SlideShare una empresa de Scribd logo
1ra clase de Cálculo II
“Las matemáticas son uno de los descubrimientos de la humanidad.
Por lo tanto no pueden ser más complicadas de lo que los hombres
son capaces de comprender.”
Richard Phillips Feynman
“Lo que oyes, lo olvidas; lo que vez, lo recuerdas; lo que haces, lo
entiendes”.
Proverbio popular
“Las matemáticas son una ciencia exacta salvo cuando te equivocas.”
Jaume Perich
¿Qué es una ecuación diferencial (ED)?
Es una ecuación que contiene las derivadas de una o
más variables dependientes, con respecto a una o más
variables independientes.
¿Dónde se utilizan?
¿Dónde se utilizan?
Las ecuaciones diferenciales se pueden aplicar en diferentes ramas y aplicaciones
cotidianas y no tan cotidianas o más bien un poco más científicas.
Problema de aplicación con ecuaciones diferenciales
Cierta ciudad tenía una población de 25000 habitantes en 1960 y una
población de 30000 habitantes en 1970, suponiendo que su población
continúe creciendo exponencialmente con un índice constante. ¿Qué
población tendría esta ciudad en el año 2011?
Separando variables:
Aplicando propiedades de logaritmos, quedaría de esta forma:
Notación de Leibniz: dy/dx, d2y/ dx2,...
Notación primada: y', y'', y'''… y(n),...
Notación de Newton:
Notación de subíndice: ux , uy , uxx , uyy , uxy , …
Notaciones
En la notación de Leibniz localizamos rápidamente cuál es la
variable dependiente y la independiente:
Las ecuaciones diferenciales se clasifican por:
•Tipo
•Orden
•Linealidad
Ecuación diferencial ordinaria (EDO):
Una ecuación que contiene sólo derivadas ordinarias de una o más
variables dependientes de una sola variable independiente.
Ejemplo de EDO:
Una EDO puede contener más de una variable dependiente:
Clasificación por tipo:
Ecuación diferencial parcial (EDP):
Una ecuación que contiene derivadas parciales de una o
más variables dependientes de dos o más variables
independientes.
Ejemplos:
Clasificación según el orden:
El orden de una ecuación diferencial (ya sea EDO o EDP)
es el orden mayor de la derivadas involucradas en la
ecuación.
Ejemplo:
Luego, es una EDO de segundo orden.
Clasificación según el orden (continuación)
Clasificación según el grado:
El grado de una ecuación diferencial es el grado
algebraico de su derivada de mayor orden, es decir, el
grado de una ecuación diferencial es la potencia a la
que esta elevada la deriva que nos dio el orden de la
ecuación diferencial.
Ejemplo
La siguiente ecuación diferencial:
Es de tercer grado, dado que la primera derivada,
que nos da el orden de la EDO, está elevada cubo.
Clasificación según el grado (continuación)
Clasificación según la linealidad:
Se dice que una EDO de orden n es lineal si F
(en la forma general) es lineal en y, y’, y”, …, y(n).
Una ecuación diferencial es lineal si todos sus
términos son lineales con respecto a la variable
dependiente y sus derivadas, en caso contrario es no
lineal.
Ecuación lineal
Clasificación según la linealidad (continuación)
Lineal homogénea:
El término independiente g(x) es cero.
Lineal con coeficientes constantes:
Los coeficientes a0(x),...,an(x) son constantes.
Lineal con coeficientes variables:
Enfatiza el hecho de que al menos uno de los
coeficientes a0(x),...,an(x) No es constante.
Clasificación según la linealidad (continuación)
Clasificación según la linealidad (continuación)
La ecuación diferencial tiene la propiedad
de que su solución es la suma de las dos soluciones y = yc + yp,
Donde:
yc es una solución de la ecuación homogénea afín
yp es una solución particular de la ecuación no homogénea.
Propiedades de ecuaciones diferenciales lineales
Propiedades de ecuaciones diferenciales lineales
Observe que:
La ecuación es separable.
Este hecho permite encontrar yc al escribir la ecuación como: e integrar.
Resolviendo para y se obtiene
Resolviendo para (y) se obtiene:
Por conveniencia se escribirá y=cy1(x)
Valores posibles de las incógnitas de una ecuación que verifiquen su igualdad.
Función que verifica una ecuación diferencial. Existe la solución general y la
solución particular.
Solución general: una solución de tipo genérico, expresada con una o más
constantes. La solución general es un haz de curvas. Tiene un orden de infinitud
de acuerdo a su cantidad de constantes (una constante corresponde a una
familia simplemente infinita, dos constantes a una familia doblemente infinita,
etc). En caso de que la ecuación sea lineal, la solución general se logra como
combinación lineal de las soluciones (tantas como el orden de la ecuación) de la
ecuación homogénea (que resulta de hacer el término no dependiente de y(x) ni
de sus derivadas igual a 0) más una solución particular de la ecuación completa.
Solución particular: Si fijando cualquier punto P(X0,Y0) por donde debe pasar
necesariamente la solución de la ecuación diferencial, existe un único valor de C,
y por lo tanto de la curva integral que satisface la ecuación, éste recibirá el
nombre de solución particular de la ecuación en el punto P(X0,Y0), que recibe el
nombre de condición inicial. Es un caso particular de la solución general, en
donde la constante (o constantes) recibe un valor específico.
Solución de ecuaciones diferenciales
Interpretación geométrica de la diferencial
Geométricamente la diferencial representa el incremento de la variable
dependiente, pero no hasta la curva si no hasta la tangente.
Resolución de ecuaciones diferenciales ordinarias
Ecuación diferencial separable
Se tiene una ecuación diferencial ordinaria de primer orden:
Se dice que ecuación diferencial de primer orden es separable si se puede
expresar esa ecuación diferencial de la siguiente manera:
Donde F (x, y) se lo expresa como una multiplicación de dos funciones, una
que depende de la variable “x” y otra de la variable “y”. En este caso se
obtiene la siguiente solución de esta ecuación diferencial:
Donde la solución de esta ecuación diferencial separable tiene la siguiente forma:
Resolución de ecuaciones diferenciales ordinarias (ejemplos)
ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES
Encuentre la solución general de la ecuación diferencial siguiente:
Resolución:
Resolución de ecuaciones diferenciales ordinarias (ejemplos)
Soluciones Particulares
Resolución de ecuaciones diferenciales ordinarias (ejemplos)
ECUACIONES LINEALES
Resolver la siguiente ecuación lineal:
Solución:
Es una ecuación lineal en "y"
1) 2)
3)
4)
Resolución de ecuaciones diferenciales ordinarias (ejemplos)
Graficando para un valor arbitrario de c= 1
5) 6)
Ejercicios
1-Diga si las ecuaciones diferenciales dadas son lineales o
no lineales. Indique el orden de cada ecuación:
a) b)
c) d)
e) f)
g) h)
2-Encuentre la solución general de las ecuaciones
diferenciales siguientes:
Trabajo Final del Módulo ( continuación)
a) b)
c) d)
joanny.ibarbia@gmail.com
Enviar respuestas en un documento escaneado o en Microsoft Word al correo
electrónico :

