo hemo, el hierro, la adenilato cinasa, las proteasas y otros componentes intracelulares liberados en el proceso de hemólisis, pueden in- terferir en diversas reacciones quími- cas (7,8) . El objetivo del presente estudio es conocer y cuantificar la posible interfe- rencia producida por la hemólisis en la medición rutinaria de 25 constituyen- tes bioquímicos en el autoanalizador ADVIA 1800, empleando para ello el criterio de interferencia clínicamente relevante, cuando se supera el máximo error sistemático deseable. MÉTODOS Los 25 constituyentes investigados fueron valorados en el analizador ADVIA 1800 con reactivos y calibra- Tabla 1. Métodos y concentración sérica de los constituyentes investigados. Constituyente Método Concentración sérica del constituyente en estudio Glucosa Urea Creatinina Ácido úrico Proteínas Albúmina Bilirrubina total Colesterol total HDL colesterol LDL colesterol Triglicéridos Sodio Potasio Cloro Calcio Fósforo Magnesio LDH CK AST ALT FAL GGT Amilasa Lipasa Hexocinasa Ureasa con GLDH Creatininasa Uricasa/peroxidasa Biuret Verde de bromocresol Oxidación por vanadato CHOD,Trinder Eliminación/catalasa. Directo Eliminación/catalasa. Directo GPO, Trinder sin blanco de suero Potenciometría indirecta Potenciometría indirecta Potenciometría indirecta o-cresolftaleìna complexona Fosfomolibdato UV Azul de xilidilo Lactato/NAD IFCC, activado con NAC IFCC modificado IFCC modificado IFCC modificado IFCC modificado pNPG7 bloqueado con etilideno Cinética colorimétrica 6,66 mmol/L (120 mg/dL) 10,79 mmol/L (65 mg/dL) 128,18 µmol/L (1,45 mg/dL) 255,76 µmol/L (4,3 mg/dL) 58,1 g/L (5,81 g/dL) 28 g/L (2,8 g/dL) 10,43 µmol/L (0,61 mg/dL) 3,57 mmol/L (138 mg/dL) 0,85 mmol/L (32,75 mg/dL) 2,25 mmol/L (87 mg/dL) 1,55 mmol/L (137 mg/dL) 133 mmol/L (133 mEq/L) 3,79 mmol/L (3,79 mEq/L) 100 mmol/L (100mEq/L) 1,91 mmol/L (7,62 mg/dL) 1,13 mmol/L (3,50 mg/dL) 0,76 mmol/L (1,86 mg/dL) 235 U/L 182 U/L 42 U/L 32,5 U/L 127,5 U/L 123,5 U/L 93,5 U/L 45,5 U/L * GLDH: glutamato deshidrogenasa, CHOD: colesterol-oxidasa, GPO: glicerol fosfato oxidasa, UV: ultravioleta, LDH: lactato deshidrogenasa, CK: creatina cinasa, IFCC: Federación Internacional de Química Clínica, NAC:N-acetil-L-cisteína, AST: aspartato aminotransferasa, ALT: alanina aminotransferasa, FAL: fosfatasa alcalina, GGT: gammaglutamiltransferasa, pNPG7: p-nitrofenil-maltoheptaósido.
