SlideShare una empresa de Scribd logo
1 de 88
Descargar para leer sin conexión
Prácticas 0 a 11
Análisis Matemático
Exactas – Ingeniería
2014
CONTENIDO
PRÁCTICA 0. PRELIMINARES
PRÁCTICA 1. FUNCIONES REALES
LAS FUNCIONES DESCRIBEN FENÓMENOS.
GRÁFICO DE FUNCIONES.
LAS FUNCIONES MÁS USUALES.
COMPOSICIÓN DE FUNCIONES. FUNCIÓN INVERSA.
FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.
FUNCIONES TRIGONOMÉTRICAS.
OTRAS FUNCIONES.
PROBLEMAS VARIOS.
PRÁCTICA 2. NÚMEROS REALES
LA RECTA REAL.
NÚMEROS IRRACIONALES.
SUPREMO E ÍNFIMO.
PRÁCTICA 3. SUCESIONES
TÉRMINO GENERAL.
LA NOCIÓN DE LÍMITE.
CÁLCULO DE LÍMITES. PROPIEDADES.
SUCESIONES MONÓTONAS. MÁS PROPIEDADES.
SUBSUCESIONES.
SUCESIONES DADAS POR RECURRENCIA.
PROBLEMAS VARIOS.
PRÁCTICA 4. LÍMITES Y CONTINUIDAD
LÍMITES EN EL INFINITO.
LÍMITE EN UN PUNTO.
LÍMITES ESPECIALES.
CONTINUIDAD. DEFINICIÓN Y PROPIEDADES.
TEOREMA DE LOS VALORES INTERMEDIOS.
PROBLEMAS VARIOS.
PRÁCTICA 5. DERIVADAS
RECTA TANGENTE
REGLAS DE DERIVACIÓN. FUNCIÓN DERIVADA.
FUNCIONES DERIVABLES Y NO DERIVABLES.
DERIVADA DE LA FUNCIÓN INVERSA.
ALGUNAS APLICACIONES.
DERIVADAS SUCESIVAS.
PROBLEMAS VARIOS.
PRÁCTICA 6. TEOREMA DEL VALOR MEDIO
TEOREMAS DE FERMAT, ROLLE, Y LAGRANGE.
CONSECUENCIAS DEL TEOREMA DEL VALOR MEDIO.
REGLA DE L’HOSPITAL.
PROBLEMAS VARIOS.
PRÁCTICA 7. ESTUDIO DE FUNCIONES
CRECIMIENTO Y DECRECIMIENTO.
EXTREMOS LOCALES.
ASÍNTOTAS.
CONCAVIDAD Y CONVEXIDAD.
CONSTRUCCIÓN DE CURVAS.
CANTIDAD DE SOLUCIONES DE UNA ECUACIÓN.
CONTINUIDAD EN INTERVALOS CERRADOS.
PROBLEMAS DE OPTIMIZACIÓN.
PROBLEMAS VARIOS.
PRÁCTICA 8. TEOREMA DE TAYLOR
POLINOMIO DE TAYLOR.
EXPRESIÓN DEL RESTO.
PROBLEMAS DE APROXIMACIÓN.
PROBLEMAS VARIOS.
PRÁCTICA 9. INTEGRALES
LA FUNCIÓN ÁREA. PROPIEDADES DE LA INTEGRAL.
TEOREMA FUNDAMENTAL DEL CÁLCULO. REGLA DE BARROW.
INTEGRACIÓN NUMÉRICA.
PRIMITIVAS.
CÁLCULO DE PRIMITIVAS. MÉTODOS DE SUSTITUCIÓN Y DE
INTEGRACIÓN POR PARTES.
FRACCIONES SIMPLES.
PROBLEMAS VARIOS.
PRÁCTICA 10. APLICACIONES DE LA INTEGRAL
ÁREA ENTRE CURVAS.
ECUACIONES DIFERENCIALES.
VOLUMEN DE UN SÓLIDO DE REVOLUCIÓN.
LONGITUD DE CURVA.
PROBLEMAS VARIOS.
PRÁCTICA 11. SERIES
TÉRMINO GENERAL Y SUMAS PARCIALES.
SERIES GEOMÉTRICAS Y SERIES TELESCÓPICAS.
CRITERIOS DE CONVERGENCIA.
SERIES DE POTENCIA.
PROBLEMAS VARIOS.
PROGRAMA
BIBLIOGRAFÍA
1
PRÁCTICA 0
PRELIMINARES
EJERCICIO 1: Calcule
(a) 












3
2
)
4
1
6
1
2(1
4
1
2)
12
5
2
1
(1
2
1
3
2
(b) 






4
1
)
10
3
5
1
(1
2
1
)2(
5
2
EJERCICIO 2: Calcule
(a)
2
2
)
2
1
3
2
(
4
1







 (b)
2
1
22
2
1
3
2
1
4





















EJERCICIO 3: Calcule
(a) 12
74
3
33 
(b) 5
26
108
)104)(105(

 
(c) 2
1
2
7
3
2
65
43
2
2
1
4
3
33)2(32
27
64
49
16
81 











 


(d) 334 222
81
27
8)9()3(5 
EJERCICIO 4: Si
2
3
;
3
2
;2  zyx calcule
(a) )( zyx  (b) zxy 
(c) yzx  (d) zyx )( 
2
EJERCICIO 5: Pruebe las siguientes identidades
(a)
nn
nn


1
1
1 , Nn
(b)
n
n
nn
n
nnn
1
13
1
3 2
2
23





EJERCICIO 6: Resuelva
(a) 112 x (b) 725  x
(c) 374)13(2  xx (d) 2
42
39



x
x
(e)
3
1
2
1 xx 


(f)
x
x
xx
x
33
26
)1(2
3
1 





EJERCICIO 7: Muestre que el número 32  es solución de la ecuación
0110 24
 xx .
EJERCICIO 8: Escriba como intervalo o unión de intervalos las soluciones de
las siguientes desigualdades
(a) 212 x (b) 212  x
(c) xx 610112  (d) 4
2
2

 x
(e) 1
3
12



x
x
(f) 1
1
3



x
x
EJERCICIO 9: Escriba de menor a mayor los siguientes números
2
5
;
3
1
;
7
4
;
11
6
;
2
3
;
41
64
;
3
38
;
2
25


EJERCICIO 10: Demuestre que si a y b son números no negativos vale la desi-
gualdad.
3
ba
ba


2
Exhiba un ejemplo donde la desigualdad es estricta y otro donde valga la igual-
dad.
EJERCICIO 11: Alguna de las siguientes relaciones no valen en general. Ana-
lice en qué casos son válidas.
(a) 222
)( yxyx  (b) yxyx 
(c) 22
yxyx  (d)
yxyx
111


(e) xx 2
(f) xx 2
(g) 02
x (h) 03
x
(i) 12 x
(j) xx log2)log( 2

(k) 02 x
(l) xx log2)10log( 2

EJERCICIO 12: Resuelva
(a) 14 2
x
(b)
8
1
2 35
x
(c) 100)7log( x (d) 0)13log( 2
 xx
EJERCICIO 13: Represente en el plano los siguientes puntos:
(1 ; 3) , (3 ; 1) , (-1 ; 2) , (-1 ; -5) , (0 ; 1) , (1 ; 0) , (3 ; 3) , (-1 ; -1)
Para cada uno de estos puntos represente los puntos simétricos respecto de:
(a) el eje x. (b) el eje y. (c) el origen de coordenadas.
EJERCICIO 14: Represente en el plano los siguientes conjuntos de 2
R
(a)  1/),( 2
 xRyx (b)  2/),( 2
 xRyx
(c)  2,0/),( 2
 yxRyx (d)  1,1/),( 2
 yxRyx
4
PRÁCTICA 1
FUNCIONES REALES
LAS FUNCIONES DESCRIBEN FENÓMENOS
EJERCICIO 1: Haga un gráfico que refleje la evolución de la temperatura del
agua a lo largo del tiempo atendiendo a la siguiente descripción:
“Saqué del fuego una cacerola con agua hirviendo. Al principio, la
temperatura bajó con rapidez, de modo que a los 5 minutos estaba en 60.
Luego fue enfriándose con más lentitud. A los 20 minutos de haberla sacado
estaba a 30 y 20 minutos después seguía teniendo algo más de 20, tem-
peratura de la cual no bajó, pues era la temperatura que había en la cocina”.
¿Es el gráfico que hizo, el único que respeta las consignas anteriores?
EJERCICIO 2: Con una lámina rectangular de 40 por 30 queremos hacer una
caja como muestra la figura:
(a) Busque la expresión del volumen de la caja en función de x.
(b) ¿Cuál es el dominio?
(c) Haga un gráfico aproximado a partir de una tabla de valores.
x x
x
x
x
x
x
40 2.x
40 2.x
30 2.x 30
2.x
5
EJERCICIO 3: Entre todos los rectángulos de perímetro 20, halle la función
que relaciona la base x con la altura y. Haga un gráfico que la represente.
¿Cuál es el dominio?
EJERCICIO 4: Halle el área de un triángulo rectángulo isósceles en función del
cateto. Dibuje el gráfico de la función hallada a partir de una tabla de valores.
Indique cuál es el dominio.
GRÁFICO DE FUNCIONES
EJERCICIO 5: Dados los siguientes conjuntos del plano, determine, en cada
caso, si existe una función cuyo gráfico sea el dado
EJERCICIO 6: Dados los siguientes gráficos de funciones, determine, en cada
caso, en qué intervalos es creciente, en qué intervalos es decreciente, en qué
punto alcanza su máximo, cuál es dicho valor máximo, en qué punto alcanza su
mínimo y cuál es el valor mínimo.
6
EJERCICIO 7: Dibuje una función que sea creciente en los intervalos  1, y
 ,2 . Además que el valor máximo sea 4 y se alcance en x = -1 y que el valor
mínimo sea –3 y se alcance en x = 2.
LAS FUNCIONES MÁS USUALES
EJERCICIO 8:
(a) Encuentre en cada caso, una función lineal que satisfaga:
1. f(1) = 5 ; f(-3) = 2
2. f(-1) = 3 ; f(80) = 3
3. f(0) = 4 ; f(3) = 0
4. f(0) = b ; f(a) = 0 a y b fijos.
(b) Calcule en 1. y en 2. f(0). Calcule en 3. f(-2)
(c) Encuentre la pendiente de las rectas que son gráficas de las funcio-
nes lineales dadas en (a). Haga un gráfico de tales rectas.
a) b)
–1
–1–2 1 2
1
–½ ½
d)
2
1
c)
1
7
EJERCICIO 9: Halle la ecuación de la recta de pendiente m que pasa por el
punto P, siendo:
(a) P = (2 , 3) m = 1 (b) P = (1 , 5) m = 0
(c) P = (3 , -4) m = -2 (d) P = (0 , b) m = 1
Haga el gráfico de cada una de ellas. Decida cuáles son crecientes y cuáles
son decrecientes.
EJERCICIO 10: Encuentre la función lineal g que da la temperatura en grados
Farenheit, conocida la misma en grados Celsius, sabiendo que 0C = 32F y
100C = 212F. Recíprocamente, encuentre la función h que da la temperatura
en grados Celsius, conocida la misma en grados Farenheit. Compruebe que
g(h(x)) = h(g(x)) = x.
EJERCICIO 11: Trace el gráfico de las siguientes funciones cuadráticas:
(a) 2
)( xxf  (b) 2
2)( xxf 
(c) 3)( 2
 xxf (d)  2
5)(  xxf
Determine en cada caso, el conjunto imagen.
EJERCICIO 12: Para las siguientes funciones cuadráticas determine en qué in-
tervalo crece, en qué intervalo decrece, dónde es positiva, dónde es negativa,
en qué puntos se anula y en qué punto alcanza su extremo:
(a) 2
2)( xxf  (b) )3(2)(  xxxf
(c) xxxf  2
2)( (d) 12)( 2
 xxxf
(e)   532)(  xxxf
EJERCICIO 13: Se arroja una pelota desde el suelo y la altura, en metros, vie-
ne dada por la función ttth 105)( 2
 , siendo t el tiempo medido en segundos.
¿Cuándo alcanza la altura máxima?
¿Cuál es dicha altura?
8
EJERCICIO 14: Represente gráficamente las siguientes funciones
(a) 3
)( xxf  (b)  3
2)(  xxf
(c) 1)( 3
 xxf (d) 4
)( xxf 
Analice en cada caso, la monotonía.
EJERCICIO 15: Represente gráficamente las siguientes funciones
(a)
x
xf
4
)(  (b)
x
xf
4
)( 
(c)
3
4
)(


x
xf (d) 2
3
4
)( 


x
xf
(e)
2
54
)(



x
x
xf (f)
1
23
)(



x
x
xf
Indique en cada caso, el dominio de la función. Indique también en qué inter-
valos es creciente y en qué intervalos es decreciente.
EJERCICIO 16: Represente gráficamente las siguientes funciones
(a) xxf )( (b) xxf )(
(c) 3)(  xxf (d) 2
)2()(  xxf
Indique en cada caso, el dominio de la función. Analice la monotonía.
EJERCICIO 17: Halle el dominio de las siguientes funciones
(a) 4)( 2
 xxf (b) 8)(  xxf
(c) 9)( 2
 xxf (d) )1()(  xxxf
9
COMPOSICIÓN DE FUNCIONES. FUNCIÓN INVERSA
EJERCICIO 18: Considere las funciones reales definidas por las fórmulas
xxxf 52)( 2

3
1
)(


x
xg 62)(  xxh
(a) Calcule, si es posible:
  )1(ff    )1(hf    )1(fg    )2(gh 
(b) Halle fórmulas para las composiciones que se indican a continuación.
gf  fg    hgf  hf  ff 
(c) ¿ gf  y fg  son la misma función?
EJERCICIO 19: Halle la función inversa de:
(a) 53)(  xxf (b) 0,12)( 2
 xxxf
(c) 53)(  xxf (d) 3
)( xxf 
(e) 3,46)( 2
 xxxxf (f) 3,46)( 2
 xxxxf
EJERCICIO 20: Pruebe que la función
1
1
)(



x
x
xf satisface )()
1
( xfx
x
f 
para todo x positivo.
FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
EJERCICIO 21: Dada las funciones exponenciales x
rxf )( (r = 2 ,
2
1
, 3 ,
3
1
),
(a) Haga el gráfico de cada una de ellas.
(b) Determine el dominio y la imagen.
(c) Analice la monotonía.
10
EJERCICIO 22: Si notamos )(log xr a la función inversa de )1,0(  rrrx
(a) Haga el gráfico de )(log xy r para r = 2 ,
2
1
, 3 ,
3
1
.
(b) Determine el dominio y la imagen.
(c) Analice la monotonía.
EJERICICIO 23: Encuentre el dominio de las siguientes funciones
(a) )2ln()( xxf  (b) )23ln()( 2
xxxf 
En cada caso determine los valores de x para los cuales 1)( xf
EJERCICIO 24: Halle la función inversa de:
(a) )2ln()( xxf  (b) )4ln()( 2
 xxf
(c) )1ln()( 2
 xxf (d) 52)(  x
xf
(e) 3
)( 
 x
exf (f) 0,)(
2
 xexf x
FUNCIONES TRIGONOMÉTRICAS
EJERCICIO 25: A partir de los gráficos de xxg sen)(  y xxh cos)(  haga el
gráfico de
(a) )sen()(  xxf (b) )2cos()( xxf 
(c) )2cos()(  xxf (d) )
2
sen()(

 xxf
EJERICICIO 26: Determine todos los valores de Rx tales que
(a)
2
1
sen x (b)
2
3
cos x
(c) 1sencos 22
 xx (d) 1cossen 22
 xx
(e) xxx cossen2)2sen(  (f) )sen(cos
2
2
)
4
cos( xxx 

11
EJERCICIO 27: Haga el gráfico de las funciones inversas de xxg sen)(  y
xxh cos)(  . Determine los valores de Rx tales que
(a)
4
arcsen

x (b) xarccos
(c) 2
1)cos(arcsen xx 
OTRAS FUNCIONES
EJERCICIO 28: Represente las siguientes funciones
(a) 5)(  xxf (b) 5)(  xxf
(c) xxf sen)(  (d) x
exf )(
EJERCICIO 29:
(a) Dada la función









xsix
xsix
xsix
xf
143
11
12
)( , calcule )3(f , )1(f y
)4(f . Determine para qué valores de y la ecuación yxf )( tiene
solución. ¿Cuándo es única?
(b) Idem para la función








4
2
1
413
)(
xsi
x
xsix
xf
EJERCICIO 30: El impuesto a la riqueza es igual al 0,50 pesos por cada mil pe-
sos por encima de 100 mil pesos y de 1 peso por cada mil pesos por encima de
200 mil pesos. Escriba el monto del impuesto en función de la riqueza. ¿Cuál
es la riqueza de alguien que paga 530 pesos de impuesto?
PROBLEMAS VARIOS
PROBLEMA1: La función f es lineal y la función g es cuadrática. Los gráficos
de ambas funciones se cortan en los puntos P = (-1,2) y Q = (2,0). Además g
se anula en x = -2. Halle las fórmulas de f y g y encuentre el conjunto de los x
tales que f(x) es mayor que g(x). Haga un gráfico.
12
PROBLEMA 2: Se definen
2
)cosh(
xx
ee
x


 y
2
)senh(
xx
ee
x


 . Pruebe que
(a) 1)(senh)(cosh 22
 xx
(b) Los gráficos de ambas funciones no se cortan.
PROBLEMA 3: Un cántaro vacío con capacidad para 20 litros pesa 2550 gra-
mos.
(a) Represente la función que da el peso total del cántaro en función de
la cantidad de agua, en litros, que contiene. Halle su fórmula. ¿Cuál
es el dominio?
(b) Si disponemos de 3 litros de mercurio, cuyo peso total es 40,8 kg, re-
pita el ítem anterior sustituyendo el agua por el mercurio.
(c) Si se representan las funciones de (a) y (b) en los mismos ejes, ¿qué
significa el punto de intersección?
(d) ¿Es cierto que a doble cantidad de líquido corresponde doble peso
total?
PROBLEMA 4: Si
14
2
)(
3


n
nf
n
, calcule
)(
)1(
nf
nf 
y obtenga su valor numérico
para n = 1, 2, 3, 4 y 5.
13
PRÁCTICA 2
NÚMEROS REALES
LA RECTA REAL
EJERCICIO 1: Represente en la recta numérica:
(a) 12;12;12;12;2;
5
2
1;
5
2
1;
8
3
;6;3;1;5 
(b) 14,3;14,3;
2
3
;;
2
;
2
;;3;2;1;0;1;2;3 




EJERCICIO 2: Represente en la recta numérica los siguientes conjuntos.
Escríbalos como intervalos o como unión de intervalos.
(a) Todos los números reales mayores que –1.
(b) Todos los números reales menores o iguales que 2.
(c) Todos los números reales que distan del 0 menos que 3.
(d)  532/  xRx (e)  33/  xRx
(f)  5321/  xRx (g)  0)32(/  xxRx
(h)  036/ 2
 xRx (i)  0/ 3
 xxRx
(j)






 3
2
1/
x
Rx (k)







xx
Rx
41
/
(l)  3/  xRx (m)  32/  xRx
(n)  32/  xRx (ñ)  3/  xRx
14
EJERCICIO 3: Represente en la recta los siguientes conjuntos
(a)    6,34,2  (b)    6,34,2 
(c)   ),1(3,  (d)   ),3[3,1 
(e)   ),3[3,1  (f)   )5,3(3,1 
EJERCICIO 4: Represente en la recta los siguientes conjuntos
(a)  64/  nNn (b)  13/  nNn
(c)








 6/
1
nNn
n
n
x (d)








 Nn
n
n
x /
1
NÚMEROS IRRACIONALES
EJERCICIO 5: Demuestre que 3 no es racional.
EJERCICIO 6: Dados los números 3,14 y 
(a) Halle un número racional comprendido entre ambos.
(b) Halle un número irracional comprendido entre ambos (Ayuda: escriba
su desarrollo decimal).
SUPREMO E INFIMO
EJERCICIO 7: Considere los siguientes conjuntos






 Nn
n
A :
1








 Nn
n
n
B :
1
 7,0C
ND 






 Nn
n
nE :
1
2
 4,3,2,1F
 ;999,5;99,5;9,5;5G  12/  xRxH  3/  xRxI
15
En cada caso:
(a) Determine si 7 es una cota superior.
(b) Determine si 0 es una cota inferior.
(c) Decida si está acotado superiormente.
(d) Decida si está acotado inferiormente.
(e) En caso afirmativo, encuentre el supremo y/o el ínfimo del conjunto.
Decida si alguno de ellos es el máximo y/o el mínimo del conjunto
correspondiente.
EJERCICIO 8: Considere el conjunto B del ejercicio anterior.
(a) Muestre que 1 es cota superior de B.
(b) Exhiba un elemento b de B que satisfaga 0,9 < b < 1.
(c) Exhiba un elemento b de B que satisfaga 0,99 < b < 1.
EJERCICIO 9: Considere el conjunto









 Nn
n
n
P :
2
12
(a) Muestre que 2 es una cota superior de P.
(b) Exhiba un elemento p de P que satisfaga 1,99 < p < 2.
(c) Muestre que si t < 2 existe un elemento p de P que satisface t<p<2.
Deduzca entonces que sup P = 2.
EJERCICIO 10: Muestre que existe un número natural n que satisface
001,0
1

n
. En general, muestre que, cualquiera sea x positivo, existe un nú-
mero natural n que satisface x
n

1
. Deduzca de aquí que 0:
1
inf 






 Nn
n
16
EJERCICIO 11: Sean A y B dos conjuntos de números reales no vacíos y
acotados de modo que BA . Ordene de menor a mayor los siguientes
números:
sup A , sup B , inf A , inf B
Exhiba un ejemplo donde sup A = sup B y otro donde la desigualdad es
estricta.
EJERCICIO 12: Determine, en caso de que existan, el supremo, el ínfimo, el
máximo y el mínimo de los siguientes conjuntos:
(a)  023: 2
 xxRxA
(b)  )2,0(,232
 xxxyB
(c)  RxxxyC  ,232
17
PRÁCTICA 3
SUCESIONES
TÉRMINO GENERAL
EJERCICIO 1: Escriba los primeros cinco términos de las siguientes sucesio-
nes
(a)
1

n
n
an (b) 3
1
)12(
2



n
b
n
n
(c)
!
)1( 1
n
c
n
n


 (d)
n
n
dn
)cos( 

EJERCICIO 2: Para cada una da las siguientes sucesiones
(a) Encuentre el término 100 y el término 200 de cada una de ellas.
(b) Halle, si es posible, el término general na
(c) Clasifique las sucesiones en convergentes o no convergentes.
(i) ,4,3,2,1 (ii) ,
4
1
,
3
1
,
2
1
,1 
(iii) ,
4
1
,
3
1
,
2
1
,1  (iv) ,
16
1
,
8
1
,
4
1
,
2
1

(v) ,4,3,2,1  (vi) ,
4
1
,0,
3
1
,0,
2
1
,0
(vii) ,1,1,1,1  (viii) ,
4
5
,
3
4
,
2
3
,2
(ix) ,
4
1
,3,
3
1
,2,
2
1
,1,1 (x) nn aaa 2,1 11  
LA NOCIÓN DE LÍMITE
EJERCICIO 3: Halle un valor de Nn a partir del cual haya certeza de que
(a) 852
 nn sea mayor que (i) 10 (ii) 1000
(b) 1002 n
sea mayor que (i) 10 (ii) 1000
(c) 2
1
)1(



n
n
esté entre (i) 1,9 y 2,1 (ii) 1,999 y 2,001
(d)
n
nsen
esté entre (i) –0,1 y 0,1 (ii) –0,001 y 0,001
18
EJERCICIO 4: Considere la sucesión
2,1000
1



n
n
an . A partir de que el
1lím 

n
n
a responda cuáles de las siguientes afirmaciones son verdaderas,
explicando en cada caso, en qué se basa para responder:
(a) Existe un Nn a partir del cual 0na .
(b) Existe un Nn a partir del cual
2
1
na .
(c) Existe un Nn a partir del cual 1na .
(d) Existe un Nn para el cual 1na .
(e) La sucesión na está acotado.
Escriba las afirmaciones que correspondan, con la nomenclatura pctn.
CÁLCULO DE LÍMITES
PROPIEDADES
EJERCICIO 5: Calcule, si existe, el límite de las siguientes sucesiones. En ca-
da caso, explique las propiedades que usa para obtener su respuesta:
(a)
45
1324
2
23



n
nnn
an (b)
3
57 3



n
n
an
(c)
1
2
2
3



n
n
an (d)
23
12
2
2



n
n
an
(e)
40003
34
2
2



n
n
an (f)
nnn
n
an



2
(g) ,
33
64
,
5
11
,
17
32
,
4
9
,
9
16
,
3
7
,
5
8
,
2
5
,
3
4
,3 (h) ,
4
1
2
1
1,
2
1
1,1 
EJERCICIO 6: Continúe con las siguientes sucesiones
(a)
1
5
3
75 22





n
n
n
nn
(b)
1
5
3
75 22





n
n
n
nn
(c) nnn  22
(d) nnn  22
(e) 31 22
 nnn (f)
32
13
23
12
2
2





n
n
n
n
(g)  nnn  2 (h)  nnn  2
(i)
nn
n
1
(j)  nnn  22
19
EJERCICIO 7: Muestre que cada una de las siguientes situaciones constituye
una indeterminación. Para ello, exhiba por lo menos dos ejemplos donde los lí-
mites sean distintos (finitos o infinitos). Suponga cuando haga falta, condicio-
nes suficientes para que las sucesiones estén bien definidas para todo n.
(a) 

n
n
alím y 

n
n
blím (i) )(lím nn
n
ba 

(ii)
n
n
n b
a

lím
(b) 0lím 

n
n
a y 0lím 

n
n
b (i)
n
n
n b
a

lím (ii) nb
n
n
a )(lím

(c) 0lím 

n
n
a y 

n
n
blím (i) )(lím nn
n
ba 

(ii) na
n
n
b )(lím

EJERCICIO 8: Marque en cada caso, la única respuesta correcta:
(a) Si 

n
n
alím y nb oscila finitamente entonces )(lím nn
n
ba 

 oscila  tiende a más infinito  es una indeterminación
(b) Si Lan
n


lím y 0na entonces hay certeza de que
 0L  0L  0L  ninguna de las anteriores
(c) Si 0lím 

n
n
a y 

n
n
blím entonces
n
n
n b
a

lím
 es igual a 0  tiende a más infinito
 es una indeterminación  no existe
(d) Si 0lím 

n
n
a y 

n
n
blím entonces   nb
n
n
a

lím
 es igual a 0  tiende a más infinito
 es una indeterminación  no existe
SUCESIONES MONÓTONAS
MÁS PROPIEDADES
EJERCICIO 9: Calcule, si existe, el límite de las siguientes sucesiones. Como
siempre, explique las propiedades que usa para llegar al resultado:
(a)
n
nsen
(b)  nnn
 2)1(
(c)
n
n 1
)1(  (d)  nnn
 2)1(
(e)
n






5
2
(f) n
n
n
)1(
3
52


(g) n
)5,1( (h) n
)95,0(
20
(i) nn
nn
22
243
2
1

 
(j) n
n 12

(k) n
n
nn
2
123
2
23


(l) n
n
n
13
15


(m)
n
n
n
1
2
2
35
2








(n) n nn
52 
(o)   n
n 2
1
4
1 (p)   n
nn 1
)1(1 
(q)
n











 11
8
3
5
(r)
n











 3
5
11
8
(s)
n
1
3
5
11
8












(t)
n
n
n
n
sen92
cos3 12


EJERCICIO 10: Calcule el límite de las siguientes sucesiones
(a)
n
n
n








53
13
(b)
n
n
n








53
14
(c)
12
13
23









n
n
n
(d)
n
n






 2
1
1
(e)
n
n







17
1 (f)
nn
n
nn
22
3
13
52









(g)
12
2
2
2
2
53
123 








 n
n
n
nn
(h)
n
n
n







sen
1
(i)
n
n 










 1
cos (j)
32
15
sen
1









n
n
n
EJERCICIO 11: Calcule, si existe, el límite de las siguientes sucesiones
(a) 1
2 n
n
(b)
n
n







1
2
(c)
!
2
n
n n
(d) n
n!
(e) nn
nn
32
!3


(f)
)!2(
2 12
n
n
21
(g)
n
n







2
2
1
(h)
!
2
n
n
(i) n
n
n!
(j) n
n
n
nn !44
EJERCICIO 12: En cada caso, la sucesión na se encuentra sujeta a las condi-
ciones indicadas. Analice la existencia de límite y, en caso afirmativo, calcúlelo.
(a) n
nn
a 4125
2
3
2  (b) 12
!2
230 
 n
n
n
n
n
a
(c)
2
1
1
1
n
n na






 (d)
11
1
62

 nn
n
a
SUBSUCESIONES
EJERCICIO 13: Dada la sucesión 1, 3, 5, 7, 7, 5, 3, 1, 1, 3, 5, 7, ..., escriba el
término general de nn aa 42 , y 38 na . Encuentre dos subsucesiones convergentes
EJERCICIO 14: Usando subsucesiones, pruebe que cada una de la siguientes
sucesiones carece de límite:
(a) 0, 1, 2, 0, 1, 2, ... (b) 





2
sen
n
(c) 






2
sen)cos(


n
n (d) nn
)1(4)1( 13
 
(e)
25
13
)cos(


n
n
n (f)




 casootroen
n
demúltiploesnsinn
12
5
EJERCICIO 15: Se sabe que 0lím 

Lan
n
.Calcule
(a) 12lím 

n
n
a
(b) )(lím 32 nn
n
aa 

(c)
n
n
n a
a 1
lím 

22
SUCESIONES DADAS POR RECURRENCIA
EJERCICIO 16: Considere la sucesión definida recurrentemente como
Nnaaa nn   ,2,1 11
(a) Calcule el cociente de D’Alambert. Concluya que la sucesión es cre-
ciente.
(b) Muestre que 1,2 1
 
na n
n .
EJERCICIO 17: Considere la sucesión definida recurrentemente como
1,)1(
2
1
,
3
1
11   naaaa nnn
(a) Observe que 1,10  nan
(b) Calcule el cociente de D’Alambert. Concluya que la sucesión es de-
creciente y acotada y, por lo tanto, convergente.
(c) Calcule el n
n
a

lím
EJERCICIO 18: Calcule, si existe, el límite de las siguientes sucesiones. Pre-
viamente, mediante el cociente de D’Alambert, determine si es posible, la mo-
notonía de ellas.
(a) 1,2,1 11   naaa nn
(b) 1,
11
1
,1 11 

  n
a
aa
n
n
(c) 1,3,1 11   naaa nn
(d) 1,
4
2
1
,1 11 





  n
a
aaa
n
nn .(Sug.: use la desigualdad ab
ba


2
)
23
PROBLEMAS VARIOS
PROBLEMA 1: Sea )( na una sucesión definida en forma recurrente como
n
n
a
a
a
n
n
5
12
,5 1
1

 
para todo 1n
(a) Pruebe que nn aa 1 para todo n.
(b) ¿Por qué se puede asegurar que existe n
n
a

lím ?
(c) Calcule n
n
a

lím .
(d) Si se define nn anb 2
 , calcule n
n
b

lím
PROBLEMA 2: Se invierte un capital de 1000 pesos en acciones. El primer
mes suben el 10% respecto al precio de compra; el segundo mes, bajan el 10%
respecto del mes anterior; el tercer mes suben el 10% respecto del mes ante-
rior; y así alternadamente, un mes suben el 10% y al siguiente bajan el 10%.
(a) Halle nc el capital que se tiene después de n meses.
(b) Calcule n
n
c

lím .
(c) Estudie como cambia la situación si las bajas son del 9% en lugar del
10%.
PROBLEMA 3: Sea n
n na )95,0(
(a) Pruebe que na es decreciente pctn. Halle un n a partir del cual haya
certeza de que nn aa 1 .
(b) Calcule n
n
a

lím .¿En qué se basa para calcularlo?
24
PROBLEMA 4: Muestre que el valor del
2
2
5
1
n
n n
b
n
lim 







no depende de la
constante b.
PROBLEMA 5: Halle en cada caso, el término general de na y calcule, si
existe, su límite. En caso de que no exista, muéstrelo por medio de subsuce-
siones.
(a) ,
19
7
,
14
5
,
11
3