Más contenido relacionado

La actualidad más candente

Funciones variable compleja
Funciones variable complejaFunciones variable compleja
Funciones variable compleja
hernanalonso
 
Semana 1. introduccion a las ecuaciones diferenciales
Semana 1. introduccion a las ecuaciones diferencialesSemana 1. introduccion a las ecuaciones diferenciales
Semana 1. introduccion a las ecuaciones diferenciales
nidia maldonado
 
El espacio tridimensional
El espacio tridimensionalEl espacio tridimensional
El espacio tridimensional
Rafael David Méndez Anillo
 
Axiomas de números reales
Axiomas de números realesAxiomas de números reales
Axiomas de números reales
ThaLeah Barrios SanTos
 
Prueba De HipóTesis Para Dos Medias De PoblacióN (Muestras Grandes)
Prueba De HipóTesis Para Dos Medias De PoblacióN (Muestras Grandes)Prueba De HipóTesis Para Dos Medias De PoblacióN (Muestras Grandes)
Prueba De HipóTesis Para Dos Medias De PoblacióN (Muestras Grandes)
María Isabel Bautista
 
1ra clase. Introducción a las ecuaciones diferenciales
1ra clase. Introducción a las ecuaciones diferenciales1ra clase. Introducción a las ecuaciones diferenciales
1ra clase. Introducción a las ecuaciones diferenciales
Joanny Ibarbia Pardo
 
Calculo vectorial - unidad 5 (integracion)
Calculo vectorial - unidad 5 (integracion)Calculo vectorial - unidad 5 (integracion)
Calculo vectorial - unidad 5 (integracion)
Dj Mada - Tres Valles, Veracruz
 
1. Sistemas de coordenadas y vectores
1. Sistemas de coordenadas y vectores1. Sistemas de coordenadas y vectores
1. Sistemas de coordenadas y vectores
karoline cruz luis
 
Coordenadas polares y coordenadas geograficas wuillians lemus - ci 24873349...
Coordenadas polares y coordenadas geograficas   wuillians lemus - ci 24873349...Coordenadas polares y coordenadas geograficas   wuillians lemus - ci 24873349...
Coordenadas polares y coordenadas geograficas wuillians lemus - ci 24873349...
Oscar Irigoyen
 
Dependencia lineal
Dependencia linealDependencia lineal
Dependencia lineal
rosy
 
Coordenadas polares
Coordenadas polaresCoordenadas polares
Coordenadas polares
exodia1357
 
Limites: problemas resueltos
Limites: problemas resueltosLimites: problemas resueltos
Limites: problemas resueltos
Christiam3000
 
Propiedades de una derivada direccional
Propiedades de una derivada direccionalPropiedades de una derivada direccional
Propiedades de una derivada direccional
Raynel Peraza
 
Aplicaciones geometricas edo2
Aplicaciones geometricas edo2Aplicaciones geometricas edo2
Aplicaciones geometricas edo2
Yerikson Huz
 
Varianza y desviación estándar
Varianza y desviación estándarVarianza y desviación estándar
Varianza y desviación estándar
Sergi Duró
 
Fracciones Algebraicas
Fracciones AlgebraicasFracciones Algebraicas
Fracciones Algebraicas
PlayStationToritos
 
4.Clasificación de ángulos
4.Clasificación de ángulos 4.Clasificación de ángulos
4.Clasificación de ángulos
RAMON GOMEZ
 
Identidad ángulo medio - Trigonometría Matemática
Identidad ángulo medio - Trigonometría MatemáticaIdentidad ángulo medio - Trigonometría Matemática
Identidad ángulo medio - Trigonometría Matemática
Matemática Básica
 
Metodo de disco
Metodo de discoMetodo de disco
Metodo de disco
javieerrmorn
 
Dominio y-rango-funcion
Dominio y-rango-funcionDominio y-rango-funcion
Dominio y-rango-funcion
kaezaga
 

La actualidad más candente (20)

Funciones variable compleja
Funciones variable complejaFunciones variable compleja
Funciones variable compleja
 
Semana 1. introduccion a las ecuaciones diferenciales
Semana 1. introduccion a las ecuaciones diferencialesSemana 1. introduccion a las ecuaciones diferenciales
Semana 1. introduccion a las ecuaciones diferenciales
 
El espacio tridimensional
El espacio tridimensionalEl espacio tridimensional
El espacio tridimensional
 
Axiomas de números reales
Axiomas de números realesAxiomas de números reales
Axiomas de números reales
 
Prueba De HipóTesis Para Dos Medias De PoblacióN (Muestras Grandes)
Prueba De HipóTesis Para Dos Medias De PoblacióN (Muestras Grandes)Prueba De HipóTesis Para Dos Medias De PoblacióN (Muestras Grandes)
Prueba De HipóTesis Para Dos Medias De PoblacióN (Muestras Grandes)
 