  • 3. 379 Interferencia causada por hemólisis en la determinación de 25 constituyentes bioquímicos en el autoanalizador ADVIA 1800 Ítalo Moisés Saldaña O dores de Siemens® . Para la medición de hemoglobina se utilizó un contador de células sanguíneas SYSMEX XE-2100 de Roche Diagnostics® , mediante el método SLS (sulfato láurico de sodio). Ambos analizadores fueron cali- brados previamente de acuerdo a las recomendaciones del fabricante. El programa de control de calidad interno incluyó la evaluación de sueros contro- les BIO-RAD® de 2 niveles de decisión, que se procesaron diariamente, y una muestra quincenal de control de cali- dad externo internacional (RIQAS). En la tabla 1 se muestra los consti- tuyentes analizados, los métodos en los que se basan las mediciones de los dis- tintos analitos y la concentración sérica basal (sin interferente) de los constitu- yentes en estudio. El estudio es descriptivo compara- tivo, donde se compara el valor medi- do de la magnitud en una muestra sin interferente con los valores obtenidos cuando se adicionan a la muestra con- centraciones conocidas del interferen- te. Para lo cual se ha seguido el pro- tocolo de la Comisión de Metrología y Sistemas Analíticos de la Sociedad Española de Química Clínica (8) . Para la preparación del hemolizado, se centrifugó a 1 200 g durante 10 mi- nutos 5 mL de sangre total hepariniza- da. Posteriormente se eliminó el plasma y se reemplazó con 10 mL de solución salina (NaCl 154 mmol/L); se invirtió el tubo varias veces, se centrifugó por 10 minutos a 1 200 x g y se decantó el sobrenadante. Este proceso de lavado con solución salina se repitió 2 veces más. En el último lavado se desechó el sobrenadante y se adicionó al paquete globular 2,5 mL de agua desionizada. Se mezcló invirtiendo el tubo varias ve- ces. La solución así preparada fue con- gelada a -20 ºC por 13 horas, al cabo de lo cual se descongeló, agitó y centrifugó 30 minutos a 1 200 x g. Se descartó el sedimento (eliminación de estromas celulares) y se cuantificó en el sobre- nadante la concentración de hemo- globina libre por el método de sulfato láurico de sodio. La concentración de hemoglobina de la solución de partida fue 10,5 g/dL. Para la preparación del suero base, se recolectó 25 mL de un pool de sueros libre de hemólisis, lipemia o ictericia, proveniente de sujetos voluntarios de ambos sexos, sin importar la edad, y sin patologías conocidas. Para conseguir varios grados de he- mólisis, se añadió cantidades crecientes del hemolizado a siete diferentes alí- cuotas del pool de sueros (suero base). En esta preparación, la mezcla libre de hemolizado se igualó en volumen a las alícuotas con interferente, utilizando agua destilada. Se obtuvo siete mues- tras con concentraciones crecientes de hemoglobina y una basal sin interferen- te. Se pudo medir la hemoglobina en las tres últimas diluciones (6a , 7a , 8a ) y se determinó la concentración de hemo- globina teórica en las soluciones 1a , 2a , 3a , 4a y 5a , ya que estos valores estuvie- ron por debajo del límite de detección del analizador hematológico. Las con- centraciones resultantes de las alícuo- tas fueron: 1a 0 g/L, 2a 0,26 g/L, 3a 0,53 g/L, 4a 1,05 g/L, 5a 2,10 g/L, 6a 3,25 g/L, 7a 4,30 g/L y 8a 5,25 g/L (figura 1). Cada una de las diluciones se analizó por duplicado de forma independiente, y pudo determinarse así el porcentaje de variación en la concentración de cada analito ensayado en función del incremento en el grado de hemólisis de las muestras. La evaluación de las interferen- cias se realizó mediante el método de Glick y col (9) , expresándose los resul- tados como un porcentaje del resul- tado original. Para ello, se hace una representación gráfica de esta relación mediante un interferograma, en el que se representa (C/CO ) x 100 frente a la concentración de hemoglobina de cada alícuota, donde (CO ) es la concentra- ción inicial sin interferente y (C) la concentración medida experimental- mente del constituyente en estudio. Las interferencias se compararon con las actuales especificaciones de calidad analítica para el máximo error sistemá- tico deseable (MESD), derivada de la variación biológica intraindividual. Se consideró a la interferencia como clíni- camente relevante cuando era superior al MESD (10,11) . Para el caso puntual de la bilirrubina total, esta se trata de una variable que primero disminuye su valor y luego, a medida que aumenta la concentración del interferente, aumenta. Es decir, existe una relación de no linealidad, lo que indica que la interferencia en este caso depende no solo de la canti- dad de hemoglobina sino también de la concentración de bilirrubina. Para tal efecto se procedió a realizar un ensayo, basado en el modelo de Kroll (12) , que utiliza una regresión múltiple con tres variables independientes: la concentra- ción del constituyente, la concentra- ción del interferente y el producto de los dos o la interacción constituyente- interferente: Figura 1. Alícuotas con cantidades crecientes del interferente (hemoglobina).
