SlideShare una empresa de Scribd logo
1 de 45
TORNOS -INTRODUCCIÓN
Historia
Con la posibilidad de poder cilindrar y dar forma a diversos utensilios,
instrumentos y piezas ornamentales de madera y otros materiales, el
hombre inventó y desarrolló el proceso de torneado.
El torno es una de las primeras máquinas inventadas remontándose su
uso quizá al año 1000 y con certeza al 850 a. C.
Torno paralelo de 1911.
Se denomina torno (del latín tornus, y este del griego τόρνος, giro, vuelta) a
un conjunto de máquinas herramienta que permiten mecanizar piezas de
forma geométrica de revolución.
Estas máquinas-herramienta operan haciendo girar la pieza a mecanizar
(sujeta en el cabezal) mientras una o varias herramientas de corte son
empujadas en un movimiento regulado de avance contra la superficie de la
pieza, cortando la viruta
Que es un Torno
La herramienta de corte va montada
sobre un carro que se desplaza sobre
unas guías o rieles paralelos al eje de
giro de la pieza que se tornea,
llamado eje Z; sobre este carro hay
otro que se mueve según el eje X, en
dirección radial a la pieza que se
tornea, y puede haber un tercer carro
llamado charriot que se puede
inclinar, para hacer conos
Tipos de tornos
1. Torno paralelo
2. Torno copiador
3. Torno revólver
4. Torno automático
5. Torno vertical
6. Torno CNC
7. Otros tipos de tornos
Actualmente se utilizan en las industrias de mecanizados los siguientes
tipos de tornos que dependen de la cantidad de piezas a mecanizar por
serie, de la complejidad de las piezas y de la envergadura de las piezas
Torno paralelo
El torno paralelo o mecánico es el tipo de torno que evolucionó
partiendo de los tornos antiguos cuando se le fueron incorporando
nuevos equipamientos que lograron convertirlo en una de las máquinas
herramienta más importante que han existido.
Este tipo de torno está
quedando relegado a
realizar tareas poco
importantes, a utilizarse
en los talleres de
aprendices y en los
talleres de
mantenimiento para
realizar trabajos
puntuales o especiales.
Torno copiador (repujador)
Se llama torno copiador a un tipo de torno que operando
con un dispositivo hidráulico o mecánico ó electrónico, que
permite el torneado de piezas de acuerdo a las
características de la misma siguiendo el perfil de una
plantilla que reproduce el perfil de la pieza.
Torno revólver
Es diseñado para mecanizar piezas sobre las que sea posible el
trabajo simultáneo de varias herramientas con el fin de disminuir el tiempo
total de mecanizado.
Las piezas que presentan esa condición son aquellas que, partiendo de
barras, tienen una forma final de casquillo o similar. La barra bien sujeta
mediante pinzas o con un plato de garras, se va taladrando, mandrinando,
roscando o escariando la parte interior mecanizada y a la vez se puede ir
cilindrando, refrentando, ranurando, roscando y cortando con
herramientas de torneado exterior.
La característica
principal del torno
revólver es que lleva
un carro con una
torreta giratoria de
forma hexagonal que
ataca frontalmente a la
pieza que se quiere
mecanizar.
Torno revólver
Se llama torno automático a un tipo
de torno cuyo proceso de trabajo
está enteramente automatizado. La
alimentación de la barra necesaria
para cada pieza se hace también de
forma automática, a partir de una
barra larga que se inserta por un
tubo que tiene el cabezal y se
sujeta mediante pinzas de apriete
hidráulico.
La puesta a punto de estos tornos es muy laboriosa y por eso se utilizan
principalmente para grandes series de producción. El movimiento de
todas las herramientas está automatizado por un sistema de excéntricas y
reguladores electrónicos que regulan el ciclo y los topes de final de
carrera.
Torno automático
Torno vertical
Los tornos verticales tienen el eje dispuesto verticalmente y el plato
giratorio sobre un plano horizontal, lo que facilita el montaje de las
piezas voluminosas y pesadas. Es pues el tamaño lo que identifica a
estas máquinas, permitiendo el mecanizado integral de piezas de gran
tamaño.
El torno vertical es una variedad
de torno diseñado para
mecanizar piezas de gran
tamaño, que van sujetas al plato
de garras u otros operadores y
que por sus dimensiones o peso
harían difícil su fijación en un
torno horizontal.
. La manipulación de las piezas para fijarlas en el plato se hace
mediante grúas de puente o polipastos.
Torno CNC
Torno operado mediante control numérico por computadora. Se
caracteriza por ser una máquina herramienta muy eficaz para
mecanizar piezas de revolución.
Es una máquina ideal para el trabajo en serie y mecanizado de piezas
complejas.
Ofrece una gran capacidad
de producción y precisión
en el mecanizado por su
estructura funcional y la
trayectoria de la
herramienta de torneado es
controlada a través del
ordenador, el cual procesa
las órdenes de ejecución
contenidas en un software
que previamente ha
confeccionado un
programador conocedor.
Centro de Maquinados
Estructura del torno
El torno tiene lo siguientes componentes principales:
• Bancada
• Cabezal fijo
• Contrapunto
• Carros portaherramientas
• Cabezal giratorio o chuck
Bancada
Cabezal fijo
Contrapunto
Carros
portaherramientas
Cabezal giratorio
o chuck
Bancada: sirve de soporte para las
otras unidades del torno. En su parte
superior lleva unas guías por las que
se desplaza el cabezal móvil o
contrapunto y el carro principal.
Estructura del torno
Cabezal fijo: contiene los engranajes o poleas que impulsan la pieza de
trabajo y las unidades de avance. Incluye el motor, el husillo, el selector
de velocidad, el selector de unidad de avance y el selector de sentido de
avance. Además sirve para soporte y rotación de la pieza de trabajo que
se apoya en el husillo.
Bancada
Cabezal fijo
Cabezal móvil:
El contrapunto puede moverse
y fijarse en diversas posiciones
a lo largo. La función primaria
es servir de apoyo al borde
externo de la pieza de trabajo.
Está apoyado sobre las guías de la bancada y se desplaza manualmente
a lo largo de ellas, llevado al punto deseado se bloquea su posición con
la palanca (T6).
Mediante el volante (T1) se puede avanzar o retroceder el contrapunto
(T5) sobre el cuerpo del contracabezal (T3), este desplazamiento se
puede bloquear impidiendo que retroceda con la palanca (T2).
La base (T4) y el cuerpo (T3) son piezas distintas fijadas una a otra
mediante tornillos, pueden ser aflojados y permitir un desplazamiento
transversal del cuerpo respecto a su base, esta operación es para
mecanizar conos de pequeño ángulo de inclinación.
Carros portaherramientas: que son tres
1. Carro principal, que produce los movimientos de avance en el sentido
longitudinal de las guías del torno y profundidad de pasada en
refrentado.
2. Carro transversal, que se desliza transversalmente sobre el carro
principal, avanzando en la operación de refrentado, y determina la
profundidad de pasada en cilindrado.
3. Carro orientable o superior, su base está apoyada sobre una plataforma
giratoria orientable según una escala de grados sexagesimales, se
emplea para el mecanizado de conos
•El carro principal (4)
•el cuadro de mecanismos (5)
•el volante (5a)
•el embrague de roscar (5b)
•embrague de cilindrar (5c)
•El carro transversal (3)
•la manivela (3b)
•el carro orientable (2)
•la escala (2b)
•la manivela (2a)
•la torreta portaherramientas (1)
Cadena cinemática ó cabezal fijo
ó caja de velocidades
La cadena cinemática genera, trasmite y regula los movimientos de los
elementos del torno, según las operaciones a realizar.
Detalle de los mandos de la caja de velocidades y avances:
• Motor: normalmente eléctrico
• Caja de velocidades: con la que se
determina la velocidad y el sentido de giro
del eje del torno (H4)
• el plato (H4)
• el inversor de giro (H2) (H3) y (H5)
• Caja de avances: con la que se establecen
las distintas velocidades de avance de los
carros, parte posterior (H10), la caja de la
lira, caja de avances (H6)
• Eje de cilindrar (H8)
• Eje de roscar (H7)
• un tercer eje (H9), no existe en todos los
tornos, permite poner el motor eléctrico en
marcha o invertir su sentido de giro.
Equipo auxiliar
•Centros: soportan la pieza en el cabezal y en la contrapunta.
•Perno de arrastre: Se fija en el plato de torno y en la pieza de
trabajo
•Plato de arrastre :para amarrar piezas de difícil sujeción.
Plato y perno de arrastre.
•Plato de sujeción de garras: sujeta la pieza de trabajo en el cabezal
y transmite el movimiento.
•Plato de garras independientes : tiene 4 garras que actúan de
forma independiente unas de otras.
Plato de Garras
Equipo auxiliar
•Soporte fijo o luneta fija: soporta
el extremo de la pieza de trabajo
cuando no puede usarse la
contrapunta, soportar piezas largas y
delgadas y evitar que se flexione o
salte al maquinarlas entre centros.
•Soporte móvil o luneta móvil: se
monta en el carro Portaherramientas y
permite soportar piezas de trabajo
largas, cerca del punto de corte, para
evitar que la pieza de trabajo se
flexione y separe de la herramienta de
corte
Especificaciones técnicas de los tornos
Principales especificaciones técnicas de los tornos convencionales