1ra clase. Introducción a las ecuaciones diferenciales
1ra clase. Introducción a las ecuaciones diferenciales1ra clase. Introducción a las ecuaciones diferenciales
1ra clase. Introducción a las ecuaciones diferenciales
 
Calculo vectorial - unidad 5 (integracion)
Calculo vectorial - unidad 5 (integracion)Calculo vectorial - unidad 5 (integracion)
Calculo vectorial - unidad 5 (integracion)
 
1. Sistemas de coordenadas y vectores
1. Sistemas de coordenadas y vectores1. Sistemas de coordenadas y vectores
1. Sistemas de coordenadas y vectores
 
Coordenadas polares y coordenadas geograficas wuillians lemus - ci 24873349...
Coordenadas polares y coordenadas geograficas   wuillians lemus - ci 24873349...Coordenadas polares y coordenadas geograficas   wuillians lemus - ci 24873349...
Coordenadas polares y coordenadas geograficas wuillians lemus - ci 24873349...
 
Dependencia lineal
Dependencia linealDependencia lineal
Dependencia lineal
 
Coordenadas polares
Coordenadas polaresCoordenadas polares
Coordenadas polares
 
Limites: problemas resueltos
Limites: problemas resueltosLimites: problemas resueltos
Limites: problemas resueltos
 
Propiedades de una derivada direccional
Propiedades de una derivada direccionalPropiedades de una derivada direccional
Propiedades de una derivada direccional
 
Aplicaciones geometricas edo2
Aplicaciones geometricas edo2Aplicaciones geometricas edo2
Aplicaciones geometricas edo2
 
Varianza y desviación estándar
Varianza y desviación estándarVarianza y desviación estándar
Varianza y desviación estándar
 
Fracciones Algebraicas
Fracciones AlgebraicasFracciones Algebraicas
Fracciones Algebraicas
 
4.Clasificación de ángulos
4.Clasificación de ángulos 4.Clasificación de ángulos
4.Clasificación de ángulos
 
Identidad ángulo medio - Trigonometría Matemática
Identidad ángulo medio - Trigonometría MatemáticaIdentidad ángulo medio - Trigonometría Matemática
Identidad ángulo medio - Trigonometría Matemática
 
Metodo de disco
Metodo de discoMetodo de disco
Metodo de disco
 
Dominio y-rango-funcion
Dominio y-rango-funcionDominio y-rango-funcion
Dominio y-rango-funcion
 

Similar a 1ra clase de Cálculo II

Ecuaciones Diferenciales
Ecuaciones DiferencialesEcuaciones Diferenciales
Ecuaciones Diferenciales
lecheverria
 
C:\Fakepath\Ecuaciones Diferenciales ,,,
C:\Fakepath\Ecuaciones Diferenciales   ,,,C:\Fakepath\Ecuaciones Diferenciales   ,,,
C:\Fakepath\Ecuaciones Diferenciales ,,,
ceti
 
Ecuaciones Diferenciales
Ecuaciones DiferencialesEcuaciones Diferenciales
Ecuaciones Diferenciales
ceti
 
Ecuaciones Diferenciales
Ecuaciones DiferencialesEcuaciones Diferenciales
Ecuaciones Diferenciales
ceti
 
ECUACIONES DIFERENCIALES PARCIALES
ECUACIONES DIFERENCIALES PARCIALESECUACIONES DIFERENCIALES PARCIALES
ECUACIONES DIFERENCIALES PARCIALES
UO
 
Que Son Las Ecuaciones Diferenciales[1]
Que Son Las Ecuaciones Diferenciales[1]Que Son Las Ecuaciones Diferenciales[1]
Que Son Las Ecuaciones Diferenciales[1]
gerardo171088
 
Ecuaciones
EcuacionesEcuaciones
Ecuaciones
Christian Lopez
 
Docmento
DocmentoDocmento
Docmento
kactherinevg
 
Ecuaciones Diferenciales 1
Ecuaciones Diferenciales 1Ecuaciones Diferenciales 1
Ecuaciones Diferenciales 1
Universidad: Ceti Plantel: Colomos
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
oriannysrodriguez
 
Conceptos BáSicos de ecuaciones diferenciales
Conceptos BáSicos de ecuaciones diferencialesConceptos BáSicos de ecuaciones diferenciales
Conceptos BáSicos de ecuaciones diferenciales
Paola
 
Ecuaciones
EcuacionesEcuaciones
Ecuaciones Diferenciales
Ecuaciones DiferencialesEcuaciones Diferenciales
Ecuaciones Diferenciales
CETI
 
76174864 ecuaciones-diferenciales
76174864 ecuaciones-diferenciales76174864 ecuaciones-diferenciales
76174864 ecuaciones-diferenciales
Humberto Memenza Ccahuana
 
Ecuaciones Diferenciales
Ecuaciones DiferencialesEcuaciones Diferenciales
Ecuaciones Diferenciales
jorge antonio oliva
 
Conceptos BáSicos
Conceptos BáSicosConceptos BáSicos
Conceptos BáSicos
Norman Shepard
 
Matemática II - Ecuaciones diferenciales
Matemática II - Ecuaciones diferencialesMatemática II - Ecuaciones diferenciales
Matemática II - Ecuaciones diferenciales
Joe Arroyo Suárez
 
Ecuaciones Diferenciales
Ecuaciones DiferencialesEcuaciones Diferenciales
Ecuaciones Diferenciales
artur111
 
Ecuaciones diferenciales marcos leon
Ecuaciones diferenciales marcos leonEcuaciones diferenciales marcos leon
Ecuaciones diferenciales marcos leon
FernandaGarcia296
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
Matemática Periodo Cincuenta
 

Similar a 1ra clase de Cálculo II (20)