  • 4. 380 An Fac med. 2015;76(4):377-84 C= β0 + β1 CO + β2 I+β3 CO I Donde CO = concentración inicial o teórica del constituyente en estudio, C = concentración experimental o medida, e I = concentración del inter- ferente; el coeficiente β0 representa el intercepto de la regresión múltiple y ha de ser próximo a cero; el coeficiente β1 indica si el método es o no válido para dicho analito y ha de ser próximo a la unidad. Los coeficientes β2 y β3 repre- sentan la interferencia independiente y dependiente de la concentración del constituyente, respectivamente; el va- lor de cada uno de estos coeficientes está relacionado con la magnitud de la interferencia y su signo con la dirección de la interferencia, ya sea positiva o ne- gativa. El diseño del experimento para este modelo es una matriz ortogonal con concentraciones progresivamente cre- cientes del constituyente (0,2 mg/dL, 0,5 mg/dL, 1,0 mg/dL y 2 mg/dL de bi- lirrubina) y del interferente (0 g/L, 0,26 g/L, 0,53 g/L, 1,05 g/L, 2,1 g/L, 3,25 g/L, 4,3 g/L, 5,25 g/L de hemoglobina). Es decir, se preparó 32 muestras dife- rentes, logrando conformar una matriz de cuatro concentraciones del cons- tituyente y ocho concentraciones de hemoglobina. Si los coeficientes β2 o β3 son dis- tintos de cero, existe interferencia independiente o dependiente de la concentración del constituyente res- pectivamente. En algunos casos, am- bos coeficientes son distintos de cero debido a una interferencia mixta de- pendiente e independiente de la con- centración del constituyente. Si dichos coeficientes no son distintos de cero, no existen tales interferencias. Con relación al análisis estadístico, se determinó el promedio y la impreci- sión (coeficiente de variación) de los duplicados de la concentración de los constituyentes estudiados para cada Tabla 2. Porcentaje relativo de desviación de la concentración del constituyente con respecto al resultado inicial por influencia de la hemólisis y especificaciones para el máximo error sistemático deseable. Constituyente Error sistemático deseable % (+/-) Hemoglobina (g/L) 0,0 0,26 0,53 1,05 2,10 3,25 4,30 5,25 Glucosa* Urea Creatinina Ácido úrico Proteínas* Albúmina* Bilirrubina total Colesterol total* HDL colesterol LDL colesterol Triglicéridos Sodio* Potasio* Cloro* Calcio Fósforo* Magnesio* LDH* CK* AST* ALT* FAL* GGT α-Amilasa* Lipasa* 2,34 5,57 3,96 4,87 1,36 1,43 8,95 4,10 5,61 5,46 9,57 0,23 1,81 0,47 0,82 3,38 1,84 4,26 11,51 6,54 11,48 6,72 11,06 7,40 11,31 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0.0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,4 0,0 - 0,3 -1,2 0.5 0,4 - 5,0 1,8 0,0 0,6 0,4 0,0 2,1 0,0 0,2 0,9 1,6 16,4 2,8 2,4 4,6 - 5,1 - 1,2 1,1 0,0 1,3 0,0 - 0,3 -1,2 0.3 0,5 - 5,8 1,8 0,0 0,0 1,5 0,0 5,3 0,0 0,2 1,6 1,1 32,3 6,3 10,7 9,2 - 5,1 - 2,0 0,5 1,1 1,3 0,0 - 0,3 -3,5 0,9 0,9 - 8,3 2,2 0,0 0,6 2,6 0,0 9,3 -1,0 0,1 2,7 1,9 58,3 10,5 20,2 10,8 - 8,2 - 3,2 -0,53 5,5 1,7 0,0 - 0,3 - 3,5 1,6 1,3 -0,8 5,1 0,0 2,3 4,4 -0,38 18,0 -0,8 0,5 4,0 1,9 112 20,7 33,3 12,3 -11,0 -2,0 -1,6 12,1 1,7 0,0 0,3 - 4,7 2,8 3,8 0,0 5,1 0,0 2,3 4,7 -0,38 25,5 -0,5 0,0 6,6 3,8 156 31,4 50,0 20,0 -15,3 -1,2 - 3,2 18,7 2,5 1,5 0,3 - 4,7 5,2 5,9 0,8 6,9 0,0 3,4 6,6 -0,38 32,0 -0,5 0,7 8,6 7,5 192 39,7 63,1 20,0 -17,6 -2,4 - 4,8 25,3 3,8 1,5 0,7 - 4,7 6,1 7,5 1,65 8,3 0,0 3,4 7,7 -0,38 41,1 -0,5 0,2 10,9 5,4 240 46,8 82,1 23,1 -25,5 -4,0 - 9,1 30,8 Los resultados son comparados con las especificaciones de inexactitud deseable, los que exceden dichas especificaciones están marcados en negrita y cursiva. (*) Constituyentes en las que se encuentra interferencia.