(b) ,
4
3
,
3
4
,
3
2
,
2
3
,
2
1
,2
(c) ,
3
4
,
3
4
,
2
3
,
2
3
,
2
1
,2 
PROBLEMA 6: Sea )( na una sucesión creciente de números positivos.
(a) Pruebe que la sucesión
12
3


n
n
n
a
a
b es siempre convergente.
(b) ¿Cuál es el valor más grande que puede tomar n
n
b

lím .¿En qué caso?
PROBLEMA 7: Calcule 








 n
n
n
nn
n
n
lim
62
cos
)1(
1
3 5
. Explique las propiedades
y/o resultados que usa para obtener su respuesta.
PROBLEMA 8: Sea RRf : definida por






14
113
)(
xsix
xsix
xf . Calcule
el  n
n
af

lím siendo n
n na 42  .
25
PROBLEMA 9: Sea )( na una sucesión de números reales no nulos tales que
nnn
nan


2
2594
7
3
3
4
Calcule, si existe, el n
n
alim

. Explique las propiedades y/o resultados que usa
para obtener su conclusión.
PROBLEMA 10: Calcule n
n
a

lím sabiendo que
2
2
17350
n
n
n
n
a 






Explique las propiedades y/o resultados que usa para obtener su respuesta.
PROBLEMA 11: Sea )( nx una sucesión monótona creciente de la cual se sabe
que 31  nx . Halle los posibles valores del 







n
n x
lim
2
1 . ¿En qué propiedades
basa su respuesta?
PROBLEMA 12: Halle los valores de a y b para que el 4
435
23
4
46



 nn
nbnan
lim
n
PROBLEMA 13: Se definen
27
13
)1(



n
n
a n
n y 2
)( nn ab  .
(a) Pruebe por medio de subsucesiones que na no tiene límite.
(b) Calcule el n
n
b

lím .
26
PROBLEMA 14: Se define la sucesión 1,
1
,1
2
11 






  na
n
n
aa n
n
n .
(a) Pruebe que existe el n
n
a

lím . ¿Cuál es su valor?
(b) La sucesión nb satisface nnn naba  . Calcule n
n
b

lím .
PROBLEMA 15: Se define la sucesión de números reales en la forma
2
11
4
1
, nn xxax  
donde a>0.
(a) Pruebe que )( nx es una sucesión monótona creciente.
(b) Determine los valores de a>0 para los cuales )( nx es convergente.
PROBLEMA 16: Halle todos los valores de x para los cuales la sucesión
13
12
5 

 n
n
n
n
x
a
es convergente. Para los x hallados calcule el n
n
a

lím .
PROBLEMA 17: Considere la sucesión   212
95,0 na
n
n


(a) Pruebe que es decreciente para casi todo n. ¿A partir de que n?
(b) Calcule el n
n
a

lím .
27
PRÁCTICA 4
LÍMITES Y CONTINUIDAD
LÍMITES EN EL INFINITO
EJERCICIO 1: Calcule los siguientes límites
(a) )310(lím 57


xx
x
(b) )(lím 65
xxx
x


(c)
122
13
lím 24
3


 xx
xx
x
(d)
5
1
lím
3


 x
xx
x
(e)
56
36
lím
1


 x
x
x
(f)
xx
xx
x cos
sen
lím



(g)
15
69
lím
2


 x
x
x
(h)
x
x
x 41
5
lím



(i)  1lím 2


xx
x
(j)  xxx
x


)4)(10(lím
(k)
x
x
x 

 5
5
lím (l)
x
x
x
sen
lím

(m) x
x
lnlím

(n) x
x
e

lím
(o) x
x
e

lím (p) 





 xx
1
lnlím
EJERCICIO 2: Calcule, si es posible, los límites cuando x y cuando
x de las siguientes funciones
(a) 23
)( xxxf  (b) 2
9)( xxf 
(c) xxf  1)( (d)
12
3
)(
2



x
x
xf
(e)
3
5
)(
23



x
xx
xf (f) xxxxf  32)( 2
(g) xxxxf  32)( 2
(h)
x
x
xf
sen
)( 
(i) x
exf )( (j) )1ln()( 2
 xxf
En cada caso, haga un gráfico de la función que represente los límites halla-
dos.
28
LÍMITE EN UN PUNTO
EJERCICIO 3: Calcule, según corresponda, los límites infinitos y los límites la-
terales que permitan detectar asíntotas horizontales y/o verticales. Haga, en ca-
da caso, un dibujo que refleje la información obtenida.
(a) 3
1
)(
x
xf  (b)
3
12
)(



x
x
xf
(c)
3
5
)(
2


x
x
xf (d) 2
3
)(
x
x
xf


(e) x
exf )( (f) x
x
exf
1
)(


(g) x
exf 
)( (h) xxf ln)( 
(i)
x
xf 






2
1
)( (j) 2
3
)1)(3(
52
)(



xx
x
xf
(k)
2
1
1
)(
x
x
xf


 (l)
3
5
)(
23



x
xx
xf .
EJERCICIO 4: Considere la curva .12
 xy Halle la pendiente de la recta
(a) que pasa por el )0,1( y el ))2(,2( y .
(b) que pasa por el )0,1( y el ))
2
3
(,
2
3
( y .
(c) que pasa por el )0,1( y el ))1.1(,1.1( y .
(d) que pasa por el )0,1( y el ))1(,1( hyh  en términos de h.
(e) En (d) , si )(hm es el valor de la pendiente obtenida, calcule el
)(lím
0
hm
h
. Interprete geométricamente.
EJERCICIO 5: En cada una de las siguientes funciones calcule, además del lí-
mite que se indica, los límites cuando x y cuando x . Represente
gráficamente los límites obtenidos
(a) 3
4
0
2
lím
x
x
x



(b)
124
32
lím
2
3 

 x
xx
x
(c)
3
2
2
3 124
32
lím

 








x
x x
xx
(d)
x
xx
x


11
lím
0
(e) 










 xx
xx
x
x
x 2
2
2
1
lím 2
22
2
(f)
2
22
lím
2 

 x
x
x
29
(g)
37
2
lím
2
2 

 x
xx
x
(h)
h
h
h
16)2(
lím
4
0


(i)
h
h
h
4
1)4(
lím
1
0
 

(j)
h
h
h
11
lím
0


(k)
3
12
12
13
lím










 x
x
x x
x
(l) x
x
x
1
lím

(m) xx e
x

lím (n)
x
e x
x
1
0
lím

 
EJERCICIO 6: Sea RRf : una función tal que
Rxxxfxx  ,)(
4
3 242
Calcule 20
)(
lím
x
xf
x
.
EJERCICIO 7: Calcule los siguientes límites
(a) 





 x
x
x
1
senlím 2
0
(b)
x
x
x
cos
lím

(c) 





 2)(
1
senlím
0 xf
x
x
donde Rxxf  ,3)(2
LÍMITES ESPECIALES
EJERCICIO 8: Calcule los siguientes límites
(a)
x
x
x 2
3sen
lím
0
(b)
x
x
x sen
lím
0
(c)
x
x
x 3sen
5sen
lím
0
(d)
x
x
x 2
tg
lím
0
(e)
6
)6sen(
lím 2
2
2 

 xx
xx
x
(f)
x
x
x
cos1
lím
0


(g)
h
aah
h
)sen()sen(
lím
0


(h) 20
cos1
lím
x
x
x


(i)
h
aha
h
cos)cos(
lím
0


(j)
x
xx
x cos1
sen
lím
0 
30
(k)
xx
xx
x sen5
2sen43
lím 20 


(l)
xx
xxxx
x 4sen
sensen2
lím 2
22
0


(m)
)3sen(
)sen(
lím
1 x
x
x 


(n)
2
cos
lím
2

 x
x
x
(o)
)(tg
)cos(1
lím 21 x
x
x 


(p)
1
)sen(
lím
1  x
x
x

EJERCICIO 9: Calcule los siguientes límites
(a)
3
12 2
43
13
lím










 x
x
x x
x
(b)
3
12
2
3
5
1lím










x
x
x x
(c)   t
t
t
1
0
31lím 

(d)   x
x
x
1
0
sen1lím 

(e)
2
1
2 25
23
lím











x
x x
x
(f)
2
1
2 25
23
lím











x
x x
x
(g)   x
x
x
1
0
coslím

(h)
h
h
h
2ln)2ln(
lím
0


(i)
y
y
y
)1ln(
lím
0


(j)
h
eh
h
1
lím
0


EJERCICIO 10: Marque la única respuesta correcta:
(a) El  






 x
x
x
x
x
1sen
sen
lím
0
 no existe  es igual a 1  es igual a 0  es infinito
(b) El  x
x
x
1senlím

 no existe  es igual a 1  es igual a 0  es infinito
(c) El xx
x
coslím

 no existe  es igual a 1  es igual a 0  es infinito
(d) ¿Para qué valores de a el 2
11
lím
2
0


 x
axx
x
?
 ningún valor de a  para a=4  para a=0  para todo a
31
CONTINUIDAD
DEFINICIÓN Y PROPIEDADES
EJERCICIO 11: Determine los puntos de discontinuidad de las funciones dadas
a continuación. Vea si en esos puntos la discontinuidad es evitable.
(a)










12
1
1
1
)(
3
xsi
xsi
x
x
xf
(b)









casootroen
xxsi
x
x
xf
0
7,2
7
32
)(
(c)
1
1
)(
3



x
x
xf
(d)
)(
sen
)(


xx
x
xf
(e)
x
x
xf
cos1
)(
2


EJERCICIO 12: En cada caso, determine el o los valores de la constante a pa-
ra los cuales las funciones resulten continuas.
(a)







2
2
)( 2
2
xsixa
xsiaxx
xf
(b)







0
0
)(
1
xsia
xsie
xf
x
(c)








13
1)(
1
1
xsiax
xsiexf
x
x
(d)






axsix
axsix
xf
14
3
)(
(e)













0
0
1
sen
)(
xsia
xsi
x
x
xf
(f)










13
1
1
1
)(
xsiax
xsi
x
x
xf
32
EJERCICIO 13: Muestre, con la ayuda de sucesiones, que la función







x
xf
1
sen)(
tiene una discontinuidad inevitable en x=0.
EJERCICIO 14: Marque la única respuesta correcta
Si f es continua en el punto x=a y f(a)>0. Entonces hay certeza de que
 )()( afxf  para todo x en un entorno de a.
 )(
2
1
)( afxf  para todo x en un entorno de a.
 )()( afxf  para todo x en un entorno de a.
 )(2)( afxf  para todo x en un entorno de a.
TEOREMA DE LOS VALORES INTERMEDIOS
EJERCICIO 15: Considere la función continua 13)( 3
 xxxf
(a) Muestre que la ecuación 0)( xf tiene al menos una solución en el
intervalo (-1,1).
(b) Encuentre un intervalo de longitud menor que 0,2 que contenga a tal
solución.
EJERCICIO 16: Considere las funciones hiperbólicas
2
cosh
xx
ee
x


 y
2
senh
xx
ee
x



Pruebe que existe algún valor de x tal que
2
1
senhcosh  xx .
EJERCICIO 17: Pruebe que las siguientes ecuaciones tienen alguna solución
real.
(a) xx cos12  (b) Nnxx n

,01212
(c) xx 3ln  (d) 2,0
14

x
x
(e) xe x
ln
2

(f) 236
 xx
33
EJERCICIO 18: Adapte convenientemente el Teorema de Bolzano para probar
que la ecuación 0
3
1
2
1 42






x
x
x
x
tiene alguna solución en el intervalo (-2,3).
EJERCICIO 19: Para cada una de las siguientes funciones determine ceros y
puntos de discontinuidad. A partir de ellos, use el Teorema de Bolzano para ha-
llar el conjunto donde la función es positiva.
(a) )2)(3()( 2
 xxxxf (b) xxxf ln)( 
(c)
1
4
)(
2



x
x
xf (d)
x
x
xf
cos2
sen
)(


PROBLEMAS VARIOS
PROBLEMA 1: Sea
1
2
)( 3
4


x
x
xf . Halle los valores de a y b para los cuales
  0)()(lím 

baxxf
x
PROBLEMA 2: Determine el valor de la constante a para la cual
(a) 5
114
lím
2


 x
xax
x
(b) 2
1
11
lím
32
1



 x
axxaxx
x
PROBLEMA 3: Calcule el   xxx
x
1
25lím 

PROBLEMA 4: ¿Para qué valores de la constante a la siguiente función es
continua?







03
02
)(
1
xsiax
xsie
xf
x
PROBLEMA 5: Pruebe que la función 6
10)ln(ln x tiene una raíz real en el in-
tervalo ),( e .
PROBLEMA 6: Encuentre cuatro intervalos disjuntos en cada uno de los cua-
les la ecuación 0114142 24
 xxx tenga una raíz real.
34
PROBLEMA 7: Pruebe que las siguientes ecuaciones tienen alguna solución
real.
(a) 70
sen1
133
22
50



xx
x
(b) 15sen15
2
cos 





x
x
x
PROBLEMA 8: Para recorrer 400 kilómetros en un automóvil tardamos 4 ho-
ras, contando las eventuales paradas técnicas y sin llevar una velocidad cons-
tante. Pruebe que hubo un lapso de una hora donde se recorrieron exacta-
mente 100 kilómetros.
(Ayuda: considere la función )()1()( tftftg  siendo )(tf los kilómetros re-
corridos en t horas y use argumentos de continuidad)
PROBLEMA 9: Dado un cuadrilátero convexo, pruebe que se puede trazar un
segmento a partir de uno de los vértices, que divida al mismo en dos figuras de
igual área.
(Ayuda: use el Teorema de los Valores intermedios)
PROBLEMA 10: Sea f una función continua sobre [0,1] y tal que 1)(0  xf
para todo x del intervalo. Pruebe que debe existir un número )1,0(c tal que
ccf )(
(Ayuda: Considere la función xxfxD  )()( y use el Teorema de Bolzano)
PROBLEMA 11: Sea na una sucesión de números positivos tal que
3)(lím 

n
n
na
(a) Halle el n
n
a

lím
(b) Calcule el 2
)5sen(
lím
n
n
n na
a

.
Explique las propiedades y/o resultados que usa para obtener su respuesta.
PROBLEMA 12: Halle algún valor del parámetro b de modo que la ecuación
0535
 bxx tenga alguna solución en el intervalo [0,1/2].
35
PRÁCTICA 5
DERIVADA
RECTA TANGENTE
EJERCICIO 1: Considere la curva 12
 xy . Halle la pendiente y la ecuación de la
recta
(a) que pasa por los puntos )0,1( y ))2(,2( y
(b) que pasa por los puntos )0,1( y ))
2
3
(,
2
3
( y
(c) que pasa por los puntos )0,1( y ))1.1(,1.1( y
(d) tangente a la curva por el punto )0,1( .
Represente en un mismo gráfico las cuatro rectas y la curva.
EJERCICIO 2: Justifique, por medio de los cocientes incrementales, las siguientes
igualdades
(a) 0 yconsty (b) aybaxy 
(c) xyxy 22
 (d) 23
3xyxy 
(e) 2
11
x
y
x
y

 (f)
x
yxy
2
1

(g) xx
eyey  (h)
x
yxy
1
ln 
(i) xyxy cossen  (j) xyxy sencos 
EJERCICIO 3: Halle, usando el cociente incremental, el valor de la derivada de las
funciones siguientes en los puntos que se indican. Escriba la ecuación de la recta
tangente en esos mismos puntos.
(a) 3742
 xenxxy (b) 5
1
2


 xen
x
y
(c) 1312  xenxy (d) 1ln  xenxxy
(e) 035  xenxy (f) 4
2
 xen
x
y
36
(g) 1
112
12






 xen
xsix
xsix
y
(h)
  0
00
01sen2







 xen
xsi
xsi
x
x
y
EJERCICIO 4: Considere la curva 13
 ty .
(a) Describa el haz de rectas (excluida la vertical) que pasan por el punto de
coordenadas ))1(,1( y . Haga un dibujo alusivo.
(b) Calcule )1(y y escriba la ecuación de la recta tangente en el punto
))1(,1( y . Marque sobre el dibujo esta recta.
EJERCICIO 5: ¿En qué punto de la gráfica de la función 86)( 2
 xxxf , la rec-
ta tangente es paralela al eje de las x?
REGLAS DE DERIVACIÓN
FUNCIÓN DERIVADA
EJERCICIO 6: Usando las reglas de derivación, halle las derivadas de las siguien-
tes funciones en su dominio de definición.
(a) xxxxf sen)( 23
 (b) xxxf cos)( 2

(c) xxf sen3)(  (d) xxxf ln)( 
(e)
x
xxf
1
)( 5
 (f) xexf x
ln)( 
(g) xexxxf x
cossen)(  (h)
x
x
xf
sen
)( 
(i) xxf tg)(  (j) xxxxf ln)1)(2()( 2

(k)
1
ln
)( 2


x
xx
xf (l) xxf alog)( 
(m)
xxx
xf
321
)( 2
 (n)
xx
xx
xf
cossen
cossen
)(



(ñ) xxxf ln)( 3
1
 (o) ))(log(ln))(log(ln)( xaxxxf aa 
(p)
2
cosh)(
xx
ee
xxf


 (q)
2
senh)(
xx
ee
xxf



37
EJERCICIO 7: Calcule por medio de la regla de la cadena, la función derivada de
f siendo )(xf
(a) 2
)1( x (b) 3
)1( x
(c) 2001
)1( x (d) 3x
e
(e) 3
)1( x (f) )3cos( x
(g) )3tg( 5
x (h) x4
sen3
(i) )1ln( x (j) )sen2ln( x
(k) x
esen
2 (l) )1(ln 22
x
(m)     112
coscos3

 xx (n) 22
2
xa
a

(ñ) xx 2sen
sen3  (o) x2
tg1
(p)   2
1
2
bxa  (q) )3ln()5ln( xx 
(r)
)1ln(
)32(
2
23


x
x
(s) xx 22
cossen 
(t) xx 22
senhcosh  (u)   2
1
4
)1ln( x
(v) 







2
cos
2
cos1 xx
(w)  1ln 2
x
EJERCICIO 8: Calcule la derivada de la función f en su dominio de definición,
siendo )(xf
(a) x
x (b) 0,3
 aax xx
(c) x
x ln3
)(sen (d) x
x
(e) x
x cos
)sen1(  (f)
x
x







1
1
EJERCICIO 9: Sean gf , y h unas funciones tales que
)21()(;4)0(;))31(sen(sen)(;1)( 22
xgxhgxxgxxf 
Calcule
(a) )0()( gf  (b) )0()( fh 
38
EJERCICIO 10: Pruebe que la función kx
Cey  es solución de la ecuación diferen-
cial )()( xkyxy  donde k y C son constantes.
FUNCIONES DERIVABLES Y NO DERIVABLES
EJERCICIO 11: Para cada una de las siguientes funciones
(a) haga un gráfico de ellas.
(b) estudie la continuidad y, mediante el estudio del cociente incremental, la
derivabilidad en el punto indicado.
(i) 12)(  xxf en
2
1
x
(ii) 3
1
)( xxg  en 0x
(iii)






22
20
)(
xsix
xsi
xh en 2x
(iv)






113
11
)(
3
xsix
xsix
xr en 1x
(v)













00
0
1
sen
)(
xsi
xsi
x
x
xs en 0x
(vi)













00
0
1
sen
)(
2
xsi
xsi
x
x
xt en 0x
En las funciones que resulten derivables en los puntos indicados, escriba la ecua-
ción de la recta tangente.
EJERCICIO 12: Marque la única respuesta correcta. Sea RRf : la función de-
finida como








00
0
2
sen
)(
2,0
xsi
xsi
x
xx
xf . Entonces en x=0
 f es continua pero no derivable.
 f es continua y derivable.
 f no es continua pero si es derivable.
 f no es ni continua ni derivable.
39
DERIVADA DE LA FUNCIÓN INVERSA
EJERCICIO 13: Sea xx
exfRRf 23
5)(,: 

(a) Muestre que 0)(  xf para todo x. Además note que 5)0( f
(b) Use el Teorema de la función inversa para justificar la existencia de
)5()( 1

f y calcular su valor.
EJERCICIO 14: Pruebe, usando el Teorema de la función inversa, las siguientes
fórmulas de las derivadas de las funciones inversas de las funciones trigono-
métricas. En cada caso, analice la región donde es válida la fórmula
(a) 2
1
1
arcsen
x
yxy


(b) 2
1
1
arccos
x
yxy



(c) 2
1
1
arctg
x
yxy


(d) 2
1
1
cot
x
yxarcy



EJERCICIO 15: Sea 1)(,),1[:  xxxfRf
(a) Muestre que 0)(  xf para todo x>-1. Además note que 5)3( f
(b) Use el Teorema de la función inversa para justificar la existencia de
)5()( 1

f y calcular su valor
EJERCICIO 16: Sea
2
senh)(,:
xx
ee
xxfRRf



(a) Muestre que 0)(  xf para todo x.
(b) Use el Teorema de la función inversa para justificar la existencia de
)()( 1
xf 
. Calcule )0()(senh)0()( 11
 
f .
40
ALGUNAS APLICACIONES
(VELOCIDAD, RAZÓN DE CAMBIO, DIFERENCIAL)
EJERCICIO 17: La ley de movimiento de un punto a lo largo de una recta es
2
3)( ttts 
(en el instante t=0 el punto se encuentra en el origen). Halle la velocidad del movi-
miento del punto para los instantes t=0 , t=1 y t=2.
EJERCICIO 18: Un objeto circular va aumentando de tamaño con el tiempo, de
modo que su radio r, en centímetros, viene dado por 23  tr siendo t el tiempo
en minutos.
(a) ¿Cuál es la velocidad de crecimiento del radio r?
(b) ¿Cuál es la velocidad de variación del área?
EJERCICIO 19: La temperatura C de un cuerpo, que inicialmente estaba a 90C
se enfría de acuerdo a la ley t
etC 1,0
7020)( 
 (se está suponiendo que la tempe-
ratura ambiente es de 20C) donde t es el tiempo en minutos.
(a) Calcule con qué velocidad se está enfriando el cuerpo a los 5 minutos.
(b) Muestre que la velocidad de enfriamiento es proporcional a la diferencia
entre la temperatura C y la temperatura ambiente. Más precisamente:
 20)(1,0)(  tCtC .
(c) Muestre que la velocidad de enfriamiento va tendiendo a 0 conforme
avanza el tiempo.
EJERCICIO 20: Cada arista de un cubo se dilata a razón de 1 cm por segundo.
¿Cuál es la razón de variación del volumen cuando la longitud de cada arista es
de 10 cm? Si la razón de variación del volumen es igual segcm /108 3
, ¿cuál es la
longitud de la arista?
EJERCICIO 21: Un barco navega paralelamente a una costa recta, a una velo-
cidad de 12 millas por hora y a una distancia de 4 millas. ¿Cuál es la velocidad de
aproximación a un faro de la costa en el instante en que diste precisamente 5 mi-
llas del faro?
41
EJERCICIO 22: Para
x
xy
1
 , halle
(a) y ( )()( xyhxyy  )
(b) dy ( hxdxdxxydy  ,)( )
(c) dyy 
(d)
x
dyy


(e)
dx
dy
EJERCICIO 23: Mediante diferenciales calcule aproximadamente
(a) 3
25 (b) )12,1ln( (c) )5,0cos(
DERIVADAS SUCESIVAS
EJERCICIO 24: Calcule las siguientes derivadas
(a) )0(,)(,sen)( )70()(
fxfxxf v

(b) )0(,)(,)( )2001()19(
fxfexf x

(c) )(,)( )20(
xfexf kx

(d) )(,)1ln()( )4(
xfxxf 
(e) )2(,)(,)(,85)( )800()(3
fxfxfxxxf iv

EJERCICIO 25: Muestre que las funciones xsen y xcos son soluciones de la si-
guiente ecuación
0)()(  xyxy
Pruebe que xBxAxy sencos)(  también es solución de la ecuación.
EJERCICIO 26: Considere la función n
xxf )1()(  , con n natural. Calcule
)0()(k
f para todo valor de k.
42
PROBLEMAS VARIOS
PROBLEMA 1: Para cada una de las funciones dadas a continuación
(a) Determine si es continua y/o derivable en los puntos indicados.
(b) En los casos que resulte derivable estudie la continuidad de la función
derivada.
(c) En los casos en que resulte derivable, escriba la ecuación de la recta
tangente.
(i)





 
0
01
)(
xsie
xsix
xf x
en x=0
(ii)






332
3
)(
2
xsix
xsix
xg en x=3
(iii)















10
1
1
1
cos)1(
)(
2
3
xsi
xsi
x
x
xh en x=1
(iv)







0sen
0)1ln(
)(
2
5
xsixx
xsixx
xr en x=0
(v)






112
11
)(
2
xsix
xsix
xs en x=1
PROBLEMA 2: Dadas las siguientes funciones, escriba en cada caso, la ecuación
de la recta tangente en los puntos que se indican:
(a) 






4
sen)( 2 
xxf en
4
0

 xenyx
(b) 1)(  xxxxf en 0x
(c)   x
xxf
sen2
1)(  en  xenyx 0
PROBLEMA 3: Pruebe que la función xxxf )( es derivable para todo x, que
f´(x) es continua pero que no existe f´´(0).
PROBLEMA 4: Pruebe que la curva tty ln no tiene ninguna recta tangente
que pase por el origen.
43
PROBLEMA 5: Halle, si existen, la o las ecuaciones de las rectas tangentes a la
curva
t
ty
1
 que pasen por el punto
(a) (1,0) (b) (0,0) (c) (0,4)
PROBLEMA 6: Halle, si existen, la o las ecuaciones de las rectas tangentes a la
curva
t
ty
1
 que tengan pendiente igual a –3.
PROBLEMA 7: La recta tangente de la función f en el punto de abscisa x=-1 tiene
ecuación 35  xy . Calcule la ecuación de la recta tangente a la función
))sen(()( 2
xxfxg  en el punto de abscisa x=1.
PROBLEMA 8: Considere la función








5
5
1
)(
2
xsibxa
xsi
xxf . Halle los valores
de a y b para los cuales existe )5('f .
PROBLEMA 9: Considere la función








0
0
)(
1
xsibax
xsixe
xf
x
. Halle los valores
de a y b para que f resulte derivable.
PROBLEMA 10: Sea RRg : una función continua en x=0 pero no necesaria-
mente derivable. Pruebe que la función xxgxf 3sen)()(  es derivable en x=0.
PROBLEMA 11: Suponga que se introduce un gas en un globo esférico a la razón
constante de 3
50 cm por segundo. Suponga que la presión del gas permanece
constante y que el globo tiene siempre forma esférica. ¿Cuál es la rapidez con que
aumenta el radio del globo cuando su longitud es de 5 cm? (Vol. globo = 3
3
4
rr ).
PROBLEMA 12: Cierta población crece de acuerdo a la ecuación t
ey 1,0
2,01 ,
donde t es el tiempo medido en meses e y es el número de individuos en miles.
Calcule la velocidad de crecimiento de la población después de un año.
44
PRÁCTICA 6
TEOREMA DEL VALOR MEDIO
TEOREMAS DE FERMAT, ROLLE Y LAGRANGE
EJERCICIO 1: La función 3
2
)( xxf  tiene en x=0 un mínimo. ¿Qué puede de-
cir sobre la aplicabilidad del Teorema de Fermat?
EJERCICIO 2: Considere la función f del ejercicio anterior definida en el in-
tervalo [-1,1]. Esta función es continua sobre este intervalo y f(-1)=f(1). Sin em-
bargo, su derivada no se anula nunca. ¿Por qué esto no contradice el Teorema
de Rolle?
EJERCICIO 3: Considere la parábola xxy 22
 y cualquier intervalo cerrado,
por ejemplo el [-1,3]. Compruebe que el valor )3,1(c al que hace referencia
el Teorema del Valor Medio es calculable en este caso. Haga un gráfico que
ilustre la situación. Compruebe que si el intervalo es el [a,b] el valor intermedio
c es calculable en términos de a y de b.
EJERCICIO 4: Desde el piso se arroja un proyectil hacia arriba y, después de
unos minutos, cae al piso. Pruebe que en algún momento la velocidad del pro-
yectil fue nula.
EJERCICIO 5: Un automóvil pasa por dos controles camineros separados en-
tre sí 10 km. Por el primero pasa a las 12:00 y por el segundo a las 12:04. La
velocidad máxima permitida en esa región es de 120 km/h. ¿Hubo infracción al
tope de velocidad?
EJERCICIO 6: Pruebe que para cada x>0 existe  entre 0 y x que satisface
cossen xx 
CONSECUENCIAS DEL TEOREMA DEL VALOR MEDIO
EJERCICIO 7: Pruebe que si dos funciones f y g tienen la misma función deri-
vada entonces f(x) = g(x) + c donde c es una constante.
45
EJERCICIO 8: Pruebe las siguientes identidades
(a)
2
2cos1
sen2 x
x


(b)
2
arccosarcsen

 xx
(c) 






 2
1
2
arctgarctg2
x
x
x
(Ayuda: use el ejercicio anterior)
EJERCICIO 9: Pruebe que las únicas soluciones de la ecuación
)()( xyxy 
son de la forma x
kexy )( .(Ayuda: Si )(xu es una solución de la ecuación
estudie la derivada de x
e
xu
xh
)(
)(  )
EJERCICIO 10: Para las siguientes funciones
(a) Pruebe que son estrictamente monótonas en el conjunto indicado.
(b) Indique en cada caso, si es creciente o decreciente.
(c) Determine, si es posible, cuántas veces corta el gráfico el eje x.
(i) ( ) 3 sen2 ,f x x x x R   
(ii) 1,ln)(  
xxexf x
(iii) 0,ln)(  xxxxf
(iv) 2 1 3
( ) 1 ,n
f x x x x x R
     , n natural.
(v) 1,ln)(  xxxxf
(vi) 0,2
1
1
)( 

 x
x
xf
(vii) 0,3
2
1
)( 2


 x
x
xf
(viii) 