Ecuaciones Diferenciales
Ecuaciones DiferencialesEcuaciones Diferenciales
Ecuaciones Diferenciales
 
C:\Fakepath\Ecuaciones Diferenciales ,,,
C:\Fakepath\Ecuaciones Diferenciales   ,,,C:\Fakepath\Ecuaciones Diferenciales   ,,,
C:\Fakepath\Ecuaciones Diferenciales ,,,
 
Ecuaciones Diferenciales
Ecuaciones DiferencialesEcuaciones Diferenciales
Ecuaciones Diferenciales
 
Ecuaciones Diferenciales
Ecuaciones DiferencialesEcuaciones Diferenciales
Ecuaciones Diferenciales
 
ECUACIONES DIFERENCIALES PARCIALES
ECUACIONES DIFERENCIALES PARCIALESECUACIONES DIFERENCIALES PARCIALES
ECUACIONES DIFERENCIALES PARCIALES
 
Que Son Las Ecuaciones Diferenciales[1]
Que Son Las Ecuaciones Diferenciales[1]Que Son Las Ecuaciones Diferenciales[1]
Que Son Las Ecuaciones Diferenciales[1]
 
Ecuaciones
EcuacionesEcuaciones
Ecuaciones
 
Docmento
DocmentoDocmento
Docmento
 
Ecuaciones Diferenciales 1
Ecuaciones Diferenciales 1Ecuaciones Diferenciales 1
Ecuaciones Diferenciales 1
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
 
Conceptos BáSicos de ecuaciones diferenciales
Conceptos BáSicos de ecuaciones diferencialesConceptos BáSicos de ecuaciones diferenciales
Conceptos BáSicos de ecuaciones diferenciales
 
Ecuaciones
EcuacionesEcuaciones
Ecuaciones
 
Ecuaciones Diferenciales
Ecuaciones DiferencialesEcuaciones Diferenciales
Ecuaciones Diferenciales
 
76174864 ecuaciones-diferenciales
76174864 ecuaciones-diferenciales76174864 ecuaciones-diferenciales
76174864 ecuaciones-diferenciales
 
Ecuaciones Diferenciales
Ecuaciones DiferencialesEcuaciones Diferenciales
Ecuaciones Diferenciales
 
Conceptos BáSicos
Conceptos BáSicosConceptos BáSicos
Conceptos BáSicos
 
Matemática II - Ecuaciones diferenciales
Matemática II - Ecuaciones diferencialesMatemática II - Ecuaciones diferenciales
Matemática II - Ecuaciones diferenciales
 
Ecuaciones Diferenciales
Ecuaciones DiferencialesEcuaciones Diferenciales
Ecuaciones Diferenciales
 
Ecuaciones diferenciales marcos leon
Ecuaciones diferenciales marcos leonEcuaciones diferenciales marcos leon
Ecuaciones diferenciales marcos leon
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
 

Más de Joanny Ibarbia Pardo

Un Enfoque Complejo de la Economía
Un Enfoque Complejo de la EconomíaUn Enfoque Complejo de la Economía
Un Enfoque Complejo de la Economía
Joanny Ibarbia Pardo
 
Elaborando Mapas Conceptuales con CMaptools
Elaborando Mapas Conceptuales con CMaptoolsElaborando Mapas Conceptuales con CMaptools
Elaborando Mapas Conceptuales con CMaptools
Joanny Ibarbia Pardo
 
Planificación Curricular y Mapas de Unidad Temática
Planificación Curricular y Mapas de Unidad TemáticaPlanificación Curricular y Mapas de Unidad Temática
Planificación Curricular y Mapas de Unidad Temática
Joanny Ibarbia Pardo
 
Regularidades económicas y empresariales que delimitan la Direccón Estratégic...
Regularidades económicas y empresariales que delimitan la Direccón Estratégic...Regularidades económicas y empresariales que delimitan la Direccón Estratégic...
Regularidades económicas y empresariales que delimitan la Direccón Estratégic...
Joanny Ibarbia Pardo
 
Propuesta de un plan de comunicación para la empresa Cubaelectrónica División...
Propuesta de un plan de comunicación para la empresa Cubaelectrónica División...Propuesta de un plan de comunicación para la empresa Cubaelectrónica División...
Propuesta de un plan de comunicación para la empresa Cubaelectrónica División...
Joanny Ibarbia Pardo
 
La empresa estatal en Cuba
La empresa estatal en CubaLa empresa estatal en Cuba
La empresa estatal en Cuba
Joanny Ibarbia Pardo
 
Papel de la Juventud Cubana en el marco histórico del ataque a Playa Girón.
Papel de la Juventud Cubana en el marco histórico del ataque a Playa Girón.Papel de la Juventud Cubana en el marco histórico del ataque a Playa Girón.
Papel de la Juventud Cubana en el marco histórico del ataque a Playa Girón.
Joanny Ibarbia Pardo
 
Análisis del documento. la planificación socialista ,su significado.
Análisis del documento. la planificación socialista ,su significado.Análisis del documento. la planificación socialista ,su significado.
Análisis del documento. la planificación socialista ,su significado.
Joanny Ibarbia Pardo
 
Caracterización del desarrollo en Bolivia
Caracterización del desarrollo en BoliviaCaracterización del desarrollo en Bolivia
Caracterización del desarrollo en Bolivia
Joanny Ibarbia Pardo
 
La Reingeniería del proceso empresarial (BPR)
La Reingeniería del proceso empresarial (BPR)La Reingeniería del proceso empresarial (BPR)
La Reingeniería del proceso empresarial (BPR)
Joanny Ibarbia Pardo
 
Anatomía de un archipiélago intranquilo.
Anatomía de un archipiélago intranquilo.Anatomía de un archipiélago intranquilo.
Anatomía de un archipiélago intranquilo.
Joanny Ibarbia Pardo
 
La fiebre del oro verde
La fiebre del oro verdeLa fiebre del oro verde
La fiebre del oro verde
Joanny Ibarbia Pardo
 