Capacidad :
•Altura entre puntos;
•distancia entre puntos;
•diámetro admitido sobre bancada;
•diámetro admitido sobre escote;
•diámetro admitido sobre carro transversal;
•anchura de la bancada;
•longitud del escote delante del plato liso.
Cabezal :
•Diámetro del agujero del husillo principal;
•nariz del husillo principal;
•cono Morse del husillo principal;
•gama de velocidades del cabezal (habitualmente en rpm);
•número de velocidades.
• Potencia del motor principal (habitualmente en kW);
• potencia de la motobomba de refrigerante (en kW).
Motores :
Carros :
• Recorrido del charriot o carro superior;
• dimensiones máximas de la herramienta,
• gama de avances longitudinales;
• gama de avances transversales.
• recorrido del avance automatico
• carro movil de un torno
Roscado :
• Gama de pasos métricos;
• gama de pasos Witworth;
• gama de pasos modulares;
• gama de pasos Diametral Pitch;
• paso del husillo patrón.
Contrapunto :
Es más conocido como cabezal movil esta formado por dos
piezas generalmente de fundicion
Especificaciones técnicas de los tornos
Pieza
Herramienta
Movimientos de trabajo en la operación de torneado
Movimiento de corte:
Se imparte a la pieza que gira rotacionalmente sobre su eje principal. Lo
imprime un motor eléctrico que transmite su giro al husillo principal
mediante un sistema de poleas o engranajes.
El husillo principal tiene acoplado a su extremo distintos sistemas de
sujeción (platos de garras, pinzas, mandrinos auxiliares u otros), los
cuales sujetan la pieza a mecanizar.
Los tornos tradicionales tienen una gama fija de velocidades de giro.
Movimiento de Avance
Movimiento de avance:
Movimiento de la herramienta de corte en la dirección del eje
de la pieza que se está trabajando, puede no ser paralelo al
eje, produciéndose así conos. En ese caso se gira el carro
charriot al ángulo requerido, que será la mitad de la conicidad
deseada. Los tornos convencionales tiene una gama fija de
avances.
Movimientos de trabajo en la operación de torneado
Profundidad de pasada:
Movimiento de la herramienta de corte que determina la profundidad
de material arrancado en cada pasada. La cantidad de material factible
de ser arrancada depende del perfil del útil de corte usado, el tipo de
material mecanizado, la velocidad de corte, potencia de la máquina,
avance, etc.
Movimientos de trabajo en la operación de torneado
Nonios de los carros:
Para regular el trabajo de
torneado los carros del torno
llevan incorporado unos nonios
en forma de tambor graduado,
donde cada división indica el
desplazamiento que tiene el
carro, ya sea el longitudinal, el
transversal o el charriot.
Operaciones de torneado
Cilindrado
Esta operación consiste en la mecanización exterior a la que se somete a
las piezas que tienen mecanizados cilíndricos. Para poder efectuar esta
operación, con el carro transversal se regula la profundidad de pasada y,
por tanto, el diámetro del cilindro, y con el carro paralelo se regula la
longitud del cilindro. El carro paralelo avanza de forma automática de
acuerdo al avance de trabajo deseado.
El cilindrado se puede hacer con la
pieza al aire sujeta en el plato de
garras, si es corta, o con la pieza
sujeta entre puntos y un perno de
arrastre, o apoyada en luneta fija o
móvil si la pieza es de grandes
dimensiones y peso. Cuando el
cilindrado se realiza en el hueco de
la pieza se llama mandrinado.
Refrentado
Consiste en un mecanizado frontal y perpendicular al eje de las piezas que
se realiza para producir un buen acoplamiento en el montaje posterior de
las piezas torneadas, también es conocida como fronteado. La
problemática es que la velocidad de corte en el filo de la herramienta va
disminuyendo a medida que avanza hacia el centro.
Operaciones de torneado
Para mejorar este aspecto muchos
tornos modernos incorporan
variadores de velocidad en el
cabezal de tal forma que se puede
ir aumentando la velocidad de giro
de la pieza.
Ranurado
Operaciones de torneado
El ranurado consiste en mecanizar
unas ranuras cilíndricas de anchura y
profundidad variable en las piezas que
se tornean, las cuales tienen muchas
utilidades diferentes.
En este caso la herramienta tiene ya conformado el ancho de la ranura y
actuando con el carro transversal se le da la profundidad deseada. Los
canales de las poleas son un ejemplo claro de ranuras torneadas.
Por ejemplo, para salida de rosca, para arandelas de presión, etc.
Roscado en el torno
Operaciones de torneado
Hay dos sistemas de realizar roscados en los tornos, de un lado la
tradicional que utilizan los tornos paralelos, mediante la Caja Norton, y de
otra la que se realiza con los tornos CNC, donde los datos de la roscas van
totalmente programados y ya no hace falta la caja Norton para realizarlo.
La caja Norton está compuesto de varios engranajes
que fue inventado y patentado en 1890, sirve para fijar
los pasos de las piezas a roscar. Consta de varios
trenes desplazables de engranajes o uno basculante. La
caja conecta el movimiento del cabezal del torno con el
carro portaherramientas que lleva incorporado un
husillo de rosca cuadrada.
Con la manipulación de varias palancas de la caja de cambios se pueden fijar
distintas velocidades de avance de carro portaherramientas, permitiendo
realizar variedad de pasos de rosca tanto métricos como Withworth.
Roscado en el torno
Roscaexterior omacho
Roscainterior o
hembra
1 Fondoobase Crestaovértice
2 Crestaovértice Fondoobase
3 Flanco Flanco
4
Diámetrodel núcleo Diámetrodel taladro
5 Diámetroexterior Diámetrointerior
6
7
Profundidaddelarosca
Paso
Para efectuar el roscado hay que realizar previamente las siguientes
tareas:
• Tornear previamente al diámetro que tenga la rosca
• Preparar la herramienta de acuerdo con los ángulos del filete de la
rosca.
• Establecer la profundidad de pasada que tenga que tener la rosca hasta
conseguir el perfil adecuado.
En la figura se observa cómo partiendo de una barra hexagonal se
mecaniza un tornillo. Para ello se realizan las siguientes operaciones:
Roscado en torno paralelo
Operaciones de torneado
1. Se cilindra el cuerpo del tornillo dejando la cabeza hexagonal en sus
medidas originales.
2. Se achaflana la entrada de la rosca y se refrenta la punta del tornillo.
3. Se ranura la garganta donde finaliza la rosca junto a la cabeza del
tornillo.
4. Se rosca el cuerpo del tornillo, dando lugar a la pieza finalizada.
4
1 2
3
Este mismo proceso se puede hacer partiendo de una barra larga, tronzando finalmente la parte
mecanizada.
Moleteado
Operaciones de torneado
Es un proceso de conformado en frío del material mediante unas
moletas que presionan la pieza mientras da vueltas, lo que produce un
incremento del diámetro de la pieza. Se realiza en piezas que se tengan
que manipular a mano y vayan roscadas para evitar su resbalamiento.
Las moletas son de diferente paso y dibujo.
Un ejemplo es el que tienen las monedas de un
Sol en sus bordes.
El moleteado por deformación se puede
ejecutar de dos maneras:
• Radialmente, cuando la longitud moleteada en
la pieza coincide con el espesor de la moleta a
utilizar.
• Longitudinalmente, cuando la longitud excede
al espesor de la moleta. Para este segundo
caso la moleta siempre ha de estar biselada en
sus extremos.
Torneado de conos
Operaciones de torneado
Un cono o un tronco de cono de un cuerpo de generación viene
definido por los siguientes conceptos:
• Diámetro mayor
• Diámetro menor
• Longitud
• Ángulo de inclinación
• Conicidad
•En los tornos CNC se programa sus dimensiones, los carros
transversales y longitudinales se desplazan de forma coordinada
•En los tornos copiadores la plantilla de copiado permite que el palpador
se desplace por la misma y los carros actúen de forma coordinada.
•Para mecanizar conos en los tornos paralelos convencionales se puede
hacer de dos formas diferentes. Si la longitud del cono es pequeña, se
mecaniza el cono con el charriot inclinado según el ángulo del cono. Si la
longitud del cono es muy grande y el eje se mecaniza entre puntos,
entonces se desplaza la distancia adecuada el contrapunto según las
dimensiones del cono.
Los diferentes tornos mecanizan los conos
de formas diferentes. Pinzas cónicas portaherramientas
Torneado esférico
Operaciones de torneado
Hacer rótulas de forma manual en un torno paralelo presenta cierta
dificultad para conseguir exactitud en la misma. En ese caso es
recomendable disponer de una plantilla de la esfera e irla mecanizando
de forma manual y acabarla con lima o rasqueta para darle el ajuste
final.
El torneado esférico, por ejemplo el de
rótulas, no tiene ninguna dificultad si se
realiza en un torno de Control Numérico
porque, programando sus medidas y la
función de mecanizado radial
correspondiente.
Si el torno es automático de gran producción,
trabaja con barra y las rótulas no son de gran
tamaño, la rotula se consigue con un carro
transversal donde las herramientas están
afiladas con el perfil de la rótula.
Segado o Tronzado
Operaciones de torneado
Se llama segado a la operación de
torneado para cortar la barra y separar
la pieza de la misma. Para esta