2
,0
sen
)(

x
x
x
xf
EJERCICIO 11: Pruebe las siguientes desigualdades. Para ello estudie el signo
de la derivada de una función conveniente.
(a) 0,sen  xxx
(b) xex
1
46
(c) 0,)1ln(  xxx
(d) 1,
1
1ln  x
x
x
(e)
2
0,
2
sen


 xxx
(f) 0arctg  xxx
(g) 1,0,1)1(  axaxx a
EJERCICIO 12: Considere la función 0)0(0
1
sen)( 2






 fxsi
x
xxxf
(a) Muestre que 1)0( f (estudie el cociente incremental)
(b) Muestre que en cualquier intervalo que contenga al 0, hay valores ne-
gativos y valores positivos de la función.
(c) Determine la validez de las siguientes afirmaciones:
1. si una función g tiene derivada en x=0 y 0)0( g entonces g es
creciente en un intervalo abierto que contiene al cero.
2. si una función g tiene derivada continua en x=0 y 0)0( g en-
tonces g es creciente en un intervalo abierto que contiene al cero.
REGLA DE L’HOSPITAL
EJERCICIO 13: Considere las funciones 1)( 3
 xxf y 1)( 2
 xxg definidas
en cualquier intervalo [a,b]. Muestre que el valor de  donde se cumple el Teo-
rema de Cauchy es calculable en términos de a y de b.
EJERCICIO 14: Sea R(x) una función con 3 derivadas continuas en x=0 y tal
que (0) (0) "(0) 0R R R   . Pruebe que 3
( ) ( )
3!
R x R c
x

 para algún c entre 0 y x.
(Use el Teorema de Cauchy tres veces)
EJERCICIO 15: Calcule los siguientes límites
(a)
x
x
x
)1ln(
lím
0


(b)
xx
xee xx
x sen
2
lím
0 
 

(c)
x
x
x
2
ln
lím

(d)
)
2
tg(
ln
lím
0 
 x
x
x
(e) x
x
xe

lím (f) )1)((lnlím
0


x
x
ex
47
(g) x
x
xsen
0
lím

(h) xx
x
lnlím 2
1
0

EJERCICIO 16: Continúe con estos límites
(a)
1
1 1
lim
ln 1x x x
 
 
 
(b)
1
ln
1
lim x
x
x

(c)
1
lim(ln )(ln(1 ))
x
x x

 (d)  
1
2
0
lim x x
x
x e


(e)
ln
lim
k
x
x
x
, k natural (f)
0
lim(1 2 )x senx
x 


(g)
0
lim ln ,n
x
x x n natural

(h) lim ,n x
x
x e n natural

EJERCICIO 17: Sea R(x) una función con 10 derivadas continuas en x=0 y tal
que ( ) (10)
(0) 0 , 0 9 , (0) 1k
R k R    . Calcule el 100
( )
lim
x
R x
x
EJERCICIO 18: Explique por qué no es correcta la siguiente aplicación de la
Regla de L’Hospital:
3 2 2
21 1 1
1 3 2 1 6 2
lim lim lim 4
1 2 2x x x
x x x x x x
x x  
     
  

EJERCICIO 19: Muestre por qué no se puede utilizar la Regla de L’Hospital pa-
ra calcular el límite indicado en cada caso y encuentre el límite por otros me-
dios.
(a) lim
x
x senx
x

(b) lim
x
x xx
e
e e 
(c)
1
0
lim
x
x
e
x


EJERCICIO 20: Justifique las siguientes afirmaciones
(a) No existe el
0
2 sin(1/ ) cos(1/ )
lim
cosx
x x x
x

.
(b)
2
0
sin(1/ )
lim 0
sinx
x x
x
 .
(c)
sin
lim 1
cosx
x x
x x



.
48
EJERCICIO 21: Considere la función
3
2
ln 0
( )
0 0
x x si x
f x
si x
 
 

. Marque la única
afirmación correcta.
 f no es continua ni derivable en x=0.
 f es continua pero no derivable en x=0.
 f es derivable pero no es continua en x=0.
 f es continua y derivable en x=0.
EJERCICIO 22: Considere la función
3 3cos
0
( )
6 0
ax x
si x
f x x
si x
 

 
 
Determine el valor de a para que f resulte continua. Para el valor de a hallado
calcule, si existe (0)f  .
PROBLEMAS VARIOS
PROBLEMA1: Considere la función
2
(1 cos )
0
( ) 1
0 0
x
bx a x
si x
f x e
si x
  

 
 
. Encuen-
tre los valores de a y de b para que f resulte derivable en x=0 y además sea
(0) 3f   
PROBLEMA 2: Sea :f R R una función con dos derivadas continuas tal que
5
(0) 2 , (0) , (0) 5
6
f f f    . Se define :g R R como
(6 ) 2
0
( ) 5
1 0
f x
si x
g x x
si x


 
 
Calcule, explicando las propiedades que usa en cada caso:
(a)
0
lim ( )
x
g x

(b) (0)g
PROBLEMA 3: Considere la función :[0, )f R  definida por
 5 cos(2 ) 2
( ) 3 8 ln (4 1)x x
f x x x 
   
Pruebe que ( ) 1 0f x x   .
49
PROBLEMA 4: Considere ( ) 4 3ln 2 0f x x x x     .
(a) Pruebe que f es monótona.
(b) Justifique la existencia de la función inversa 1
( )f x
. Calcule
 1
(2)f   (Observe que (1) 2f  )
PROBLEMA 5: ¿Para qué valores reales de p es el 21
1
lim 3
( 1)
p
x
x px p
x
  


?
PROBLEMA 6: Sea f una función continua y derivable tal que ( 2) (5) 0f f   .
Pruebe que existe un ( 2,5)c   tal que ( ) 200 ( )f c f c 
(Ayuda: considere 200
( ) ( )x
g x e f x
 )
PROBLEMA 7: Sea :[0, )h R  una función estrictamente creciente. Prue-
be que ( ) 5
2 3 sin 0h x
x x x
    .
PROBLEMA 8: Considere la función :f R R definida como 4 5
( ) 2x
f x e x  
(a) Pruebe que es biyectiva y que 1
(3) 0f 
 .
(b) Calcule
1
3
( )
lim
2 6y
f y
y

 
PROBLEMA 9: Pruebe la siguiente desigualdad
6 4 2
3 12 6 , 1x x x x x     
PROBLEMA 10: Considere la función 32
33)(
x
exxf

 . Pruebe que existe
]5.0,4.0[c tal que 0)(  cf . Decida si en c la función alcanza un máximo o un
mínimo relativo.
50
PRÁCTICA 7
ESTUDIO DE FUNCIONES
CRECIMIENTO Y DECRECIMIENTO
EJERCICIO 1: Pruebe que las siguientes funciones son monótonas en el con-
junto indicado. Indique en cada caso, si son crecientes o decrecientes.
(a) 7 5
( ) 7 4 ,f x x x x en R  
(b)
1
3
( ) 2 ,f x x en R 
(c)
1
( ) , 0x
f x e en x

 
(d)
1 2
3 3
( ) 3 2 ,f x x x x en R  
(e) 3 2
( ) 3 3 ,f x x x x en R   
EJERCICIO 2: Encuentre los intervalos de crecimiento y de decrecimiento de
las siguientes funciones
(a) ( ) lnf x x (b)
2
( 1)
( ) x
f x e 

(c) ( ) x
f x xe (d) 2
( ) x
f x x e

(e) ( ) sin , [ ,6 ]f x x x     (f) ( ) lnf x x x
(g)
1
( )
2 3
x
f x
x



(h) 2
( )
1
x
f x
x


(i) 2
( )
1
x
f x
x


(j) 2
( ) lnf x x x
EJERCICIO 3: Aníbal realiza un régimen de comidas para adelgazar. Ha podi-
do establecer que la cantidad de kilos que adelgaza está en función del tiempo
durante el cual hace régimen según la siguiente fórmula:
24
( ) 6 , 0
3 1
t
t
e
k t t
e
  

(a) Pruebe que cuánto más tiempo persista, más adelgazará.
(b) Pruebe que con este régimen no podrá adelgazar más de 2 kilos.
51
EXTREMOS LOCALES
EJERCICIO 4: Decida si las siguientes funciones alcanzan un extremo local en
x=0.
(a) 3
( ) sinf x x (b) 2
( ) 2 sinf x x x 
(c) 2
( ) cosf x x (d) 8
( ) 3f x x 
EJERCICIO 5: Estudie, utilizando únicamente la primera derivada, la existencia
de extremos de las siguientes funciones.
(a) 4
( )f x x (b) 4 2
( ) 2f x x x 
(c) ( ) x
f x xe
 (d)
2
3
( ) 3 2f x x x 
(e) ( ) lnf x x x (f) 2
( ) lnf x x x
(g) 2
( ) x
f x x e
 (h) 2
( )
1
x
f x
x


(i) ( ) lnf x x x (j) 2
( )
1
x
f x
x


(k) 2
10
( ) , [0,2 ]
1 sin
f x en
x


(l)
2
2
100
( )
25
x
f x
x



(m) ( ) 4f x x x  (n) ln
( ) x x
f x x
(o) 2 2
( ) (2 )f x x x  (p)
2
3
( ) (1 )f x x x 
(q)
2
2 2 2 , 2
( )
, 2
x x si x
f x
x si x
   
 

(r)
2
2
, 1
( )
( 2) , 1
x si x
f x
x si x
 
 
 
EJERCICIO 6: Determine el valor de k R tal que la función 2
( )
1
x k
f x
x



al-
cance un extremo local en x=2. ¿Es un máximo o un mínimo local? ¿Es abso-
luto?
EJERCICIO 7: De la función RRf : derivable en todo su dominio, se sabe
que su derivada se anula en 0,
2
1
,1  y
2
3
. Además se tiene que
(i) )
2
3
,0()1,(}0)(/{  xfRx
(ii) ),
2
3
()0,
2
1
()
2
1
,1(}0)(/{  xfRx
Encuentre los máximos y los mínimos locales.
52
ASÍNTOTAS
EJERCICIO 8: Encuentre, si las hay, las ecuaciones de las asíntotas verticales,
horizontales y oblicuas (tanto para x  como para x   ) de las siguien-
tes funciones. Localice en un dibujo, la posición del gráfico de la función con
respecto a las asíntotas halladas.
(a)
2
3 1
( )
1
x x
f x
x
 


(b) ( ) sinx
f x x e x 
(c)
2
3 2
( )
( 1)( 1)
x x
f x
x x
 

 
(d)
1
( ) x
f x xe
(e)
1
( ) lnf x x e
x
 
  
 
(f) 2
( ) 2 1f x x x  
(g)
sin
( )
x
f x
x
 (h)
3 2
2
3 4
( )
x x
f x
x
 

EJERCICIO 9: Pruebe que la recta
2
3
y x   es la única asíntota de la función
 
1
2 3 3
( ) 2f x x x 
EJERCICIO 10: Encuentre los valores de a y b tales que la recta 2 7y x  re-
sulte una asíntota oblicua de
3 2
2
1
( )
5
ax bx
f x
x
 


para x  
CONCAVIDAD Y CONVEXIDAD
EJERCICIO 11: Determine los intervalos de concavidad y convexidad y localice
los puntos de inflexión de las siguientes funciones
(a) 123)( 234
 xxxxf (b) 2
( )
1
x
f x
x


(c)
2
( ) x
f x e
 (d) ( ) x
f x xe

(e)  
1
2 3 3
( ) 2 , 0f x ax x a fijo   (f) 2
( ) lnf x x x
EJERCICIO 12: Considere la función 2
( ) , 0
x
f x a
x a
 

. Pruebe que f alcanza
dos extremos locales y tiene tres puntos de inflexión. Muestre que las abscisas
de estos cinco puntos sobre el eje de las x son equidistantes. ¿Dónde es
cóncava?
53
CONSTRUCCIÓN DE CURVAS
EJERCICIO 13: Para cada una de las siguientes funciones:
(a) Halle el dominio de f y de su función derivada f’.
(b) Determine los intervalos de crecimiento y de decrecimiento.
(c) Halle los extremos locales. Determine cuáles de ellos son absolutos.
(d) Escriba la ecuación de las asíntotas.
(e) Determine, si la cuenta lo permite, los intervalos de concavidad.
(f) Halle los puntos de inflexión.
(g) Con la información obtenida, construya un gráfico aproximado.
1.
2
3
( ) (1 )f x x x 
2. 2
( ) sinf x x
3. 5
( ) 5 2f x x x  
4. 2
( ) (1 2 ) x
f x x x e  
5. 2
3
( )
( 1)
x
f x
x



6. ( ) 2 5ln( 2)f x x x   
7.
2
3
( ) 3( 5)f x x x  
8. 3
( ) lnf x x x
9. 2
( ) lnf x x x
10.
3
8
0
( ) 1
3 0
x
si x
f x x
x x si x


 
  
11.
3 11
( )
( 3)( 1)
x
f x
x x


 
12.
2
( ) x
f x xe

13. 2
( ) ln( 1)f x x 
14.
4
5
( ) 4 5f x x x 
15.
3
2
( )
( 1)
x
f x
x


16.
1
( ) x
f x xe
54
EJERCICIO 14: Sea :[0,4]f R continua y derivable, tal que el gráfico de la
función derivada ( )y f x es el que se ve en la figura
(a) Determine los intervalos de crecimiento y de decrecimiento de f.
(b) Determine extremos locales y puntos de inflexión.
(c) Si (0) 1f  , haga un gráfico aproximado de ( )y f x .
EJERCICIO 15: Dibuje, si es posible, el gráfico de una función :f R R que
satisfaga las siguientes condiciones.
1. Es continua en R.
2. No es derivable en x=3.
3. (2) 3 , ( 2) 5f f  
4. lim ( ) 2 , lim ( )
x x
f x f x
 
  
5. ( ) 0 3 ,f x si x f   es decreciente en ( ,2)
CANTIDAD DE SOLUCIONES DE UNA ECUACIÓN
EJERCICIO 16: Determine la cantidad de soluciones que tienen las siguientes
ecuaciones
(a) 0123 57
 xxx
(b) 1x
e x 
1 2 3 40
y = f´(x)
55
(c)
2 1
5
x
xe

(d)
4
5
4 5 2x x 
(e)
3
2
7
( 1)
x
x


(f)
1
1x
xe 
(g)
3
8
0
( ) 2 ( ) 1
3 0
x
si x
f x siendo f x x
x x si x


  
  
CONTINUIDAD EN INTERVALOS CERRADOS
EJERCICIO 17: Para cada una de las siguientes funciones indique si está aco-
tada superiormente y/o inferiormente. Decida si alcanza su máximo y/o su míni-
mo.
(a) ]3,1[,13)(  xxa
(b) ]1,1[,1)( 2
 xxf
(c) ]5,2[,
1
1
)(


x
xg
(d) 1,]2,0[,
1
1
)( 

 x
x
xh
(e) )4,3[,)( 2
 xxi
(f) ]2,0(,
ln
)(
x
x
xj 
(g) ),(,
1
1
)( 2



x
xk
(h) ],0[,)2sen()( xxt 
EJERCICIO 18: Considere las siguientes afirmaciones.
I. Una función continua en [a,b] siempre está acotada.
II. Una función continua en (a,b] siempre alcanza su máximo.
III. Una función continua en [a,b] siempre alcanza su minimo.
IV. Una función continua en (a,b) nunca está acotada.
Marque la única respuesta correcta
 Todas las afirmaciones son verdaderas.
 I. y III. son verdaderas, II. y IV. son falsas.
56
 Sólo I. es verdadera.
 Todas las afirmaciones son falsas.
PROBLEMAS DE OPTIMIZACIÓN
PROBLEMA 1: Se quiere ahorrar el máximo de material al hacer un tanque
recto de base cuadrada y sin tapa, de manera tal que el volumen sea de 3
32 m .
Halle las dimensiones del tanque. Haga lo mismo pero ahora con tapa.
PROBLEMA 2: Con una lámina cuadrada de un metro se quiere construir una
caja sin tapa. Para ello se recortan unos cuadrados de los vértices. Calcule el
lado del cuadrado recortado para que el volumen de la caja sea máximo. Si la
altura de la caja no puede pasar de 20 cm, ¿cuál es la medida del lado del cua-
drado que debemos recortar?
PROBLEMA 3: En la fabricación de latas de conserva, se quiere minimizar el
uso de hojalata. Supuesto que se ha prefijado el volumen V, halle la relación
entre el diámetro D de la base y la altura H de la lata que producen el menor
gasto de hojalata.
PROBLEMA 4: Determine las dimensiones de un rectángulo de área 169 2
cm
que tengan la diagonal de menor longitud.
PROBLEMA 5: Por el punto (2,1) pasan rectas que determinan triángulos al
cortarse con los semiejes positivos. Entre estas rectas, halle la que genera un
triángulo de área mínima.
PROBLEMA 6: Entre todos los triángulos inscriptos en una semicircunferencia
de 10 cm de diámetro, halle el de área máxima.
PROBLEMA 7: Entre todos los triángulos isósceles de perímetro 30, halle el de
área mínima.
PROBLEMA 8: Pruebe que entre todos los números positivos x e y que satis-
facen 222
ryx  , la suma es máxima cuando x = y.
PROBLEMA 9: Si de un disco metálico de radio R quitamos un sector circular
podemos construir en vaso cónico. Determine el sector circular que debemos
quitar para que el volumen del vaso sea máximo.
57
PROBLEMA 10: ¿Cuál de los puntos de la recta de ecuación 1 byax está
más cerca del origen?
PROBLEMA 11: Una carretera que corre de Norte a Sur y otra que lo hace de
Este a Oeste se cortan en el punto P. Un ciclista que se dirige al Este con una
velocidad de 20 km/h pasa por P a las 11 de la mañana. En el mismo momento
otro ciclista que viaja hacia el Sur con una velocidad de 40 km/h se encuentra a
20 km al norte de P. Calcule cuándo se encuentran los dos ciclistas más cerca
el uno del otro.
PROBLEMA 12: Un triángulo isósceles pero no equilátero tiene su lado desi-
gual de longitud 12 cm y la altura sobre dicho lado es de 5 cm. Determine los
puntos sobre esa altura tales que la suma de sus distancias a los tres vértices
sea máxima y mínima respectivamente.
PROBLEMA 13: Considere el recinto determinado por la gráfica de xy  , el
eje de las x y las rectas de ecuación x = 0 , x = a (a fijo). Inscriba allí un
rectángulo de área máxima. ¿Hay alguno de área mínima?
PROBLEMA 14: Una compañía de bienes raíces es dueña de 180 departa-
mentos que se alquilan en su totalidad cuando el alquiler es de 310 pesos men-
suales. La compañía calcula que por cada 10 pesos de aumento en el alquiler
se desocupan 5 departamentos. El gasto que le ocasiona a la compañía cada
departamento desocupado es de 30 pesos mensuales, mientras que por cada
departamento ocupado el gasto es de 20 pesos mensuales. ¿Cuál es el precio
del alquiler por departamento con el que la compañía obtendría la mayor ga-
nancia?
PROBLEMA 15: Considere la curva  
xxey x
0, . De entre todos los
triángulos de vértices ),()0,(,)0,0( yxyx encuentre el de área máxima.
PROBLEMAS VARIOS
PROBLEMA 16: Considere la ecuación 2
lnx x k con k real.
(a) ¿Cuántas soluciones tiene si
1
6
k   ?
(b) ¿Para qué valores de k hay una sola solución?
PROBLEMA 17: Determine el mayor valor de k para que la desigualdad
2
lnx x k sea verdadera para todo x > 0.
58
PROBLEMA 18: Considere las funciones ( ) x
f x e y ( ) lng x x . Pruebe que
existe un único c > 0 donde los gráficos de ambas funciones tienen rectas
tangentes paralelas en el punto de abscisa x=c. Determine un intervalo de
longitud menor que 1 que contenga a c.
PROBLEMA 19: Halle todos los valores reales de b para los cuales la ecuación
3
3 0x x b   tiene una sola solución.
PROBLEMA 20: Pruebe la siguiente desigualdad
2
8 1 9
, 0
20
x
xe x 
 
PROBLEMA 21: Considere el arco de parábola definido por
 52,)2(3/),( 22
 xxyRyx .
y el punto )0,5(P . Se traza desde P una recta que interseca a la curva en el
punto Q. Halle las coordenadas de Q para que el triángulo rectángulo limitado
por dicha recta, el eje de las x y la recta vertical que pasa por Q tenga área
máxima.
PROBLEMA 22: Una función f satisface la siguiente ecuación diferencial
  Rxexfxxfx x
 
,1)(3)(
2
(a) Pruebe que si f tiene un extremo en 00 x entonces es un mínimo.
(b) ¿Qué pasa si 00 x es un punto crítico?
PROBLEMA 23: Considere la función )
2
1
7()( 212
 
xxexf x
. Encuentre todos
los puntos para los cuales la pendiente de la recta tangente a la curva )(xfy 
resulte mínima.
PROBLEMA 24: Para cada Nn considere la función xxxf n
n 
1
)( . Sea
]1,0[nx el punto donde f alcanza su máximo absoluto en el intervalo [0,1]. Cal-
cule, si existe, n
n
xlim

y )( nn
n
xflim

.
PROBLEMA 25: Considere la función 1
2
)( 
 x
x
exf . Haga un gráfico aproximado
señalando su dominio, intervalos de crecimiento y de decrecimiento, máximos y
mínimos locales y asíntotas. Determine los valores de c para los cuales la
ecuación cxf )( tiene una única solución.
59
PROBLEMA 26: De la función f se sabe que su derivada x
exxxf sen22
)1()( 
(a) Encuentre los extremos locales de f.
(b) ¿Cuál es la cantidad máxima de ceros que puede tener f?
(c) Si se define )1()( 2
 xfxh , encuentre los extremos locales de h.
PROBLEMA 27: Halle todos los Ra tales que 0ln2
 xax tenga exacta-
mente dos soluciones.
PROBLEMA 28: Pruebe que 01ln xxn
cualquiera sea el Nn .
PROBLEMA 29: Se dispone de un alambre de un metro de largo para construir
un cuadrado y un aro. ¿Dónde se debe cortar el alambre para que la suma de
las áreas de las dos figuras sea
(a) máxima?
(b) mínima?
PROBLEMA 30: Para cada )1,0[x , la recta tangente a la curva xy  1 for-
ma con los ejes coordenados un triángulo. Halle el de menor área. ¿Existe un
triángulo de área máxima?
PROBLEMA 31: Un bañista que se encuentra nadando a 60 metros de una
costa recta pide auxilio al guardavidas que se encuentra en la orilla a 100 me-
tros del bañista. El guardavidas en tierra corre a una velocidad de 3,2 metros
por segundo y en el agua nada a 1,1 metros por segundo. ¿En qué punto de la
playa le conviene arrojarse al agua para llegar al bañista en el menor tiempo
posible? ¿Cuánto más tarda si se arroja directamente al agua? ¿Y si corre por
la costa hasta quedar enfrente del bañista?
PROBLEMA 32: Pruebe que
3
1
,3)3(ln2
 xsixx
PROBLEMA 33: Considere la función polinómica 13)( 23
 xxxf . Encuentre
dos intervalos cerrados sin puntos en común tales que f tenga una única raíz
en cada uno de ellos.
PROBLEMA 34: La lata de una gaseosa tiene una capacidad de 354 3
cm . Si el
costo del material de la tapa es el doble que el del resto de la lata, ¿cómo de-
ben ser las dimensiones de la lata para que el costo del material sea mínimo?
(Suponga que la lata es un cilindro).
60
PRÁCTICA 8
TEOREMA DE TAYLOR
POLINOMIO DE TAYLOR
EJERCICIO 1: Considere la función )1ln()(  xxf . Encuentre un polinomio P(x)
de grado 3 tal que )0()0(,)0()0(,)0()0(,)0()0( fPfPfPfP  .
EJERCICIO 2: Calcule el polinomio de Taylor de las siguientes funciones, hasta
el orden indicado alrededor de 0x
(a)
x
xf


1
1
)( orden 5 00 x
(b) xxf sen)(  orden 4 00 x
(c) xxf sen)(  orden 5 00 x
(d) xxf cos)(  orden 5 00 x
(e) xxf ln)(  orden 4 10 x
(f) xxf )( orden 3 40 x
(g) x
exf )( orden 10 00 x
(h) 6
)1()( xxf  orden 6 00 x
EJERCICIO 3: Compruebe que el polinomio de Taylor de orden n de la función
x
exf )( es
!
...
!3!2!1
1)(
32
n
xxxx
xP
n

EJERCICIO 4: Obtenga el polinomio de Taylor de orden n de las siguientes funcio-
nes alrededor de x=0.
(a)
x
xf


1
1
)( (e) 2
1
1
)(
x
xf


(b) xxf cos)(  (f) xxf cosh)( 
(c) xxf sen)(  (g) xxf arctg)( 
(d) x
exf 
)( (h) )1ln()( xxf 
61
EJERCICIO 5: Considere el polinomio 2348)( 234
 xxxxxq
(a) Halle los polinomios de Taylor de q en x=0 de órdenes 0 a 6.
(b) Haga lo mismo, sin hacer cálculos, para 1)( 231920
 xxxxxxq .
EJERCICIO 6: Considere el polinomio n
xxp )1()(  , con n natural.
(a) Obtenga el polinomio de orden n en x=0.
(b) A partir de (a) , deduzca la fórmula del binomio de Newton
  kkn
n
k
nnnnn
ba
k
n
ba
n
n
ba
n
ba
n
ba
n
ba 


 






























0
022110
...
210
donde
!)!(
!
kkn
n
k
n







. (Ayuda:  
n
nn
a
b
aba 





 1 ).
EJERCICIO 7: Si el polinomio de Taylor de f de orden 5 en x=2 es
8)2(3)2(3)2()( 245
 xxxxP
calcule
(a) )2()2( )3()4(
fyf .
(b) ¿Puede conocer el valor de )2()6(
f ?
(c) ¿Cuánto vale )2()6(
f si el polinomio es de orden 7?
EJERCICIO 8: Si el polinomio de Taylor de f de orden 2 en x=5 es
2
)5(9)5(3)(  xxxP
(a) Halle el polinomio de Taylor de orden 2 en x=1 de
)5(4
2
)(
xf
xg


(b) Halle el polinomio de Taylor de orden 2 en x=5 de )()1()( 2
xfxxh 
EJERCICIO 9: Los polinomios de Taylor de orden 4 en x=2 de las funciones f y g
son, respectivamente
4232
)2(7)2()2(125)()2()2(3)2(32)(  xxxxQyxxxxP
Halle el polinomio de Taylor de orden 2 de )()()( xgxfxt  y
)(
)(
)(
xg
xf
xs  en x=2.
62
EXPRESIÓN DEL RESTO
EJERCICIO 10: Considere la función del primer ejercicio, )1ln()(  xxf y sea P(x)
el polinomio de Taylor de orden 3 en x=0. Apelando al Teorema generalizado del
Valor Medio (Teorema de Cauchy) compruebe que )(
)()( )4(
4
cf
x
xPxf


para al-
gún valor c entre 0 y x.
EJERCICIO 11: Encuentre la expresión del resto en cada caso
(a) )(
!4!3!2
1 4
432
xR
xxx
xex

(b) )(1
1
1
5
5432
xRxxxxx
x


(c) )(
!5!3
sen 5
53
xR
xx
xx 
(d) )(
!5!3
sen 6
53
xR
xx
xx 
(e) )()1(
3
1
)1(
2
1
)1(ln 3
32
xRxxxx 
(f) )(
753
arctg 8
753
xR
xxx
xx 
EJERCICIO 12: Considere la función xxf cos)(  .
(a) Obtenga el polinomio )(4 xP de Taylor de orden 4 en x=0.
(b) Escriba la expresión de )
2
1
(4R
(c) Usando la calculadora encuentre el valor de )
2
1
()
2
1
( 4Pf  .
(d) Teniendo en cuenta que 1sen c , pruebe que 0003,0
!52
1
)
2
1
( 54 R .
Compare con (c).
63
PROBLEMAS DE APROXIMACIÓN
EJERCICIO 13: Se quiere aproximar 3
1
e
(a) Utilizando el polinomio de Taylor de orden 5 en x=0, pruebe que el error
cometido es menor que
174960
1
.
(b) ¿De qué grado hay que tomar el polinomio de Taylor para que el error
que se cometa al usar dicho polinomio sea menor que 8
10
?
(Ayuda: para las estimaciones, use que e es menor que 3).
EJERCICIO 14: Utilice el polinomio de Taylor de orden 4 en x=0 para aproximar el
valor de )25,0sen( y dar una cota para el error que se ha cometido al tomar esa
aproximación.
EJERCICIO 15: Considere la función xxxf ln)(  .
(a) Halle el polinomio P de orden 3 de f en x=1. Escriba la expresión del res-
to.
(b) Estime, acotando el resto, el error que se comete al calcular )5,1(f por
medio de )5,1(P
EJERCICIO 16: ¿Cuántos términos es suficiente tomar en el desarrollo de Taylor
en x=0 de x
exf )( para obtener un polinomio que aproxime a dicha función en to-
do el intervalo [-1,1] con un error menor que 4
10
? Use el polinomio hallado para
hallar las tres primeras cifras decimales del número e?
EJERCICIO 17: Considere la función )1ln()( xxf  . ¿De qué grado hay que to-
mar el polinomio de Taylor en x=0 para poder calcular )5,1ln( con un error menor
que 0,001?
EJERCICIO 18: ¿Para qué valores de x la diferencia entre
(a) xcos y
!4!2
1
42
xx
 es menor que 5
105 
 ?
(b) xsen y x es menor que 3
10
?
64
PROBLEMAS VARIOS
PROBLEMA 1: Hallar los valores de a y b de modo que el polinomio de Taylor de
orden 2 de )1ln()( bxaxf  en x=0 sea 2
2
3
2)( xxxP  .
PROBLEMA 2: Considere la función 






4
sen1)(
x
xf

(a) Calcule el polinomio de Taylor de orden 2 de f en x=0.
(b) Pruebe que si R(x) es la expresión del resto en x=0 y si
2
1
x
entonces 33
3
426
)(



xR .
PROBLEMA 3: Considere la función xxxf sen31)( 
(a) Escriba el polinomio de Taylor en x=0 de orden 4 de f.
(b) Calcule, estimando el resto, el error que se comete al calcular 





3
1
f con






3
1
P .
PROBLEMA 4: Calcule aproximadamente 5,16 utilizando el polinomio de Taylor
de orden 2 en x=0 de la función xxf  16)( . Estime, acotando el resto, el error
que se comete.
PROBLEMA 5: Determine un intervalo que contenga al origen, donde el polinomio
de Taylor de orden 6 aproxime a xsen con un error menor que 4
10
.
PROBLEMA 6: Calcule el polinomio de Taylor de orden 2 en x=0 de 3
1)( xxf  .
Estime el error que se comete al calcular los valores de la función por medio del
polinomio hallado cuando 1
2
1
 x .
PROBLEMA 7: Determine los valores de a y b para que el polinomio de Taylor de
bxaxxxf  2
)1ln()( en x=0 empiece con la potencia de x de exponente lo
más grande posible.
65
PROBLEMA 8: Considere la función )2sen()( xxf  .
(a) Halle el polinomio de Taylor de orden n de la función en
2

x .
(b) Si )(xRn es el resto, halle la expresión de 





4

nR . Calcule el 





 4

n
n
Rlim .
PROBLEMA 9: Considere la función 2
)( 
 x
xexf
(a) Calcule el polinomio de Taylor de orden n en x=2
(b) Si )(xRn es la expresión del resto, pruebe que
)!1(
)4(3
)3(
)!1(
3





n
n
R
n
n
n
(c) Calcule el )3(n
n
Rlim

.
PROBLEMA 10: La función n
axxf 1)(  tiene como polinomio de Taylor de or-
den 2 en x=0 a 2
2
75
51)( xxxP  . Halle los valores de a y de n.
PROBLEMA 11: La función f satisface la ecuación diferencial
2)0(,1)()()15(  fxfxfx
Encuentre el polinomio de Taylor de orden 5 en x=0.
PROBLEMA 12: Considere la función xxxf cossen)( 2