  • 5. 381 Interferencia causada por hemólisis en la determinación de 25 constituyentes bioquímicos en el autoanalizador ADVIA 1800 Ítalo Moisés Saldaña O aspartato aminotransferasa, alanino aminotransferasa, lipasa, sodio, cloro, fosfatasa alcalina y amilasa. La imprecisión expresada en térmi- nos de coeficiente de variación presen- tó un valor mínimo de 0% y máximo de 3,6% para todos los constituyentes analizados por duplicado. En la tabla 2 se expone los por- centajes relativos de desviación de la concentración del constituyente con respecto al resultado inicial, las espe- cificaciones de calidad analítica para el máximo error sistemático deseable y las alícuotas donde se detecta la in- Figura 2. Interferogramas donde se muestra el efecto del agregado de cantidades crecientes del interferente sobre la concentración original (porcentaje de cambio) de los 25 constituyentes en estudio. alícuota. Para el caso particular de la bilirrubina, se realizó el análisis de re- gresión múltiple, el cálculo de los co- eficientes de dicha regresión y la pro- babilidad de que los coeficientes fueran significativamente diferentes de cero, para p< 0,05. Para el análisis estadísti- co se empleó el software SPSS versión 21 (SPSS Inc., Chicago, IL, EE. UU.). RESULTADOS Utilizando el criterio de máximo error sistemático deseable, basados en estu- dios de variabilidad biológica (10,11) , en el presente estudio se encontró inter- ferencia clínicamente relevante en 16 constituyentes de los 25 estudiados. Los constituyentes urea, creatinina, ácido úrico, bilirrubina total, coleste- rol HDL, colesterol LDL, triglicéridos, calcio y gammaglutamil transferasa no presentaron interferencia debida a he- mólisis en todas las alícuotas con con- centraciones crecientes de hemoglobi- na empleadas en el ensayo. Se observó interferencia para glu- cosa, proteínas, albumina, colesterol, potasio, fósforo, magnesio, deshidro- genasa láctica, creatinfosfoquinasa,
  • 6. 382 An Fac med. 2015;76(4):377-84 terferencia clínicamente relevante para cada uno de los constituyentes. En la figura 2 se representa los in- terferogramas (9) , donde se aprecia el efecto de la adición de cantidades cre- cientes del interferente (hemoglobina) sobre la concentración de los analitos estudiados. Para el caso de la bilirrubina, se ob- tuvo la siguiente ecuación de regresión múltiple: C= –0,014 + 0,944CO – 0,06 I + 0,04 CO I En nuestro estudio, el valor del co- eficiente β0 = -0,014 estuvo próximo a cero, mientras que el coeficiente β1 = 0,944 se acercó a la unidad, por lo que puede decirse que este método es vá- lido para la evaluación de esta técnica analítica. Los coeficientes β2 y β3 no resultaron significativamente distintos de cero (p>0,05), lo que confirma la no interferencia de hemoglobina hasta una concentración de 5,25 g/L para la determinación de bilirrubina total. Re- sultados que son detallados en la tabla 3. DISCUSIÓN La interferencia analítica por hemólisis es un problema que afecta a todos los laboratorios. Siempre se cuestiona la exactitud de los resultados cuando se analiza este tipo de muestras. La solu- ción no está en solo añadir comenta- rios como ‘muestra hemolizada’ a los reportes de laboratorio; es importante también conocer la cantidad y el signo posible de dicha interferencia. Los primeros estudios publicados so- bre el efecto de la hemólisis considera- ban como interferencia significativa un 10% de variación sobre el resultado de la muestra sin interferente. Este crite- rio, utilizado por muchos fabricantes en sus estudios de evaluación, es más per- misivo en las magnitudes con pequeña variabilidad