operación se utilizan herramientas
muy estrechas con un saliente de
acuerdo al diámetro que tenga la barra
y permita con el carro transversal
llegar al centro de la barra. Es una
operación muy común en tornos
revólver y automáticos alimentados
con barra y fabricaciones en serie.
Chaflanado
Operaciones de torneado
El chaflanado es una operación de
torneado muy común que consiste
en matar los cantos tanto exteriores
como interiores para evitar cortes
con los mismos y a su vez facilitar
el trabajo y montaje posterior de las
piezas. El chaflanado más común
suele ser el de 1mm por 45º. Este
chaflán se hace atacando
directamente los cantos con una
herramienta adecuada.
Mecanizado de excéntricas
Operaciones de torneado
Una excéntrica es una pieza que
tiene dos o más cilindros con
distintos centros o ejes de simetría,
tal y como ocurre con los
cigüeñales de motor, o los ejes de
levas. Una excéntrica es un cuerpo
de revolución y por tanto el
mecanizado se realiza en un torno.
Para mecanizar una excéntrica es
necesario primero realizar los
puntos de centraje de los diferentes
ejes excéntricos en los extremos de
la pieza que se fijará entre puntos.
Cigüeñales excéntricos
Taladrado
Operaciones de torneado
Muchas piezas requieren ser taladradas con
brocas en el centro de sus ejes de rotación.
Se utilizan brocas normales, que se sujetan
en el contrapunto en un portabrocas o
directamente en el alojamiento del
contrapunto si el diámetro es grande.
Mención aparte merecen los procesos de
taladrado profundo donde el proceso ya es
muy diferente sobre todo la constitución de
la broca que se utiliza.
No todos los tornos pueden realizar todas
estas operaciones que se indican, sino que
eso depende del tipo de torno que se utilice
y de los accesorios o equipamientos que
tenga.
Parámetros de corte del torneado
Los parámetros de corte fundamentales que hay que
considerar en el proceso de torneado son los siguientes:
•Elección del tipo de herramienta más adecuado
•Sistema de fijación de la pieza
•Velocidad de corte (Vc) expresada en metros/minuto
•Diámetro exterior del torneado
•Revoluciones por minuto (rpm) del cabezal del torno
•Avance en mm/rev, de la herramienta
•Avance en mm/min de la herramienta
•Profundidad de pasada
•Esfuerzos de corte
•Tipo de torno y accesorios adecuados
Factores que influyen en las condiciones
tecnológicas del torneado
• Diseño y limitaciones de la pieza: tamaño, tolerancias del
torneado, vibraciones, sistemas de sujeción, acabado superficial, etc.
• Operaciones de torneado a realizar: cilindrados exteriores o
interiores, refrentados, ranurados, desbaste, acabados, etc.
• Estabilidad y condiciones de mecanizado: cortes intermitentes,
voladizo de la pieza, forma y estado de la pieza, potencia, etc.
• Disponibilidad y selección del tipo de torno: automatizar el
mecanizado, realizar varias operaciones en simultáneo, serie de piezas
a mecanizar, calidad y cantidad del refrigerante, etc.
• Material de la pieza: dureza, estado, resistencia, maquinabilidad,
barra, fundición, forja, mecanizado en seco o con refrigerante, etc.
• Disponibilidad de herramientas: calidad Y sistema de sujeción de
la herramienta, acceso al distribuidor y servicio técnico de
herramientas.
• Aspectos económicos del mecanizado: optimización del
mecanizado, duración de la herramienta, precio de la herramienta,
precio del tiempo de mecanizado.
Mecanizado en seco y con refrigerante
Hoy en día el torneado en seco es completamente viable. Hay una tendencia reciente a
efectuar los mecanizados en seco siempre que la calidad de la herramienta lo permita.
La inquietud se despertó durante los años 90,cuando estudios realizados en empresas de
fabricación de componentes para automoción en Alemania pusieron de relieve el coste
elevado de la refrigeración y sobre todo de su reciclado.
Sin embargo, el mecanizado en seco no es adecuado para todas las aplicaciones,
especialmente para taladrados, roscados y mandrinados para garantizar la evacuación de
las virutas.
Tampoco es recomendable tornear en seco materiales pastosos o demasiado blandos como
el aluminio o el acero de bajo contenido en carbono ya que es muy probable que los filos de
corte se embozen con el material que cortan, produciendo mal acabado superficial,
dispersiones en las medidas de la pieza e incluso rotura de los filos de corte.
En el caso de mecanizar materiales de viruta corta como la fundición gris la taladrina es
beneficiosa como agente limpiador, evitando la formación de nubes de polvo toxicas.
La taladrina es imprescindible torneando materiales abrasivos tales como inoxidables,
inconells, etc
Para evitar sobrecalentamientos de husillos, etc suelen incorporarse circuitos internos de
refrigeración por aceite o aire.
Puesta a punto de los tornos
Las tareas más importantes que se realizan en la revisión de los tornos
son las siguientes:
Nivelación
Se refiere a nivelar la bancada y para ello se utilizará un nivel de
precisión.
Concentricidad del cabezal
Se realiza con un reloj comparador y haciendo girar el plato a
mano, se verifica la concentricidad del cabezal y si falla se ajusta
y corrige adecuadamente.
Comprobación de redondez
de las piezas
Se mecaniza un cilindro a un diámetro aproximado de 100 mm y
con un reloj comparador de precisión se verifica la redondez del
cilindro.
Alineación del eje principal
Se fija en el plato un mandril de unos 300 mm de longitud, se
monta un reloj en el carro longitudinal y se verifica si el eje está
alineado o desviado.
Alineación del contrapunto
Se consigue mecanizando un eje de 300 mm sujeto entre puntos y
verificando con un micrómetro de precisión si el eje ha salido
cilíndrico o tiene conicidad.
Seguridad en los tornos
•Los trabajadores deben utilizar anteojos de
seguridad contra impactos
•Manejar la máquina sin distraerse.
•Si a pesar de todo se le introdujera alguna vez
un cuerpo estaño en un ojo, no lo refriegue,
puede provocarse una herida. Acuda
inmediatamente al médico.
•Las virutas producidas durante el mecanizado
nunca deben retirarse con la mano, ya que se
pueden producir cortes y pinchazos.
•Las virutas secas se deben retirar con un cepillo o brocha adecuados,
estando la máquina parada. Para virutas húmedas o aceitosas es
mejor emplear una escobilla de goma.
•Se debe llevar la ropa de trabajo bien ajustada. Las mangas deben
llevarse ceñidas a la muñeca.
Seguridad en los tornos
•Se debe llevar la ropa de trabajo bien ajustada. Las
mangas deben llevarse ceñidas a la muñeca.
•Se debe usar calzado de seguridad que proteja
contra cortes y pinchazos, así como contra caídas de
piezas pesadas.
•Es muy peligroso trabajar llevando anillos, relojes,
pulseras, cadenas en el cuello, bufandas, corbatas o
cualquier prenda que cuelgue.
•Asimismo es peligroso llevar cabellos largos y
sueltos, que deben recogerse bajo gorro o prenda
similar. Lo mismo la barba larga.
ANTES DE COMENZAR EL TRABAJO
•Verificar que el plato y su seguro contra el aflojamiento, están correctamente
colocados.
•Que la pieza a trabajar está correcta y firmemente sujeta al dispositivo de
sujeción y que en su movimiento no encuentre obstáculos.
•Que se ha retireado del plato la llave de apriete.
•Que la palanca de bloqueo del portaherramientas está bien apretada.
•Que están apretados los tornillos de fijación del carro superior.
•Si se usa contrapunto, comprobar que esté bien anclado a la bancada y que la
palanca del bloqueo del husillo del contrapunto está bien apretada.
•Que las carcasas de protección o resguardos de los engranajes y
transmisiones está correctamente colocadas y fijadas.
•Que no hay piezas o herramientas abandonadas que pudieran caer o ser
alcanzados por la máquina.
•Si se va a trabajar sobre barras largas que sobresalen por la parte trasera del
cabezal, comprobar que la barra está cubierta por una protección guía, en toda
su longitud.
•Que la cubierta de protección del plato está correctamente colocada.
Que la pantalla transparente de protección contra proyecciones de virutas y
taladrina se encuentra bien situada.
DURANTE EL TRABAJO
Durante el mecanizado, se deben mantener las manos alejadas de la
herramienta que gira o se mueve. Si el trabajo se realiza en ciclo
automático., las manos no deben apoyarse en la mesa de la máquina.
•No se debe frenar nunca el plato con la mano. Es peligroso llevar
anillos o alianzas; ocurren muchos accidentes por esta causa.
•Para tornear entrepuntos se utilizarán dispositivos de arranque de
seguridad. En caso contrario, se equiparán los dispositivos de
arrastre corrientes con un aro de seguridad. Los dispositivos de
arrastre no protegidos han causado numerosos accidentes, incluso
mortales.
•Para limar en el torno, se debe sujetar la lima por el mango con la
mano izquierda. La mano derecha sujetará la lima por la punta.
•Trabajando con tela esmeril en el torno se debe tomar algunas
precausiones:
•De ser posible no aplicar la tela esmeril sobre la pieza sujetándola
directamente con las manos.
•Se puede esmerilar sin peligro utilizando una lima o una tablilla
como soporte de la tela esmeril.