(a) Encuentre el polinomio de Taylor de orden 2 en
2

x
(b) Pruebe que el error que se comete al calcular 





5
2
f con el polinomio,
es menor que
6000
7 3

PROBLEMA 13: Considere la función xxxf 3,0sen)(  .
(a) Encuentre el polinomio de Taylor de orden 2 en x .
(b) Use el polinomio obtenido en (a) para hallar una solución aproximada de
0)( xf .
66
PRÁCTICA 9
INTEGRALES
LA FUNCIÓN ÁREA
PROPIEDADES DE LA INTEGRAL
EJERCICIO 1: El espacio recorrido por un móvil, a partir del instante t=0, viene
dado por tte 3)(  .
(a) Haga un gráfico de las funciones espacio recorrido y velocidad del móvil.
(b) Complete la siguiente tabla.
tiempo transcurrido, t 1 2 3 4 5 6 ... t
espacio recorrido de 0 a t
área bajo la curva velocidad de 0 a t
(c) El espacio recorrido por otro móvil a partir del instante t=0, viene dado
por 2
4
1
)( ttts  . Repita los ítems (a) y (b) para este caso.
EJERCICIO 2: Halle, en cada caso, la función área bajo la curva entre 0 y x.
Compruebe que )()( xfxA  .
EJERCICIO 3: Se sabe que las funciones f y g son integrables y que
(a)  

4
3
23)(4)(3 dxxgxf , 

4
3
7)( dxxg y 12)(
1
3

dxxf ,
calcule 
4
1
)( dxxf
(b) 7)(,5)(2
2
1
2
1
  dxxgdxxf , calcule   
2
1
)(2)( dxxgxf
x
y
4
x
y
4
2
4 x
y
2
43
a) b) c)
67
TEOREMA FUNDAMENTAL DEL CÁLCULO
REGLA DE BARROW
EJERCICIO 4: Sea Rf ]6,0[: una función continua. Se define 
x
dttfxA
0
)()( .
El gráfico de A(x) es el siguiente:
(a) Calcule 
6
0
)( dttf
(b) ¿Cuánto vale )3(f ?
(c) Halle el conjunto donde f es positiva.
(d) Pruebe que  
3
0
6
0
)(2)( dttfdttf
EJERCICIO 5: Calcule las derivadas de las siguientes funciones
(a) 


x
t
dtexA
1
2
)( (d)  

x
dy
y
y
xD
sen
0 3
2
)(
(b) 0,
1
sen
)(
2
0


  xdu
u
u
xB
x
(e) )
2
,
2
(,arctg)(
tg
2

  xzdzxE
x
(c) 0,1)(
0
2
  xdttxC
x
(f)  
x
x
dttxF 2
cos)(
EJERCICIO 6: Considere las funciones






42,3
20,1
)(
tsi
tsi
tf y






42,2
20,
)(
tsi
tsit
tg
(a) La función f no es continua ¿lo es 
x
dttfxF
0
)()( ?
(b) La función g no es derivable ¿lo es 
x
dttgxG
0
)()( ?
3
3
6
68
EJERCICIO 7: Sabiendo que
(a) la función continua f satisface )1()( 2
0
xxdttf
x
 , calcule )2(f .
(b) la función continua g satisface 0,)1()( 2
0
2
 xxxdttg
x
, calcule ).2(g
EJERCICIO 8: Calcule las siguientes integrales, usando la Regla de Barrow.y las
propiedades de linealidad de la integral.
(a)  
3
0
)2(3 dxx (c)  


5
)cos(sen dxxx
(b) 

2
2
3
)2( dxxx (d)   
64
0
3
2 dxxx
EJERCICIO 9:
(a) Compruebe que la segunda derivada de  
x
dttftx
0
)()( es )(xf .
(b) Compruebe que la tercera derivada de 
x
dttf
tx
0
2
)(
2
)(
es )(xf
(c) Generalice.
EJERCICIO 10: Usando el Teorema Fundamental del Cálculo, compruebe las si-
guientes igualdades y calcule, en cada una de ellas, el valor de K.
(a) Kx
t
dtx

 53
3
2
530
(b) Kxdt
t
tx

 sen23ln
2
1
3sen2
cos
0
(c) Kx
x
x
dt
t
tx




 arctg
2
1
)1(21 20 2
2
INTEGRACIÓN NUMÉRICA
EJERCICIO 11: Estime la integral de la función
x
xf
1
)(  en el intervalo [1,2] usan-
do la fórmula de los trapecios partiendo el intervalo en diez intervalos de igual lon-
gitud. Calcule el error cometido con esta aproximación. Repita el cálculo usando la
fórmula de Simpson. Estime el error en este caso y compare los resultados.
69
PRIMITIVAS
EJERCICIO 12: Halle en cada caso, una función )(xg que satisfaga
(a) 2)(  xg (e) xxg cos)( 
(b) xxg  )( (f) 5
)( xxg 
(c) xxg sen)(  (g) 3
)( xxxg 
(d) x
exg  )( (h)
x
xxg
4
3)( 
EJERCICIO 13: Encuentre en cada caso, la función )(xG que satisface
(a) 3)1(,16)(  GxxG
(b) 1)0(,3)1(,16)(  GGxxG
(c) 5)0()0()0(,sen)(  GGGxxxG
EJERCICIO 14: Un móvil se desplaza por un camino. Se sabe que la aceleración
en el instante t viene dada por 2
/)100()( hkmttta  . Si en el instante inicial t=0 el
móvil se encuentra en la posición 0s y parte a una velocidad de 30 km/h, ¿cuál es
la posición 1000,)(  tts ?
CÁLCULO DE PRIMITIVAS
MÉTODOS DE SUSTITUCIÓN Y
DE INTEGRACIÓN POR PARTES
EJERCICIO 15: Calcule las siguientes integrales
(a)  dxx6
4
(b)   
1
0
3 dxxxx
(c)   dxx )1sen(
(d)  x
dx
2
cos
7
70
EJERCICIO 16: Usando el método de sustitución, calcule las siguientes integrales
(a)    dxx
2
13 (p)  4 2
25
4
x
xdx
(b)   52x
dx
(q) 
2
0
2
cos

dtt
(c) dx
x
x
  25
3
3
2
(r)  
1
0
2
1 dxx
(d)  dxx)2tg( (s)   4
1 x
xdx
(e) 

dxe x3
(t) 

dx
x
x 2
)ln1(
(f) 
1
0
2 2
dxxe x
(u)   dxx 7
)53(
(g)  dxxx )(cossen 2
(v)  
dx
e
e
x
x
2
1
(h) 
e
dx
x
x
1
ln
(w)   dxxxx 2)1( 2
(i)  dx
x
x
4
sen
cos
(x)  dx
x
x)sen(
(j)   x
x
e
dxe
2
2
1
(y)  
3
2 2
32
)1(
xx
dxx
(k)  
dx
e
e
x
x
1
(z)   2
22 xx
dx
(l)   2
)12(1 x
dx
(A)  

dx
xx
x
22
32
2
(m)  dxa x5
(B)  

dx
xx
x
13
1
3
2
(n) 

dxex x 13 4
(C)  xdxx sen)sen(cos
(o)  

0
3
sen)cos1( dxxx (D)  
4
0 1
dx
x
x
71
EJERCICIO 17: Marque con una cruz la única respuesta correcta
Dada la función continua f ponemos 
3
2
)( dxxfA y  




 

11
8 3
2
dt
t
fB , entonces es
cierto que
 A=3B  3B=A
 A=B  ninguna de las anteriores
EJERCICIO 18: Aplique la integración por partes para calcular
(a)  xdxxln (f)  dx
e
x
x
(b) 
e
xdx
1
ln (g) 

0
3
cosxdxx
(c)  xdxxsen (h)  dxex x23
(d)  dxxex
(i)  xdxarccos
(e)  xdxarctg (j) 

0
senxdxex
EJERCICIO 19: Si llamamos 
1
0
dxexI xn
n pruebe la fórmula de reducción
1 nn nIeI
EJERCICIO 20: Demuestre las siguientes fórmulas de reducción
(a)   1cossen n
nn
n nIxxxdxxI
(b)   1sencos n
nn
n nIxxxdxxI
EJERCICIO 21: La función f es tiene derivada continua y satisface
4sen)(2



xdxxf y 3)( f . Calcule 
2
cos)(


xdxxf
72
FRACCIONES SIMPLES
EJERCICIO 22: Halle las primitivas de las siguientes funciones racionales
(a)
)2)(1(
4
)(


xx
xf (e)
1
1
)( 2


xx
xf
(b)
)3)(2)(2(
23
)(



xxx
x
xf (f)
1
)( 2
3


x
x
xf
(c)
4
12
)( 2



x
x
xf (g) 23
2
)1(
1
)(



xx
xx
xf
(d)
1
2
)( 2
3



x
xx
xf (h) 22
4
)1(
1
)(



xx
x
xf
PROBLEMAS VARIOS
PROBLEMA 1: La función f satisface )(5)( xfxxf  . Si 12)(
2
0
 dttf , calcule f(2).
PROBLEMA 2: Encuentre el polinomio de Taylor de orden 3 en x=0 de
 
x
dtttxf
0
3
)1ln()1()(
PROBLEMA 3: Encuentre una primitiva g de la función x
x
e
e
xf 3
3
4
)(

 que satisfa-
ga 4ln3)0( g .
PROBLEMA 4: Halle una función Rf ),0(: derivable que satisfaga la ecua-
ción integral
2
1
)1(,)(1)()3(
1
2
  fdttfxxfx
x
PROBLEMA 5: Halle una función continua g tal que 0,ln)(1 2
ln
0
  xxxdteg
x
t
PROBLEMA 6: Pruebe que  


x
x t
dt
t
dt 1
1 2
1
2
11
si x>0.
73
PROBLEMA 7: Considere la función







14
10
3
ln2
)(
x
x
x
x
xf
(a) Calcule  
1
3
)(
e
dxxf
(b) Determine el valor de k>0 para el cual  

k
e
dxxf3
35)(
PROBLEMA 8: Si dt
t
t
I
n
n  

1
0 2
1
pruebe que
2,)1(2 2   nsiInnI nn
PROBLEMA 9: La función f es continua. Se define 


xx
dttfxxG
3
0
2
)(1
5
1
)( .
Pruebe que G es estrictamente creciente.
PROBLEMA 10: La función f tiene tres derivadas continuas y vale
xxffff 
8
1
)(,4)0(,3)0(,2)0(
Si se aproxima 
5,0
0
)( dttf por 
5,0
0
)( dttP , donde P es el polinomio de Taylor de or-
den 2 en x=0, calcule el error que se comete.
PROBLEMA 11: Pruebe que 1
1
11
)(ln
)(ln 




  n
nn
nn
n I
n
n
n
xx
dxxxI
PROBLEMA 12: ¿Para qué valores de p el 
n
pn x
dx
lim
1
es finito?
PROBLEMA 13: Se define la función Gamma como





0
1
0
1
)( dxexdxexlimn xn
t
xn
t
, n natural o cero
(a) Calcule )2()1(  y
(b) Pruebe que )()1( nnn  . Deduzca que  !1)(  nn
74
PRÁCTICA 10
APLICACIONES DE LA INTEGRAL
ÁREA ENTRE CURVAS
EJERCICIO 1: Calcule el área de la región comprendida entre las curvas
(a) 0,2,  xxyxy
(b) xyxy  2,2
(c) 3,0,1, 2
 xxxyxy
(d) 23
,12 xyxxy 
(e) exxyxy  1,0,ln2
(f) 2
, xxyxy 
(g)   yejexejexy ,,1
2

(h) xejexy ,)2sen(
(i) xejexxxy ,65 23

(j) exxejexxy  ,,ln
EJERCICIO 2: Determine c>1 de modo que el área de la región limitada por las
curvas )5(2)5(2
, 
 xx
eyey y la recta de ecuación cy  sea igual a 1.
EJERCICIO 3: El área de la región limitada por las rectas axy  , 2
ay  y la cur-
va 2
xy  es igual a
48
7
. Calcule el valor de a.
EJERCICIO 4: Determine el área de la región limitada por la curva 0,
1
 x
x
y , y
las dos rectas que unen el origen de coordenadas con los puntos de la curva
)2,
2
1
()
2
1
,2( y respectivamente.
75
EJERCICIO 5: Marque la única respuesta correcta.
El área de la región del plano limitada por 2 xy , 4x , el eje x y el eje y se
obtiene calculando
  
4
0
)2( dxx   
4
0
)2( dxx
  
4
2
2
0
)2()2( dxxdxx   
4
2
2
0
)2()2( dxxdxx
ECUACIONES DIFERENCIALES
EJERCICIO 6: Halle y=f(x) que satisfaga la siguiente ecuación con condiciones ini-
ciales
3)0(,0)(2)(  fxxfxf
EJERCICIO 7: Encuentre todas las funciones f que satisfacen
0,0)()(  ataftf
Estudie el comportamiento para t .
EJERCICIO 8: De entre todas las funciones f que satisfacen la ecuación diferen-
cial xxxfxf  3
)()( , encuentre la que cumpla 3)1( f
EJERCICIO 9: Encuentre todas las soluciones de la ecuación x
xe
xf
xf


)(
)(
EJERCICIO 10: Los átomos de elementos radiactivos son inestables. En un inter-
valo de tiempo dado, una fracción fija de los átomos se escinde espontáneamente
para formar un nuevo elemento. De modo que si N(t) denota el número de átomos
existentes en el tiempo t, entonces )(tN , el número de átomos que se desintegra
por unidad de tiempo, es proporcional a )(tN , es decir
)()( tkNtN 
donde k>0 se conoce como la constante de decaimiento de la sustancia. Si en el
instante t=0 , 0)0( NN 
(a) Calcule N(t) para t>0.
(b) ¿En qué momento habrá la mitad de átomos que había inicialmente?
(semivida)
(c) ¿Cómo varia la semivida?
76
EJERCICIO 11: Resuelva la siguiente ecuación diferencial (ecuación logistica)
  1)0(,)(100)(5,0)(  ytytyty
VOLUMEN DE UN SÓLIDO DE REVOLUCIÓN
LONGITUD DE CURVA
Volumen = 
b
a
dxxf )(2

Longitud del arco =   
b
a
dxxf
2
)(1
EJERCICIO 12: Halle el volumen del sólido de revolución obtenido al rotar alrede-
dor del eje x la parábola 2
3xy  , desde 0 hasta 3.
EJERCICIO 13: Halle el volumen del sólido de revolución obtenido al rotar alrede-
dor del eje x la curva
x
y
1
 desde 1 hasta 4.
EJERCICIO 14: Calcule el volumen del sólido engendrado por la curva
20,3
 xxy
(a) al girar alrededor del eje x.
(b) al girar alrededor del eje y.
EJERCICIO 15: Calcule la longitud del arco de las curvas
(a) 2
5
2xy  , 110  x .
(b) 21,
2
ln
2
2
 x
xx
y
PROBLEMAS VARIOS
PROBLEMA 1: Encuentre el área limitada entre las curvas 22
41,1 xyxy 
y el eje x.
PROBLEMA 2: Calcule el área limitada por las curvas xxy 23
 , 2
xy  y las
rectas verticales x=-2 , x=3
77
PROBLEMA 3: Calcule el área de la región limitada entre las curvas xy sen2 ,
)2sen( xy  para ],0[ x .
PROBLEMA 4: Para cada n natural se define  2
0
sen

nxdxxan . Calcule n
n
alim

PROBLEMA 5: Calcule el área de las dos regiones determinadas por las curvas
5,
3
1
,
4
1
,
12


 xxy
x
x
y
¿Cuál es la mayor?
PROBLEMA 6: Calcule el área de la región comprendida por el eje y, la curva
x
exy 5
51  y la recta 25  xy . Haga un gráfico aproximado indicando la re-
gión.
PROBLEMA 7: Considere la función xxxf 23)( 
(a) Determine su dominio de definición y zonas de crecimiento y de decre-
cimiento.
(b) Calcule el área de la región limitada por el gráfico de f y el eje x.
PROBLEMA 8: Calcule el área de la región comprendida entre la curva xxy  3
y la recta tangente a esta curva en el punto de abscisa x=-1.
PROBLEMA 9: La temperatura de un cuerpo que se enfría, cambia a una tasa
que es proporcional a la diferencia entre la temperatura del cuerpo y la temperatu-
ra ambiente. Así, si C(t) es la temperatura del cuerpo en el tiempo t y a es la tem-
peratura ambiente a la que supondremos constante, se tiene
 atCktC  )()(
en donde k>0 es la constante de proporcionalidad.
(a) Halle todas las soluciones de la ecuación en términos de k, a y la tem-
peratura inicial C(0).
(b) Calcule )(tClim
t 
. Ensaye alguna explicación física para el límite encon-
trado.
78
(c) SI un cuerpo inicialmente está 26 y una hora después está a 24, ¿cuál
es la constante de proporcionalidad? (Suponga la temperatura ambiente
de 22)
PROBLEMA 10: Halle la longitud de la curva  
x
dtty
0
2
1 entre x=1 y x=3.
PROBLEMA 11: Considere la curva x
ey 
 . Para cada n natural llamamos nV al
volumen del sólido de revolución que se obtiene al rotar la curva alrededor del eje
x con nx 0 . Calcule n
n
Vlim

.
PROBLEMA 12: Encuentre una función f continua en el eje real positivo, tal que

x
dttf
x
xf
1
)(
1
1)( .
PROBLEMA 13: Resuelva la ecuación diferencial 0)1(  yxyx con la condición
inicial 2)0( y .
PROBLEMA 14: El rectángulo de vértices (0,0) , (0,1) , (5,0) y (5,1) queda dividido
en dos cuando se traza la curva
3
52
 xy . Halle el área de la más grande.
PROBLEMA 15: Halle el área comprendida entre la curva x
xey 
 y las rectas
x=0 y el punto de abscisa donde f alcanza su máximo absoluto.
PROBLEMA 16: Calcule el área comprendida entre la curva xy ln ,la recta tan-
gente a la curva que pasa por el origen y el eje x.
PROBLEMA 17: Un sólido de revolución está engendrado por la rotación de la
gráfica de axxfy  0,)( , alrededor del eje x. Si para cada a>0 el volumen es
aa 2
, halle la función f (suponga que f es positiva).
PROBLEMA 18: Halle el valor de a>0 para que el área comprendida entre la curva
xy sen , x=0 , x=a y el eje x sea
2
5
.
79
PRÁCTICA 11
SERIES
TÉRMINO GENERAL Y SUMAS PARCIALES
EJERCICIO 1: Escriba el término general de las siguientes series. Escriba tam-
bién la expresión de las sumas parciales.
(a)
1 1 1 1
1 ...
3 5 7 9
    
(b)
1 1 1 1
1 ...
3 7 15 31
    
(c)
2 4 8
1 ...
3 9 27
   
(d)
1 1 1 1 1 1
...
2 6 12 20 30 42
     
(e) 1 1 2 3 5 8 13 ...      
(f)
3 4 5
ln 2 ln ln ln ...
2 3 4
     
        
     
En los casos que la serie sea geométrica o telescópica, calcule su suma.
SERIES GEOMÉTRICAS Y SERIES TELESCÓPICAS
EJERCICIO 2: Calcule la suma de las siguientes series, en caso de que sean
convergentes
(a) 1
1
1
3n
n



 (d)
1
1
( 1)n n n

 

(b)
1
0
3 4
5
n n
n
n



 (e)
1
1
ln 1
n n


 
 
 

(c)
2
1
0
2 1
4
n
n
n




 (f)
1
2
3
2
n
n


 
 
 

EJERCICIO 3: Si la serie
0
1 2 35
12
n
n
n a



 , ¿cuánto vale a>0?
80
EJERCICIO 4: A partir de la identidad
0
1
, 1 1
1
n
n
x x
x


   

 deduzca las
siguientes fórmulas
(a) 2 4 2
2
1
1 ... ... , 1 1
1
n
x x x x
x
        

(b) 3 5 2 1
2
... ... , 1 1
1
n x
x x x x x
x

        

(c) 2 3 4 1
1 ... ( 1) ... , 1 1
1
n n
x x x x x x
x
           

(d) 2 1 1 1
1 2 4 ... 2 ... ,
1 2 2 2
n n
x x x x
x
        

EJERCICIO 5:
(a) A partir de que
1
9
0,999...
10k
k


  , compruebe que 0,999...=1.
(b) Escriba el número decimal 0,444... como una serie. Halle la suma de
la serie y escriba el número decimal como un cociente de enteros.
(c) Haga el mismo trabajo con el número 0,121212...
CRITERIOS DE CONVERGENCIA
EJERCICIO 6: Decida si cada una de las siguientes series es convergente o di-
vergente. Explique qué criterio usa en cada caso para obtener su respuesta.
(a) 3
1 1n
n
n

 
 (f)
1 3n
n
n


(b) 2
1
1
1n n n

  
 (g)
1
1
1
n
n n


 
 
 

(c)
3
4
1
1
4 5 1n
n
n n



 
 (h) 1
1
3 ( 1)
2
n
n
n



 

(d)
1
1
1n n n

 
 (i)
0
!
( 2)!n
n
n

 

(e)
3
2
1
2 sin
2n
n
n
n




 (j)
3 2
2
1 1n
n n
n n



 

81
EJERCICIO 7: Use el criterio integral de Cauchy para estudiar la convergencia
de
(a)
2
1
lnn n


 (d) 2
1
ln
n
n
n



(b) 2
2
1
lnn n n


 (e) 2 2
1
1
( 1)arctann n n

 

(c) 2
2
1
lnn n n


 (f) 2
1
n
n
n
e



EJERCICIO 8: Use el criterio de la raíz o del cociente, según convenga, para
determinar la convergencia o divergencia de las siguientes series
(a)
1
!
n
n
n
n


 (e)
0
(1000)
!
n
n n



(b)
2
1
1
1
n
n n


 
 
 
 (f)
1
1
2
n
n
n
n


 
 
 

(c)
2
0
( !)
(2 )!n
n
n


 (g)
2
2 lnn
n
n
n



(d)
1
3 !n
n
n
n
n


 (h)
1
2 !n
n
n
n
n



EJERCICIO 9: Determine la convergencia o divergencia de las series que si-
guen. En caso de convergencia, decida si ésta es absoluta o condicional. Si
usa el criterio de Leibniz, asegúrese de que se satisfagan todas las hipótesis.
(a) 3
1
cos( 1)
1n
n
n




 (d) 1
1
( 1)
100
n
n
n
n






(b)
0
( 1)
3 5
n
n
n n




 (e)
1
ln
( 1)n
n
n
n



(c)
1
1
( 1) 1
n
n
n n


 
  
 
 (f)
1
2 100
( 1)
3 1
n
n
n
n
n


 
  
 

EJERCICIO 10: Use el criterio que más convenga en cada caso, para determi-
nar la convergencia o divergencia de las siguientes series
(a) 2
1
arctan
1n
n
n

 
 (b) 2
1
( 1)
3 cos
n
n n n




 (c)  
3
1
1
n
n n


 
Práctica Análisis matemático exactas-ingeniería CBC (28)
Práctica Análisis matemático exactas-ingeniería CBC (28)
Práctica Análisis matemático exactas-ingeniería CBC (28)

Más contenido relacionado

La actualidad más candente

Tabla de integrales inmediatas
Tabla de integrales inmediatasTabla de integrales inmediatas
Tabla de integrales inmediatasNéstor Oliveris
 
Teoria electromagnetica (reitz milford - christy) - 4º edición
Teoria electromagnetica (reitz   milford - christy) - 4º ediciónTeoria electromagnetica (reitz   milford - christy) - 4º edición
Teoria electromagnetica (reitz milford - christy) - 4º ediciónOmar Corazza
 
Solucionario demidovich tomo III
Solucionario demidovich tomo IIISolucionario demidovich tomo III
Solucionario demidovich tomo IIIDarwin Chilan L
 
Demostraciones de teoremas acerca de límites
Demostraciones de teoremas acerca de límitesDemostraciones de teoremas acerca de límites
Demostraciones de teoremas acerca de límitesJames Smith
 
guia de ejercicios de algebra del cbc
guia de ejercicios de algebra del cbcguia de ejercicios de algebra del cbc
guia de ejercicios de algebra del cbcapuntescbc
 
Ecuaciones exponenciales y logarítmicas 1ºbach.ccss
Ecuaciones exponenciales y logarítmicas   1ºbach.ccssEcuaciones exponenciales y logarítmicas   1ºbach.ccss
Ecuaciones exponenciales y logarítmicas 1ºbach.ccssMatemolivares1
 
Ecuaciones reducibles a variables separables
Ecuaciones reducibles a variables separablesEcuaciones reducibles a variables separables
Ecuaciones reducibles a variables separablesArkantos Flynn
 
Tutorial 9 mth 3201
Tutorial 9 mth 3201Tutorial 9 mth 3201
Tutorial 9 mth 3201Drradz Maths
 
Integrales inmediatas
Integrales inmediatasIntegrales inmediatas
Integrales inmediatasAnthonyLipe
 
Ejercicios de cinematica 5.54 y 5.55 fisica I -alonso finn
Ejercicios de cinematica 5.54 y 5.55 fisica I -alonso finnEjercicios de cinematica 5.54 y 5.55 fisica I -alonso finn
Ejercicios de cinematica 5.54 y 5.55 fisica I -alonso finnedgar291998
 
Ecuaciones diferenciales isabel carmona 5ta edicion
Ecuaciones diferenciales isabel carmona 5ta edicionEcuaciones diferenciales isabel carmona 5ta edicion
Ecuaciones diferenciales isabel carmona 5ta edicionUMPF1
 
Estatica pre universitario
Estatica pre universitarioEstatica pre universitario
Estatica pre universitario349juan
 
Semana 9 identidades trigonometricas de angulos dobles x
Semana 9 identidades trigonometricas de angulos dobles xSemana 9 identidades trigonometricas de angulos dobles x
Semana 9 identidades trigonometricas de angulos dobles xRodolfo Carrillo Velàsquez
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...Sohar Carr
 
Cuadricas en arquitectura final
Cuadricas en arquitectura finalCuadricas en arquitectura final
Cuadricas en arquitectura finalMarta Lia Molina
 
Ejercicios de limites indeterminados
Ejercicios de limites indeterminadosEjercicios de limites indeterminados
Ejercicios de limites indeterminadostinardo
 
Sistema de ecuaciones
Sistema de ecuacionesSistema de ecuaciones
Sistema de ecuacionesqqli
 

La actualidad más candente (20)

Tabla de integrales inmediatas
Tabla de integrales inmediatasTabla de integrales inmediatas
Tabla de integrales inmediatas
 
Teoria electromagnetica (reitz milford - christy) - 4º edición
Teoria electromagnetica (reitz   milford - christy) - 4º ediciónTeoria electromagnetica (reitz   milford - christy) - 4º edición
Teoria electromagnetica (reitz milford - christy) - 4º edición
 
Solucionario demidovich tomo III
Solucionario demidovich tomo IIISolucionario demidovich tomo III
Solucionario demidovich tomo III
 
Demostraciones de teoremas acerca de límites
Demostraciones de teoremas acerca de límitesDemostraciones de teoremas acerca de límites
Demostraciones de teoremas acerca de límites
 
guia de ejercicios de algebra del cbc
guia de ejercicios de algebra del cbcguia de ejercicios de algebra del cbc
guia de ejercicios de algebra del cbc
 
Ecuaciones exponenciales y logarítmicas 1ºbach.ccss
Ecuaciones exponenciales y logarítmicas   1ºbach.ccssEcuaciones exponenciales y logarítmicas   1ºbach.ccss
Ecuaciones exponenciales y logarítmicas 1ºbach.ccss
 
Ecuaciones reducibles a variables separables
Ecuaciones reducibles a variables separablesEcuaciones reducibles a variables separables
Ecuaciones reducibles a variables separables
 
Problemas y-ejercicios-de-la-elipsecon-soluciones
Problemas y-ejercicios-de-la-elipsecon-solucionesProblemas y-ejercicios-de-la-elipsecon-soluciones
Problemas y-ejercicios-de-la-elipsecon-soluciones
 
Tutorial 9 mth 3201
Tutorial 9 mth 3201Tutorial 9 mth 3201
Tutorial 9 mth 3201
 
Integrales inmediatas
Integrales inmediatasIntegrales inmediatas
Integrales inmediatas
 
Ejercicios de cinematica 5.54 y 5.55 fisica I -alonso finn
Ejercicios de cinematica 5.54 y 5.55 fisica I -alonso finnEjercicios de cinematica 5.54 y 5.55 fisica I -alonso finn
Ejercicios de cinematica 5.54 y 5.55 fisica I -alonso finn
 
Ecuaciones diferenciales isabel carmona 5ta edicion
Ecuaciones diferenciales isabel carmona 5ta edicionEcuaciones diferenciales isabel carmona 5ta edicion
Ecuaciones diferenciales isabel carmona 5ta edicion
 
Estatica pre universitario
Estatica pre universitarioEstatica pre universitario
Estatica pre universitario
 
Guía matemática racionalización
Guía matemática racionalizaciónGuía matemática racionalización
Guía matemática racionalización
 
Semana 9 identidades trigonometricas de angulos dobles x
Semana 9 identidades trigonometricas de angulos dobles xSemana 9 identidades trigonometricas de angulos dobles x
Semana 9 identidades trigonometricas de angulos dobles x
 
EJERCICIOS DE SEGMENTOS GEOMETRIA
EJERCICIOS DE SEGMENTOS GEOMETRIAEJERCICIOS DE SEGMENTOS GEOMETRIA
EJERCICIOS DE SEGMENTOS GEOMETRIA
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
Cuadricas en arquitectura final
Cuadricas en arquitectura finalCuadricas en arquitectura final
Cuadricas en arquitectura final
 
Ejercicios de limites indeterminados
Ejercicios de limites indeterminadosEjercicios de limites indeterminados
Ejercicios de limites indeterminados
 
Sistema de ecuaciones
Sistema de ecuacionesSistema de ecuaciones
Sistema de ecuaciones
 

Destacado

Práctica Álgebra exactas-ingeniería CBC (27)
Práctica Álgebra exactas-ingeniería CBC (27)Práctica Álgebra exactas-ingeniería CBC (27)
Práctica Álgebra exactas-ingeniería CBC (27)universo exacto
 
ejercicios resueltos de analisis del cbc guia 8
ejercicios resueltos de analisis del cbc guia 8ejercicios resueltos de analisis del cbc guia 8
ejercicios resueltos de analisis del cbc guia 8apuntescbc
 
Examen de introducción a la estadística - Uned
Examen de introducción a la estadística - UnedExamen de introducción a la estadística - Uned
Examen de introducción a la estadística - Uneduniverso exacto
 
CBC Examen final matemática julio 2012
CBC Examen final matemática julio 2012CBC Examen final matemática julio 2012
CBC Examen final matemática julio 2012universo exacto
 
Viewpoints1 sb key_unit9
Viewpoints1 sb key_unit9Viewpoints1 sb key_unit9
Viewpoints1 sb key_unit9universo exacto
 
Práctica Álgebra económicas UBA (71)
Práctica Álgebra económicas UBA (71)Práctica Álgebra económicas UBA (71)
Práctica Álgebra económicas UBA (71)universo exacto
 
