SlideShare una empresa de Scribd logo
Ministerio VII Olimpiada Nacional Escolar de Matem´atica Sociedad Matem´atica
de Educaci´on (ONEM 2010) Peruana
Primera Fase - Nivel 1
17 de junio de 2010
- La prueba tiene una duraci´on m´axima de 2 horas.
- No est´a permitido usar calculadoras, ni consultar apuntes o libros.
- Utiliza solamente los espacios en blanco y los reversos de las hojas de esta prueba para realizar
tus c´alculos.
- Entrega solamente tu hoja de respuestas tan pronto consideres que has terminado con la
prueba. En caso de empate se tomar´a en cuenta la hora de entrega.
- Puedes llevarte las hojas con los enunciados de las preguntas.
MARCA LA ALTERNATIVA CORRECTA EN LA HOJA DE RESPUESTAS
1. Diana naci´o dos a˜nos antes que Pedro y Ramiro tres a˜nos antes que Andr´es. Si Pedro es el
hermano mayor de Esteban y Andr´es y, adem´as, Esteban naci´o tres a˜nos despu´es que Andr´es,
¿cu´al de los cinco es el menor?
A) Diana B) Pedro C) Ramiro D) Esteban E) Andr´es
2. En una empresa trabajan 260 empleados. Por fiestas patrias, la empresa decidi´o regalar una
casaca a la mitad de sus empleados, y por navidad, la empresa regal´o un pavo a la mitad de
sus empleados. Si exactamente 8 empleados recibieron una camisa y un pavo durante el a˜no,
¿cu´antos empleados no recibieron ning´un regalo durante el a˜no?
A) 7 B) 14 C) 16 D) 8 E) 11
3. Andrea, Braulio, Carlos, Dante y Esteban est´an sentados formando una ronda, en el orden in-
dicado. Andrea dice el n´umero 53, Braulio el 52, Carlos el 51, Dante el 50, y as´ı sucesivamente.
¿Qui´en dice el n´umero 1?
A) Andrea B) Carlos C) Braulio D) Esteban E) Braulio
4. La edad actual de Pedro es igual a la mitad de la edad actual de Luis. Hace 12 a˜nos la edad
de Pedro era la cuarta parte de la edad de Luis. ¿Hace cu´antos a˜nos la edad de Pedro era la
tercera parte de la edad de Luis?
A) 6 B) 9 C) 10 D) 12 E) 10
5. ¿Cu´al es el resto de dividir el producto 2010 × 2011 × 2012 entre 12?
A) 0 B) 2 C) 4 D) 6 E) 10
1
Ministerio Primera Fase - Nivel 1 Sociedad Matem´atica
de Educaci´on Peruana
6. En la pizarra est´an escritos todos los m´ultiplos de 5 que son mayores que 6 y menores que
135. ¿Cu´antos de esos n´umeros son impares?
A) 11 B) 10 C) 25 D) 12 E) 13
7. En una Olimpiada se toman tres pruebas, con la misma cantidad de preguntas, para los niveles
1, 2 y 3. El jurado de la Olimpiada clasific´o cada problema como f´acil o dif´ıcil, y result´o que
en total hab´ıa 13 problemas f´aciles y 11 dif´ıciles. Si la cantidad de problemas dif´ıciles del Nivel
1 es igual a la cantidad de problemas f´aciles del Nivel 2; y la cantidad de problemas dif´ıciles
del Nivel 2 es igual a la cantidad de problemas f´aciles del Nivel 3, ¿cu´antos problemas f´aciles
tiene la prueba del Nivel 1?
A) 3 B) 4 C) 5 D) 6 E) 7
8. Pens´e en un n´umero de dos d´ıgitos menor que 50. Si duplicas este n´umero y le restas 12,
obtienes un n´umero con los mismos d´ıgitos que el n´umero que pens´e, pero en orden inverso.
¿Cu´al es la suma de los d´ıgitos del n´umero que pens´e?
A) 10 B) 9 C) 12 D) 8 E) 11
9. ¿Cu´antos resultados diferentes se pueden obtener luego de efectuar las operaciones indicadas
0 ± 1 ± 2 ± 3 ± 4,
si cada signo ± puede ser igual a + ´o − ?
A) 6 B) 11 C) 9 D) 10 E) 8
10. En el siguiente gr´afico se muestran cinco cuadrados, en los que se han pintado de negro sus 12
v´ertices (algunos v´ertices pertenecen a varios cuadrados). ¿Cu´antos cuadrados tienen todos
sus v´ertices de color negro?