Más contenido relacionado

La actualidad más candente

PARTES DE UN TORNO Y SUS FUNCIONES
PARTES DE UN TORNO Y SUS FUNCIONESPARTES DE UN TORNO Y SUS FUNCIONES
PARTES DE UN TORNO Y SUS FUNCIONESMario_b
 
Presentacion Cepillo
Presentacion CepilloPresentacion Cepillo
Presentacion CepilloJesus Triz
 
Operaciones en el torno
Operaciones en el tornoOperaciones en el torno
Operaciones en el tornovacs18
 
El cabezal divisor
El cabezal divisorEl cabezal divisor
El cabezal divisorAsimet
 
Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...
Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...
Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...Nicolas Gonzalez
 
Practica del torno
Practica del tornoPractica del torno
Practica del tornoayatan
 
Torneado Mecanico
Torneado Mecanico Torneado Mecanico
Torneado Mecanico Ma Jo
 
EL TORNO PARALELO
EL TORNO PARALELOEL TORNO PARALELO
EL TORNO PARALELODeco Jscz
 
Tipos de tornos y sus caracteristicas
Tipos de tornos y sus caracteristicasTipos de tornos y sus caracteristicas
Tipos de tornos y sus caracteristicasyukimuto1
 
Fresadora Universal. Engranaje Helicoidal
Fresadora Universal. Engranaje HelicoidalFresadora Universal. Engranaje Helicoidal
Fresadora Universal. Engranaje HelicoidalEver Maunas Widmer
 
Torno 140307220127-phpapp01
Torno 140307220127-phpapp01Torno 140307220127-phpapp01
Torno 140307220127-phpapp01Mecanico
 

La actualidad más candente (20)

PARTES DE UN TORNO Y SUS FUNCIONES
PARTES DE UN TORNO Y SUS FUNCIONESPARTES DE UN TORNO Y SUS FUNCIONES
PARTES DE UN TORNO Y SUS FUNCIONES
 
F R E S A D O R A ( U N I V E R S A L)
F R E S A D O R A ( U N I V E R S A L)F R E S A D O R A ( U N I V E R S A L)
F R E S A D O R A ( U N I V E R S A L)
 
Fresado
Fresado Fresado
Fresado
 
Presentacion Cepillo
Presentacion CepilloPresentacion Cepillo
Presentacion Cepillo
 
Instrucciones para aprender a usar un torno
Instrucciones para aprender a usar un tornoInstrucciones para aprender a usar un torno
Instrucciones para aprender a usar un torno
 
Operaciones en el torno
Operaciones en el tornoOperaciones en el torno
Operaciones en el torno
 
Fresadora
FresadoraFresadora
Fresadora
 
El cabezal divisor
El cabezal divisorEl cabezal divisor
El cabezal divisor
 
Informe laboratorio-de-torno
Informe laboratorio-de-tornoInforme laboratorio-de-torno
Informe laboratorio-de-torno
 
torno
tornotorno
torno
 
Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...
Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...
Torno (Historia, Partes, Accesorios, Herramientas, Operaciones, Seguridad Ind...
 
Practica del torno
Practica del tornoPractica del torno
Practica del torno
 
Torneado Mecanico
Torneado Mecanico Torneado Mecanico
Torneado Mecanico
 
Torneado
TorneadoTorneado
Torneado
 
EL TORNO PARALELO
EL TORNO PARALELOEL TORNO PARALELO
EL TORNO PARALELO
 
La limadora 2
La limadora  2La limadora  2
La limadora 2
 
LA FRESADORA
LA FRESADORALA FRESADORA
LA FRESADORA
 
Tipos de tornos y sus caracteristicas
Tipos de tornos y sus caracteristicasTipos de tornos y sus caracteristicas
Tipos de tornos y sus caracteristicas
 
Fresadora Universal. Engranaje Helicoidal
Fresadora Universal. Engranaje HelicoidalFresadora Universal. Engranaje Helicoidal
Fresadora Universal. Engranaje Helicoidal
 
Torno 140307220127-phpapp01
Torno 140307220127-phpapp01Torno 140307220127-phpapp01
Torno 140307220127-phpapp01
 

Similar a Informacion completa de torno (20)

Proceso manufactura
Proceso manufacturaProceso manufactura
Proceso manufactura
 
procesosdemanufactura-160603192358 (1).pptx
procesosdemanufactura-160603192358 (1).pptxprocesosdemanufactura-160603192358 (1).pptx
procesosdemanufactura-160603192358 (1).pptx
 
Torno
TornoTorno
Torno
 
DISTINTOS PROCESOS DE MAQUINADO (TORNO, FRESADORA)
DISTINTOS PROCESOS DE MAQUINADO (TORNO, FRESADORA)DISTINTOS PROCESOS DE MAQUINADO (TORNO, FRESADORA)
DISTINTOS PROCESOS DE MAQUINADO (TORNO, FRESADORA)
 
Diapositivas De Tornos
Diapositivas De TornosDiapositivas De Tornos
Diapositivas De Tornos
 
Trabajo de sistemas 2
Trabajo de sistemas  2Trabajo de sistemas  2
Trabajo de sistemas 2
 
La fresadora
La fresadora La fresadora
La fresadora
 
Trabajo fredy tapuy
Trabajo fredy tapuyTrabajo fredy tapuy
Trabajo fredy tapuy
 
Torno y fresadora: Procesos de manufactura
Torno y fresadora: Procesos de manufacturaTorno y fresadora: Procesos de manufactura
Torno y fresadora: Procesos de manufactura
 
Universidad de-las-fuerzas-armadas-espe
Universidad de-las-fuerzas-armadas-espeUniversidad de-las-fuerzas-armadas-espe
Universidad de-las-fuerzas-armadas-espe
 
Presentacion de torno
Presentacion de tornoPresentacion de torno
Presentacion de torno
 
Presentacion de torno
Presentacion de tornoPresentacion de torno
Presentacion de torno
 
Torno
TornoTorno
Torno
 
El torno
El tornoEl torno
El torno
 
TORNO Y FRESADORA DE MAQUINARIAS AGRICOLAS.pptx
TORNO Y FRESADORA DE MAQUINARIAS AGRICOLAS.pptxTORNO Y FRESADORA DE MAQUINARIAS AGRICOLAS.pptx
TORNO Y FRESADORA DE MAQUINARIAS AGRICOLAS.pptx
 
Torno
TornoTorno
Torno
 
torno
 torno torno
torno
 
Informe n-1
Informe n-1Informe n-1
Informe n-1
 
planos-mecanicos-de-un-torno
planos-mecanicos-de-un-tornoplanos-mecanicos-de-un-torno
planos-mecanicos-de-un-torno
 