Práctica Matemática Agronomía CBC (61)
Práctica Matemática Agronomía CBC (61)Práctica Matemática Agronomía CBC (61)
Práctica Matemática Agronomía CBC (61)universo exacto
 
libro analisis para el cbc
libro analisis para el cbclibro analisis para el cbc
libro analisis para el cbcapuntescbc
 
Smlengua5ampliacionunidad4
Smlengua5ampliacionunidad4Smlengua5ampliacionunidad4
Smlengua5ampliacionunidad4universo exacto
 
Matemáticas para la Economía: Álgebra (6501108) PEC_2013. Soluciones
Matemáticas para la Economía: Álgebra (6501108) PEC_2013. SolucionesMatemáticas para la Economía: Álgebra (6501108) PEC_2013. Soluciones
Matemáticas para la Economía: Álgebra (6501108) PEC_2013. Solucionesuniverso exacto
 
Matemáticas para la Economía: Álgebra (6501108) PEC 2013
Matemáticas para la Economía: Álgebra (6501108) PEC 2013Matemáticas para la Economía: Álgebra (6501108) PEC 2013
Matemáticas para la Economía: Álgebra (6501108) PEC 2013universo exacto
 
Viewpoints1 sb key_unit8
Viewpoints1 sb key_unit8Viewpoints1 sb key_unit8
Viewpoints1 sb key_unit8universo exacto
 
Practica Matemática CBC (51)
Practica Matemática CBC (51) Practica Matemática CBC (51)
Practica Matemática CBC (51) universo exacto
 
Itinerarios didácticos en la Didáctica de la Lengua y la Literatura
Itinerarios didácticos en la Didáctica de la Lengua y la LiteraturaItinerarios didácticos en la Didáctica de la Lengua y la Literatura
Itinerarios didácticos en la Didáctica de la Lengua y la LiteraturaPep Hernández
 
Oralidad mediada por contextos tecnológicos
Oralidad mediada por contextos tecnológicosOralidad mediada por contextos tecnológicos
Oralidad mediada por contextos tecnológicosPep Hernández
 
ejercicios resueltos de algebra del cbc guia 5
ejercicios resueltos de algebra del cbc guia 5ejercicios resueltos de algebra del cbc guia 5
ejercicios resueltos de algebra del cbc guia 5apuntescbc
 
ejercicios resueltos de algebra del cbc guia 6
ejercicios resueltos de algebra del cbc guia 6ejercicios resueltos de algebra del cbc guia 6
ejercicios resueltos de algebra del cbc guia 6apuntescbc
 
Práctica Análisis económicas (72)
Práctica Análisis económicas (72)Práctica Análisis económicas (72)
Práctica Análisis económicas (72)universo exacto
 

Destacado (20)

Práctica Álgebra exactas-ingeniería CBC (27)
Práctica Álgebra exactas-ingeniería CBC (27)Práctica Álgebra exactas-ingeniería CBC (27)
Práctica Álgebra exactas-ingeniería CBC (27)
 
ejercicios resueltos de analisis del cbc guia 8
ejercicios resueltos de analisis del cbc guia 8ejercicios resueltos de analisis del cbc guia 8
ejercicios resueltos de analisis del cbc guia 8
 
Examen de introducción a la estadística - Uned
Examen de introducción a la estadística - UnedExamen de introducción a la estadística - Uned
Examen de introducción a la estadística - Uned
 
CBC Examen final matemática julio 2012
CBC Examen final matemática julio 2012CBC Examen final matemática julio 2012
CBC Examen final matemática julio 2012
 
Viewpoints1 sb key_unit9
Viewpoints1 sb key_unit9Viewpoints1 sb key_unit9
Viewpoints1 sb key_unit9
 
Práctica Álgebra económicas UBA (71)
Práctica Álgebra económicas UBA (71)Práctica Álgebra económicas UBA (71)
Práctica Álgebra económicas UBA (71)
 
Matriz insumo producto
Matriz insumo productoMatriz insumo producto
Matriz insumo producto
 
Práctica Matemática Agronomía CBC (61)
Práctica Matemática Agronomía CBC (61)Práctica Matemática Agronomía CBC (61)
Práctica Matemática Agronomía CBC (61)
 
libro analisis para el cbc
libro analisis para el cbclibro analisis para el cbc
libro analisis para el cbc
 
Smlengua5ampliacionunidad4
Smlengua5ampliacionunidad4Smlengua5ampliacionunidad4
Smlengua5ampliacionunidad4
 
Matemáticas para la Economía: Álgebra (6501108) PEC_2013. Soluciones
Matemáticas para la Economía: Álgebra (6501108) PEC_2013. SolucionesMatemáticas para la Economía: Álgebra (6501108) PEC_2013. Soluciones
Matemáticas para la Economía: Álgebra (6501108) PEC_2013. Soluciones
 
Pec álgebra-2014
Pec álgebra-2014Pec álgebra-2014
Pec álgebra-2014
 
Matemáticas para la Economía: Álgebra (6501108) PEC 2013
Matemáticas para la Economía: Álgebra (6501108) PEC 2013Matemáticas para la Economía: Álgebra (6501108) PEC 2013
Matemáticas para la Economía: Álgebra (6501108) PEC 2013
 
Viewpoints1 sb key_unit8
Viewpoints1 sb key_unit8Viewpoints1 sb key_unit8
Viewpoints1 sb key_unit8
 
Practica Matemática CBC (51)
Practica Matemática CBC (51) Practica Matemática CBC (51)
Practica Matemática CBC (51)
 
Itinerarios didácticos en la Didáctica de la Lengua y la Literatura
Itinerarios didácticos en la Didáctica de la Lengua y la LiteraturaItinerarios didácticos en la Didáctica de la Lengua y la Literatura
Itinerarios didácticos en la Didáctica de la Lengua y la Literatura
 
Oralidad mediada por contextos tecnológicos
Oralidad mediada por contextos tecnológicosOralidad mediada por contextos tecnológicos
Oralidad mediada por contextos tecnológicos
 
ejercicios resueltos de algebra del cbc guia 5
ejercicios resueltos de algebra del cbc guia 5ejercicios resueltos de algebra del cbc guia 5
ejercicios resueltos de algebra del cbc guia 5
 
ejercicios resueltos de algebra del cbc guia 6
ejercicios resueltos de algebra del cbc guia 6ejercicios resueltos de algebra del cbc guia 6
ejercicios resueltos de algebra del cbc guia 6
 
Práctica Análisis económicas (72)
Práctica Análisis económicas (72)Práctica Análisis económicas (72)
Práctica Análisis económicas (72)
 

Similar a Práctica Análisis matemático exactas-ingeniería CBC (28)

Similar a Práctica Análisis matemático exactas-ingeniería CBC (28) (20)

Recursos ejercicios funciones_elementales
Recursos ejercicios funciones_elementalesRecursos ejercicios funciones_elementales
Recursos ejercicios funciones_elementales
 
Dominios f
Dominios fDominios f
Dominios f
 
Ejercicios voluntarios 04 funcionesnelelmentales
Ejercicios voluntarios 04 funcionesnelelmentalesEjercicios voluntarios 04 funcionesnelelmentales
Ejercicios voluntarios 04 funcionesnelelmentales
 
Metodos bis fal_sec
Metodos bis fal_secMetodos bis fal_sec
Metodos bis fal_sec
 
Ejercicios sobre limites
Ejercicios sobre limitesEjercicios sobre limites
Ejercicios sobre limites
 
Capítulo 2. Funciones
Capítulo 2. FuncionesCapítulo 2. Funciones
Capítulo 2. Funciones
 
funciones_varias_variables2011.pdf
funciones_varias_variables2011.pdffunciones_varias_variables2011.pdf
funciones_varias_variables2011.pdf
 
Actividades funciones. funciones_lineal_y_cuadratica
Actividades funciones. funciones_lineal_y_cuadraticaActividades funciones. funciones_lineal_y_cuadratica
Actividades funciones. funciones_lineal_y_cuadratica
 
Aplicaciones de las_derivadas
Aplicaciones de las_derivadasAplicaciones de las_derivadas
Aplicaciones de las_derivadas
 
FUNCIONES III
FUNCIONES IIIFUNCIONES III
FUNCIONES III
 
Funciones ejercicios resueltos
Funciones ejercicios resueltosFunciones ejercicios resueltos
Funciones ejercicios resueltos
 
Funciones ejercicios resueltos
Funciones ejercicios resueltosFunciones ejercicios resueltos
Funciones ejercicios resueltos
 
Funciones ejercicios resueltos
Funciones ejercicios resueltosFunciones ejercicios resueltos
Funciones ejercicios resueltos
 
Funciones1
Funciones1Funciones1
Funciones1
 
Cálculo dif - Taller de derivadas II
Cálculo dif  - Taller de derivadas IICálculo dif  - Taller de derivadas II
Cálculo dif - Taller de derivadas II
 
Ejercicios para Repasar 4
Ejercicios para Repasar 4Ejercicios para Repasar 4
Ejercicios para Repasar 4
 
Ejercicios de Funciones.
Ejercicios de Funciones.Ejercicios de Funciones.
Ejercicios de Funciones.
 
Tema05 ejercicios resueltos
Tema05 ejercicios resueltosTema05 ejercicios resueltos
Tema05 ejercicios resueltos
 
Imii guia lab_15_2
Imii guia lab_15_2Imii guia lab_15_2
Imii guia lab_15_2
 
3eso3.2boletinfunciones
3eso3.2boletinfunciones3eso3.2boletinfunciones
3eso3.2boletinfunciones
 

Más de universo exacto

Matemáticas Repaso Tema 9
Matemáticas Repaso Tema 9Matemáticas Repaso Tema 9
Matemáticas Repaso Tema 9universo exacto
 
Matemáticas Repaso Tema 10
Matemáticas Repaso Tema 10Matemáticas Repaso Tema 10
Matemáticas Repaso Tema 10universo exacto
 
Matemátcias Repaso SM Tema 5
Matemátcias Repaso SM Tema 5 Matemátcias Repaso SM Tema 5
Matemátcias Repaso SM Tema 5 universo exacto
 
Viewpoints1 sb key_unit7
Viewpoints1 sb key_unit7Viewpoints1 sb key_unit7
Viewpoints1 sb key_unit7universo exacto
 
Viewpoints1 sb key_unit6
Viewpoints1 sb key_unit6Viewpoints1 sb key_unit6
Viewpoints1 sb key_unit6universo exacto
 
Viewpoints1 sb key_unit5
Viewpoints1 sb key_unit5Viewpoints1 sb key_unit5
Viewpoints1 sb key_unit5universo exacto
 
Viewpoints1 sb key_unit4
Viewpoints1 sb key_unit4Viewpoints1 sb key_unit4
Viewpoints1 sb key_unit4universo exacto
 
Viewpoints1 sb key_units1-2-3
Viewpoints1 sb key_units1-2-3Viewpoints1 sb key_units1-2-3
Viewpoints1 sb key_units1-2-3universo exacto
 
Smlengua5ampliacionunidad3
Smlengua5ampliacionunidad3Smlengua5ampliacionunidad3
Smlengua5ampliacionunidad3universo exacto
 
Smlengua5ampliacionunidad2
Smlengua5ampliacionunidad2Smlengua5ampliacionunidad2
Smlengua5ampliacionunidad2universo exacto
 
Smlengua5ampliacionunidad1
Smlengua5ampliacionunidad1Smlengua5ampliacionunidad1
Smlengua5ampliacionunidad1universo exacto
 
unidad 2: 5º primaria lengua
unidad 2: 5º primaria lenguaunidad 2: 5º primaria lengua
unidad 2: 5º primaria lenguauniverso exacto
 
unidad 1: 5º primaria lengua
unidad 1: 5º primaria lenguaunidad 1: 5º primaria lengua
unidad 1: 5º primaria lenguauniverso exacto
 
Matemáticas 1 bach cn anaya. Solucionario
Matemáticas 1 bach cn anaya. SolucionarioMatemáticas 1 bach cn anaya. Solucionario
Matemáticas 1 bach cn anaya. Solucionariouniverso exacto
 

Más de universo exacto (16)

Matemáticas Repaso Tema 9
Matemáticas Repaso Tema 9Matemáticas Repaso Tema 9
Matemáticas Repaso Tema 9
 
Matemáticas Repaso Tema 10
Matemáticas Repaso Tema 10Matemáticas Repaso Tema 10
Matemáticas Repaso Tema 10
 
Matemátcias Repaso SM Tema 5
Matemátcias Repaso SM Tema 5 Matemátcias Repaso SM Tema 5
Matemátcias Repaso SM Tema 5
 
Viewpoints1 sb key_unit7
Viewpoints1 sb key_unit7Viewpoints1 sb key_unit7
Viewpoints1 sb key_unit7
 
Viewpoints1 sb key_unit6
Viewpoints1 sb key_unit6Viewpoints1 sb key_unit6
Viewpoints1 sb key_unit6
 
Viewpoints1 sb key_unit5
Viewpoints1 sb key_unit5Viewpoints1 sb key_unit5
Viewpoints1 sb key_unit5
 
Viewpoints1 sb key_unit4
Viewpoints1 sb key_unit4Viewpoints1 sb key_unit4
Viewpoints1 sb key_unit4
 
Viewpoints1 sb key_units1-2-3
Viewpoints1 sb key_units1-2-3Viewpoints1 sb key_units1-2-3
Viewpoints1 sb key_units1-2-3
 
Smlengua5evaluacion5
Smlengua5evaluacion5Smlengua5evaluacion5
Smlengua5evaluacion5
 
Smlengua5ampliacionunidad3
Smlengua5ampliacionunidad3Smlengua5ampliacionunidad3
Smlengua5ampliacionunidad3
 
Smlengua5ampliacionunidad2
Smlengua5ampliacionunidad2Smlengua5ampliacionunidad2
Smlengua5ampliacionunidad2
 
Smlengua5ampliacionunidad1
Smlengua5ampliacionunidad1Smlengua5ampliacionunidad1
Smlengua5ampliacionunidad1
 
unidad 2: 5º primaria lengua
unidad 2: 5º primaria lenguaunidad 2: 5º primaria lengua
unidad 2: 5º primaria lengua
 
unidad 1: 5º primaria lengua
unidad 1: 5º primaria lenguaunidad 1: 5º primaria lengua
unidad 1: 5º primaria lengua
 
Autoevaluación u1
Autoevaluación u1Autoevaluación u1
Autoevaluación u1
 
Matemáticas 1 bach cn anaya. Solucionario
Matemáticas 1 bach cn anaya. SolucionarioMatemáticas 1 bach cn anaya. Solucionario
Matemáticas 1 bach cn anaya. Solucionario
 

Último

Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxdanalikcruz2000
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfsamyarrocha1
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptxJunkotantik
 

Último (20)

Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 
Unidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDIUnidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDI
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
Unidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDIUnidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDI
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdf
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptx
 

Práctica Análisis matemático exactas-ingeniería CBC (28)