Economía cubana retos y desafíos
Economía cubana retos y desafíosEconomía cubana retos y desafíos
Economía cubana retos y desafíos
Joanny Ibarbia Pardo
 
El comercio electrónico inalámbrico
El comercio electrónico inalámbricoEl comercio electrónico inalámbrico
El comercio electrónico inalámbrico
Joanny Ibarbia Pardo
 
El proceso de segmentación, blanco y posicionamiento del mercado.
El proceso de segmentación, blanco y posicionamiento del mercado.El proceso de segmentación, blanco y posicionamiento del mercado.
El proceso de segmentación, blanco y posicionamiento del mercado.
Joanny Ibarbia Pardo
 
Los problemas ambientales de Cuba y su reflejo en la economía.
Los problemas ambientales de Cuba y su reflejo en la economía.Los problemas ambientales de Cuba y su reflejo en la economía.
Los problemas ambientales de Cuba y su reflejo en la economía.
Joanny Ibarbia Pardo
 
Implementación del comercio electrónico en la empresa Cubaelectrónica. Una fo...
Implementación del comercio electrónico en la empresa Cubaelectrónica. Una fo...Implementación del comercio electrónico en la empresa Cubaelectrónica. Una fo...
Implementación del comercio electrónico en la empresa Cubaelectrónica. Una fo...
Joanny Ibarbia Pardo
 
El programa reformista de Francisco de Frías y Jacott, Conde de Pozos Dulces.
El programa reformista de Francisco de Frías y Jacott, Conde de Pozos Dulces.El programa reformista de Francisco de Frías y Jacott, Conde de Pozos Dulces.
El programa reformista de Francisco de Frías y Jacott, Conde de Pozos Dulces.
Joanny Ibarbia Pardo
 
La investigación cualitativa
La investigación cualitativaLa investigación cualitativa
La investigación cualitativa
Joanny Ibarbia Pardo
 
Diseño de un procedimiento para la determinación de la demanda de un producto...
Diseño de un procedimiento para la determinación de la demanda de un producto...Diseño de un procedimiento para la determinación de la demanda de un producto...
Diseño de un procedimiento para la determinación de la demanda de un producto...
Joanny Ibarbia Pardo
 

Más de Joanny Ibarbia Pardo (20)

Un Enfoque Complejo de la Economía
Un Enfoque Complejo de la EconomíaUn Enfoque Complejo de la Economía
Un Enfoque Complejo de la Economía
 
Elaborando Mapas Conceptuales con CMaptools
Elaborando Mapas Conceptuales con CMaptoolsElaborando Mapas Conceptuales con CMaptools
Elaborando Mapas Conceptuales con CMaptools
 
Planificación Curricular y Mapas de Unidad Temática
Planificación Curricular y Mapas de Unidad TemáticaPlanificación Curricular y Mapas de Unidad Temática
Planificación Curricular y Mapas de Unidad Temática
 
Regularidades económicas y empresariales que delimitan la Direccón Estratégic...
Regularidades económicas y empresariales que delimitan la Direccón Estratégic...Regularidades económicas y empresariales que delimitan la Direccón Estratégic...
Regularidades económicas y empresariales que delimitan la Direccón Estratégic...
 
Propuesta de un plan de comunicación para la empresa Cubaelectrónica División...
Propuesta de un plan de comunicación para la empresa Cubaelectrónica División...Propuesta de un plan de comunicación para la empresa Cubaelectrónica División...
Propuesta de un plan de comunicación para la empresa Cubaelectrónica División...
 
La empresa estatal en Cuba
La empresa estatal en CubaLa empresa estatal en Cuba
La empresa estatal en Cuba
 
Papel de la Juventud Cubana en el marco histórico del ataque a Playa Girón.
Papel de la Juventud Cubana en el marco histórico del ataque a Playa Girón.Papel de la Juventud Cubana en el marco histórico del ataque a Playa Girón.
Papel de la Juventud Cubana en el marco histórico del ataque a Playa Girón.
 
Análisis del documento. la planificación socialista ,su significado.
Análisis del documento. la planificación socialista ,su significado.Análisis del documento. la planificación socialista ,su significado.
Análisis del documento. la planificación socialista ,su significado.
 
Caracterización del desarrollo en Bolivia
Caracterización del desarrollo en BoliviaCaracterización del desarrollo en Bolivia
Caracterización del desarrollo en Bolivia
 
La Reingeniería del proceso empresarial (BPR)
La Reingeniería del proceso empresarial (BPR)La Reingeniería del proceso empresarial (BPR)
La Reingeniería del proceso empresarial (BPR)
 
Anatomía de un archipiélago intranquilo.
Anatomía de un archipiélago intranquilo.Anatomía de un archipiélago intranquilo.
Anatomía de un archipiélago intranquilo.
 
La fiebre del oro verde
La fiebre del oro verdeLa fiebre del oro verde
La fiebre del oro verde
 
Economía cubana retos y desafíos
Economía cubana retos y desafíosEconomía cubana retos y desafíos
Economía cubana retos y desafíos
 
El comercio electrónico inalámbrico
El comercio electrónico inalámbricoEl comercio electrónico inalámbrico
El comercio electrónico inalámbrico
 
El proceso de segmentación, blanco y posicionamiento del mercado.
El proceso de segmentación, blanco y posicionamiento del mercado.El proceso de segmentación, blanco y posicionamiento del mercado.
El proceso de segmentación, blanco y posicionamiento del mercado.
 
Los problemas ambientales de Cuba y su reflejo en la economía.
Los problemas ambientales de Cuba y su reflejo en la economía.Los problemas ambientales de Cuba y su reflejo en la economía.
Los problemas ambientales de Cuba y su reflejo en la economía.
 
Implementación del comercio electrónico en la empresa Cubaelectrónica. Una fo...
Implementación del comercio electrónico en la empresa Cubaelectrónica. Una fo...Implementación del comercio electrónico en la empresa Cubaelectrónica. Una fo...
Implementación del comercio electrónico en la empresa Cubaelectrónica. Una fo...
 