El torno
El tornoEl torno
El torno
 

Más de carloslosa

Torno potencia de corte
Torno potencia de corteTorno potencia de corte
Torno potencia de cortecarloslosa
 
Mecanica de banco informacion completa
Mecanica de banco informacion completaMecanica de banco informacion completa
Mecanica de banco informacion completacarloslosa
 
Metrologia informacion completa
Metrologia informacion completaMetrologia informacion completa
Metrologia informacion completacarloslosa
 
Diametro a taladrar tablas
Diametro a taladrar tablasDiametro a taladrar tablas
Diametro a taladrar tablascarloslosa
 
Velicidad de corte, avance y t. torno 2 (red.)
Velicidad de corte, avance y t. torno 2 (red.)Velicidad de corte, avance y t. torno 2 (red.)
Velicidad de corte, avance y t. torno 2 (red.)carloslosa
 
Taladro ingeniería industrial tecnologia basica de fabricacion
Taladro ingeniería industrial tecnologia basica de fabricacionTaladro ingeniería industrial tecnologia basica de fabricacion
Taladro ingeniería industrial tecnologia basica de fabricacioncarloslosa
 
Clase semana 2
Clase semana 2 Clase semana 2
Clase semana 2 carloslosa
 
Engranajes (5) sobre fresadora
Engranajes (5) sobre fresadoraEngranajes (5) sobre fresadora
Engranajes (5) sobre fresadoracarloslosa
 
Preguntas sobre la fresadora
Preguntas sobre la fresadoraPreguntas sobre la fresadora
Preguntas sobre la fresadoracarloslosa
 
Fresado fuerza, potencia, cabezal divisor (4)
Fresado fuerza, potencia, cabezal divisor (4)Fresado fuerza, potencia, cabezal divisor (4)
Fresado fuerza, potencia, cabezal divisor (4)carloslosa
 
Problemas de fresado para taller
Problemas de fresado  para tallerProblemas de fresado  para taller
Problemas de fresado para tallercarloslosa
 
Tipos de fresado (2.2)
Tipos de fresado (2.2)Tipos de fresado (2.2)
Tipos de fresado (2.2)carloslosa
 
Fresadora vc, va, n, tiempo (3)
Fresadora  vc, va,  n, tiempo (3)Fresadora  vc, va,  n, tiempo (3)
Fresadora vc, va, n, tiempo (3)carloslosa
 

Más de carloslosa (15)

Torno potencia de corte
Torno potencia de corteTorno potencia de corte
Torno potencia de corte
 
Torno cono
Torno conoTorno cono
Torno cono
 
Mecanica de banco informacion completa
Mecanica de banco informacion completaMecanica de banco informacion completa
Mecanica de banco informacion completa
 
Metrologia informacion completa
Metrologia informacion completaMetrologia informacion completa
Metrologia informacion completa
 
Diametro a taladrar tablas
Diametro a taladrar tablasDiametro a taladrar tablas
Diametro a taladrar tablas
 
Velicidad de corte, avance y t. torno 2 (red.)
Velicidad de corte, avance y t. torno 2 (red.)Velicidad de corte, avance y t. torno 2 (red.)
Velicidad de corte, avance y t. torno 2 (red.)
 
Taladros (2)
Taladros (2)Taladros (2)
Taladros (2)
 
Taladro ingeniería industrial tecnologia basica de fabricacion
Taladro ingeniería industrial tecnologia basica de fabricacionTaladro ingeniería industrial tecnologia basica de fabricacion
Taladro ingeniería industrial tecnologia basica de fabricacion
 
Clase semana 2
Clase semana 2 Clase semana 2
Clase semana 2
 
Engranajes (5) sobre fresadora
Engranajes (5) sobre fresadoraEngranajes (5) sobre fresadora
Engranajes (5) sobre fresadora
 
Preguntas sobre la fresadora
Preguntas sobre la fresadoraPreguntas sobre la fresadora
Preguntas sobre la fresadora
 
Fresado fuerza, potencia, cabezal divisor (4)
Fresado fuerza, potencia, cabezal divisor (4)Fresado fuerza, potencia, cabezal divisor (4)
Fresado fuerza, potencia, cabezal divisor (4)
 
Problemas de fresado para taller
Problemas de fresado  para tallerProblemas de fresado  para taller
Problemas de fresado para taller
 
Tipos de fresado (2.2)
Tipos de fresado (2.2)Tipos de fresado (2.2)
Tipos de fresado (2.2)
 
Fresadora vc, va, n, tiempo (3)
Fresadora  vc, va,  n, tiempo (3)Fresadora  vc, va,  n, tiempo (3)
Fresadora vc, va, n, tiempo (3)
 

Último

COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIA
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIACOMPONENTES DE LA VIA FERREA UAJMS - BOLIVIA
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIARafaelPaco2
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaXjoseantonio01jossed
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxEtse9
 
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)ssuser6958b11
 
Una estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTUna estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTFundación YOD YOD
 
Uso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendiosUso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendioseduardochavezg1
 
CICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaCICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaSHERELYNSAMANTHAPALO1
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptxJhordanGonzalo
 
Fisiología del Potasio en Plantas p .pdf
Fisiología del Potasio en Plantas p .pdfFisiología del Potasio en Plantas p .pdf
Fisiología del Potasio en Plantas p .pdfJessLeonelVargasJimn
 
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdfManual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdfSandXmovex
 
Fisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfFisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfJessLeonelVargasJimn
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCANDECE
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALKATHIAMILAGRITOSSANC
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfAntonioGonzalezIzqui
 
Sesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERUSesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERUMarcosAlvarezSalinas
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdfAnthonyTiclia
 
Fijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEFijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEANDECE
 
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfLEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfAdelaHerrera9
 
Propositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicacionesPropositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicaciones025ca20
 
Exposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporaciónExposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporaciónjas021085
 

Último (20)

COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIA
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIACOMPONENTES DE LA VIA FERREA UAJMS - BOLIVIA
COMPONENTES DE LA VIA FERREA UAJMS - BOLIVIA
 
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctricaProyecto de iluminación "guia" para proyectos de ingeniería eléctrica
Proyecto de iluminación "guia" para proyectos de ingeniería eléctrica
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptx
 
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
VIRUS FITOPATÓGENOS (GENERALIDADES EN PLANTAS)
 
Una estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTUna estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NIST
 
Uso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendiosUso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendios
 
CICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresaCICLO DE DEMING que se encarga en como mejorar una empresa
CICLO DE DEMING que se encarga en como mejorar una empresa
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx
 
Fisiología del Potasio en Plantas p .pdf
Fisiología del Potasio en Plantas p .pdfFisiología del Potasio en Plantas p .pdf
Fisiología del Potasio en Plantas p .pdf
 
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdfManual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdf
 
Fisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdfFisiología del azufre en plantas S.S.pdf
Fisiología del azufre en plantas S.S.pdf
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRC
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
 
Sesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERUSesion 02 Patentes REGISTRO EN INDECOPI PERU
Sesion 02 Patentes REGISTRO EN INDECOPI PERU
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
 
Fijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSEFijaciones de balcones prefabricados de hormigón - RECENSE
Fijaciones de balcones prefabricados de hormigón - RECENSE
 
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfLEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
 
Propositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicacionesPropositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicaciones
 
Exposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporaciónExposicion. del documentos de YPFB corporación
Exposicion. del documentos de YPFB corporación
 