Aclaraci´on. En el siguiente gr´afico, el cuadrado sombreado tambi´en tiene todos sus v´ertices
de color negro.
A) 5 B) 9 C) 10 D) 11 E) 12
2
Ministerio Primera Fase - Nivel 1 Sociedad Matem´atica
de Educaci´on Peruana
11. Decimos que un n´umero abc de tres d´ıgitos es bueno si a2 = b × c. Por ejemplo, 391 es bueno,
pues 32 = 9 × 1.
Hallar el menor n´umero bueno que no es m´ultiplo de 3. Dar como respuesta el producto de
sus d´ıgitos.
A) 1 B) 2 C) 8 D) 4 E) 6
12. ¿Cu´antos n´umeros como m´ınimo se deben borrar del siguiente tablero para que, con los
n´umeros que queden, se cumpla que la suma de los n´umeros de cada fila y de cada columna
es un n´umero par?
2 2 2 9
2 0 1 0
6 0 3 1
8 2 5 2
A) 6 B) 7 C) 8 D) 5 E) 9
13. Observe que:
13
= 1
23
= 3 + 5
33
= 7 + 9 + 11
43
= 13 + 15 + 17 + 19
53
= 21 + 23 + 25 + 27 + 29
Entonces 503 es igual a:
A) 2061 + 2063 + · · · + 2157 + 2159
B) 2161 + 2163 + · · · + 2257 + 2259
C) 2257 + 2259 + · · · + 2353 + 2355
D) 2353 + 2355 + · · · + 2449 + 2451
E) 2451 + 2453 + · · · + 2547 + 2549
14. Magda tiene en una bolsa varias monedas de 2 soles y de 5 soles; adem´as, se sabe que tiene
a lo mucho 100 soles en total. Si cada una de sus monedas de 2 soles la reemplaza por una
moneda de 1 sol entonces tendr´ıa las dos terceras partes de su dinero inicial. Pero si cada una
de sus monedas de 5 soles la reemplaza por una moneda de 1 sol entonces tendr´ıa m´as de 60
soles. ¿Cu´anto dinero tiene Magda?
A) S/. 86 B) S/. 85 C) S/. 80 D) S/. 90 E) S/. 96
3
Ministerio Primera Fase - Nivel 1 Sociedad Matem´atica
de Educaci´on Peruana
15. Si las letras G, O, L, E y S representan d´ıgitos (no necesariamente diferentes) tales que
GOL × GOL = GOLES.
Calcular G + O + L + E + S.
A) 1 B) 2 C) 4 D) 5 E) 7
16. Sean A y B dos enteros positivos. Decimos que A es hijo de B, si A < B, A es un divisor de
B, y adem´as la suma de los d´ıgitos de A es igual a la suma de los d´ıgitos de B.
Por ejemplo, 12 es hijo de 300, pues 12 < 300, 12 es un divisor de 300, y adem´as 1+2 = 3+0+0.
¿Cu´antos hijos tiene el n´umero 10010?
A) 1 B) 2 C) 3 D) 4 E) 5
17. Hallar el mayor n´umero de tres d´ıgitos que sea igual al cuadrado del doble de la suma de sus
d´ıgitos. Dar como respuesta el producto de los d´ıgitos de dicho n´umero.
A) 12 B) 24 C) 20 D) 14 E) 32
18. El 8 de diciembre de 2009 ocurri´o algo curioso: si expresamos esa fecha en el formato 08.12.2009,
se cumple que la suma de los cuatro primeros d´ıgitos es igual a la suma de los cuatro ´ultimos
d´ıgitos; es decir, 0 + 8 + 1 + 2 = 2 + 0 + 0 + 9. ¿Cu´antas veces durante el a˜no 2010 ocurrir´a
lo mismo?
A) 10 B) 9 C) 12 D) 13 E) 8
19. En el siguiente arreglo triangular hay 28 monedas, que no necesariamente pesan lo mismo. Se
sabe que la suma de los pesos de tres monedas cualesquiera mutuamente tangentes siempre
es 70 gramos (por ejemplo, las tres monedas sombreadas son mutuamente tangentes) y que
la suma de todas las monedas es igual a 650 gramos. Calcular la suma de los pesos de las tres
monedas que est´an en los v´ertices del arreglo triangular.
A) 65g B) 48g C) 28g D) 72g E) 60g
4
Ministerio Primera Fase - Nivel 1 Sociedad Matem´atica
de Educaci´on Peruana
20. En el Tablero 1 se han pintado 10 casillas de negro y notamos que se cumple la siguiente
propiedad: “Cada cuadradito blanco tiene al menos un punto en com´un con alg´un cuadradito
negro”. ¿Cu´al es la menor cantidad de casillas que se deben de pintar de negro en el Tablero
2 para que se cumpla la misma propiedad?
Tablero 1 Tablero 2
A) 5 B) 3 C) 4 D) 6 E) 7
GRACIAS POR TU PARTICIPACI´ON
5