El programa reformista de Francisco de Frías y Jacott, Conde de Pozos Dulces.
El programa reformista de Francisco de Frías y Jacott, Conde de Pozos Dulces.El programa reformista de Francisco de Frías y Jacott, Conde de Pozos Dulces.
El programa reformista de Francisco de Frías y Jacott, Conde de Pozos Dulces.
 
La investigación cualitativa
La investigación cualitativaLa investigación cualitativa
La investigación cualitativa
 
Diseño de un procedimiento para la determinación de la demanda de un producto...
Diseño de un procedimiento para la determinación de la demanda de un producto...Diseño de un procedimiento para la determinación de la demanda de un producto...
Diseño de un procedimiento para la determinación de la demanda de un producto...
 

Último

UT 3 LA PLANIFICACIÓN CURRICULAR DESDE LOS ELEMENTOS CURRICULARES.pptx
UT 3 LA PLANIFICACIÓN CURRICULAR DESDE LOS ELEMENTOS CURRICULARES.pptxUT 3 LA PLANIFICACIÓN CURRICULAR DESDE LOS ELEMENTOS CURRICULARES.pptx
UT 3 LA PLANIFICACIÓN CURRICULAR DESDE LOS ELEMENTOS CURRICULARES.pptx
Leonardo Salvatierra
 
Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)
Cátedra Banco Santander
 
Escuelas Creativas Ken Robinson Ccesa007.pdf
Escuelas Creativas Ken Robinson   Ccesa007.pdfEscuelas Creativas Ken Robinson   Ccesa007.pdf
Escuelas Creativas Ken Robinson Ccesa007.pdf
Demetrio Ccesa Rayme
 
POTENCIA, EJE RADICAL Y CENTRO RADICAL.pptx
POTENCIA, EJE RADICAL Y CENTRO RADICAL.pptxPOTENCIA, EJE RADICAL Y CENTRO RADICAL.pptx
POTENCIA, EJE RADICAL Y CENTRO RADICAL.pptx
vicvictoo
 
Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...
Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...
Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...
justinomorales8
 
Lengua y literatura mandioca para aprend
Lengua y literatura mandioca para aprendLengua y literatura mandioca para aprend
Lengua y literatura mandioca para aprend
RaqelBenitez
 
ejemplos-del-servicio-cristiano-fiel (1).pptx
ejemplos-del-servicio-cristiano-fiel (1).pptxejemplos-del-servicio-cristiano-fiel (1).pptx
ejemplos-del-servicio-cristiano-fiel (1).pptx
gersonobedgabrielbat1
 
Curación de contenidos (1 de julio de 2024)
Curación de contenidos (1 de julio de 2024)Curación de contenidos (1 de julio de 2024)
Curación de contenidos (1 de julio de 2024)
Cátedra Banco Santander
 
Power Point: El comienzo del evangelio.ppt
Power Point: El comienzo del evangelio.pptPower Point: El comienzo del evangelio.ppt
Power Point: El comienzo del evangelio.ppt
https://gramadal.wordpress.com/
 
La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.
La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.
La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.
La Gatera de la Villa
 
Sesión de clase: El comienzo del evangelio
Sesión de clase: El comienzo del evangelioSesión de clase: El comienzo del evangelio
Sesión de clase: El comienzo del evangelio
https://gramadal.wordpress.com/
 
Ponencia 4 AT DIRECTIVOS Día del Logro 02 JULIO 2024.pptx
Ponencia 4 AT DIRECTIVOS Día del Logro 02 JULIO 2024.pptxPonencia 4 AT DIRECTIVOS Día del Logro 02 JULIO 2024.pptx
Ponencia 4 AT DIRECTIVOS Día del Logro 02 JULIO 2024.pptx
yaduli
 
Como hacer que te pasen cosas buenas MRE3 Ccesa007.pdf
Como hacer que te pasen cosas buenas  MRE3  Ccesa007.pdfComo hacer que te pasen cosas buenas  MRE3  Ccesa007.pdf
Como hacer que te pasen cosas buenas MRE3 Ccesa007.pdf
Demetrio Ccesa Rayme
 
El mensaje en la psicopedagogía.........
El mensaje en la psicopedagogía.........El mensaje en la psicopedagogía.........
El mensaje en la psicopedagogía.........
DenisseGonzalez805225
 
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLAACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
JAVIER SOLIS NOYOLA
 
ROMPECABEZAS DE LA DEFINICIÓN DE LOS JUEGOS OLÍMPICOS EN 100 LETRAS. Por JAVI...
ROMPECABEZAS DE LA DEFINICIÓN DE LOS JUEGOS OLÍMPICOS EN 100 LETRAS. Por JAVI...ROMPECABEZAS DE LA DEFINICIÓN DE LOS JUEGOS OLÍMPICOS EN 100 LETRAS. Por JAVI...
ROMPECABEZAS DE LA DEFINICIÓN DE LOS JUEGOS OLÍMPICOS EN 100 LETRAS. Por JAVI...
JAVIER SOLIS NOYOLA
 
IMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁIMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
Claude LaCombe
 
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdfSEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
GavieLitiumGarcia
 
Tu, Tu Hijo y la Escuela Ken Robinson Ccesa007.pdf
Tu,  Tu Hijo y la  Escuela  Ken Robinson  Ccesa007.pdfTu,  Tu Hijo y la  Escuela  Ken Robinson  Ccesa007.pdf
Tu, Tu Hijo y la Escuela Ken Robinson Ccesa007.pdf
Demetrio Ccesa Rayme
 
Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)
Cátedra Banco Santander
 

Último (20)