Informacion completa de torno

  • 2. Historia Con la posibilidad de poder cilindrar y dar forma a diversos utensilios, instrumentos y piezas ornamentales de madera y otros materiales, el hombre inventó y desarrolló el proceso de torneado. El torno es una de las primeras máquinas inventadas remontándose su uso quizá al año 1000 y con certeza al 850 a. C. Torno paralelo de 1911.
  • 3. Se denomina torno (del latín tornus, y este del griego τόρνος, giro, vuelta) a un conjunto de máquinas herramienta que permiten mecanizar piezas de forma geométrica de revolución. Estas máquinas-herramienta operan haciendo girar la pieza a mecanizar (sujeta en el cabezal) mientras una o varias herramientas de corte son empujadas en un movimiento regulado de avance contra la superficie de la pieza, cortando la viruta Que es un Torno La herramienta de corte va montada sobre un carro que se desplaza sobre unas guías o rieles paralelos al eje de giro de la pieza que se tornea, llamado eje Z; sobre este carro hay otro que se mueve según el eje X, en dirección radial a la pieza que se tornea, y puede haber un tercer carro llamado charriot que se puede inclinar, para hacer conos
  • 4. Tipos de tornos 1. Torno paralelo 2. Torno copiador 3. Torno revólver 4. Torno automático 5. Torno vertical 6. Torno CNC 7. Otros tipos de tornos Actualmente se utilizan en las industrias de mecanizados los siguientes tipos de tornos que dependen de la cantidad de piezas a mecanizar por serie, de la complejidad de las piezas y de la envergadura de las piezas
  • 5. Torno paralelo El torno paralelo o mecánico es el tipo de torno que evolucionó partiendo de los tornos antiguos cuando se le fueron incorporando nuevos equipamientos que lograron convertirlo en una de las máquinas herramienta más importante que han existido. Este tipo de torno está quedando relegado a realizar tareas poco importantes, a utilizarse en los talleres de aprendices y en los talleres de mantenimiento para realizar trabajos puntuales o especiales.
  • 6. Torno copiador (repujador) Se llama torno copiador a un tipo de torno que operando con un dispositivo hidráulico o mecánico ó electrónico, que permite el torneado de piezas de acuerdo a las características de la misma siguiendo el perfil de una plantilla que reproduce el perfil de la pieza.
  • 7. Torno revólver Es diseñado para mecanizar piezas sobre las que sea posible el trabajo simultáneo de varias herramientas con el fin de disminuir el tiempo total de mecanizado. Las piezas que presentan esa condición son aquellas que, partiendo de barras, tienen una forma final de casquillo o similar. La barra bien sujeta mediante pinzas o con un plato de garras, se va taladrando, mandrinando, roscando o escariando la parte interior mecanizada y a la vez se puede ir cilindrando, refrentando, ranurando, roscando y cortando con herramientas de torneado exterior. La característica principal del torno revólver es que lleva un carro con una torreta giratoria de forma hexagonal que ataca frontalmente a la pieza que se quiere mecanizar.
  • 9. Se llama torno automático a un tipo de torno cuyo proceso de trabajo está enteramente automatizado. La alimentación de la barra necesaria para cada pieza se hace también de forma automática, a partir de una barra larga que se inserta por un tubo que tiene el cabezal y se sujeta mediante pinzas de apriete hidráulico. La puesta a punto de estos tornos es muy laboriosa y por eso se utilizan principalmente para grandes series de producción. El movimiento de todas las herramientas está automatizado por un sistema de excéntricas y reguladores electrónicos que regulan el ciclo y los topes de final de carrera. Torno automático
  • 10. Torno vertical Los tornos verticales tienen el eje dispuesto verticalmente y el plato giratorio sobre un plano horizontal, lo que facilita el montaje de las piezas voluminosas y pesadas. Es pues el tamaño lo que identifica a estas máquinas, permitiendo el mecanizado integral de piezas de gran tamaño. El torno vertical es una variedad de torno diseñado para mecanizar piezas de gran tamaño, que van sujetas al plato de garras u otros operadores y que por sus dimensiones o peso harían difícil su fijación en un torno horizontal. . La manipulación de las piezas para fijarlas en el plato se hace mediante grúas de puente o polipastos.
  • 11. Torno CNC Torno operado mediante control numérico por computadora. Se caracteriza por ser una máquina herramienta muy eficaz para mecanizar piezas de revolución. Es una máquina ideal para el trabajo en serie y mecanizado de piezas complejas. Ofrece una gran capacidad de producción y precisión en el mecanizado por su estructura funcional y la trayectoria de la herramienta de torneado es controlada a través del ordenador, el cual procesa las órdenes de ejecución contenidas en un software que previamente ha confeccionado un programador conocedor.
  • 13. Estructura del torno El torno tiene lo siguientes componentes principales: • Bancada • Cabezal fijo • Contrapunto • Carros portaherramientas • Cabezal giratorio o chuck Bancada Cabezal fijo Contrapunto Carros portaherramientas Cabezal giratorio o chuck
  • 14. Bancada: sirve de soporte para las otras unidades del torno. En su parte superior lleva unas guías por las que se desplaza el cabezal móvil o contrapunto y el carro principal. Estructura del torno Cabezal fijo: contiene los engranajes o poleas que impulsan la pieza de trabajo y las unidades de avance. Incluye el motor, el husillo, el selector de velocidad, el selector de unidad de avance y el selector de sentido de avance. Además sirve para soporte y rotación de la pieza de trabajo que se apoya en el husillo. Bancada Cabezal fijo
  • 15. Cabezal móvil: El contrapunto puede moverse y fijarse en diversas posiciones a lo largo. La función primaria es servir de apoyo al borde externo de la pieza de trabajo. Está apoyado sobre las guías de la bancada y se desplaza manualmente a lo largo de ellas, llevado al punto deseado se bloquea su posición con la palanca (T6). Mediante el volante (T1) se puede avanzar o retroceder el contrapunto (T5) sobre el cuerpo del contracabezal (T3), este desplazamiento se puede bloquear impidiendo que retroceda con la palanca (T2). La base (T4) y el cuerpo (T3) son piezas distintas fijadas una a otra mediante tornillos, pueden ser aflojados y permitir un desplazamiento transversal del cuerpo respecto a su base, esta operación es para mecanizar conos de pequeño ángulo de inclinación.
  • 16. Carros portaherramientas: que son tres 1. Carro principal, que produce los movimientos de avance en el sentido longitudinal de las guías del torno y profundidad de pasada en refrentado. 2. Carro transversal, que se desliza transversalmente sobre el carro principal, avanzando en la operación de refrentado, y determina la profundidad de pasada en cilindrado. 3. Carro orientable o superior, su base está apoyada sobre una plataforma giratoria orientable según una escala de grados sexagesimales, se emplea para el mecanizado de conos •El carro principal (4) •el cuadro de mecanismos (5) •el volante (5a) •el embrague de roscar (5b) •embrague de cilindrar (5c) •El carro transversal (3) •la manivela (3b) •el carro orientable (2) •la escala (2b) •la manivela (2a) •la torreta portaherramientas (1)
  • 17. Cadena cinemática ó cabezal fijo ó caja de velocidades La cadena cinemática genera, trasmite y regula los movimientos de los elementos del torno, según las operaciones a realizar. Detalle de los mandos de la caja de velocidades y avances: • Motor: normalmente eléctrico • Caja de velocidades: con la que se determina la velocidad y el sentido de giro del eje del torno (H4) • el plato (H4) • el inversor de giro (H2) (H3) y (H5) • Caja de avances: con la que se establecen las distintas velocidades de avance de los carros, parte posterior (H10), la caja de la lira, caja de avances (H6) • Eje de cilindrar (H8) • Eje de roscar (H7) • un tercer eje (H9), no existe en todos los tornos, permite poner el motor eléctrico en marcha o invertir su sentido de giro.
  • 18. Equipo auxiliar •Centros: soportan la pieza en el cabezal y en la contrapunta. •Perno de arrastre: Se fija en el plato de torno y en la pieza de trabajo •Plato de arrastre :para amarrar piezas de difícil sujeción. Plato y perno de arrastre. •Plato de sujeción de garras: sujeta la pieza de trabajo en el cabezal y transmite el movimiento. •Plato de garras independientes : tiene 4 garras que actúan de forma independiente unas de otras. Plato de Garras
  • 19. Equipo auxiliar •Soporte fijo o luneta fija: soporta el extremo de la pieza de trabajo cuando no puede usarse la contrapunta, soportar piezas largas y delgadas y evitar que se flexione o salte al maquinarlas entre centros. •Soporte móvil o luneta móvil: se monta en el carro Portaherramientas y permite soportar piezas de trabajo largas, cerca del punto de corte, para evitar que la pieza de trabajo se flexione y separe de la herramienta de corte