  • 1. Prácticas 0 a 11 Análisis Matemático Exactas – Ingeniería 2014
  • 2.
  • 3. CONTENIDO PRÁCTICA 0. PRELIMINARES PRÁCTICA 1. FUNCIONES REALES LAS FUNCIONES DESCRIBEN FENÓMENOS. GRÁFICO DE FUNCIONES. LAS FUNCIONES MÁS USUALES. COMPOSICIÓN DE FUNCIONES. FUNCIÓN INVERSA. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS. FUNCIONES TRIGONOMÉTRICAS. OTRAS FUNCIONES. PROBLEMAS VARIOS. PRÁCTICA 2. NÚMEROS REALES LA RECTA REAL. NÚMEROS IRRACIONALES. SUPREMO E ÍNFIMO. PRÁCTICA 3. SUCESIONES TÉRMINO GENERAL. LA NOCIÓN DE LÍMITE. CÁLCULO DE LÍMITES. PROPIEDADES. SUCESIONES MONÓTONAS. MÁS PROPIEDADES. SUBSUCESIONES. SUCESIONES DADAS POR RECURRENCIA. PROBLEMAS VARIOS. PRÁCTICA 4. LÍMITES Y CONTINUIDAD LÍMITES EN EL INFINITO. LÍMITE EN UN PUNTO. LÍMITES ESPECIALES. CONTINUIDAD. DEFINICIÓN Y PROPIEDADES. TEOREMA DE LOS VALORES INTERMEDIOS. PROBLEMAS VARIOS. PRÁCTICA 5. DERIVADAS RECTA TANGENTE REGLAS DE DERIVACIÓN. FUNCIÓN DERIVADA. FUNCIONES DERIVABLES Y NO DERIVABLES. DERIVADA DE LA FUNCIÓN INVERSA. ALGUNAS APLICACIONES. DERIVADAS SUCESIVAS. PROBLEMAS VARIOS. PRÁCTICA 6. TEOREMA DEL VALOR MEDIO TEOREMAS DE FERMAT, ROLLE, Y LAGRANGE. CONSECUENCIAS DEL TEOREMA DEL VALOR MEDIO. REGLA DE L’HOSPITAL. PROBLEMAS VARIOS.
  • 4. PRÁCTICA 7. ESTUDIO DE FUNCIONES CRECIMIENTO Y DECRECIMIENTO. EXTREMOS LOCALES. ASÍNTOTAS. CONCAVIDAD Y CONVEXIDAD. CONSTRUCCIÓN DE CURVAS. CANTIDAD DE SOLUCIONES DE UNA ECUACIÓN. CONTINUIDAD EN INTERVALOS CERRADOS. PROBLEMAS DE OPTIMIZACIÓN. PROBLEMAS VARIOS. PRÁCTICA 8. TEOREMA DE TAYLOR POLINOMIO DE TAYLOR. EXPRESIÓN DEL RESTO. PROBLEMAS DE APROXIMACIÓN. PROBLEMAS VARIOS. PRÁCTICA 9. INTEGRALES LA FUNCIÓN ÁREA. PROPIEDADES DE LA INTEGRAL. TEOREMA FUNDAMENTAL DEL CÁLCULO. REGLA DE BARROW. INTEGRACIÓN NUMÉRICA. PRIMITIVAS. CÁLCULO DE PRIMITIVAS. MÉTODOS DE SUSTITUCIÓN Y DE INTEGRACIÓN POR PARTES. FRACCIONES SIMPLES. PROBLEMAS VARIOS. PRÁCTICA 10. APLICACIONES DE LA INTEGRAL ÁREA ENTRE CURVAS. ECUACIONES DIFERENCIALES. VOLUMEN DE UN SÓLIDO DE REVOLUCIÓN. LONGITUD DE CURVA. PROBLEMAS VARIOS. PRÁCTICA 11. SERIES TÉRMINO GENERAL Y SUMAS PARCIALES. SERIES GEOMÉTRICAS Y SERIES TELESCÓPICAS. CRITERIOS DE CONVERGENCIA. SERIES DE POTENCIA. PROBLEMAS VARIOS. PROGRAMA BIBLIOGRAFÍA
  • 5. 1 PRÁCTICA 0 PRELIMINARES EJERCICIO 1: Calcule (a)              3 2 ) 4 1 6 1 2(1 4 1 2) 12 5 2 1 (1 2 1 3 2 (b)        4 1 ) 10 3 5 1 (1 2 1 )2( 5 2 EJERCICIO 2: Calcule (a) 2 2 ) 2 1 3 2 ( 4 1         (b) 2 1 22 2 1 3 2 1 4                      EJERCICIO 3: Calcule (a) 12 74 3 33  (b) 5 26 108 )104)(105(    (c) 2 1 2 7 3 2 65 43 2 2 1 4 3 33)2(32 27 64 49 16 81                 (d) 334 222 81 27 8)9()3(5  EJERCICIO 4: Si 2 3 ; 3 2 ;2  zyx calcule (a) )( zyx  (b) zxy  (c) yzx  (d) zyx )( 
  • 6. 2 EJERCICIO 5: Pruebe las siguientes identidades (a) nn nn   1 1 1 , Nn (b) n n nn n nnn 1 13 1 3 2 2 23      EJERCICIO 6: Resuelva (a) 112 x (b) 725  x (c) 374)13(2  xx (d) 2 42 39    x x (e) 3 1 2 1 xx    (f) x x xx x 33 26 )1(2 3 1       EJERCICIO 7: Muestre que el número 32  es solución de la ecuación 0110 24  xx . EJERCICIO 8: Escriba como intervalo o unión de intervalos las soluciones de las siguientes desigualdades (a) 212 x (b) 212  x (c) xx 610112  (d) 4 2 2   x (e) 1 3 12    x x (f) 1 1 3    x x EJERCICIO 9: Escriba de menor a mayor los siguientes números 2 5 ; 3 1 ; 7 4 ; 11 6 ; 2 3 ; 41 64 ; 3 38 ; 2 25   EJERCICIO 10: Demuestre que si a y b son números no negativos vale la desi- gualdad.
  • 7. 3 ba ba   2 Exhiba un ejemplo donde la desigualdad es estricta y otro donde valga la igual- dad. EJERCICIO 11: Alguna de las siguientes relaciones no valen en general. Ana- lice en qué casos son válidas. (a) 222 )( yxyx  (b) yxyx  (c) 22 yxyx  (d) yxyx 111   (e) xx 2 (f) xx 2 (g) 02 x (h) 03 x (i) 12 x (j) xx log2)log( 2  (k) 02 x (l) xx log2)10log( 2  EJERCICIO 12: Resuelva (a) 14 2 x (b) 8 1 2 35 x (c) 100)7log( x (d) 0)13log( 2  xx EJERCICIO 13: Represente en el plano los siguientes puntos: (1 ; 3) , (3 ; 1) , (-1 ; 2) , (-1 ; -5) , (0 ; 1) , (1 ; 0) , (3 ; 3) , (-1 ; -1) Para cada uno de estos puntos represente los puntos simétricos respecto de: (a) el eje x. (b) el eje y. (c) el origen de coordenadas. EJERCICIO 14: Represente en el plano los siguientes conjuntos de 2 R (a)  1/),( 2  xRyx (b)  2/),( 2  xRyx (c)  2,0/),( 2  yxRyx (d)  1,1/),( 2  yxRyx
  • 8. 4 PRÁCTICA 1 FUNCIONES REALES LAS FUNCIONES DESCRIBEN FENÓMENOS EJERCICIO 1: Haga un gráfico que refleje la evolución de la temperatura del agua a lo largo del tiempo atendiendo a la siguiente descripción: “Saqué del fuego una cacerola con agua hirviendo. Al principio, la temperatura bajó con rapidez, de modo que a los 5 minutos estaba en 60. Luego fue enfriándose con más lentitud. A los 20 minutos de haberla sacado estaba a 30 y 20 minutos después seguía teniendo algo más de 20, tem- peratura de la cual no bajó, pues era la temperatura que había en la cocina”. ¿Es el gráfico que hizo, el único que respeta las consignas anteriores? EJERCICIO 2: Con una lámina rectangular de 40 por 30 queremos hacer una caja como muestra la figura: (a) Busque la expresión del volumen de la caja en función de x. (b) ¿Cuál es el dominio? (c) Haga un gráfico aproximado a partir de una tabla de valores. x x x x x x x 40 2.x 40 2.x 30 2.x 30 2.x
  • 9. 5 EJERCICIO 3: Entre todos los rectángulos de perímetro 20, halle la función que relaciona la base x con la altura y. Haga un gráfico que la represente. ¿Cuál es el dominio? EJERCICIO 4: Halle el área de un triángulo rectángulo isósceles en función del cateto. Dibuje el gráfico de la función hallada a partir de una tabla de valores. Indique cuál es el dominio. GRÁFICO DE FUNCIONES EJERCICIO 5: Dados los siguientes conjuntos del plano, determine, en cada caso, si existe una función cuyo gráfico sea el dado EJERCICIO 6: Dados los siguientes gráficos de funciones, determine, en cada caso, en qué intervalos es creciente, en qué intervalos es decreciente, en qué punto alcanza su máximo, cuál es dicho valor máximo, en qué punto alcanza su mínimo y cuál es el valor mínimo.
  • 10. 6 EJERCICIO 7: Dibuje una función que sea creciente en los intervalos  1, y  ,2 . Además que el valor máximo sea 4 y se alcance en x = -1 y que el valor mínimo sea –3 y se alcance en x = 2. LAS FUNCIONES MÁS USUALES EJERCICIO 8: (a) Encuentre en cada caso, una función lineal que satisfaga: 1. f(1) = 5 ; f(-3) = 2 2. f(-1) = 3 ; f(80) = 3 3. f(0) = 4 ; f(3) = 0 4. f(0) = b ; f(a) = 0 a y b fijos. (b) Calcule en 1. y en 2. f(0). Calcule en 3. f(-2) (c) Encuentre la pendiente de las rectas que son gráficas de las funcio- nes lineales dadas en (a). Haga un gráfico de tales rectas. a) b) –1 –1–2 1 2 1 –½ ½ d) 2 1 c) 1
  • 11. 7 EJERCICIO 9: Halle la ecuación de la recta de pendiente m que pasa por el punto P, siendo: (a) P = (2 , 3) m = 1 (b) P = (1 , 5) m = 0 (c) P = (3 , -4) m = -2 (d) P = (0 , b) m = 1 Haga el gráfico de cada una de ellas. Decida cuáles son crecientes y cuáles son decrecientes. EJERCICIO 10: Encuentre la función lineal g que da la temperatura en grados Farenheit, conocida la misma en grados Celsius, sabiendo que 0C = 32F y 100C = 212F. Recíprocamente, encuentre la función h que da la temperatura en grados Celsius, conocida la misma en grados Farenheit. Compruebe que g(h(x)) = h(g(x)) = x. EJERCICIO 11: Trace el gráfico de las siguientes funciones cuadráticas: (a) 2 )( xxf  (b) 2 2)( xxf  (c) 3)( 2  xxf (d)  2 5)(  xxf Determine en cada caso, el conjunto imagen. EJERCICIO 12: Para las siguientes funciones cuadráticas determine en qué in- tervalo crece, en qué intervalo decrece, dónde es positiva, dónde es negativa, en qué puntos se anula y en qué punto alcanza su extremo: (a) 2 2)( xxf  (b) )3(2)(  xxxf (c) xxxf  2 2)( (d) 12)( 2  xxxf (e)   532)(  xxxf EJERCICIO 13: Se arroja una pelota desde el suelo y la altura, en metros, vie- ne dada por la función ttth 105)( 2  , siendo t el tiempo medido en segundos. ¿Cuándo alcanza la altura máxima? ¿Cuál es dicha altura?
  • 12. 8 EJERCICIO 14: Represente gráficamente las siguientes funciones (a) 3 )( xxf  (b)  3 2)(  xxf (c) 1)( 3  xxf (d) 4 )( xxf  Analice en cada caso, la monotonía. EJERCICIO 15: Represente gráficamente las siguientes funciones (a) x xf 4 )(  (b) x xf 4 )(  (c) 3 4 )(   x xf (d) 2 3 4 )(    x xf (e) 2 54 )(    x x xf (f) 1 23 )(    x x xf Indique en cada caso, el dominio de la función. Indique también en qué inter- valos es creciente y en qué intervalos es decreciente. EJERCICIO 16: Represente gráficamente las siguientes funciones (a) xxf )( (b) xxf )( (c) 3)(  xxf (d) 2 )2()(  xxf Indique en cada caso, el dominio de la función. Analice la monotonía. EJERCICIO 17: Halle el dominio de las siguientes funciones (a) 4)( 2  xxf (b) 8)(  xxf (c) 9)( 2  xxf (d) )1()(  xxxf
  • 13. 9 COMPOSICIÓN DE FUNCIONES. FUNCIÓN INVERSA EJERCICIO 18: Considere las funciones reales definidas por las fórmulas xxxf 52)( 2  3 1 )(   x xg 62)(  xxh (a) Calcule, si es posible:   )1(ff    )1(hf    )1(fg    )2(gh  (b) Halle fórmulas para las composiciones que se indican a continuación. gf  fg    hgf  hf  ff  (c) ¿ gf  y fg  son la misma función? EJERCICIO 19: Halle la función inversa de: (a) 53)(  xxf (b) 0,12)( 2  xxxf (c) 53)(  xxf (d) 3 )( xxf  (e) 3,46)( 2  xxxxf (f) 3,46)( 2  xxxxf EJERCICIO 20: Pruebe que la función 1 1 )(    x x xf satisface )() 1 ( xfx x f  para todo x positivo. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS EJERCICIO 21: Dada las funciones exponenciales x rxf )( (r = 2 , 2 1 , 3 , 3 1 ), (a) Haga el gráfico de cada una de ellas. (b) Determine el dominio y la imagen. (c) Analice la monotonía.
  • 14. 10 EJERCICIO 22: Si notamos )(log xr a la función inversa de )1,0(  rrrx (a) Haga el gráfico de )(log xy r para r = 2 , 2 1 , 3 , 3 1 . (b) Determine el dominio y la imagen. (c) Analice la monotonía. EJERICICIO 23: Encuentre el dominio de las siguientes funciones (a) )2ln()( xxf  (b) )23ln()( 2 xxxf  En cada caso determine los valores de x para los cuales 1)( xf EJERCICIO 24: Halle la función inversa de: (a) )2ln()( xxf  (b) )4ln()( 2  xxf (c) )1ln()( 2  xxf (d) 52)(  x xf (e) 3 )(   x exf (f) 0,)( 2  xexf x FUNCIONES TRIGONOMÉTRICAS EJERCICIO 25: A partir de los gráficos de xxg sen)(  y xxh cos)(  haga el gráfico de (a) )sen()(  xxf (b) )2cos()( xxf  (c) )2cos()(  xxf (d) ) 2 sen()(   xxf EJERICICIO 26: Determine todos los valores de Rx tales que (a) 2 1 sen x (b) 2 3 cos x (c) 1sencos 22  xx (d) 1cossen 22  xx (e) xxx cossen2)2sen(  (f) )sen(cos 2 2 ) 4 cos( xxx  
  • 15. 11 EJERCICIO 27: Haga el gráfico de las funciones inversas de xxg sen)(  y xxh cos)(  . Determine los valores de Rx tales que (a) 4 arcsen  x (b) xarccos (c) 2 1)cos(arcsen xx  OTRAS FUNCIONES EJERCICIO 28: Represente las siguientes funciones (a) 5)(  xxf (b) 5)(  xxf (c) xxf sen)(  (d) x exf )( EJERCICIO 29: (a) Dada la función          xsix xsix xsix xf 143 11 12 )( , calcule )3(f , )1(f y )4(f . Determine para qué valores de y la ecuación yxf )( tiene solución. ¿Cuándo es única? (b) Idem para la función         4 2 1 413 )( xsi x xsix xf EJERCICIO 30: El impuesto a la riqueza es igual al 0,50 pesos por cada mil pe- sos por encima de 100 mil pesos y de 1 peso por cada mil pesos por encima de 200 mil pesos. Escriba el monto del impuesto en función de la riqueza. ¿Cuál es la riqueza de alguien que paga 530 pesos de impuesto? PROBLEMAS VARIOS PROBLEMA1: La función f es lineal y la función g es cuadrática. Los gráficos de ambas funciones se cortan en los puntos P = (-1,2) y Q = (2,0). Además g se anula en x = -2. Halle las fórmulas de f y g y encuentre el conjunto de los x tales que f(x) es mayor que g(x). Haga un gráfico.
  • 16. 12 PROBLEMA 2: Se definen 2 )cosh( xx ee x    y 2 )senh( xx ee x    . Pruebe que (a) 1)(senh)(cosh 22  xx (b) Los gráficos de ambas funciones no se cortan. PROBLEMA 3: Un cántaro vacío con capacidad para 20 litros pesa 2550 gra- mos. (a) Represente la función que da el peso total del cántaro en función de la cantidad de agua, en litros, que contiene. Halle su fórmula. ¿Cuál es el dominio? (b) Si disponemos de 3 litros de mercurio, cuyo peso total es 40,8 kg, re- pita el ítem anterior sustituyendo el agua por el mercurio. (c) Si se representan las funciones de (a) y (b) en los mismos ejes, ¿qué significa el punto de intersección? (d) ¿Es cierto que a doble cantidad de líquido corresponde doble peso total? PROBLEMA 4: Si 14 2 )( 3   n nf n , calcule )( )1( nf nf  y obtenga su valor numérico para n = 1, 2, 3, 4 y 5.
  • 17. 13 PRÁCTICA 2 NÚMEROS REALES LA RECTA REAL EJERCICIO 1: Represente en la recta numérica: (a) 12;12;12;12;2; 5 2 1; 5 2 1; 8 3 ;6;3;1;5  (b) 14,3;14,3; 2 3 ;; 2 ; 2 ;;3;2;1;0;1;2;3      EJERCICIO 2: Represente en la recta numérica los siguientes conjuntos. Escríbalos como intervalos o como unión de intervalos. (a) Todos los números reales mayores que –1. (b) Todos los números reales menores o iguales que 2. (c) Todos los números reales que distan del 0 menos que 3. (d)  532/  xRx (e)  33/  xRx (f)  5321/  xRx (g)  0)32(/  xxRx (h)  036/ 2  xRx (i)  0/ 3  xxRx (j)        3 2 1/ x Rx (k)        xx Rx 41 / (l)  3/  xRx (m)  32/  xRx (n)  32/  xRx (ñ)  3/  xRx
  • 18. 14 EJERCICIO 3: Represente en la recta los siguientes conjuntos (a)    6,34,2  (b)    6,34,2  (c)   ),1(3,  (d)   ),3[3,1  (e)   ),3[3,1  (f)   )5,3(3,1  EJERCICIO 4: Represente en la recta los siguientes conjuntos (a)  64/  nNn (b)  13/  nNn (c)          6/ 1 nNn n n x (d)          Nn n n x / 1 NÚMEROS IRRACIONALES EJERCICIO 5: Demuestre que 3 no es racional. EJERCICIO 6: Dados los números 3,14 y  (a) Halle un número racional comprendido entre ambos. (b) Halle un número irracional comprendido entre ambos (Ayuda: escriba su desarrollo decimal). SUPREMO E INFIMO EJERCICIO 7: Considere los siguientes conjuntos        Nn n A : 1          Nn n n B : 1  7,0C ND         Nn n nE : 1 2  4,3,2,1F  ;999,5;99,5;9,5;5G  12/  xRxH  3/  xRxI
  • 19. 15 En cada caso: (a) Determine si 7 es una cota superior. (b) Determine si 0 es una cota inferior. (c) Decida si está acotado superiormente. (d) Decida si está acotado inferiormente. (e) En caso afirmativo, encuentre el supremo y/o el ínfimo del conjunto. Decida si alguno de ellos es el máximo y/o el mínimo del conjunto correspondiente. EJERCICIO 8: Considere el conjunto B del ejercicio anterior. (a) Muestre que 1 es cota superior de B. (b) Exhiba un elemento b de B que satisfaga 0,9 < b < 1. (c) Exhiba un elemento b de B que satisfaga 0,99 < b < 1. EJERCICIO 9: Considere el conjunto           Nn n n P : 2 12 (a) Muestre que 2 es una cota superior de P. (b) Exhiba un elemento p de P que satisfaga 1,99 < p < 2. (c) Muestre que si t < 2 existe un elemento p de P que satisface t<p<2. Deduzca entonces que sup P = 2. EJERCICIO 10: Muestre que existe un número natural n que satisface 001,0 1  n . En general, muestre que, cualquiera sea x positivo, existe un nú- mero natural n que satisface x n  1 . Deduzca de aquí que 0: 1 inf         Nn n
  • 20. 16 EJERCICIO 11: Sean A y B dos conjuntos de números reales no vacíos y acotados de modo que BA . Ordene de menor a mayor los siguientes números: sup A , sup B , inf A , inf B Exhiba un ejemplo donde sup A = sup B y otro donde la desigualdad es estricta. EJERCICIO 12: Determine, en caso de que existan, el supremo, el ínfimo, el máximo y el mínimo de los siguientes conjuntos: (a)  023: 2  xxRxA (b)  )2,0(,232  xxxyB (c)  RxxxyC  ,232
  • 21. 17 PRÁCTICA 3 SUCESIONES TÉRMINO GENERAL EJERCICIO 1: Escriba los primeros cinco términos de las siguientes sucesio- nes (a) 1  n n an (b) 3 1 )12( 2    n b n n (c) ! )1( 1 n c n n    (d) n n dn )cos(   EJERCICIO 2: Para cada una da las siguientes sucesiones (a) Encuentre el término 100 y el término 200 de cada una de ellas. (b) Halle, si es posible, el término general na (c) Clasifique las sucesiones en convergentes o no convergentes. (i) ,4,3,2,1 (ii) , 4 1 , 3 1 , 2 1 ,1  (iii) , 4 1 , 3 1 , 2 1 ,1  (iv) , 16 1 , 8 1 , 4 1 , 2 1  (v) ,4,3,2,1  (vi) , 4 1 ,0, 3 1 ,0, 2 1 ,0 (vii) ,1,1,1,1  (viii) , 4 5 , 3 4 , 2 3 ,2 (ix) , 4 1 ,3, 3 1 ,2, 2 1 ,1,1 (x) nn aaa 2,1 11   LA NOCIÓN DE LÍMITE EJERCICIO 3: Halle un valor de Nn a partir del cual haya certeza de que (a) 852  nn sea mayor que (i) 10 (ii) 1000 (b) 1002 n sea mayor que (i) 10 (ii) 1000 (c) 2 1 )1(    n n esté entre (i) 1,9 y 2,1 (ii) 1,999 y 2,001 (d) n nsen esté entre (i) –0,1 y 0,1 (ii) –0,001 y 0,001
  • 22. 18 EJERCICIO 4: Considere la sucesión 2,1000 1    n n an . A partir de que el 1lím   n n a responda cuáles de las siguientes afirmaciones son verdaderas, explicando en cada caso, en qué se basa para responder: (a) Existe un Nn a partir del cual 0na . (b) Existe un Nn a partir del cual 2 1 na . (c) Existe un Nn a partir del cual 1na . (d) Existe un Nn para el cual 1na . (e) La sucesión na está acotado. Escriba las afirmaciones que correspondan, con la nomenclatura pctn. CÁLCULO DE LÍMITES PROPIEDADES EJERCICIO 5: Calcule, si existe, el límite de las siguientes sucesiones. En ca- da caso, explique las propiedades que usa para obtener su respuesta: (a) 45 1324 2 23    n nnn an (b) 3 57 3    n n an (c) 1 2 2 3    n n an (d) 23 12 2 2    n n an (e) 40003 34 2 2    n n an (f) nnn n an    2 (g) , 33 64 , 5 11 , 17 32 , 4 9 , 9 16 , 3 7 , 5 8 , 2 5 , 3 4 ,3 (h) , 4 1 2 1 1, 2 1 1,1  EJERCICIO 6: Continúe con las siguientes sucesiones (a) 1 5 3 75 22      n n n nn (b) 1 5 3 75 22      n n n nn (c) nnn  22 (d) nnn  22 (e) 31 22  nnn (f) 32 13 23 12 2 2      n n n n (g)  nnn  2 (h)  nnn  2 (i) nn n 1 (j)  nnn  22
  • 23. 19 EJERCICIO 7: Muestre que cada una de las siguientes situaciones constituye una indeterminación. Para ello, exhiba por lo menos dos ejemplos donde los lí- mites sean distintos (finitos o infinitos). Suponga cuando haga falta, condicio- nes suficientes para que las sucesiones estén bien definidas para todo n. (a)   n n alím y   n n blím (i) )(lím nn n ba   (ii) n n n b a  lím (b) 0lím   n n a y 0lím   n n b (i) n n n b a  lím (ii) nb n n a )(lím  (c) 0lím   n n a y   n n blím (i) )(lím nn n ba   (ii) na n n b )(lím  EJERCICIO 8: Marque en cada caso, la única respuesta correcta: (a) Si   n n alím y nb oscila finitamente entonces )(lím nn n ba    oscila  tiende a más infinito  es una indeterminación (b) Si Lan n   lím y 0na entonces hay certeza de que  0L  0L  0L  ninguna de las anteriores (c) Si 0lím   n n a y   n n blím entonces n n n b a  lím  es igual a 0  tiende a más infinito  es una indeterminación  no existe (d) Si 0lím   n n a y   n n blím entonces   nb n n a  lím  es igual a 0  tiende a más infinito  es una indeterminación  no existe SUCESIONES MONÓTONAS MÁS PROPIEDADES EJERCICIO 9: Calcule, si existe, el límite de las siguientes sucesiones. Como siempre, explique las propiedades que usa para llegar al resultado: (a) n nsen (b)  nnn  2)1( (c) n n 1 )1(  (d)  nnn  2)1( (e) n       5 2 (f) n n n )1( 3 52   (g) n )5,1( (h) n )95,0(
  • 24. 20 (i) nn nn 22 243 2 1    (j) n n 12  (k) n n nn 2 123 2 23   (l) n n n 13 15   (m) n n n 1 2 2 35 2         (n) n nn 52  (o)   n n 2 1 4 1 (p)   n nn 1 )1(1  (q) n             11 8 3 5 (r) n             3 5 11 8 (s) n 1 3 5 11 8             (t) n n n n sen92 cos3 12   EJERCICIO 10: Calcule el límite de las siguientes sucesiones (a) n n n         53 13 (b) n n n         53 14 (c) 12 13 23          n n n (d) n n        2 1 1 (e) n n        17 1 (f) nn n nn 22 3 13 52          (g) 12 2 2 2 2 53 123           n n n nn (h) n n n        sen 1 (i) n n             1 cos (j) 32 15 sen 1          n n n EJERCICIO 11: Calcule, si existe, el límite de las siguientes sucesiones (a) 1 2 n n (b) n n        1 2 (c) ! 2 n n n (d) n n! (e) nn nn 32 !3   (f) )!2( 2 12 n n
  • 25. 21 (g) n n        2 2 1 (h) ! 2 n n (i) n n n! (j) n n n nn !44 EJERCICIO 12: En cada caso, la sucesión na se encuentra sujeta a las condi- ciones indicadas. Analice la existencia de límite y, en caso afirmativo, calcúlelo. (a) n nn a 4125 2 3 2  (b) 12 !2 230   n n n n n a (c) 2 1 1 1 n n na        (d) 11 1 62   nn n a SUBSUCESIONES EJERCICIO 13: Dada la sucesión 1, 3, 5, 7, 7, 5, 3, 1, 1, 3, 5, 7, ..., escriba el término general de nn aa 42 , y 38 na . Encuentre dos subsucesiones convergentes EJERCICIO 14: Usando subsucesiones, pruebe que cada una de la siguientes sucesiones carece de límite: (a) 0, 1, 2, 0, 1, 2, ... (b)       2 sen n (c)        2 sen)cos(   n n (d) nn )1(4)1( 13   (e) 25 13 )cos(   n n n (f)      casootroen n demúltiploesnsinn 12 5 EJERCICIO 15: Se sabe que 0lím   Lan n .Calcule (a) 12lím   n n a (b) )(lím 32 nn n aa   (c) n n n a a 1 lím  
  • 26. 22 SUCESIONES DADAS POR RECURRENCIA EJERCICIO 16: Considere la sucesión definida recurrentemente como Nnaaa nn   ,2,1 11 (a) Calcule el cociente de D’Alambert. Concluya que la sucesión es cre- ciente. (b) Muestre que 1,2 1   na n n . EJERCICIO 17: Considere la sucesión definida recurrentemente como 1,)1( 2 1 , 3 1 11   naaaa nnn (a) Observe que 1,10  nan (b) Calcule el cociente de D’Alambert. Concluya que la sucesión es de- creciente y acotada y, por lo tanto, convergente. (c) Calcule el n n a  lím EJERCICIO 18: Calcule, si existe, el límite de las siguientes sucesiones. Pre- viamente, mediante el cociente de D’Alambert, determine si es posible, la mo- notonía de ellas. (a) 1,2,1 11   naaa nn (b) 1, 11 1 ,1 11     n a aa n n (c) 1,3,1 11   naaa nn (d) 1, 4 2 1 ,1 11         n a aaa n nn .(Sug.: use la desigualdad ab ba   2 )
  • 27. 23 PROBLEMAS VARIOS PROBLEMA 1: Sea )( na una sucesión definida en forma recurrente como n n a a a n n 5 12 ,5 1 1    para todo 1n (a) Pruebe que nn aa 1 para todo n. (b) ¿Por qué se puede asegurar que existe n n a  lím ? (c) Calcule n n a  lím . (d) Si se define nn anb 2  , calcule n n b  lím PROBLEMA 2: Se invierte un capital de 1000 pesos en acciones. El primer mes suben el 10% respecto al precio de compra; el segundo mes, bajan el 10% respecto del mes anterior; el tercer mes suben el 10% respecto del mes ante- rior; y así alternadamente, un mes suben el 10% y al siguiente bajan el 10%. (a) Halle nc el capital que se tiene después de n meses. (b) Calcule n n c  lím . (c) Estudie como cambia la situación si las bajas son del 9% en lugar del 10%. PROBLEMA 3: Sea n n na )95,0( (a) Pruebe que na es decreciente pctn. Halle un n a partir del cual haya certeza de que nn aa 1 . (b) Calcule n n a  lím .¿En qué se basa para calcularlo?
  • 28. 24 PROBLEMA 4: Muestre que el valor del 2 2 5 1 n n n b n lim         no depende de la constante b. PROBLEMA 5: Halle en cada caso, el término general de na y calcule, si existe, su límite. En caso de que no exista, muéstrelo por medio de subsuce- siones. (a) , 19 7 , 14 5 , 11 3  (b) , 4 3 , 3 4 , 3 2 , 2 3 , 2 1 ,2 (c) , 3 4 , 3 4 , 2 3 , 2 3 , 2 1 ,2  PROBLEMA 6: Sea )( na una sucesión creciente de números positivos. (a) Pruebe que la sucesión 12 3   n n n a a b es siempre convergente. (b) ¿Cuál es el valor más grande que puede tomar n n b  lím .¿En qué caso? PROBLEMA 7: Calcule           n n n nn n n lim 62 cos )1( 1 3 5 . Explique las propiedades y/o resultados que usa para obtener su respuesta. PROBLEMA 8: Sea RRf : definida por       14 113 )( xsix xsix xf . Calcule el  n n af  lím siendo n n na 42  .
  • 29. 25 PROBLEMA 9: Sea )( na una sucesión de números reales no nulos tales que nnn nan   2 2594 7 3 3 4 Calcule, si existe, el n n alim  . Explique las propiedades y/o resultados que usa para obtener su conclusión. PROBLEMA 10: Calcule n n a  lím sabiendo que 2 2 17350 n n n n a        Explique las propiedades y/o resultados que usa para obtener su respuesta. PROBLEMA 11: Sea )( nx una sucesión monótona creciente de la cual se sabe que 31  nx . Halle los posibles valores del         n n x lim 2 1 . ¿En qué propiedades basa su respuesta? PROBLEMA 12: Halle los valores de a y b para que el 4 435 23 4 46     nn nbnan lim n PROBLEMA 13: Se definen 27 13 )1(    n n a n n y 2 )( nn ab  . (a) Pruebe por medio de subsucesiones que na no tiene límite. (b) Calcule el n n b  lím .
  • 30. 26 PROBLEMA 14: Se define la sucesión 1, 1 ,1 2 11          na n n aa n n n . (a) Pruebe que existe el n n a  lím . ¿Cuál es su valor? (b) La sucesión nb satisface nnn naba  . Calcule n n b  lím . PROBLEMA 15: Se define la sucesión de números reales en la forma 2 11 4 1 , nn xxax   donde a>0. (a) Pruebe que )( nx es una sucesión monótona creciente. (b) Determine los valores de a>0 para los cuales )( nx es convergente. PROBLEMA 16: Halle todos los valores de x para los cuales la sucesión 13 12 5    n n n n x a es convergente. Para los x hallados calcule el n n a  lím . PROBLEMA 17: Considere la sucesión   212 95,0 na n n   (a) Pruebe que es decreciente para casi todo n. ¿A partir de que n? (b) Calcule el n n a  lím .
  • 31. 27 PRÁCTICA 4 LÍMITES Y CONTINUIDAD LÍMITES EN EL INFINITO EJERCICIO 1: Calcule los siguientes límites (a) )310(lím 57   xx x (b) )(lím 65 xxx x   (c) 122 13 lím 24 3    xx xx x (d) 5 1 lím 3    x xx x (e) 56 36 lím 1    x x x (f) xx xx x cos sen lím    (g) 15 69 lím 2    x x x (h) x x x 41 5 lím    (i)  1lím 2   xx x (j)  xxx x   )4)(10(lím (k) x x x    5 5 lím (l) x x x sen lím  (m) x x lnlím  (n) x x e  lím (o) x x e  lím (p)        xx 1 lnlím EJERCICIO 2: Calcule, si es posible, los límites cuando x y cuando x de las siguientes funciones (a) 23 )( xxxf  (b) 2 9)( xxf  (c) xxf  1)( (d) 12 3 )( 2    x x xf (e) 3 5 )( 23    x xx xf (f) xxxxf  32)( 2 (g) xxxxf  32)( 2 (h) x x xf sen )(  (i) x exf )( (j) )1ln()( 2  xxf En cada caso, haga un gráfico de la función que represente los límites halla- dos.
  • 32. 28 LÍMITE EN UN PUNTO EJERCICIO 3: Calcule, según corresponda, los límites infinitos y los límites la- terales que permitan detectar asíntotas horizontales y/o verticales. Haga, en ca- da caso, un dibujo que refleje la información obtenida. (a) 3 1 )( x xf  (b) 3 12 )(    x x xf (c) 3 5 )( 2   x x xf (d) 2 3 )( x x xf   (e) x exf )( (f) x x exf 1 )(   (g) x exf  )( (h) xxf ln)(  (i) x xf        2 1 )( (j) 2 3 )1)(3( 52 )(    xx x xf (k) 2 1 1 )( x x xf    (l) 3 5 )( 23    x xx xf . EJERCICIO 4: Considere la curva .12  xy Halle la pendiente de la recta (a) que pasa por el )0,1( y el ))2(,2( y . (b) que pasa por el )0,1( y el )) 2 3 (, 2 3 ( y . (c) que pasa por el )0,1( y el ))1.1(,1.1( y . (d) que pasa por el )0,1( y el ))1(,1( hyh  en términos de h. (e) En (d) , si )(hm es el valor de la pendiente obtenida, calcule el )(lím 0 hm h . Interprete geométricamente. EJERCICIO 5: En cada una de las siguientes funciones calcule, además del lí- mite que se indica, los límites cuando x y cuando x . Represente gráficamente los límites obtenidos (a) 3 4 0 2 lím x x x    (b) 124 32 lím 2 3    x xx x (c) 3 2 2 3 124 32 lím            x x x xx (d) x xx x   11 lím 0 (e)             xx xx x x x 2 2 2 1 lím 2 22 2 (f) 2 22 lím 2    x x x
  • 33. 29 (g) 37 2 lím 2 2    x xx x (h) h h h 16)2( lím 4 0   (i) h h h 4 1)4( lím 1 0    (j) h h h 11 lím 0   (k) 3 12 12 13 lím            x x x x x (l) x x x 1 lím  (m) xx e x  lím (n) x e x x 1 0 lím    EJERCICIO 6: Sea RRf : una función tal que Rxxxfxx  ,)( 4 3 242 Calcule 20 )( lím x xf x . EJERCICIO 7: Calcule los siguientes límites (a)        x x x 1 senlím 2 0 (b) x x x cos lím  (c)        2)( 1 senlím 0 xf x x donde Rxxf  ,3)(2 LÍMITES ESPECIALES EJERCICIO 8: Calcule los siguientes límites (a) x x x 2 3sen lím 0 (b) x x x sen lím 0 (c) x x x 3sen 5sen lím 0 (d) x x x 2 tg lím 0 (e) 6 )6sen( lím 2 2 2    xx xx x (f) x x x cos1 lím 0   (g) h aah h )sen()sen( lím 0   (h) 20 cos1 lím x x x   (i) h aha h cos)cos( lím 0   (j) x xx x cos1 sen lím 0 
  • 34. 30 (k) xx xx x sen5 2sen43 lím 20    (l) xx xxxx x 4sen sensen2 lím 2 22 0   (m) )3sen( )sen( lím 1 x x x    (n) 2 cos lím 2   x x x (o) )(tg )cos(1 lím 21 x x x    (p) 1 )sen( lím 1  x x x  EJERCICIO 9: Calcule los siguientes límites (a) 3 12 2 43 13 lím            x x x x x (b) 3 12 2 3 5 1lím           x x x x (c)   t t t 1 0 31lím   (d)   x x x 1 0 sen1lím   (e) 2 1 2 25 23 lím            x x x x (f) 2 1 2 25 23 lím            x x x x (g)   x x x 1 0 coslím  (h) h h h 2ln)2ln( lím 0   (i) y y y )1ln( lím 0   (j) h eh h 1 lím 0   EJERCICIO 10: Marque la única respuesta correcta: (a) El          x x x x x 1sen sen lím 0  no existe  es igual a 1  es igual a 0  es infinito (b) El  x x x 1senlím   no existe  es igual a 1  es igual a 0  es infinito (c) El xx x coslím   no existe  es igual a 1  es igual a 0  es infinito (d) ¿Para qué valores de a el 2 11 lím 2 0    x axx x ?  ningún valor de a  para a=4  para a=0  para todo a