Más contenido relacionado

La actualidad más candente

Matemáticas 1º eso ejercicios de divisibilidad con soluciones
Matemáticas 1º eso   ejercicios de divisibilidad con solucionesMatemáticas 1º eso   ejercicios de divisibilidad con soluciones
Matemáticas 1º eso ejercicios de divisibilidad con soluciones
Mariana Perisse
 
Suma con numeros_de_dos_digitos
Suma con numeros_de_dos_digitosSuma con numeros_de_dos_digitos
Suma con numeros_de_dos_digitos
Cristina Ananta Paloma
 
2012f1n2
2012f1n22012f1n2
Matemáticas divisibilidad
Matemáticas divisibilidadMatemáticas divisibilidad
Matemáticas divisibilidad
Elena Martinez Miguel
 
Guía mate
Guía mateGuía mate
Guía mate
musical2mas2
 
Power 2º grado abril 2011
Power  2º  grado  abril  2011Power  2º  grado  abril  2011
Power 2º grado abril 2011
Gabriela
 
Desarrollando mis habilidades lógico matemáticas
Desarrollando mis habilidades lógico matemáticasDesarrollando mis habilidades lógico matemáticas
Desarrollando mis habilidades lógico matemáticas
josebrei
 
Guatematica 1 -_tema_6_-_numeros_hasta_100
Guatematica 1 -_tema_6_-_numeros_hasta_100Guatematica 1 -_tema_6_-_numeros_hasta_100
Guatematica 1 -_tema_6_-_numeros_hasta_100
Lina VidalValenzuela
 
Problemas curiosos
Problemas curiososProblemas curiosos
Problemas curiosos
rafatovarcursotic
 
2º Matematica Recreativa, Acertijos Y Relaciones Familiares
2º Matematica Recreativa, Acertijos Y Relaciones Familiares2º Matematica Recreativa, Acertijos Y Relaciones Familiares
2º Matematica Recreativa, Acertijos Y Relaciones Familiares
Alfa Velásquez Espinoza
 
MATEMATICA - INICIAL
MATEMATICA - INICIALMATEMATICA - INICIAL
MATEMATICA - INICIAL
Jorge Pichilingue
 
Operaciones combinadas-ejercicios-y-problemas
Operaciones combinadas-ejercicios-y-problemasOperaciones combinadas-ejercicios-y-problemas
Operaciones combinadas-ejercicios-y-problemas
Matsenati
 
Guía nº ecuaciones 1,2,3 8° básico
Guía  nº ecuaciones 1,2,3 8° básicoGuía  nº ecuaciones 1,2,3 8° básico
Guía nº ecuaciones 1,2,3 8° básico
nigatiti
 