  • 20. Especificaciones técnicas de los tornos Principales especificaciones técnicas de los tornos convencionales Capacidad : •Altura entre puntos; •distancia entre puntos; •diámetro admitido sobre bancada; •diámetro admitido sobre escote; •diámetro admitido sobre carro transversal; •anchura de la bancada; •longitud del escote delante del plato liso. Cabezal : •Diámetro del agujero del husillo principal; •nariz del husillo principal; •cono Morse del husillo principal; •gama de velocidades del cabezal (habitualmente en rpm); •número de velocidades. • Potencia del motor principal (habitualmente en kW); • potencia de la motobomba de refrigerante (en kW). Motores :
  • 21. Carros : • Recorrido del charriot o carro superior; • dimensiones máximas de la herramienta, • gama de avances longitudinales; • gama de avances transversales. • recorrido del avance automatico • carro movil de un torno Roscado : • Gama de pasos métricos; • gama de pasos Witworth; • gama de pasos modulares; • gama de pasos Diametral Pitch; • paso del husillo patrón. Contrapunto : Es más conocido como cabezal movil esta formado por dos piezas generalmente de fundicion Especificaciones técnicas de los tornos
  • 22. Pieza Herramienta Movimientos de trabajo en la operación de torneado Movimiento de corte: Se imparte a la pieza que gira rotacionalmente sobre su eje principal. Lo imprime un motor eléctrico que transmite su giro al husillo principal mediante un sistema de poleas o engranajes. El husillo principal tiene acoplado a su extremo distintos sistemas de sujeción (platos de garras, pinzas, mandrinos auxiliares u otros), los cuales sujetan la pieza a mecanizar. Los tornos tradicionales tienen una gama fija de velocidades de giro.
  • 23. Movimiento de Avance Movimiento de avance: Movimiento de la herramienta de corte en la dirección del eje de la pieza que se está trabajando, puede no ser paralelo al eje, produciéndose así conos. En ese caso se gira el carro charriot al ángulo requerido, que será la mitad de la conicidad deseada. Los tornos convencionales tiene una gama fija de avances. Movimientos de trabajo en la operación de torneado
  • 24. Profundidad de pasada: Movimiento de la herramienta de corte que determina la profundidad de material arrancado en cada pasada. La cantidad de material factible de ser arrancada depende del perfil del útil de corte usado, el tipo de material mecanizado, la velocidad de corte, potencia de la máquina, avance, etc. Movimientos de trabajo en la operación de torneado Nonios de los carros: Para regular el trabajo de torneado los carros del torno llevan incorporado unos nonios en forma de tambor graduado, donde cada división indica el desplazamiento que tiene el carro, ya sea el longitudinal, el transversal o el charriot.
  • 25. Operaciones de torneado Cilindrado Esta operación consiste en la mecanización exterior a la que se somete a las piezas que tienen mecanizados cilíndricos. Para poder efectuar esta operación, con el carro transversal se regula la profundidad de pasada y, por tanto, el diámetro del cilindro, y con el carro paralelo se regula la longitud del cilindro. El carro paralelo avanza de forma automática de acuerdo al avance de trabajo deseado. El cilindrado se puede hacer con la pieza al aire sujeta en el plato de garras, si es corta, o con la pieza sujeta entre puntos y un perno de arrastre, o apoyada en luneta fija o móvil si la pieza es de grandes dimensiones y peso. Cuando el cilindrado se realiza en el hueco de la pieza se llama mandrinado.
  • 26. Refrentado Consiste en un mecanizado frontal y perpendicular al eje de las piezas que se realiza para producir un buen acoplamiento en el montaje posterior de las piezas torneadas, también es conocida como fronteado. La problemática es que la velocidad de corte en el filo de la herramienta va disminuyendo a medida que avanza hacia el centro. Operaciones de torneado Para mejorar este aspecto muchos tornos modernos incorporan variadores de velocidad en el cabezal de tal forma que se puede ir aumentando la velocidad de giro de la pieza.
  • 27. Ranurado Operaciones de torneado El ranurado consiste en mecanizar unas ranuras cilíndricas de anchura y profundidad variable en las piezas que se tornean, las cuales tienen muchas utilidades diferentes. En este caso la herramienta tiene ya conformado el ancho de la ranura y actuando con el carro transversal se le da la profundidad deseada. Los canales de las poleas son un ejemplo claro de ranuras torneadas. Por ejemplo, para salida de rosca, para arandelas de presión, etc.
  • 28. Roscado en el torno Operaciones de torneado Hay dos sistemas de realizar roscados en los tornos, de un lado la tradicional que utilizan los tornos paralelos, mediante la Caja Norton, y de otra la que se realiza con los tornos CNC, donde los datos de la roscas van totalmente programados y ya no hace falta la caja Norton para realizarlo. La caja Norton está compuesto de varios engranajes que fue inventado y patentado en 1890, sirve para fijar los pasos de las piezas a roscar. Consta de varios trenes desplazables de engranajes o uno basculante. La caja conecta el movimiento del cabezal del torno con el carro portaherramientas que lleva incorporado un husillo de rosca cuadrada. Con la manipulación de varias palancas de la caja de cambios se pueden fijar distintas velocidades de avance de carro portaherramientas, permitiendo realizar variedad de pasos de rosca tanto métricos como Withworth.
  • 29. Roscado en el torno Roscaexterior omacho Roscainterior o hembra 1 Fondoobase Crestaovértice 2 Crestaovértice Fondoobase 3 Flanco Flanco 4 Diámetrodel núcleo Diámetrodel taladro 5 Diámetroexterior Diámetrointerior 6 7 Profundidaddelarosca Paso Para efectuar el roscado hay que realizar previamente las siguientes tareas: • Tornear previamente al diámetro que tenga la rosca • Preparar la herramienta de acuerdo con los ángulos del filete de la rosca. • Establecer la profundidad de pasada que tenga que tener la rosca hasta conseguir el perfil adecuado.
  • 30. En la figura se observa cómo partiendo de una barra hexagonal se mecaniza un tornillo. Para ello se realizan las siguientes operaciones: Roscado en torno paralelo Operaciones de torneado 1. Se cilindra el cuerpo del tornillo dejando la cabeza hexagonal en sus medidas originales. 2. Se achaflana la entrada de la rosca y se refrenta la punta del tornillo. 3. Se ranura la garganta donde finaliza la rosca junto a la cabeza del tornillo. 4. Se rosca el cuerpo del tornillo, dando lugar a la pieza finalizada. 4 1 2 3 Este mismo proceso se puede hacer partiendo de una barra larga, tronzando finalmente la parte mecanizada.
  • 31. Moleteado Operaciones de torneado Es un proceso de conformado en frío del material mediante unas moletas que presionan la pieza mientras da vueltas, lo que produce un incremento del diámetro de la pieza. Se realiza en piezas que se tengan que manipular a mano y vayan roscadas para evitar su resbalamiento. Las moletas son de diferente paso y dibujo. Un ejemplo es el que tienen las monedas de un Sol en sus bordes. El moleteado por deformación se puede ejecutar de dos maneras: • Radialmente, cuando la longitud moleteada en la pieza coincide con el espesor de la moleta a utilizar. • Longitudinalmente, cuando la longitud excede al espesor de la moleta. Para este segundo caso la moleta siempre ha de estar biselada en sus extremos.
  • 32. Torneado de conos Operaciones de torneado Un cono o un tronco de cono de un cuerpo de generación viene definido por los siguientes conceptos: • Diámetro mayor • Diámetro menor • Longitud • Ángulo de inclinación • Conicidad •En los tornos CNC se programa sus dimensiones, los carros transversales y longitudinales se desplazan de forma coordinada •En los tornos copiadores la plantilla de copiado permite que el palpador se desplace por la misma y los carros actúen de forma coordinada. •Para mecanizar conos en los tornos paralelos convencionales se puede hacer de dos formas diferentes. Si la longitud del cono es pequeña, se mecaniza el cono con el charriot inclinado según el ángulo del cono. Si la longitud del cono es muy grande y el eje se mecaniza entre puntos, entonces se desplaza la distancia adecuada el contrapunto según las dimensiones del cono. Los diferentes tornos mecanizan los conos de formas diferentes. Pinzas cónicas portaherramientas
  • 33. Torneado esférico Operaciones de torneado Hacer rótulas de forma manual en un torno paralelo presenta cierta dificultad para conseguir exactitud en la misma. En ese caso es recomendable disponer de una plantilla de la esfera e irla mecanizando de forma manual y acabarla con lima o rasqueta para darle el ajuste final. El torneado esférico, por ejemplo el de rótulas, no tiene ninguna dificultad si se realiza en un torno de Control Numérico porque, programando sus medidas y la función de mecanizado radial correspondiente. Si el torno es automático de gran producción, trabaja con barra y las rótulas no son de gran tamaño, la rotula se consigue con un carro transversal donde las herramientas están afiladas con el perfil de la rótula.