biológica y puede ser me- nos permisivo en aquellas con elevada variabilidad intraindividual o interindi- vidual (1,6) . Nuestros resultados indican que, si hubiéramos utilizado el criterio ante- riormente mencionado, algunos cons- tituyentes no hubieran sido detectados como sensibles a la presencia del inter- ferente. Lo que sugiere que la signifi- cación del efecto de la hemólisis debe establecerse en cada laboratorio y para cada magnitud de acuerdo con sus pro- pias especificaciones de calidad. Ante la presencia de hemólisis con una concentración de hemoglobina igual o mayor a 0,53 g/L, los resulta- dos de potasio, deshidrogenasa láctica y aspartato aminotransferasa se vieron afectados, lo que se traduce en una pérdida de fiabilidad en los resultados obtenidos para los analitos, inclusive cuando se presenta hemólisis ligera. Diversos estudios han encontrado que dicha interferencia es debida a las ma- yores concentraciones de estos consti- tuyentes en el interior del hematíe que en el suero (5,14,15) . En cuanto al colesterol, que usa la reacción de Trinder como reacción in- dicadora, hemos obtenido interferencia al igual que otros estudios (14,15) , lo cual parece lógico dado las propiedades seu- doperoxidasa de la hemoglobina. En el caso de los triglicéridos y el áci- do úrico que también usan la reacción de Trinder como reacción indicadora, no hemos obtenido interferencia signi- ficativa, resultado que concuerda con Lippi y Caballero (5,14) , pero que discre- pan con Steen y Castaño, que obtuvie- ron interferencia para ambos constitu- yentes (15,16) . Para el caso de las lipoproteínas de alta densidad (HDL) y de baja densi- dad (LDL) determinadas mediante el método directo, se advirtió interferen- cia nula para ambos casos, resultado similar a lo citado por Aguilar (12) . En similitud con los resultados de otros estudios (5,14,15,17) , encontramos interferencia debida a la hemólisis en la medición de la actividad de la enzima fosfatasa alcalina, que se detecta a una concentración igual o mayor de 1,05 g/L de hemoglobina, atribuida a una interferencia espectral. Para el caso concreto de la amilasa, esta presentó interferencia en la última alícuota, correspondiente a una con- centración de hemoglobina de 5,25 g/L, resultado que no coincide con Aguilar, quien determinó interferencia no sig- nificativa para dicho analito en el au- toanalizador Sistema Modular Roche/ Hitachi SWA. Sin embargo, en este estudio se utilizó como última alícuota una concentración de hemoglobina de 5,11 g/L (13) . En el caso de los electrolitos, el úni- co que presentó efecto nulo por hemó- lisis fue el calcio, resultado que coinci- de con otros estudios (5,13-15,17) . Nuestros resultados para la albúmi- na y las proteínas coinciden con los de Steen (15) , pero no con los publicados por Aguilar (13) . Hay que considerar que el principio del método para dosar proteínas se basa en la formación de un complejo morado como consecuencia de la interacción de los enlaces peptí- dicos de las proteínas con los iones de cobre del reactivo de Biuret, que se mide a 545 nanómetros (nm) como re- acción de punto final, longitud de onda que coincide con los puntos de máxima Tabla 3. Análisis de los coeficientes de regresión múltiple resultantes de la interferencia de la hemoglobina con bilirrubina total (R2 = 0,994). Variable Coeficiente Valor del coeficiente Nivel p* Intercepto β0 -0,014 0,578 Bilirrubina total β1 0,944 0,000 Interferente (hemoglobina) β2 -0,006 0,498 Bilirrubina total – Interferente β3 0,004 0,650 * Valores de p < 0,05 son considerados significativamente diferentes de cero.