UT 3 LA PLANIFICACIÓN CURRICULAR DESDE LOS ELEMENTOS CURRICULARES.pptx
UT 3 LA PLANIFICACIÓN CURRICULAR DESDE LOS ELEMENTOS CURRICULARES.pptxUT 3 LA PLANIFICACIÓN CURRICULAR DESDE LOS ELEMENTOS CURRICULARES.pptx
UT 3 LA PLANIFICACIÓN CURRICULAR DESDE LOS ELEMENTOS CURRICULARES.pptx
 
Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)Recursos Educativos en Abierto (1 de julio de 2024)
Recursos Educativos en Abierto (1 de julio de 2024)
 
Escuelas Creativas Ken Robinson Ccesa007.pdf
Escuelas Creativas Ken Robinson   Ccesa007.pdfEscuelas Creativas Ken Robinson   Ccesa007.pdf
Escuelas Creativas Ken Robinson Ccesa007.pdf
 
POTENCIA, EJE RADICAL Y CENTRO RADICAL.pptx
POTENCIA, EJE RADICAL Y CENTRO RADICAL.pptxPOTENCIA, EJE RADICAL Y CENTRO RADICAL.pptx
POTENCIA, EJE RADICAL Y CENTRO RADICAL.pptx
 
Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...
Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...
Productos contestados de la Octava Sesión Ordinaria de CTE y TIFC para Direct...
 
Lengua y literatura mandioca para aprend
Lengua y literatura mandioca para aprendLengua y literatura mandioca para aprend
Lengua y literatura mandioca para aprend
 
ejemplos-del-servicio-cristiano-fiel (1).pptx
ejemplos-del-servicio-cristiano-fiel (1).pptxejemplos-del-servicio-cristiano-fiel (1).pptx
ejemplos-del-servicio-cristiano-fiel (1).pptx
 
Curación de contenidos (1 de julio de 2024)
Curación de contenidos (1 de julio de 2024)Curación de contenidos (1 de julio de 2024)
Curación de contenidos (1 de julio de 2024)
 
Power Point: El comienzo del evangelio.ppt
Power Point: El comienzo del evangelio.pptPower Point: El comienzo del evangelio.ppt
Power Point: El comienzo del evangelio.ppt
 
La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.
La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.
La Gatera de la Villa nº 52. Historia y patrimonio de Madrid.
 
Sesión de clase: El comienzo del evangelio
Sesión de clase: El comienzo del evangelioSesión de clase: El comienzo del evangelio
Sesión de clase: El comienzo del evangelio
 
Ponencia 4 AT DIRECTIVOS Día del Logro 02 JULIO 2024.pptx
Ponencia 4 AT DIRECTIVOS Día del Logro 02 JULIO 2024.pptxPonencia 4 AT DIRECTIVOS Día del Logro 02 JULIO 2024.pptx
Ponencia 4 AT DIRECTIVOS Día del Logro 02 JULIO 2024.pptx
 
Como hacer que te pasen cosas buenas MRE3 Ccesa007.pdf
Como hacer que te pasen cosas buenas  MRE3  Ccesa007.pdfComo hacer que te pasen cosas buenas  MRE3  Ccesa007.pdf
Como hacer que te pasen cosas buenas MRE3 Ccesa007.pdf
 
El mensaje en la psicopedagogía.........
El mensaje en la psicopedagogía.........El mensaje en la psicopedagogía.........
El mensaje en la psicopedagogía.........
 
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLAACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
ACERTIJO MATEMÁTICO DEL MEDALLERO OLÍMPICO. Por JAVIER SOLIS NOYOLA
 
ROMPECABEZAS DE LA DEFINICIÓN DE LOS JUEGOS OLÍMPICOS EN 100 LETRAS. Por JAVI...
ROMPECABEZAS DE LA DEFINICIÓN DE LOS JUEGOS OLÍMPICOS EN 100 LETRAS. Por JAVI...ROMPECABEZAS DE LA DEFINICIÓN DE LOS JUEGOS OLÍMPICOS EN 100 LETRAS. Por JAVI...
ROMPECABEZAS DE LA DEFINICIÓN DE LOS JUEGOS OLÍMPICOS EN 100 LETRAS. Por JAVI...
 
IMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁIMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
IMAGENES SUBLIMINALES EN LAS PUBLICACIONES DE LOS TESTIGOS DE JEHOVÁ
 
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdfSEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
SEP. Presentación. Taller Intensivo FCD. Julio 2024.pdf
 
Tu, Tu Hijo y la Escuela Ken Robinson Ccesa007.pdf
Tu,  Tu Hijo y la  Escuela  Ken Robinson  Ccesa007.pdfTu,  Tu Hijo y la  Escuela  Ken Robinson  Ccesa007.pdf
Tu, Tu Hijo y la Escuela Ken Robinson Ccesa007.pdf
 
Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)Plataformas de vídeo online (2 de julio de 2024)
Plataformas de vídeo online (2 de julio de 2024)
 