  • 35. 31 CONTINUIDAD DEFINICIÓN Y PROPIEDADES EJERCICIO 11: Determine los puntos de discontinuidad de las funciones dadas a continuación. Vea si en esos puntos la discontinuidad es evitable. (a)           12 1 1 1 )( 3 xsi xsi x x xf (b)          casootroen xxsi x x xf 0 7,2 7 32 )( (c) 1 1 )( 3    x x xf (d) )( sen )(   xx x xf (e) x x xf cos1 )( 2   EJERCICIO 12: En cada caso, determine el o los valores de la constante a pa- ra los cuales las funciones resulten continuas. (a)        2 2 )( 2 2 xsixa xsiaxx xf (b)        0 0 )( 1 xsia xsie xf x (c)         13 1)( 1 1 xsiax xsiexf x x (d)       axsix axsix xf 14 3 )( (e)              0 0 1 sen )( xsia xsi x x xf (f)           13 1 1 1 )( xsiax xsi x x xf
  • 36. 32 EJERCICIO 13: Muestre, con la ayuda de sucesiones, que la función        x xf 1 sen)( tiene una discontinuidad inevitable en x=0. EJERCICIO 14: Marque la única respuesta correcta Si f es continua en el punto x=a y f(a)>0. Entonces hay certeza de que  )()( afxf  para todo x en un entorno de a.  )( 2 1 )( afxf  para todo x en un entorno de a.  )()( afxf  para todo x en un entorno de a.  )(2)( afxf  para todo x en un entorno de a. TEOREMA DE LOS VALORES INTERMEDIOS EJERCICIO 15: Considere la función continua 13)( 3  xxxf (a) Muestre que la ecuación 0)( xf tiene al menos una solución en el intervalo (-1,1). (b) Encuentre un intervalo de longitud menor que 0,2 que contenga a tal solución. EJERCICIO 16: Considere las funciones hiperbólicas 2 cosh xx ee x    y 2 senh xx ee x    Pruebe que existe algún valor de x tal que 2 1 senhcosh  xx . EJERCICIO 17: Pruebe que las siguientes ecuaciones tienen alguna solución real. (a) xx cos12  (b) Nnxx n  ,01212 (c) xx 3ln  (d) 2,0 14  x x (e) xe x ln 2  (f) 236  xx
  • 37. 33 EJERCICIO 18: Adapte convenientemente el Teorema de Bolzano para probar que la ecuación 0 3 1 2 1 42       x x x x tiene alguna solución en el intervalo (-2,3). EJERCICIO 19: Para cada una de las siguientes funciones determine ceros y puntos de discontinuidad. A partir de ellos, use el Teorema de Bolzano para ha- llar el conjunto donde la función es positiva. (a) )2)(3()( 2  xxxxf (b) xxxf ln)(  (c) 1 4 )( 2    x x xf (d) x x xf cos2 sen )(   PROBLEMAS VARIOS PROBLEMA 1: Sea 1 2 )( 3 4   x x xf . Halle los valores de a y b para los cuales   0)()(lím   baxxf x PROBLEMA 2: Determine el valor de la constante a para la cual (a) 5 114 lím 2    x xax x (b) 2 1 11 lím 32 1     x axxaxx x PROBLEMA 3: Calcule el   xxx x 1 25lím   PROBLEMA 4: ¿Para qué valores de la constante a la siguiente función es continua?        03 02 )( 1 xsiax xsie xf x PROBLEMA 5: Pruebe que la función 6 10)ln(ln x tiene una raíz real en el in- tervalo ),( e . PROBLEMA 6: Encuentre cuatro intervalos disjuntos en cada uno de los cua- les la ecuación 0114142 24  xxx tenga una raíz real.
  • 38. 34 PROBLEMA 7: Pruebe que las siguientes ecuaciones tienen alguna solución real. (a) 70 sen1 133 22 50    xx x (b) 15sen15 2 cos       x x x PROBLEMA 8: Para recorrer 400 kilómetros en un automóvil tardamos 4 ho- ras, contando las eventuales paradas técnicas y sin llevar una velocidad cons- tante. Pruebe que hubo un lapso de una hora donde se recorrieron exacta- mente 100 kilómetros. (Ayuda: considere la función )()1()( tftftg  siendo )(tf los kilómetros re- corridos en t horas y use argumentos de continuidad) PROBLEMA 9: Dado un cuadrilátero convexo, pruebe que se puede trazar un segmento a partir de uno de los vértices, que divida al mismo en dos figuras de igual área. (Ayuda: use el Teorema de los Valores intermedios) PROBLEMA 10: Sea f una función continua sobre [0,1] y tal que 1)(0  xf para todo x del intervalo. Pruebe que debe existir un número )1,0(c tal que ccf )( (Ayuda: Considere la función xxfxD  )()( y use el Teorema de Bolzano) PROBLEMA 11: Sea na una sucesión de números positivos tal que 3)(lím   n n na (a) Halle el n n a  lím (b) Calcule el 2 )5sen( lím n n n na a  . Explique las propiedades y/o resultados que usa para obtener su respuesta. PROBLEMA 12: Halle algún valor del parámetro b de modo que la ecuación 0535  bxx tenga alguna solución en el intervalo [0,1/2].
  • 39. 35 PRÁCTICA 5 DERIVADA RECTA TANGENTE EJERCICIO 1: Considere la curva 12  xy . Halle la pendiente y la ecuación de la recta (a) que pasa por los puntos )0,1( y ))2(,2( y (b) que pasa por los puntos )0,1( y )) 2 3 (, 2 3 ( y (c) que pasa por los puntos )0,1( y ))1.1(,1.1( y (d) tangente a la curva por el punto )0,1( . Represente en un mismo gráfico las cuatro rectas y la curva. EJERCICIO 2: Justifique, por medio de los cocientes incrementales, las siguientes igualdades (a) 0 yconsty (b) aybaxy  (c) xyxy 22  (d) 23 3xyxy  (e) 2 11 x y x y   (f) x yxy 2 1  (g) xx eyey  (h) x yxy 1 ln  (i) xyxy cossen  (j) xyxy sencos  EJERCICIO 3: Halle, usando el cociente incremental, el valor de la derivada de las funciones siguientes en los puntos que se indican. Escriba la ecuación de la recta tangente en esos mismos puntos. (a) 3742  xenxxy (b) 5 1 2    xen x y (c) 1312  xenxy (d) 1ln  xenxxy (e) 035  xenxy (f) 4 2  xen x y
  • 40. 36 (g) 1 112 12        xen xsix xsix y (h)   0 00 01sen2         xen xsi xsi x x y EJERCICIO 4: Considere la curva 13  ty . (a) Describa el haz de rectas (excluida la vertical) que pasan por el punto de coordenadas ))1(,1( y . Haga un dibujo alusivo. (b) Calcule )1(y y escriba la ecuación de la recta tangente en el punto ))1(,1( y . Marque sobre el dibujo esta recta. EJERCICIO 5: ¿En qué punto de la gráfica de la función 86)( 2  xxxf , la rec- ta tangente es paralela al eje de las x? REGLAS DE DERIVACIÓN FUNCIÓN DERIVADA EJERCICIO 6: Usando las reglas de derivación, halle las derivadas de las siguien- tes funciones en su dominio de definición. (a) xxxxf sen)( 23  (b) xxxf cos)( 2  (c) xxf sen3)(  (d) xxxf ln)(  (e) x xxf 1 )( 5  (f) xexf x ln)(  (g) xexxxf x cossen)(  (h) x x xf sen )(  (i) xxf tg)(  (j) xxxxf ln)1)(2()( 2  (k) 1 ln )( 2   x xx xf (l) xxf alog)(  (m) xxx xf 321 )( 2  (n) xx xx xf cossen cossen )(    (ñ) xxxf ln)( 3 1  (o) ))(log(ln))(log(ln)( xaxxxf aa  (p) 2 cosh)( xx ee xxf    (q) 2 senh)( xx ee xxf   
  • 41. 37 EJERCICIO 7: Calcule por medio de la regla de la cadena, la función derivada de f siendo )(xf (a) 2 )1( x (b) 3 )1( x (c) 2001 )1( x (d) 3x e (e) 3 )1( x (f) )3cos( x (g) )3tg( 5 x (h) x4 sen3 (i) )1ln( x (j) )sen2ln( x (k) x esen 2 (l) )1(ln 22 x (m)     112 coscos3   xx (n) 22 2 xa a  (ñ) xx 2sen sen3  (o) x2 tg1 (p)   2 1 2 bxa  (q) )3ln()5ln( xx  (r) )1ln( )32( 2 23   x x (s) xx 22 cossen  (t) xx 22 senhcosh  (u)   2 1 4 )1ln( x (v)         2 cos 2 cos1 xx (w)  1ln 2 x EJERCICIO 8: Calcule la derivada de la función f en su dominio de definición, siendo )(xf (a) x x (b) 0,3  aax xx (c) x x ln3 )(sen (d) x x (e) x x cos )sen1(  (f) x x        1 1 EJERCICIO 9: Sean gf , y h unas funciones tales que )21()(;4)0(;))31(sen(sen)(;1)( 22 xgxhgxxgxxf  Calcule (a) )0()( gf  (b) )0()( fh 
  • 42. 38 EJERCICIO 10: Pruebe que la función kx Cey  es solución de la ecuación diferen- cial )()( xkyxy  donde k y C son constantes. FUNCIONES DERIVABLES Y NO DERIVABLES EJERCICIO 11: Para cada una de las siguientes funciones (a) haga un gráfico de ellas. (b) estudie la continuidad y, mediante el estudio del cociente incremental, la derivabilidad en el punto indicado. (i) 12)(  xxf en 2 1 x (ii) 3 1 )( xxg  en 0x (iii)       22 20 )( xsix xsi xh en 2x (iv)       113 11 )( 3 xsix xsix xr en 1x (v)              00 0 1 sen )( xsi xsi x x xs en 0x (vi)              00 0 1 sen )( 2 xsi xsi x x xt en 0x En las funciones que resulten derivables en los puntos indicados, escriba la ecua- ción de la recta tangente. EJERCICIO 12: Marque la única respuesta correcta. Sea RRf : la función de- finida como         00 0 2 sen )( 2,0 xsi xsi x xx xf . Entonces en x=0  f es continua pero no derivable.  f es continua y derivable.  f no es continua pero si es derivable.  f no es ni continua ni derivable.
  • 43. 39 DERIVADA DE LA FUNCIÓN INVERSA EJERCICIO 13: Sea xx exfRRf 23 5)(,:   (a) Muestre que 0)(  xf para todo x. Además note que 5)0( f (b) Use el Teorema de la función inversa para justificar la existencia de )5()( 1  f y calcular su valor. EJERCICIO 14: Pruebe, usando el Teorema de la función inversa, las siguientes fórmulas de las derivadas de las funciones inversas de las funciones trigono- métricas. En cada caso, analice la región donde es válida la fórmula (a) 2 1 1 arcsen x yxy   (b) 2 1 1 arccos x yxy    (c) 2 1 1 arctg x yxy   (d) 2 1 1 cot x yxarcy    EJERCICIO 15: Sea 1)(,),1[:  xxxfRf (a) Muestre que 0)(  xf para todo x>-1. Además note que 5)3( f (b) Use el Teorema de la función inversa para justificar la existencia de )5()( 1  f y calcular su valor EJERCICIO 16: Sea 2 senh)(,: xx ee xxfRRf    (a) Muestre que 0)(  xf para todo x. (b) Use el Teorema de la función inversa para justificar la existencia de )()( 1 xf  . Calcule )0()(senh)0()( 11   f .
  • 44. 40 ALGUNAS APLICACIONES (VELOCIDAD, RAZÓN DE CAMBIO, DIFERENCIAL) EJERCICIO 17: La ley de movimiento de un punto a lo largo de una recta es 2 3)( ttts  (en el instante t=0 el punto se encuentra en el origen). Halle la velocidad del movi- miento del punto para los instantes t=0 , t=1 y t=2. EJERCICIO 18: Un objeto circular va aumentando de tamaño con el tiempo, de modo que su radio r, en centímetros, viene dado por 23  tr siendo t el tiempo en minutos. (a) ¿Cuál es la velocidad de crecimiento del radio r? (b) ¿Cuál es la velocidad de variación del área? EJERCICIO 19: La temperatura C de un cuerpo, que inicialmente estaba a 90C se enfría de acuerdo a la ley t etC 1,0 7020)(   (se está suponiendo que la tempe- ratura ambiente es de 20C) donde t es el tiempo en minutos. (a) Calcule con qué velocidad se está enfriando el cuerpo a los 5 minutos. (b) Muestre que la velocidad de enfriamiento es proporcional a la diferencia entre la temperatura C y la temperatura ambiente. Más precisamente:  20)(1,0)(  tCtC . (c) Muestre que la velocidad de enfriamiento va tendiendo a 0 conforme avanza el tiempo. EJERCICIO 20: Cada arista de un cubo se dilata a razón de 1 cm por segundo. ¿Cuál es la razón de variación del volumen cuando la longitud de cada arista es de 10 cm? Si la razón de variación del volumen es igual segcm /108 3 , ¿cuál es la longitud de la arista? EJERCICIO 21: Un barco navega paralelamente a una costa recta, a una velo- cidad de 12 millas por hora y a una distancia de 4 millas. ¿Cuál es la velocidad de aproximación a un faro de la costa en el instante en que diste precisamente 5 mi- llas del faro?
  • 45. 41 EJERCICIO 22: Para x xy 1  , halle (a) y ( )()( xyhxyy  ) (b) dy ( hxdxdxxydy  ,)( ) (c) dyy  (d) x dyy   (e) dx dy EJERCICIO 23: Mediante diferenciales calcule aproximadamente (a) 3 25 (b) )12,1ln( (c) )5,0cos( DERIVADAS SUCESIVAS EJERCICIO 24: Calcule las siguientes derivadas (a) )0(,)(,sen)( )70()( fxfxxf v  (b) )0(,)(,)( )2001()19( fxfexf x  (c) )(,)( )20( xfexf kx  (d) )(,)1ln()( )4( xfxxf  (e) )2(,)(,)(,85)( )800()(3 fxfxfxxxf iv  EJERCICIO 25: Muestre que las funciones xsen y xcos son soluciones de la si- guiente ecuación 0)()(  xyxy Pruebe que xBxAxy sencos)(  también es solución de la ecuación. EJERCICIO 26: Considere la función n xxf )1()(  , con n natural. Calcule )0()(k f para todo valor de k.
  • 46. 42 PROBLEMAS VARIOS PROBLEMA 1: Para cada una de las funciones dadas a continuación (a) Determine si es continua y/o derivable en los puntos indicados. (b) En los casos que resulte derivable estudie la continuidad de la función derivada. (c) En los casos en que resulte derivable, escriba la ecuación de la recta tangente. (i)        0 01 )( xsie xsix xf x en x=0 (ii)       332 3 )( 2 xsix xsix xg en x=3 (iii)                10 1 1 1 cos)1( )( 2 3 xsi xsi x x xh en x=1 (iv)        0sen 0)1ln( )( 2 5 xsixx xsixx xr en x=0 (v)       112 11 )( 2 xsix xsix xs en x=1 PROBLEMA 2: Dadas las siguientes funciones, escriba en cada caso, la ecuación de la recta tangente en los puntos que se indican: (a)        4 sen)( 2  xxf en 4 0   xenyx (b) 1)(  xxxxf en 0x (c)   x xxf sen2 1)(  en  xenyx 0 PROBLEMA 3: Pruebe que la función xxxf )( es derivable para todo x, que f´(x) es continua pero que no existe f´´(0). PROBLEMA 4: Pruebe que la curva tty ln no tiene ninguna recta tangente que pase por el origen.
  • 47. 43 PROBLEMA 5: Halle, si existen, la o las ecuaciones de las rectas tangentes a la curva t ty 1  que pasen por el punto (a) (1,0) (b) (0,0) (c) (0,4) PROBLEMA 6: Halle, si existen, la o las ecuaciones de las rectas tangentes a la curva t ty 1  que tengan pendiente igual a –3. PROBLEMA 7: La recta tangente de la función f en el punto de abscisa x=-1 tiene ecuación 35  xy . Calcule la ecuación de la recta tangente a la función ))sen(()( 2 xxfxg  en el punto de abscisa x=1. PROBLEMA 8: Considere la función         5 5 1 )( 2 xsibxa xsi xxf . Halle los valores de a y b para los cuales existe )5('f . PROBLEMA 9: Considere la función         0 0 )( 1 xsibax xsixe xf x . Halle los valores de a y b para que f resulte derivable. PROBLEMA 10: Sea RRg : una función continua en x=0 pero no necesaria- mente derivable. Pruebe que la función xxgxf 3sen)()(  es derivable en x=0. PROBLEMA 11: Suponga que se introduce un gas en un globo esférico a la razón constante de 3 50 cm por segundo. Suponga que la presión del gas permanece constante y que el globo tiene siempre forma esférica. ¿Cuál es la rapidez con que aumenta el radio del globo cuando su longitud es de 5 cm? (Vol. globo = 3 3 4 rr ). PROBLEMA 12: Cierta población crece de acuerdo a la ecuación t ey 1,0 2,01 , donde t es el tiempo medido en meses e y es el número de individuos en miles. Calcule la velocidad de crecimiento de la población después de un año.
  • 48. 44 PRÁCTICA 6 TEOREMA DEL VALOR MEDIO TEOREMAS DE FERMAT, ROLLE Y LAGRANGE EJERCICIO 1: La función 3 2 )( xxf  tiene en x=0 un mínimo. ¿Qué puede de- cir sobre la aplicabilidad del Teorema de Fermat? EJERCICIO 2: Considere la función f del ejercicio anterior definida en el in- tervalo [-1,1]. Esta función es continua sobre este intervalo y f(-1)=f(1). Sin em- bargo, su derivada no se anula nunca. ¿Por qué esto no contradice el Teorema de Rolle? EJERCICIO 3: Considere la parábola xxy 22  y cualquier intervalo cerrado, por ejemplo el [-1,3]. Compruebe que el valor )3,1(c al que hace referencia el Teorema del Valor Medio es calculable en este caso. Haga un gráfico que ilustre la situación. Compruebe que si el intervalo es el [a,b] el valor intermedio c es calculable en términos de a y de b. EJERCICIO 4: Desde el piso se arroja un proyectil hacia arriba y, después de unos minutos, cae al piso. Pruebe que en algún momento la velocidad del pro- yectil fue nula. EJERCICIO 5: Un automóvil pasa por dos controles camineros separados en- tre sí 10 km. Por el primero pasa a las 12:00 y por el segundo a las 12:04. La velocidad máxima permitida en esa región es de 120 km/h. ¿Hubo infracción al tope de velocidad? EJERCICIO 6: Pruebe que para cada x>0 existe  entre 0 y x que satisface cossen xx  CONSECUENCIAS DEL TEOREMA DEL VALOR MEDIO EJERCICIO 7: Pruebe que si dos funciones f y g tienen la misma función deri- vada entonces f(x) = g(x) + c donde c es una constante.
  • 49. 45 EJERCICIO 8: Pruebe las siguientes identidades (a) 2 2cos1 sen2 x x   (b) 2 arccosarcsen   xx (c)         2 1 2 arctgarctg2 x x x (Ayuda: use el ejercicio anterior) EJERCICIO 9: Pruebe que las únicas soluciones de la ecuación )()( xyxy  son de la forma x kexy )( .(Ayuda: Si )(xu es una solución de la ecuación estudie la derivada de x e xu xh )( )(  ) EJERCICIO 10: Para las siguientes funciones (a) Pruebe que son estrictamente monótonas en el conjunto indicado. (b) Indique en cada caso, si es creciente o decreciente. (c) Determine, si es posible, cuántas veces corta el gráfico el eje x. (i) ( ) 3 sen2 ,f x x x x R    (ii) 1,ln)(   xxexf x (iii) 0,ln)(  xxxxf (iv) 2 1 3 ( ) 1 ,n f x x x x x R      , n natural. (v) 1,ln)(  xxxxf (vi) 0,2 1 1 )(    x x xf (vii) 0,3 2 1 )( 2    x x xf (viii)        2 ,0 sen )(  x x x xf EJERCICIO 11: Pruebe las siguientes desigualdades. Para ello estudie el signo de la derivada de una función conveniente. (a) 0,sen  xxx (b) xex 1
  • 50. 46 (c) 0,)1ln(  xxx (d) 1, 1 1ln  x x x (e) 2 0, 2 sen    xxx (f) 0arctg  xxx (g) 1,0,1)1(  axaxx a EJERCICIO 12: Considere la función 0)0(0 1 sen)( 2        fxsi x xxxf (a) Muestre que 1)0( f (estudie el cociente incremental) (b) Muestre que en cualquier intervalo que contenga al 0, hay valores ne- gativos y valores positivos de la función. (c) Determine la validez de las siguientes afirmaciones: 1. si una función g tiene derivada en x=0 y 0)0( g entonces g es creciente en un intervalo abierto que contiene al cero. 2. si una función g tiene derivada continua en x=0 y 0)0( g en- tonces g es creciente en un intervalo abierto que contiene al cero. REGLA DE L’HOSPITAL EJERCICIO 13: Considere las funciones 1)( 3  xxf y 1)( 2  xxg definidas en cualquier intervalo [a,b]. Muestre que el valor de  donde se cumple el Teo- rema de Cauchy es calculable en términos de a y de b. EJERCICIO 14: Sea R(x) una función con 3 derivadas continuas en x=0 y tal que (0) (0) "(0) 0R R R   . Pruebe que 3 ( ) ( ) 3! R x R c x   para algún c entre 0 y x. (Use el Teorema de Cauchy tres veces) EJERCICIO 15: Calcule los siguientes límites (a) x x x )1ln( lím 0   (b) xx xee xx x sen 2 lím 0     (c) x x x 2 ln lím  (d) ) 2 tg( ln lím 0   x x x (e) x x xe  lím (f) )1)((lnlím 0   x x ex
  • 51. 47 (g) x x xsen 0 lím  (h) xx x lnlím 2 1 0  EJERCICIO 16: Continúe con estos límites (a) 1 1 1 lim ln 1x x x       (b) 1 ln 1 lim x x x  (c) 1 lim(ln )(ln(1 )) x x x   (d)   1 2 0 lim x x x x e   (e) ln lim k x x x , k natural (f) 0 lim(1 2 )x senx x    (g) 0 lim ln ,n x x x n natural  (h) lim ,n x x x e n natural  EJERCICIO 17: Sea R(x) una función con 10 derivadas continuas en x=0 y tal que ( ) (10) (0) 0 , 0 9 , (0) 1k R k R    . Calcule el 100 ( ) lim x R x x EJERCICIO 18: Explique por qué no es correcta la siguiente aplicación de la Regla de L’Hospital: 3 2 2 21 1 1 1 3 2 1 6 2 lim lim lim 4 1 2 2x x x x x x x x x x x             EJERCICIO 19: Muestre por qué no se puede utilizar la Regla de L’Hospital pa- ra calcular el límite indicado en cada caso y encuentre el límite por otros me- dios. (a) lim x x senx x  (b) lim x x xx e e e  (c) 1 0 lim x x e x   EJERCICIO 20: Justifique las siguientes afirmaciones (a) No existe el 0 2 sin(1/ ) cos(1/ ) lim cosx x x x x  . (b) 2 0 sin(1/ ) lim 0 sinx x x x  . (c) sin lim 1 cosx x x x x    .
  • 52. 48 EJERCICIO 21: Considere la función 3 2 ln 0 ( ) 0 0 x x si x f x si x      . Marque la única afirmación correcta.  f no es continua ni derivable en x=0.  f es continua pero no derivable en x=0.  f es derivable pero no es continua en x=0.  f es continua y derivable en x=0. EJERCICIO 22: Considere la función 3 3cos 0 ( ) 6 0 ax x si x f x x si x        Determine el valor de a para que f resulte continua. Para el valor de a hallado calcule, si existe (0)f  . PROBLEMAS VARIOS PROBLEMA1: Considere la función 2 (1 cos ) 0 ( ) 1 0 0 x bx a x si x f x e si x         . Encuen- tre los valores de a y de b para que f resulte derivable en x=0 y además sea (0) 3f    PROBLEMA 2: Sea :f R R una función con dos derivadas continuas tal que 5 (0) 2 , (0) , (0) 5 6 f f f    . Se define :g R R como (6 ) 2 0 ( ) 5 1 0 f x si x g x x si x       Calcule, explicando las propiedades que usa en cada caso: (a) 0 lim ( ) x g x  (b) (0)g PROBLEMA 3: Considere la función :[0, )f R  definida por  5 cos(2 ) 2 ( ) 3 8 ln (4 1)x x f x x x      Pruebe que ( ) 1 0f x x   .
  • 53. 49 PROBLEMA 4: Considere ( ) 4 3ln 2 0f x x x x     . (a) Pruebe que f es monótona. (b) Justifique la existencia de la función inversa 1 ( )f x . Calcule  1 (2)f   (Observe que (1) 2f  ) PROBLEMA 5: ¿Para qué valores reales de p es el 21 1 lim 3 ( 1) p x x px p x      ? PROBLEMA 6: Sea f una función continua y derivable tal que ( 2) (5) 0f f   . Pruebe que existe un ( 2,5)c   tal que ( ) 200 ( )f c f c  (Ayuda: considere 200 ( ) ( )x g x e f x  ) PROBLEMA 7: Sea :[0, )h R  una función estrictamente creciente. Prue- be que ( ) 5 2 3 sin 0h x x x x     . PROBLEMA 8: Considere la función :f R R definida como 4 5 ( ) 2x f x e x   (a) Pruebe que es biyectiva y que 1 (3) 0f   . (b) Calcule 1 3 ( ) lim 2 6y f y y    PROBLEMA 9: Pruebe la siguiente desigualdad 6 4 2 3 12 6 , 1x x x x x      PROBLEMA 10: Considere la función 32 33)( x exxf   . Pruebe que existe ]5.0,4.0[c tal que 0)(  cf . Decida si en c la función alcanza un máximo o un mínimo relativo.
  • 54. 50 PRÁCTICA 7 ESTUDIO DE FUNCIONES CRECIMIENTO Y DECRECIMIENTO EJERCICIO 1: Pruebe que las siguientes funciones son monótonas en el con- junto indicado. Indique en cada caso, si son crecientes o decrecientes. (a) 7 5 ( ) 7 4 ,f x x x x en R   (b) 1 3 ( ) 2 ,f x x en R  (c) 1 ( ) , 0x f x e en x    (d) 1 2 3 3 ( ) 3 2 ,f x x x x en R   (e) 3 2 ( ) 3 3 ,f x x x x en R    EJERCICIO 2: Encuentre los intervalos de crecimiento y de decrecimiento de las siguientes funciones (a) ( ) lnf x x (b) 2 ( 1) ( ) x f x e   (c) ( ) x f x xe (d) 2 ( ) x f x x e  (e) ( ) sin , [ ,6 ]f x x x     (f) ( ) lnf x x x (g) 1 ( ) 2 3 x f x x    (h) 2 ( ) 1 x f x x   (i) 2 ( ) 1 x f x x   (j) 2 ( ) lnf x x x EJERCICIO 3: Aníbal realiza un régimen de comidas para adelgazar. Ha podi- do establecer que la cantidad de kilos que adelgaza está en función del tiempo durante el cual hace régimen según la siguiente fórmula: 24 ( ) 6 , 0 3 1 t t e k t t e     (a) Pruebe que cuánto más tiempo persista, más adelgazará. (b) Pruebe que con este régimen no podrá adelgazar más de 2 kilos.
  • 55. 51 EXTREMOS LOCALES EJERCICIO 4: Decida si las siguientes funciones alcanzan un extremo local en x=0. (a) 3 ( ) sinf x x (b) 2 ( ) 2 sinf x x x  (c) 2 ( ) cosf x x (d) 8 ( ) 3f x x  EJERCICIO 5: Estudie, utilizando únicamente la primera derivada, la existencia de extremos de las siguientes funciones. (a) 4 ( )f x x (b) 4 2 ( ) 2f x x x  (c) ( ) x f x xe  (d) 2 3 ( ) 3 2f x x x  (e) ( ) lnf x x x (f) 2 ( ) lnf x x x (g) 2 ( ) x f x x e  (h) 2 ( ) 1 x f x x   (i) ( ) lnf x x x (j) 2 ( ) 1 x f x x   (k) 2 10 ( ) , [0,2 ] 1 sin f x en x   (l) 2 2 100 ( ) 25 x f x x    (m) ( ) 4f x x x  (n) ln ( ) x x f x x (o) 2 2 ( ) (2 )f x x x  (p) 2 3 ( ) (1 )f x x x  (q) 2 2 2 2 , 2 ( ) , 2 x x si x f x x si x        (r) 2 2 , 1 ( ) ( 2) , 1 x si x f x x si x       EJERCICIO 6: Determine el valor de k R tal que la función 2 ( ) 1 x k f x x    al- cance un extremo local en x=2. ¿Es un máximo o un mínimo local? ¿Es abso- luto? EJERCICIO 7: De la función RRf : derivable en todo su dominio, se sabe que su derivada se anula en 0, 2 1 ,1  y 2 3 . Además se tiene que (i) ) 2 3 ,0()1,(}0)(/{  xfRx (ii) ), 2 3 ()0, 2 1 () 2 1 ,1(}0)(/{  xfRx Encuentre los máximos y los mínimos locales.
  • 56. 52 ASÍNTOTAS EJERCICIO 8: Encuentre, si las hay, las ecuaciones de las asíntotas verticales, horizontales y oblicuas (tanto para x  como para x   ) de las siguien- tes funciones. Localice en un dibujo, la posición del gráfico de la función con respecto a las asíntotas halladas. (a) 2 3 1 ( ) 1 x x f x x     (b) ( ) sinx f x x e x  (c) 2 3 2 ( ) ( 1)( 1) x x f x x x      (d) 1 ( ) x f x xe (e) 1 ( ) lnf x x e x        (f) 2 ( ) 2 1f x x x   (g) sin ( ) x f x x  (h) 3 2 2 3 4 ( ) x x f x x    EJERCICIO 9: Pruebe que la recta 2 3 y x   es la única asíntota de la función   1 2 3 3 ( ) 2f x x x  EJERCICIO 10: Encuentre los valores de a y b tales que la recta 2 7y x  re- sulte una asíntota oblicua de 3 2 2 1 ( ) 5 ax bx f x x     para x   CONCAVIDAD Y CONVEXIDAD EJERCICIO 11: Determine los intervalos de concavidad y convexidad y localice los puntos de inflexión de las siguientes funciones (a) 123)( 234  xxxxf (b) 2 ( ) 1 x f x x   (c) 2 ( ) x f x e  (d) ( ) x f x xe  (e)   1 2 3 3 ( ) 2 , 0f x ax x a fijo   (f) 2 ( ) lnf x x x EJERCICIO 12: Considere la función 2 ( ) , 0 x f x a x a    . Pruebe que f alcanza dos extremos locales y tiene tres puntos de inflexión. Muestre que las abscisas de estos cinco puntos sobre el eje de las x son equidistantes. ¿Dónde es cóncava?
  • 57. 53 CONSTRUCCIÓN DE CURVAS EJERCICIO 13: Para cada una de las siguientes funciones: (a) Halle el dominio de f y de su función derivada f’. (b) Determine los intervalos de crecimiento y de decrecimiento. (c) Halle los extremos locales. Determine cuáles de ellos son absolutos. (d) Escriba la ecuación de las asíntotas. (e) Determine, si la cuenta lo permite, los intervalos de concavidad. (f) Halle los puntos de inflexión. (g) Con la información obtenida, construya un gráfico aproximado. 1. 2 3 ( ) (1 )f x x x  2. 2 ( ) sinf x x 3. 5 ( ) 5 2f x x x   4. 2 ( ) (1 2 ) x f x x x e   5. 2 3 ( ) ( 1) x f x x    6. ( ) 2 5ln( 2)f x x x    7. 2 3 ( ) 3( 5)f x x x   8. 3 ( ) lnf x x x 9. 2 ( ) lnf x x x 10. 3 8 0 ( ) 1 3 0 x si x f x x x x si x        11. 3 11 ( ) ( 3)( 1) x f x x x     12. 2 ( ) x f x xe  13. 2 ( ) ln( 1)f x x  14. 4 5 ( ) 4 5f x x x  15. 3 2 ( ) ( 1) x f x x   16. 1 ( ) x f x xe
  • 58. 54 EJERCICIO 14: Sea :[0,4]f R continua y derivable, tal que el gráfico de la función derivada ( )y f x es el que se ve en la figura (a) Determine los intervalos de crecimiento y de decrecimiento de f. (b) Determine extremos locales y puntos de inflexión. (c) Si (0) 1f  , haga un gráfico aproximado de ( )y f x . EJERCICIO 15: Dibuje, si es posible, el gráfico de una función :f R R que satisfaga las siguientes condiciones. 1. Es continua en R. 2. No es derivable en x=3. 3. (2) 3 , ( 2) 5f f   4. lim ( ) 2 , lim ( ) x x f x f x      5. ( ) 0 3 ,f x si x f   es decreciente en ( ,2) CANTIDAD DE SOLUCIONES DE UNA ECUACIÓN EJERCICIO 16: Determine la cantidad de soluciones que tienen las siguientes ecuaciones (a) 0123 57  xxx (b) 1x e x  1 2 3 40 y = f´(x)
  • 59. 55 (c) 2 1 5 x xe  (d) 4 5 4 5 2x x  (e) 3 2 7 ( 1) x x   (f) 1 1x xe  (g) 3 8 0 ( ) 2 ( ) 1 3 0 x si x f x siendo f x x x x si x         CONTINUIDAD EN INTERVALOS CERRADOS EJERCICIO 17: Para cada una de las siguientes funciones indique si está aco- tada superiormente y/o inferiormente. Decida si alcanza su máximo y/o su míni- mo. (a) ]3,1[,13)(  xxa (b) ]1,1[,1)( 2  xxf (c) ]5,2[, 1 1 )(   x xg (d) 1,]2,0[, 1 1 )(    x x xh (e) )4,3[,)( 2  xxi (f) ]2,0(, ln )( x x xj  (g) ),(, 1 1 )( 2    x xk (h) ],0[,)2sen()( xxt  EJERCICIO 18: Considere las siguientes afirmaciones. I. Una función continua en [a,b] siempre está acotada. II. Una función continua en (a,b] siempre alcanza su máximo. III. Una función continua en [a,b] siempre alcanza su minimo. IV. Una función continua en (a,b) nunca está acotada. Marque la única respuesta correcta  Todas las afirmaciones son verdaderas.  I. y III. son verdaderas, II. y IV. son falsas.
  • 60. 56  Sólo I. es verdadera.  Todas las afirmaciones son falsas. PROBLEMAS DE OPTIMIZACIÓN PROBLEMA 1: Se quiere ahorrar el máximo de material al hacer un tanque recto de base cuadrada y sin tapa, de manera tal que el volumen sea de 3 32 m . Halle las dimensiones del tanque. Haga lo mismo pero ahora con tapa. PROBLEMA 2: Con una lámina cuadrada de un metro se quiere construir una caja sin tapa. Para ello se recortan unos cuadrados de los vértices. Calcule el lado del cuadrado recortado para que el volumen de la caja sea máximo. Si la altura de la caja no puede pasar de 20 cm, ¿cuál es la medida del lado del cua- drado que debemos recortar? PROBLEMA 3: En la fabricación de latas de conserva, se quiere minimizar el uso de hojalata. Supuesto que se ha prefijado el volumen V, halle la relación entre el diámetro D de la base y la altura H de la lata que producen el menor gasto de hojalata. PROBLEMA 4: Determine las dimensiones de un rectángulo de área 169 2 cm que tengan la diagonal de menor longitud. PROBLEMA 5: Por el punto (2,1) pasan rectas que determinan triángulos al cortarse con los semiejes positivos. Entre estas rectas, halle la que genera un triángulo de área mínima. PROBLEMA 6: Entre todos los triángulos inscriptos en una semicircunferencia de 10 cm de diámetro, halle el de área máxima. PROBLEMA 7: Entre todos los triángulos isósceles de perímetro 30, halle el de área mínima. PROBLEMA 8: Pruebe que entre todos los números positivos x e y que satis- facen 222 ryx  , la suma es máxima cuando x = y. PROBLEMA 9: Si de un disco metálico de radio R quitamos un sector circular podemos construir en vaso cónico. Determine el sector circular que debemos quitar para que el volumen del vaso sea máximo.