  • 7. 383 Interferencia causada por hemólisis en la determinación de 25 constituyentes bioquímicos en el autoanalizador ADVIA 1800 Ítalo Moisés Saldaña O absorbancia de la hemoglobina, lo cual parece ser la causa para dicha interfe- rencia. Al igual que otros estudios (5,13,14) , encontramos una sobreestimación en los resultados de actividad de la enzi- ma creatinfosfoquinasa, interferencia que ha sido atribuida a la liberación de la adenilatoquinasa intracelular, como consecuencia de la hemólisis. La gammaglutamiltransferasa no se vio afectada por la hemólisis en todas las alícuotas empleadas en el estudio, resul- tado semejante a lo obtenido por Agui- lar, quien empleó la misma metodología pero diferente autoanalizador (13) . Destaca en nuestros resultados la interferencia para glucosa a concen- traciones de hemoglobina igual o ma- yor de 4,30 g/L, dato que discrepa con Aguilar y Caballero (13,14) , quienes en diferentes analizadores no encontraron interferencia, a pesar que en estos dos estudios emplearon la misma metodo- logía (hexocinasa). Para la determinación de creatinina se usó la técnica enzimática de creati- ninasa, la cual presentó interferencia nula para hemólisis en todas las dilu- ciones de hemoglobina empleadas en nuestro estudio, resultados que con- cuerdan con Aguilar, quien utilizó la misma metodología pero diferente ana- lizador (13) . Es importante señalar que Murray reporta interferencia a partir de una concentración de hemoglobina de 1g/L para esta determinación, utilizan- do la metodología de Jaffé cinético (7,19) . El estudio de valoración de inter- ferencia por hemólisis debe realizarse con una muestra que tenga una con- centración del analito próxima a los valores de decisión clínica. En algunos casos, el efecto de la interferencia no solo depende de la concentración de la sustancia interferente, sino también de la concentración del constituyente, como fue el caso de la bilirrubina. En nuestro estudio nos ha resultado impo- sible obtener un pool de sueros cuyas concentraciones estén todas próximas a los valores de decisión clínica. La interferencia espectral por he- mólisis se produce cuando el espectro de absorción del interferente y la del cromógeno producido en la reacción se solapan; muchos instrumentos de uso corriente emplean diferentes técnicas para la corrección de las interferencias espectrales. Estas técnicas involucran el uso de un blanco de muestra, el aná- lisis bicromáticos o mediante la correc- ción de Allen (7) , todo esto sumado a las diferentes metodologías o reactivos que se emplean para medir los diferen- tes constituyentes, además del empleo de diferentes criterios para establecer el límite de error máximo admisible para establecer interferencia significativa, pueden ser causas de la discordancia de resultados en los diferentes estudios para este tipo de interferencia. Es interesante notar que metodolo- gías teóricamente idénticas o muy se- mejantes brindan resultados distintos ante la presencia de hemólisis, lo que nos indicaría que el análisis de interfe- rencia aquí realizado no puede ser gene- ralizado para otros reactivos o equipos. Es recomendable que cada laboratorio investigue los efectos de dicha interfe- rencia empleando sus propios reactivos, métodos o instrumentos. La mayoría de los actuales autoa- nalizadores tiene la capacidad de de- tectar la hemólisis en las muestras de suero mediante índices séricos que se correlacionan linealmente con las concentraciones del interferente. Los índices pueden ser usados para detec- tar la interferencia generando tablas de tolerancia, con índices de decisión que indican cuándo hay una interferencia. En nuestro medio, a pesar de contar con estos equipos, no se hace uso de esta tecnología por desconocimiento o por la excusa de consumo de tiem- po de proceso del analizador y necesi- dad de reactivos específicos en algún caso (6,8,13) . Podemos concluir que las muestras hemolizadas son un problema impor- tante en todos los laboratorios. Las principales causas que la originan son la extracción o manejo de la muestra de sangre de forma inadecuada, especial- mente en áreas de alta presión asisten- cial como en las unidades de cuidados intensivos y los servicios de emergencia. Los laboratorios deben asegurar la detección de la hemólisis y tener esta- blecidas las acciones que se van a tomar frente a estas muestras. AGRADECIMIENTOS Al Licenciado Tecnólogo Médico Artu- ro Arzapalo Poma por su tiempo y apor- tes durante el desarrollo del presente trabajo. REFERENCIAS BIBLIOGRÁFICAS 1. Castaño JL. Estudio de las interferencias analí- ticas endógenas en química clínica. Quím Clín. 1994;13:84–92. 