  • 34. Segado o Tronzado Operaciones de torneado Se llama segado a la operación de torneado para cortar la barra y separar la pieza de la misma. Para esta operación se utilizan herramientas muy estrechas con un saliente de acuerdo al diámetro que tenga la barra y permita con el carro transversal llegar al centro de la barra. Es una operación muy común en tornos revólver y automáticos alimentados con barra y fabricaciones en serie.
  • 35. Chaflanado Operaciones de torneado El chaflanado es una operación de torneado muy común que consiste en matar los cantos tanto exteriores como interiores para evitar cortes con los mismos y a su vez facilitar el trabajo y montaje posterior de las piezas. El chaflanado más común suele ser el de 1mm por 45º. Este chaflán se hace atacando directamente los cantos con una herramienta adecuada.
  • 36. Mecanizado de excéntricas Operaciones de torneado Una excéntrica es una pieza que tiene dos o más cilindros con distintos centros o ejes de simetría, tal y como ocurre con los cigüeñales de motor, o los ejes de levas. Una excéntrica es un cuerpo de revolución y por tanto el mecanizado se realiza en un torno. Para mecanizar una excéntrica es necesario primero realizar los puntos de centraje de los diferentes ejes excéntricos en los extremos de la pieza que se fijará entre puntos. Cigüeñales excéntricos
  • 37. Taladrado Operaciones de torneado Muchas piezas requieren ser taladradas con brocas en el centro de sus ejes de rotación. Se utilizan brocas normales, que se sujetan en el contrapunto en un portabrocas o directamente en el alojamiento del contrapunto si el diámetro es grande. Mención aparte merecen los procesos de taladrado profundo donde el proceso ya es muy diferente sobre todo la constitución de la broca que se utiliza. No todos los tornos pueden realizar todas estas operaciones que se indican, sino que eso depende del tipo de torno que se utilice y de los accesorios o equipamientos que tenga.
  • 38. Parámetros de corte del torneado Los parámetros de corte fundamentales que hay que considerar en el proceso de torneado son los siguientes: •Elección del tipo de herramienta más adecuado •Sistema de fijación de la pieza •Velocidad de corte (Vc) expresada en metros/minuto •Diámetro exterior del torneado •Revoluciones por minuto (rpm) del cabezal del torno •Avance en mm/rev, de la herramienta •Avance en mm/min de la herramienta •Profundidad de pasada •Esfuerzos de corte •Tipo de torno y accesorios adecuados
  • 39. Factores que influyen en las condiciones tecnológicas del torneado • Diseño y limitaciones de la pieza: tamaño, tolerancias del torneado, vibraciones, sistemas de sujeción, acabado superficial, etc. • Operaciones de torneado a realizar: cilindrados exteriores o interiores, refrentados, ranurados, desbaste, acabados, etc. • Estabilidad y condiciones de mecanizado: cortes intermitentes, voladizo de la pieza, forma y estado de la pieza, potencia, etc. • Disponibilidad y selección del tipo de torno: automatizar el mecanizado, realizar varias operaciones en simultáneo, serie de piezas a mecanizar, calidad y cantidad del refrigerante, etc. • Material de la pieza: dureza, estado, resistencia, maquinabilidad, barra, fundición, forja, mecanizado en seco o con refrigerante, etc. • Disponibilidad de herramientas: calidad Y sistema de sujeción de la herramienta, acceso al distribuidor y servicio técnico de herramientas. • Aspectos económicos del mecanizado: optimización del mecanizado, duración de la herramienta, precio de la herramienta, precio del tiempo de mecanizado.
  • 40. Mecanizado en seco y con refrigerante Hoy en día el torneado en seco es completamente viable. Hay una tendencia reciente a efectuar los mecanizados en seco siempre que la calidad de la herramienta lo permita. La inquietud se despertó durante los años 90,cuando estudios realizados en empresas de fabricación de componentes para automoción en Alemania pusieron de relieve el coste elevado de la refrigeración y sobre todo de su reciclado. Sin embargo, el mecanizado en seco no es adecuado para todas las aplicaciones, especialmente para taladrados, roscados y mandrinados para garantizar la evacuación de las virutas. Tampoco es recomendable tornear en seco materiales pastosos o demasiado blandos como el aluminio o el acero de bajo contenido en carbono ya que es muy probable que los filos de corte se embozen con el material que cortan, produciendo mal acabado superficial, dispersiones en las medidas de la pieza e incluso rotura de los filos de corte. En el caso de mecanizar materiales de viruta corta como la fundición gris la taladrina es beneficiosa como agente limpiador, evitando la formación de nubes de polvo toxicas. La taladrina es imprescindible torneando materiales abrasivos tales como inoxidables, inconells, etc Para evitar sobrecalentamientos de husillos, etc suelen incorporarse circuitos internos de refrigeración por aceite o aire.
  • 41. Puesta a punto de los tornos Las tareas más importantes que se realizan en la revisión de los tornos son las siguientes: Nivelación Se refiere a nivelar la bancada y para ello se utilizará un nivel de precisión. Concentricidad del cabezal Se realiza con un reloj comparador y haciendo girar el plato a mano, se verifica la concentricidad del cabezal y si falla se ajusta y corrige adecuadamente. Comprobación de redondez de las piezas Se mecaniza un cilindro a un diámetro aproximado de 100 mm y con un reloj comparador de precisión se verifica la redondez del cilindro. Alineación del eje principal Se fija en el plato un mandril de unos 300 mm de longitud, se monta un reloj en el carro longitudinal y se verifica si el eje está alineado o desviado. Alineación del contrapunto Se consigue mecanizando un eje de 300 mm sujeto entre puntos y verificando con un micrómetro de precisión si el eje ha salido cilíndrico o tiene conicidad.
  • 42. Seguridad en los tornos •Los trabajadores deben utilizar anteojos de seguridad contra impactos •Manejar la máquina sin distraerse. •Si a pesar de todo se le introdujera alguna vez un cuerpo estaño en un ojo, no lo refriegue, puede provocarse una herida. Acuda inmediatamente al médico. •Las virutas producidas durante el mecanizado nunca deben retirarse con la mano, ya que se pueden producir cortes y pinchazos. •Las virutas secas se deben retirar con un cepillo o brocha adecuados, estando la máquina parada. Para virutas húmedas o aceitosas es mejor emplear una escobilla de goma. •Se debe llevar la ropa de trabajo bien ajustada. Las mangas deben llevarse ceñidas a la muñeca.
  • 43. Seguridad en los tornos •Se debe llevar la ropa de trabajo bien ajustada. Las mangas deben llevarse ceñidas a la muñeca. •Se debe usar calzado de seguridad que proteja contra cortes y pinchazos, así como contra caídas de piezas pesadas. •Es muy peligroso trabajar llevando anillos, relojes, pulseras, cadenas en el cuello, bufandas, corbatas o cualquier prenda que cuelgue. •Asimismo es peligroso llevar cabellos largos y sueltos, que deben recogerse bajo gorro o prenda similar. Lo mismo la barba larga.
  • 44. ANTES DE COMENZAR EL TRABAJO •Verificar que el plato y su seguro contra el aflojamiento, están correctamente colocados. •Que la pieza a trabajar está correcta y firmemente sujeta al dispositivo de sujeción y que en su movimiento no encuentre obstáculos. •Que se ha retireado del plato la llave de apriete. •Que la palanca de bloqueo del portaherramientas está bien apretada. •Que están apretados los tornillos de fijación del carro superior. •Si se usa contrapunto, comprobar que esté bien anclado a la bancada y que la palanca del bloqueo del husillo del contrapunto está bien apretada. •Que las carcasas de protección o resguardos de los engranajes y transmisiones está correctamente colocadas y fijadas. •Que no hay piezas o herramientas abandonadas que pudieran caer o ser alcanzados por la máquina. •Si se va a trabajar sobre barras largas que sobresalen por la parte trasera del cabezal, comprobar que la barra está cubierta por una protección guía, en toda su longitud. •Que la cubierta de protección del plato está correctamente colocada. Que la pantalla transparente de protección contra proyecciones de virutas y taladrina se encuentra bien situada.
  • 45. DURANTE EL TRABAJO Durante el mecanizado, se deben mantener las manos alejadas de la herramienta que gira o se mueve. Si el trabajo se realiza en ciclo automático., las manos no deben apoyarse en la mesa de la máquina. •No se debe frenar nunca el plato con la mano. Es peligroso llevar anillos o alianzas; ocurren muchos accidentes por esta causa. •Para tornear entrepuntos se utilizarán dispositivos de arranque de seguridad. En caso contrario, se equiparán los dispositivos de arrastre corrientes con un aro de seguridad. Los dispositivos de arrastre no protegidos han causado numerosos accidentes, incluso mortales. •Para limar en el torno, se debe sujetar la lima por el mango con la mano izquierda. La mano derecha sujetará la lima por la punta. •Trabajando con tela esmeril en el torno se debe tomar algunas precausiones: •De ser posible no aplicar la tela esmeril sobre la pieza sujetándola directamente con las manos. •Se puede esmerilar sin peligro utilizando una lima o una tablilla como soporte de la tela esmeril.