  • 61. 57 PROBLEMA 10: ¿Cuál de los puntos de la recta de ecuación 1 byax está más cerca del origen? PROBLEMA 11: Una carretera que corre de Norte a Sur y otra que lo hace de Este a Oeste se cortan en el punto P. Un ciclista que se dirige al Este con una velocidad de 20 km/h pasa por P a las 11 de la mañana. En el mismo momento otro ciclista que viaja hacia el Sur con una velocidad de 40 km/h se encuentra a 20 km al norte de P. Calcule cuándo se encuentran los dos ciclistas más cerca el uno del otro. PROBLEMA 12: Un triángulo isósceles pero no equilátero tiene su lado desi- gual de longitud 12 cm y la altura sobre dicho lado es de 5 cm. Determine los puntos sobre esa altura tales que la suma de sus distancias a los tres vértices sea máxima y mínima respectivamente. PROBLEMA 13: Considere el recinto determinado por la gráfica de xy  , el eje de las x y las rectas de ecuación x = 0 , x = a (a fijo). Inscriba allí un rectángulo de área máxima. ¿Hay alguno de área mínima? PROBLEMA 14: Una compañía de bienes raíces es dueña de 180 departa- mentos que se alquilan en su totalidad cuando el alquiler es de 310 pesos men- suales. La compañía calcula que por cada 10 pesos de aumento en el alquiler se desocupan 5 departamentos. El gasto que le ocasiona a la compañía cada departamento desocupado es de 30 pesos mensuales, mientras que por cada departamento ocupado el gasto es de 20 pesos mensuales. ¿Cuál es el precio del alquiler por departamento con el que la compañía obtendría la mayor ga- nancia? PROBLEMA 15: Considere la curva   xxey x 0, . De entre todos los triángulos de vértices ),()0,(,)0,0( yxyx encuentre el de área máxima. PROBLEMAS VARIOS PROBLEMA 16: Considere la ecuación 2 lnx x k con k real. (a) ¿Cuántas soluciones tiene si 1 6 k   ? (b) ¿Para qué valores de k hay una sola solución? PROBLEMA 17: Determine el mayor valor de k para que la desigualdad 2 lnx x k sea verdadera para todo x > 0.
  • 62. 58 PROBLEMA 18: Considere las funciones ( ) x f x e y ( ) lng x x . Pruebe que existe un único c > 0 donde los gráficos de ambas funciones tienen rectas tangentes paralelas en el punto de abscisa x=c. Determine un intervalo de longitud menor que 1 que contenga a c. PROBLEMA 19: Halle todos los valores reales de b para los cuales la ecuación 3 3 0x x b   tiene una sola solución. PROBLEMA 20: Pruebe la siguiente desigualdad 2 8 1 9 , 0 20 x xe x    PROBLEMA 21: Considere el arco de parábola definido por  52,)2(3/),( 22  xxyRyx . y el punto )0,5(P . Se traza desde P una recta que interseca a la curva en el punto Q. Halle las coordenadas de Q para que el triángulo rectángulo limitado por dicha recta, el eje de las x y la recta vertical que pasa por Q tenga área máxima. PROBLEMA 22: Una función f satisface la siguiente ecuación diferencial   Rxexfxxfx x   ,1)(3)( 2 (a) Pruebe que si f tiene un extremo en 00 x entonces es un mínimo. (b) ¿Qué pasa si 00 x es un punto crítico? PROBLEMA 23: Considere la función ) 2 1 7()( 212   xxexf x . Encuentre todos los puntos para los cuales la pendiente de la recta tangente a la curva )(xfy  resulte mínima. PROBLEMA 24: Para cada Nn considere la función xxxf n n  1 )( . Sea ]1,0[nx el punto donde f alcanza su máximo absoluto en el intervalo [0,1]. Cal- cule, si existe, n n xlim  y )( nn n xflim  . PROBLEMA 25: Considere la función 1 2 )(   x x exf . Haga un gráfico aproximado señalando su dominio, intervalos de crecimiento y de decrecimiento, máximos y mínimos locales y asíntotas. Determine los valores de c para los cuales la ecuación cxf )( tiene una única solución.
  • 63. 59 PROBLEMA 26: De la función f se sabe que su derivada x exxxf sen22 )1()(  (a) Encuentre los extremos locales de f. (b) ¿Cuál es la cantidad máxima de ceros que puede tener f? (c) Si se define )1()( 2  xfxh , encuentre los extremos locales de h. PROBLEMA 27: Halle todos los Ra tales que 0ln2  xax tenga exacta- mente dos soluciones. PROBLEMA 28: Pruebe que 01ln xxn cualquiera sea el Nn . PROBLEMA 29: Se dispone de un alambre de un metro de largo para construir un cuadrado y un aro. ¿Dónde se debe cortar el alambre para que la suma de las áreas de las dos figuras sea (a) máxima? (b) mínima? PROBLEMA 30: Para cada )1,0[x , la recta tangente a la curva xy  1 for- ma con los ejes coordenados un triángulo. Halle el de menor área. ¿Existe un triángulo de área máxima? PROBLEMA 31: Un bañista que se encuentra nadando a 60 metros de una costa recta pide auxilio al guardavidas que se encuentra en la orilla a 100 me- tros del bañista. El guardavidas en tierra corre a una velocidad de 3,2 metros por segundo y en el agua nada a 1,1 metros por segundo. ¿En qué punto de la playa le conviene arrojarse al agua para llegar al bañista en el menor tiempo posible? ¿Cuánto más tarda si se arroja directamente al agua? ¿Y si corre por la costa hasta quedar enfrente del bañista? PROBLEMA 32: Pruebe que 3 1 ,3)3(ln2  xsixx PROBLEMA 33: Considere la función polinómica 13)( 23  xxxf . Encuentre dos intervalos cerrados sin puntos en común tales que f tenga una única raíz en cada uno de ellos. PROBLEMA 34: La lata de una gaseosa tiene una capacidad de 354 3 cm . Si el costo del material de la tapa es el doble que el del resto de la lata, ¿cómo de- ben ser las dimensiones de la lata para que el costo del material sea mínimo? (Suponga que la lata es un cilindro).
  • 64. 60 PRÁCTICA 8 TEOREMA DE TAYLOR POLINOMIO DE TAYLOR EJERCICIO 1: Considere la función )1ln()(  xxf . Encuentre un polinomio P(x) de grado 3 tal que )0()0(,)0()0(,)0()0(,)0()0( fPfPfPfP  . EJERCICIO 2: Calcule el polinomio de Taylor de las siguientes funciones, hasta el orden indicado alrededor de 0x (a) x xf   1 1 )( orden 5 00 x (b) xxf sen)(  orden 4 00 x (c) xxf sen)(  orden 5 00 x (d) xxf cos)(  orden 5 00 x (e) xxf ln)(  orden 4 10 x (f) xxf )( orden 3 40 x (g) x exf )( orden 10 00 x (h) 6 )1()( xxf  orden 6 00 x EJERCICIO 3: Compruebe que el polinomio de Taylor de orden n de la función x exf )( es ! ... !3!2!1 1)( 32 n xxxx xP n  EJERCICIO 4: Obtenga el polinomio de Taylor de orden n de las siguientes funcio- nes alrededor de x=0. (a) x xf   1 1 )( (e) 2 1 1 )( x xf   (b) xxf cos)(  (f) xxf cosh)(  (c) xxf sen)(  (g) xxf arctg)(  (d) x exf  )( (h) )1ln()( xxf 
  • 65. 61 EJERCICIO 5: Considere el polinomio 2348)( 234  xxxxxq (a) Halle los polinomios de Taylor de q en x=0 de órdenes 0 a 6. (b) Haga lo mismo, sin hacer cálculos, para 1)( 231920  xxxxxxq . EJERCICIO 6: Considere el polinomio n xxp )1()(  , con n natural. (a) Obtenga el polinomio de orden n en x=0. (b) A partir de (a) , deduzca la fórmula del binomio de Newton   kkn n k nnnnn ba k n ba n n ba n ba n ba n ba                                    0 022110 ... 210 donde !)!( ! kkn n k n        . (Ayuda:   n nn a b aba        1 ). EJERCICIO 7: Si el polinomio de Taylor de f de orden 5 en x=2 es 8)2(3)2(3)2()( 245  xxxxP calcule (a) )2()2( )3()4( fyf . (b) ¿Puede conocer el valor de )2()6( f ? (c) ¿Cuánto vale )2()6( f si el polinomio es de orden 7? EJERCICIO 8: Si el polinomio de Taylor de f de orden 2 en x=5 es 2 )5(9)5(3)(  xxxP (a) Halle el polinomio de Taylor de orden 2 en x=1 de )5(4 2 )( xf xg   (b) Halle el polinomio de Taylor de orden 2 en x=5 de )()1()( 2 xfxxh  EJERCICIO 9: Los polinomios de Taylor de orden 4 en x=2 de las funciones f y g son, respectivamente 4232 )2(7)2()2(125)()2()2(3)2(32)(  xxxxQyxxxxP Halle el polinomio de Taylor de orden 2 de )()()( xgxfxt  y )( )( )( xg xf xs  en x=2.
  • 66. 62 EXPRESIÓN DEL RESTO EJERCICIO 10: Considere la función del primer ejercicio, )1ln()(  xxf y sea P(x) el polinomio de Taylor de orden 3 en x=0. Apelando al Teorema generalizado del Valor Medio (Teorema de Cauchy) compruebe que )( )()( )4( 4 cf x xPxf   para al- gún valor c entre 0 y x. EJERCICIO 11: Encuentre la expresión del resto en cada caso (a) )( !4!3!2 1 4 432 xR xxx xex  (b) )(1 1 1 5 5432 xRxxxxx x   (c) )( !5!3 sen 5 53 xR xx xx  (d) )( !5!3 sen 6 53 xR xx xx  (e) )()1( 3 1 )1( 2 1 )1(ln 3 32 xRxxxx  (f) )( 753 arctg 8 753 xR xxx xx  EJERCICIO 12: Considere la función xxf cos)(  . (a) Obtenga el polinomio )(4 xP de Taylor de orden 4 en x=0. (b) Escriba la expresión de ) 2 1 (4R (c) Usando la calculadora encuentre el valor de ) 2 1 () 2 1 ( 4Pf  . (d) Teniendo en cuenta que 1sen c , pruebe que 0003,0 !52 1 ) 2 1 ( 54 R . Compare con (c).
  • 67. 63 PROBLEMAS DE APROXIMACIÓN EJERCICIO 13: Se quiere aproximar 3 1 e (a) Utilizando el polinomio de Taylor de orden 5 en x=0, pruebe que el error cometido es menor que 174960 1 . (b) ¿De qué grado hay que tomar el polinomio de Taylor para que el error que se cometa al usar dicho polinomio sea menor que 8 10 ? (Ayuda: para las estimaciones, use que e es menor que 3). EJERCICIO 14: Utilice el polinomio de Taylor de orden 4 en x=0 para aproximar el valor de )25,0sen( y dar una cota para el error que se ha cometido al tomar esa aproximación. EJERCICIO 15: Considere la función xxxf ln)(  . (a) Halle el polinomio P de orden 3 de f en x=1. Escriba la expresión del res- to. (b) Estime, acotando el resto, el error que se comete al calcular )5,1(f por medio de )5,1(P EJERCICIO 16: ¿Cuántos términos es suficiente tomar en el desarrollo de Taylor en x=0 de x exf )( para obtener un polinomio que aproxime a dicha función en to- do el intervalo [-1,1] con un error menor que 4 10 ? Use el polinomio hallado para hallar las tres primeras cifras decimales del número e? EJERCICIO 17: Considere la función )1ln()( xxf  . ¿De qué grado hay que to- mar el polinomio de Taylor en x=0 para poder calcular )5,1ln( con un error menor que 0,001? EJERCICIO 18: ¿Para qué valores de x la diferencia entre (a) xcos y !4!2 1 42 xx  es menor que 5 105   ? (b) xsen y x es menor que 3 10 ?
  • 68. 64 PROBLEMAS VARIOS PROBLEMA 1: Hallar los valores de a y b de modo que el polinomio de Taylor de orden 2 de )1ln()( bxaxf  en x=0 sea 2 2 3 2)( xxxP  . PROBLEMA 2: Considere la función        4 sen1)( x xf  (a) Calcule el polinomio de Taylor de orden 2 de f en x=0. (b) Pruebe que si R(x) es la expresión del resto en x=0 y si 2 1 x entonces 33 3 426 )(    xR . PROBLEMA 3: Considere la función xxxf sen31)(  (a) Escriba el polinomio de Taylor en x=0 de orden 4 de f. (b) Calcule, estimando el resto, el error que se comete al calcular       3 1 f con       3 1 P . PROBLEMA 4: Calcule aproximadamente 5,16 utilizando el polinomio de Taylor de orden 2 en x=0 de la función xxf  16)( . Estime, acotando el resto, el error que se comete. PROBLEMA 5: Determine un intervalo que contenga al origen, donde el polinomio de Taylor de orden 6 aproxime a xsen con un error menor que 4 10 . PROBLEMA 6: Calcule el polinomio de Taylor de orden 2 en x=0 de 3 1)( xxf  . Estime el error que se comete al calcular los valores de la función por medio del polinomio hallado cuando 1 2 1  x . PROBLEMA 7: Determine los valores de a y b para que el polinomio de Taylor de bxaxxxf  2 )1ln()( en x=0 empiece con la potencia de x de exponente lo más grande posible.
  • 69. 65 PROBLEMA 8: Considere la función )2sen()( xxf  . (a) Halle el polinomio de Taylor de orden n de la función en 2  x . (b) Si )(xRn es el resto, halle la expresión de       4  nR . Calcule el        4  n n Rlim . PROBLEMA 9: Considere la función 2 )(   x xexf (a) Calcule el polinomio de Taylor de orden n en x=2 (b) Si )(xRn es la expresión del resto, pruebe que )!1( )4(3 )3( )!1( 3      n n R n n n (c) Calcule el )3(n n Rlim  . PROBLEMA 10: La función n axxf 1)(  tiene como polinomio de Taylor de or- den 2 en x=0 a 2 2 75 51)( xxxP  . Halle los valores de a y de n. PROBLEMA 11: La función f satisface la ecuación diferencial 2)0(,1)()()15(  fxfxfx Encuentre el polinomio de Taylor de orden 5 en x=0. PROBLEMA 12: Considere la función xxxf cossen)( 2  (a) Encuentre el polinomio de Taylor de orden 2 en 2  x (b) Pruebe que el error que se comete al calcular       5 2 f con el polinomio, es menor que 6000 7 3  PROBLEMA 13: Considere la función xxxf 3,0sen)(  . (a) Encuentre el polinomio de Taylor de orden 2 en x . (b) Use el polinomio obtenido en (a) para hallar una solución aproximada de 0)( xf .
  • 70. 66 PRÁCTICA 9 INTEGRALES LA FUNCIÓN ÁREA PROPIEDADES DE LA INTEGRAL EJERCICIO 1: El espacio recorrido por un móvil, a partir del instante t=0, viene dado por tte 3)(  . (a) Haga un gráfico de las funciones espacio recorrido y velocidad del móvil. (b) Complete la siguiente tabla. tiempo transcurrido, t 1 2 3 4 5 6 ... t espacio recorrido de 0 a t área bajo la curva velocidad de 0 a t (c) El espacio recorrido por otro móvil a partir del instante t=0, viene dado por 2 4 1 )( ttts  . Repita los ítems (a) y (b) para este caso. EJERCICIO 2: Halle, en cada caso, la función área bajo la curva entre 0 y x. Compruebe que )()( xfxA  . EJERCICIO 3: Se sabe que las funciones f y g son integrables y que (a)    4 3 23)(4)(3 dxxgxf ,   4 3 7)( dxxg y 12)( 1 3  dxxf , calcule  4 1 )( dxxf (b) 7)(,5)(2 2 1 2 1   dxxgdxxf , calcule    2 1 )(2)( dxxgxf x y 4 x y 4 2 4 x y 2 43 a) b) c)
  • 71. 67 TEOREMA FUNDAMENTAL DEL CÁLCULO REGLA DE BARROW EJERCICIO 4: Sea Rf ]6,0[: una función continua. Se define  x dttfxA 0 )()( . El gráfico de A(x) es el siguiente: (a) Calcule  6 0 )( dttf (b) ¿Cuánto vale )3(f ? (c) Halle el conjunto donde f es positiva. (d) Pruebe que   3 0 6 0 )(2)( dttfdttf EJERCICIO 5: Calcule las derivadas de las siguientes funciones (a)    x t dtexA 1 2 )( (d)    x dy y y xD sen 0 3 2 )( (b) 0, 1 sen )( 2 0     xdu u u xB x (e) ) 2 , 2 (,arctg)( tg 2    xzdzxE x (c) 0,1)( 0 2   xdttxC x (f)   x x dttxF 2 cos)( EJERCICIO 6: Considere las funciones       42,3 20,1 )( tsi tsi tf y       42,2 20, )( tsi tsit tg (a) La función f no es continua ¿lo es  x dttfxF 0 )()( ? (b) La función g no es derivable ¿lo es  x dttgxG 0 )()( ? 3 3 6
  • 72. 68 EJERCICIO 7: Sabiendo que (a) la función continua f satisface )1()( 2 0 xxdttf x  , calcule )2(f . (b) la función continua g satisface 0,)1()( 2 0 2  xxxdttg x , calcule ).2(g EJERCICIO 8: Calcule las siguientes integrales, usando la Regla de Barrow.y las propiedades de linealidad de la integral. (a)   3 0 )2(3 dxx (c)     5 )cos(sen dxxx (b)   2 2 3 )2( dxxx (d)    64 0 3 2 dxxx EJERCICIO 9: (a) Compruebe que la segunda derivada de   x dttftx 0 )()( es )(xf . (b) Compruebe que la tercera derivada de  x dttf tx 0 2 )( 2 )( es )(xf (c) Generalice. EJERCICIO 10: Usando el Teorema Fundamental del Cálculo, compruebe las si- guientes igualdades y calcule, en cada una de ellas, el valor de K. (a) Kx t dtx   53 3 2 530 (b) Kxdt t tx   sen23ln 2 1 3sen2 cos 0 (c) Kx x x dt t tx      arctg 2 1 )1(21 20 2 2 INTEGRACIÓN NUMÉRICA EJERCICIO 11: Estime la integral de la función x xf 1 )(  en el intervalo [1,2] usan- do la fórmula de los trapecios partiendo el intervalo en diez intervalos de igual lon- gitud. Calcule el error cometido con esta aproximación. Repita el cálculo usando la fórmula de Simpson. Estime el error en este caso y compare los resultados.
  • 73. 69 PRIMITIVAS EJERCICIO 12: Halle en cada caso, una función )(xg que satisfaga (a) 2)(  xg (e) xxg cos)(  (b) xxg  )( (f) 5 )( xxg  (c) xxg sen)(  (g) 3 )( xxxg  (d) x exg  )( (h) x xxg 4 3)(  EJERCICIO 13: Encuentre en cada caso, la función )(xG que satisface (a) 3)1(,16)(  GxxG (b) 1)0(,3)1(,16)(  GGxxG (c) 5)0()0()0(,sen)(  GGGxxxG EJERCICIO 14: Un móvil se desplaza por un camino. Se sabe que la aceleración en el instante t viene dada por 2 /)100()( hkmttta  . Si en el instante inicial t=0 el móvil se encuentra en la posición 0s y parte a una velocidad de 30 km/h, ¿cuál es la posición 1000,)(  tts ? CÁLCULO DE PRIMITIVAS MÉTODOS DE SUSTITUCIÓN Y DE INTEGRACIÓN POR PARTES EJERCICIO 15: Calcule las siguientes integrales (a)  dxx6 4 (b)    1 0 3 dxxxx (c)   dxx )1sen( (d)  x dx 2 cos 7
  • 74. 70 EJERCICIO 16: Usando el método de sustitución, calcule las siguientes integrales (a)    dxx 2 13 (p)  4 2 25 4 x xdx (b)   52x dx (q)  2 0 2 cos  dtt (c) dx x x   25 3 3 2 (r)   1 0 2 1 dxx (d)  dxx)2tg( (s)   4 1 x xdx (e)   dxe x3 (t)   dx x x 2 )ln1( (f)  1 0 2 2 dxxe x (u)   dxx 7 )53( (g)  dxxx )(cossen 2 (v)   dx e e x x 2 1 (h)  e dx x x 1 ln (w)   dxxxx 2)1( 2 (i)  dx x x 4 sen cos (x)  dx x x)sen( (j)   x x e dxe 2 2 1 (y)   3 2 2 32 )1( xx dxx (k)   dx e e x x 1 (z)   2 22 xx dx (l)   2 )12(1 x dx (A)    dx xx x 22 32 2 (m)  dxa x5 (B)    dx xx x 13 1 3 2 (n)   dxex x 13 4 (C)  xdxx sen)sen(cos (o)    0 3 sen)cos1( dxxx (D)   4 0 1 dx x x
  • 75. 71 EJERCICIO 17: Marque con una cruz la única respuesta correcta Dada la función continua f ponemos  3 2 )( dxxfA y          11 8 3 2 dt t fB , entonces es cierto que  A=3B  3B=A  A=B  ninguna de las anteriores EJERCICIO 18: Aplique la integración por partes para calcular (a)  xdxxln (f)  dx e x x (b)  e xdx 1 ln (g)   0 3 cosxdxx (c)  xdxxsen (h)  dxex x23 (d)  dxxex (i)  xdxarccos (e)  xdxarctg (j)   0 senxdxex EJERCICIO 19: Si llamamos  1 0 dxexI xn n pruebe la fórmula de reducción 1 nn nIeI EJERCICIO 20: Demuestre las siguientes fórmulas de reducción (a)   1cossen n nn n nIxxxdxxI (b)   1sencos n nn n nIxxxdxxI EJERCICIO 21: La función f es tiene derivada continua y satisface 4sen)(2    xdxxf y 3)( f . Calcule  2 cos)(   xdxxf
  • 76. 72 FRACCIONES SIMPLES EJERCICIO 22: Halle las primitivas de las siguientes funciones racionales (a) )2)(1( 4 )(   xx xf (e) 1 1 )( 2   xx xf (b) )3)(2)(2( 23 )(    xxx x xf (f) 1 )( 2 3   x x xf (c) 4 12 )( 2    x x xf (g) 23 2 )1( 1 )(    xx xx xf (d) 1 2 )( 2 3    x xx xf (h) 22 4 )1( 1 )(    xx x xf PROBLEMAS VARIOS PROBLEMA 1: La función f satisface )(5)( xfxxf  . Si 12)( 2 0  dttf , calcule f(2). PROBLEMA 2: Encuentre el polinomio de Taylor de orden 3 en x=0 de   x dtttxf 0 3 )1ln()1()( PROBLEMA 3: Encuentre una primitiva g de la función x x e e xf 3 3 4 )(   que satisfa- ga 4ln3)0( g . PROBLEMA 4: Halle una función Rf ),0(: derivable que satisfaga la ecua- ción integral 2 1 )1(,)(1)()3( 1 2   fdttfxxfx x PROBLEMA 5: Halle una función continua g tal que 0,ln)(1 2 ln 0   xxxdteg x t PROBLEMA 6: Pruebe que     x x t dt t dt 1 1 2 1 2 11 si x>0.
  • 77. 73 PROBLEMA 7: Considere la función        14 10 3 ln2 )( x x x x xf (a) Calcule   1 3 )( e dxxf (b) Determine el valor de k>0 para el cual    k e dxxf3 35)( PROBLEMA 8: Si dt t t I n n    1 0 2 1 pruebe que 2,)1(2 2   nsiInnI nn PROBLEMA 9: La función f es continua. Se define    xx dttfxxG 3 0 2 )(1 5 1 )( . Pruebe que G es estrictamente creciente. PROBLEMA 10: La función f tiene tres derivadas continuas y vale xxffff  8 1 )(,4)0(,3)0(,2)0( Si se aproxima  5,0 0 )( dttf por  5,0 0 )( dttP , donde P es el polinomio de Taylor de or- den 2 en x=0, calcule el error que se comete. PROBLEMA 11: Pruebe que 1 1 11 )(ln )(ln        n nn nn n I n n n xx dxxxI PROBLEMA 12: ¿Para qué valores de p el  n pn x dx lim 1 es finito? PROBLEMA 13: Se define la función Gamma como      0 1 0 1 )( dxexdxexlimn xn t xn t , n natural o cero (a) Calcule )2()1(  y (b) Pruebe que )()1( nnn  . Deduzca que  !1)(  nn
  • 78. 74 PRÁCTICA 10 APLICACIONES DE LA INTEGRAL ÁREA ENTRE CURVAS EJERCICIO 1: Calcule el área de la región comprendida entre las curvas (a) 0,2,  xxyxy (b) xyxy  2,2 (c) 3,0,1, 2  xxxyxy (d) 23 ,12 xyxxy  (e) exxyxy  1,0,ln2 (f) 2 , xxyxy  (g)   yejexejexy ,,1 2  (h) xejexy ,)2sen( (i) xejexxxy ,65 23  (j) exxejexxy  ,,ln EJERCICIO 2: Determine c>1 de modo que el área de la región limitada por las curvas )5(2)5(2 ,   xx eyey y la recta de ecuación cy  sea igual a 1. EJERCICIO 3: El área de la región limitada por las rectas axy  , 2 ay  y la cur- va 2 xy  es igual a 48 7 . Calcule el valor de a. EJERCICIO 4: Determine el área de la región limitada por la curva 0, 1  x x y , y las dos rectas que unen el origen de coordenadas con los puntos de la curva )2, 2 1 () 2 1 ,2( y respectivamente.
  • 79. 75 EJERCICIO 5: Marque la única respuesta correcta. El área de la región del plano limitada por 2 xy , 4x , el eje x y el eje y se obtiene calculando    4 0 )2( dxx    4 0 )2( dxx    4 2 2 0 )2()2( dxxdxx    4 2 2 0 )2()2( dxxdxx ECUACIONES DIFERENCIALES EJERCICIO 6: Halle y=f(x) que satisfaga la siguiente ecuación con condiciones ini- ciales 3)0(,0)(2)(  fxxfxf EJERCICIO 7: Encuentre todas las funciones f que satisfacen 0,0)()(  ataftf Estudie el comportamiento para t . EJERCICIO 8: De entre todas las funciones f que satisfacen la ecuación diferen- cial xxxfxf  3 )()( , encuentre la que cumpla 3)1( f EJERCICIO 9: Encuentre todas las soluciones de la ecuación x xe xf xf   )( )( EJERCICIO 10: Los átomos de elementos radiactivos son inestables. En un inter- valo de tiempo dado, una fracción fija de los átomos se escinde espontáneamente para formar un nuevo elemento. De modo que si N(t) denota el número de átomos existentes en el tiempo t, entonces )(tN , el número de átomos que se desintegra por unidad de tiempo, es proporcional a )(tN , es decir )()( tkNtN  donde k>0 se conoce como la constante de decaimiento de la sustancia. Si en el instante t=0 , 0)0( NN  (a) Calcule N(t) para t>0. (b) ¿En qué momento habrá la mitad de átomos que había inicialmente? (semivida) (c) ¿Cómo varia la semivida?
  • 80. 76 EJERCICIO 11: Resuelva la siguiente ecuación diferencial (ecuación logistica)   1)0(,)(100)(5,0)(  ytytyty VOLUMEN DE UN SÓLIDO DE REVOLUCIÓN LONGITUD DE CURVA Volumen =  b a dxxf )(2  Longitud del arco =    b a dxxf 2 )(1 EJERCICIO 12: Halle el volumen del sólido de revolución obtenido al rotar alrede- dor del eje x la parábola 2 3xy  , desde 0 hasta 3. EJERCICIO 13: Halle el volumen del sólido de revolución obtenido al rotar alrede- dor del eje x la curva x y 1  desde 1 hasta 4. EJERCICIO 14: Calcule el volumen del sólido engendrado por la curva 20,3  xxy (a) al girar alrededor del eje x. (b) al girar alrededor del eje y. EJERCICIO 15: Calcule la longitud del arco de las curvas (a) 2 5 2xy  , 110  x . (b) 21, 2 ln 2 2  x xx y PROBLEMAS VARIOS PROBLEMA 1: Encuentre el área limitada entre las curvas 22 41,1 xyxy  y el eje x. PROBLEMA 2: Calcule el área limitada por las curvas xxy 23  , 2 xy  y las rectas verticales x=-2 , x=3
  • 81. 77 PROBLEMA 3: Calcule el área de la región limitada entre las curvas xy sen2 , )2sen( xy  para ],0[ x . PROBLEMA 4: Para cada n natural se define  2 0 sen  nxdxxan . Calcule n n alim  PROBLEMA 5: Calcule el área de las dos regiones determinadas por las curvas 5, 3 1 , 4 1 , 12    xxy x x y ¿Cuál es la mayor? PROBLEMA 6: Calcule el área de la región comprendida por el eje y, la curva x exy 5 51  y la recta 25  xy . Haga un gráfico aproximado indicando la re- gión. PROBLEMA 7: Considere la función xxxf 23)(  (a) Determine su dominio de definición y zonas de crecimiento y de decre- cimiento. (b) Calcule el área de la región limitada por el gráfico de f y el eje x. PROBLEMA 8: Calcule el área de la región comprendida entre la curva xxy  3 y la recta tangente a esta curva en el punto de abscisa x=-1. PROBLEMA 9: La temperatura de un cuerpo que se enfría, cambia a una tasa que es proporcional a la diferencia entre la temperatura del cuerpo y la temperatu- ra ambiente. Así, si C(t) es la temperatura del cuerpo en el tiempo t y a es la tem- peratura ambiente a la que supondremos constante, se tiene  atCktC  )()( en donde k>0 es la constante de proporcionalidad. (a) Halle todas las soluciones de la ecuación en términos de k, a y la tem- peratura inicial C(0). (b) Calcule )(tClim t  . Ensaye alguna explicación física para el límite encon- trado.
  • 82. 78 (c) SI un cuerpo inicialmente está 26 y una hora después está a 24, ¿cuál es la constante de proporcionalidad? (Suponga la temperatura ambiente de 22) PROBLEMA 10: Halle la longitud de la curva   x dtty 0 2 1 entre x=1 y x=3. PROBLEMA 11: Considere la curva x ey   . Para cada n natural llamamos nV al volumen del sólido de revolución que se obtiene al rotar la curva alrededor del eje x con nx 0 . Calcule n n Vlim  . PROBLEMA 12: Encuentre una función f continua en el eje real positivo, tal que  x dttf x xf 1 )( 1 1)( . PROBLEMA 13: Resuelva la ecuación diferencial 0)1(  yxyx con la condición inicial 2)0( y . PROBLEMA 14: El rectángulo de vértices (0,0) , (0,1) , (5,0) y (5,1) queda dividido en dos cuando se traza la curva 3 52  xy . Halle el área de la más grande. PROBLEMA 15: Halle el área comprendida entre la curva x xey   y las rectas x=0 y el punto de abscisa donde f alcanza su máximo absoluto. PROBLEMA 16: Calcule el área comprendida entre la curva xy ln ,la recta tan- gente a la curva que pasa por el origen y el eje x. PROBLEMA 17: Un sólido de revolución está engendrado por la rotación de la gráfica de axxfy  0,)( , alrededor del eje x. Si para cada a>0 el volumen es aa 2 , halle la función f (suponga que f es positiva). PROBLEMA 18: Halle el valor de a>0 para que el área comprendida entre la curva xy sen , x=0 , x=a y el eje x sea 2 5 .
  • 83. 79 PRÁCTICA 11 SERIES TÉRMINO GENERAL Y SUMAS PARCIALES EJERCICIO 1: Escriba el término general de las siguientes series. Escriba tam- bién la expresión de las sumas parciales. (a) 1 1 1 1 1 ... 3 5 7 9      (b) 1 1 1 1 1 ... 3 7 15 31      (c) 2 4 8 1 ... 3 9 27     (d) 1 1 1 1 1 1 ... 2 6 12 20 30 42       (e) 1 1 2 3 5 8 13 ...       (f) 3 4 5 ln 2 ln ln ln ... 2 3 4                      En los casos que la serie sea geométrica o telescópica, calcule su suma. SERIES GEOMÉTRICAS Y SERIES TELESCÓPICAS EJERCICIO 2: Calcule la suma de las siguientes series, en caso de que sean convergentes (a) 1 1 1 3n n     (d) 1 1 ( 1)n n n     (b) 1 0 3 4 5 n n n n     (e) 1 1 ln 1 n n          (c) 2 1 0 2 1 4 n n n      (f) 1 2 3 2 n n          EJERCICIO 3: Si la serie 0 1 2 35 12 n n n a     , ¿cuánto vale a>0?
  • 84. 80 EJERCICIO 4: A partir de la identidad 0 1 , 1 1 1 n n x x x         deduzca las siguientes fórmulas (a) 2 4 2 2 1 1 ... ... , 1 1 1 n x x x x x           (b) 3 5 2 1 2 ... ... , 1 1 1 n x x x x x x x            (c) 2 3 4 1 1 ... ( 1) ... , 1 1 1 n n x x x x x x x              (d) 2 1 1 1 1 2 4 ... 2 ... , 1 2 2 2 n n x x x x x           EJERCICIO 5: (a) A partir de que 1 9 0,999... 10k k     , compruebe que 0,999...=1. (b) Escriba el número decimal 0,444... como una serie. Halle la suma de la serie y escriba el número decimal como un cociente de enteros. (c) Haga el mismo trabajo con el número 0,121212... CRITERIOS DE CONVERGENCIA EJERCICIO 6: Decida si cada una de las siguientes series es convergente o di- vergente. Explique qué criterio usa en cada caso para obtener su respuesta. (a) 3 1 1n n n     (f) 1 3n n n   (b) 2 1 1 1n n n      (g) 1 1 1 n n n          (c) 3 4 1 1 4 5 1n n n n       (h) 1 1 3 ( 1) 2 n n n       (d) 1 1 1n n n     (i) 0 ! ( 2)!n n n     (e) 3 2 1 2 sin 2n n n n      (j) 3 2 2 1 1n n n n n      
  • 85. 81 EJERCICIO 7: Use el criterio integral de Cauchy para estudiar la convergencia de (a) 2 1 lnn n    (d) 2 1 ln n n n    (b) 2 2 1 lnn n n    (e) 2 2 1 1 ( 1)arctann n n     (c) 2 2 1 lnn n n    (f) 2 1 n n n e    EJERCICIO 8: Use el criterio de la raíz o del cociente, según convenga, para determinar la convergencia o divergencia de las siguientes series (a) 1 ! n n n n    (e) 0 (1000) ! n n n    (b) 2 1 1 1 n n n          (f) 1 1 2 n n n n          (c) 2 0 ( !) (2 )!n n n    (g) 2 2 lnn n n n    (d) 1 3 !n n n n n    (h) 1 2 !n n n n n    EJERCICIO 9: Determine la convergencia o divergencia de las series que si- guen. En caso de convergencia, decida si ésta es absoluta o condicional. Si usa el criterio de Leibniz, asegúrese de que se satisfagan todas las hipótesis. (a) 3 1 cos( 1) 1n n n      (d) 1 1 ( 1) 100 n n n n       (b) 0 ( 1) 3 5 n n n n      (e) 1 ln ( 1)n n n n    (c) 1 1 ( 1) 1 n n n n           (f) 1 2 100 ( 1) 3 1 n n n n n           EJERCICIO 10: Use el criterio que más convenga en cada caso, para determi- nar la convergencia o divergencia de las siguientes series (a) 2 1 arctan 1n n n     (b) 2 1 ( 1) 3 cos n n n n      (c)   3 1 1 n n n    