2. Castaño JL. Criterios para la valoración de la sig- nificación analítica y clínica de las interferencias en bioquímica clínica. Quím Clín. 1995;14:107–9. 3. Clinical and Laboratory Standards Institute. Inter- ference Testing in Clinical Chemistry; Approved Guideline-Second Edition. EP7-A2. USA 2010. 4. Lippi G, Blanckaert N, Bonini P, Green S, Kitchen S, Palicka V, et al. Haemolysis: an overview of the leading cause of unsuitable specimens in clinical laboratories.ClinChemLabMed.2008;46:764–72. doi: 10.1515/CCLM.2008. 5. Lippi G, Salvagno GL, Montagnana M, Brocco G, Guidi GC. Influence of hemolysis on routine clinical chemistry testing. Clin Chem Lab Med. 2006;44:311–6. 6. GómezRiojaR,AlsinaKirchnerMJ,AlvarezFunes V, Barba Meseguer N, Cortés Rius M, 345 Llopis Díaz MA, Martínez Bru C. Hemólisis en las mues- trasparadiagnóstico.RevLabClin.2009;2(4):185- 95. doi: 10.1016/j.labcli.2009.08.002 7. Kaplan L, Pesce A. Interferencias en el análisis espectral.En:KaplanL,PesceA.QuímicaClínica, teoría, análisis y correlación. Buenos Aires: Ed. Médica Panamericana; 1988:1163-76. 8. Sociedad Española de Bioquímica Clínica y Pato- logía Molecular. Procedimiento para el estudio de lainterferenciaporhemólisis,bilirrubinayturbidez y para la verificación de los índices de hemólisis, ictericiaylipemia.ComisióndeMetrologíaySiste- mas Analíticos. Documento Técnico 2013. 9. Glick MR, Ryder KW, Jackson SA. Graphical comparisons of interferences in clinical chemistry instrumentation. Clin Chem. 1986;32:470-5. 10. Ricós C, García Lario JV, Álvarez V, Cava F, Doménech MV, Hernández A, et al. Biological variationdatabase.The2014update.[Consultado 8/7/2014]. Disponible en: http://www. westgard. com/biodatabase1.htm. 11. SociedadEspañoladeBioquímicaClínicayPatolo- gía Molecular. Comité de garantía de la Calidad y AcreditacióndeLaboratorios.Comisióndecalidad Analítica. Base de datos De variación biológica. Actualización del año 2014: Disponible en http:// www.seqc.es/es/Sociedad/51/102.
  • 8. 384 An Fac med. 2015;76(4):377-84 12. Castaño J, Ventura S. Recomendaciones para el estudio de las interferencias dependientes de la concentración del constituyente. Quím Clín. 2001;20(4):257–60. 13. García Aguilar GD, Pico Picos MA, Quintana Hidalgo L, Cabrera Argany A, Lorenzo Medina M, AguilarDoresteJA.Utilidaddelosíndicesséricos para la valoración de las interferencias causadas por la hemólisis y la bilirrubina en la medición de distintos constituyentes bioquímicos. Quím Clín. 2007;26:196–201. 14. Caballero Sarmiento R. Estudio de las interferen- cias producidas por la hemólisis en la medición de 18 constituyentes séricos en un ADVIA 2400. Quím Clín. 2007;26:20–2. 15. SteenG,VermeerHJ,NausAJ,GoevaertsB,Agri- colaPT,SchoenmakersCH.Multicenterevaluation of the interference of hemoglobin, bilirubin and lipids on Synchron LX-20 assays. Clin Chem Lab Med. 2006;44:413–9. 16. CastañoJL,AraquistainJLInterferenciascausadas por la bilirrubina, hemoglobina y hemólisis en la determinaciónde15constituyentesséricos.Quìm Clín. 1989;8:47-55. 17. Ji JZ, Meng QH. Evaluation of the interference of hemoglobin, bilirubin, and lipids on Roche Cobas 6000assays.ClinChimActa.2011Aug17;412(17- 18):1550–3. doi: 10.1016/j.cca.2011.04.034.  18. Grafmeyer D, Bondon M, Manchon M, Levillain P. The influence of bilirubin, hemolysis and turbidity on 20 analytical tests performed on automatic analysers. Results of an interlaboratory study. Eur J Clin Chem Clin Biochem. 1995;33:31-52. 19. MurrayRL.Creatinina.EnKaplanL,PesceA,Quí- micaClínica,teoría,análisisycorrelación.Buenos Aires: Ed. Médica Panamericana; 1988. Artículo recibido el 3 de marzo de 2015 y aceptado para publicación el 6 de junio de 2015. Conflicto de intereses: El autor declara no tener ningún conflicto de intereses. Correspondencia: Ítalo Moisés Saldaña Orejón Departamento de Patología Clínica, Servicio de Bioquímica, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Perú imso_biochemical@yahoo.es