1ra clase de Cálculo II

  • 2. “Las matemáticas son uno de los descubrimientos de la humanidad. Por lo tanto no pueden ser más complicadas de lo que los hombres son capaces de comprender.” Richard Phillips Feynman “Lo que oyes, lo olvidas; lo que vez, lo recuerdas; lo que haces, lo entiendes”. Proverbio popular “Las matemáticas son una ciencia exacta salvo cuando te equivocas.” Jaume Perich
  • 3. ¿Qué es una ecuación diferencial (ED)? Es una ecuación que contiene las derivadas de una o más variables dependientes, con respecto a una o más variables independientes.
  • 5. ¿Dónde se utilizan? Las ecuaciones diferenciales se pueden aplicar en diferentes ramas y aplicaciones cotidianas y no tan cotidianas o más bien un poco más científicas.
  • 6. Problema de aplicación con ecuaciones diferenciales Cierta ciudad tenía una población de 25000 habitantes en 1960 y una población de 30000 habitantes en 1970, suponiendo que su población continúe creciendo exponencialmente con un índice constante. ¿Qué población tendría esta ciudad en el año 2011? Separando variables: Aplicando propiedades de logaritmos, quedaría de esta forma:
  • 7. Notación de Leibniz: dy/dx, d2y/ dx2,... Notación primada: y', y'', y'''… y(n),... Notación de Newton: Notación de subíndice: ux , uy , uxx , uyy , uxy , … Notaciones En la notación de Leibniz localizamos rápidamente cuál es la variable dependiente y la independiente:
  • 8. Las ecuaciones diferenciales se clasifican por: •Tipo •Orden •Linealidad
  • 9. Ecuación diferencial ordinaria (EDO): Una ecuación que contiene sólo derivadas ordinarias de una o más variables dependientes de una sola variable independiente. Ejemplo de EDO: Una EDO puede contener más de una variable dependiente: Clasificación por tipo:
  • 10. Ecuación diferencial parcial (EDP): Una ecuación que contiene derivadas parciales de una o más variables dependientes de dos o más variables independientes. Ejemplos:
  • 11. Clasificación según el orden: El orden de una ecuación diferencial (ya sea EDO o EDP) es el orden mayor de la derivadas involucradas en la ecuación. Ejemplo: Luego, es una EDO de segundo orden.
  • 12. Clasificación según el orden (continuación)
  • 13. Clasificación según el grado: El grado de una ecuación diferencial es el grado algebraico de su derivada de mayor orden, es decir, el grado de una ecuación diferencial es la potencia a la que esta elevada la deriva que nos dio el orden de la ecuación diferencial. Ejemplo La siguiente ecuación diferencial: Es de tercer grado, dado que la primera derivada, que nos da el orden de la EDO, está elevada cubo.
  • 14. Clasificación según el grado (continuación)
  • 15. Clasificación según la linealidad: Se dice que una EDO de orden n es lineal si F (en la forma general) es lineal en y, y’, y”, …, y(n). Una ecuación diferencial es lineal si todos sus términos son lineales con respecto a la variable dependiente y sus derivadas, en caso contrario es no lineal. Ecuación lineal
  • 16. Clasificación según la linealidad (continuación) Lineal homogénea: El término independiente g(x) es cero. Lineal con coeficientes constantes: Los coeficientes a0(x),...,an(x) son constantes. Lineal con coeficientes variables: Enfatiza el hecho de que al menos uno de los coeficientes a0(x),...,an(x) No es constante.
  • 17. Clasificación según la linealidad (continuación)
  • 18. Clasificación según la linealidad (continuación)
  • 19. La ecuación diferencial tiene la propiedad de que su solución es la suma de las dos soluciones y = yc + yp, Donde: yc es una solución de la ecuación homogénea afín yp es una solución particular de la ecuación no homogénea. Propiedades de ecuaciones diferenciales lineales
  • 20. Propiedades de ecuaciones diferenciales lineales Observe que: La ecuación es separable. Este hecho permite encontrar yc al escribir la ecuación como: e integrar. Resolviendo para y se obtiene Resolviendo para (y) se obtiene: Por conveniencia se escribirá y=cy1(x)
  • 21. Valores posibles de las incógnitas de una ecuación que verifiquen su igualdad. Función que verifica una ecuación diferencial. Existe la solución general y la solución particular. Solución general: una solución de tipo genérico, expresada con una o más constantes. La solución general es un haz de curvas. Tiene un orden de infinitud de acuerdo a su cantidad de constantes (una constante corresponde a una familia simplemente infinita, dos constantes a una familia doblemente infinita, etc). En caso de que la ecuación sea lineal, la solución general se logra como combinación lineal de las soluciones (tantas como el orden de la ecuación) de la ecuación homogénea (que resulta de hacer el término no dependiente de y(x) ni de sus derivadas igual a 0) más una solución particular de la ecuación completa. Solución particular: Si fijando cualquier punto P(X0,Y0) por donde debe pasar necesariamente la solución de la ecuación diferencial, existe un único valor de C, y por lo tanto de la curva integral que satisface la ecuación, éste recibirá el nombre de solución particular de la ecuación en el punto P(X0,Y0), que recibe el nombre de condición inicial. Es un caso particular de la solución general, en donde la constante (o constantes) recibe un valor específico. Solución de ecuaciones diferenciales
  • 22. Interpretación geométrica de la diferencial Geométricamente la diferencial representa el incremento de la variable dependiente, pero no hasta la curva si no hasta la tangente.
  • 23. Resolución de ecuaciones diferenciales ordinarias Ecuación diferencial separable Se tiene una ecuación diferencial ordinaria de primer orden: Se dice que ecuación diferencial de primer orden es separable si se puede expresar esa ecuación diferencial de la siguiente manera: Donde F (x, y) se lo expresa como una multiplicación de dos funciones, una que depende de la variable “x” y otra de la variable “y”. En este caso se obtiene la siguiente solución de esta ecuación diferencial: Donde la solución de esta ecuación diferencial separable tiene la siguiente forma:
  • 24. Resolución de ecuaciones diferenciales ordinarias (ejemplos) ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Encuentre la solución general de la ecuación diferencial siguiente: Resolución:
  • 25. Resolución de ecuaciones diferenciales ordinarias (ejemplos) Soluciones Particulares
  • 26. Resolución de ecuaciones diferenciales ordinarias (ejemplos) ECUACIONES LINEALES Resolver la siguiente ecuación lineal: Solución: Es una ecuación lineal en "y" 1) 2) 3) 4)
  • 27. Resolución de ecuaciones diferenciales ordinarias (ejemplos) Graficando para un valor arbitrario de c= 1 5) 6)
  • 28. Ejercicios 1-Diga si las ecuaciones diferenciales dadas son lineales o no lineales. Indique el orden de cada ecuación: a) b) c) d) e) f) g) h)
  • 29. 2-Encuentre la solución general de las ecuaciones diferenciales siguientes: Trabajo Final del Módulo ( continuación) a) b) c) d) joanny.ibarbia@gmail.com Enviar respuestas en un documento escaneado o en Microsoft Word al correo electrónico :