Olimpiada escolar de matematica nivel1
Olimpiada escolar de matematica nivel1Olimpiada escolar de matematica nivel1
Olimpiada escolar de matematica nivel1
Juan Carlos Arbulú Balarezo
 
TEORÍA, EJERCICIOS RESUELTOS DE PLANTEO DE ECUACIONES
TEORÍA, EJERCICIOS RESUELTOS DE PLANTEO DE ECUACIONESTEORÍA, EJERCICIOS RESUELTOS DE PLANTEO DE ECUACIONES
TEORÍA, EJERCICIOS RESUELTOS DE PLANTEO DE ECUACIONES
Cesar Suarez Carranza
 
90502353 1º-eso-matematicas-ejercicios-resueltos-completo-1
90502353 1º-eso-matematicas-ejercicios-resueltos-completo-190502353 1º-eso-matematicas-ejercicios-resueltos-completo-1
90502353 1º-eso-matematicas-ejercicios-resueltos-completo-1
Mocha Danny
 
Cuaderno matematicas 2º verano
Cuaderno matematicas 2º veranoCuaderno matematicas 2º verano
Cuaderno matematicas 2º verano
Efren Elorza
 
Prueba parcial 6° basico
Prueba parcial 6° basicoPrueba parcial 6° basico
Prueba parcial 6° basico
Ruth Sanzana
 

La actualidad más candente (18)

Matemáticas 1º eso ejercicios de divisibilidad con soluciones
Matemáticas 1º eso   ejercicios de divisibilidad con solucionesMatemáticas 1º eso   ejercicios de divisibilidad con soluciones
Matemáticas 1º eso ejercicios de divisibilidad con soluciones
 
Suma con numeros_de_dos_digitos
Suma con numeros_de_dos_digitosSuma con numeros_de_dos_digitos
Suma con numeros_de_dos_digitos
 
2012f1n2
2012f1n22012f1n2
2012f1n2
 
Matemáticas divisibilidad
Matemáticas divisibilidadMatemáticas divisibilidad
Matemáticas divisibilidad
 
Guía mate
Guía mateGuía mate
Guía mate
 
Power 2º grado abril 2011
Power  2º  grado  abril  2011Power  2º  grado  abril  2011
Power 2º grado abril 2011
 
Desarrollando mis habilidades lógico matemáticas
Desarrollando mis habilidades lógico matemáticasDesarrollando mis habilidades lógico matemáticas
Desarrollando mis habilidades lógico matemáticas
 
Guatematica 1 -_tema_6_-_numeros_hasta_100
Guatematica 1 -_tema_6_-_numeros_hasta_100Guatematica 1 -_tema_6_-_numeros_hasta_100
Guatematica 1 -_tema_6_-_numeros_hasta_100
 
Problemas curiosos
Problemas curiososProblemas curiosos
Problemas curiosos
 
2º Matematica Recreativa, Acertijos Y Relaciones Familiares
2º Matematica Recreativa, Acertijos Y Relaciones Familiares2º Matematica Recreativa, Acertijos Y Relaciones Familiares
2º Matematica Recreativa, Acertijos Y Relaciones Familiares
 
MATEMATICA - INICIAL
MATEMATICA - INICIALMATEMATICA - INICIAL
MATEMATICA - INICIAL
 
Operaciones combinadas-ejercicios-y-problemas
Operaciones combinadas-ejercicios-y-problemasOperaciones combinadas-ejercicios-y-problemas
Operaciones combinadas-ejercicios-y-problemas
 
Guía nº ecuaciones 1,2,3 8° básico
Guía  nº ecuaciones 1,2,3 8° básicoGuía  nº ecuaciones 1,2,3 8° básico
Guía nº ecuaciones 1,2,3 8° básico
 
Olimpiada escolar de matematica nivel1
Olimpiada escolar de matematica nivel1Olimpiada escolar de matematica nivel1
Olimpiada escolar de matematica nivel1
 
TEORÍA, EJERCICIOS RESUELTOS DE PLANTEO DE ECUACIONES
TEORÍA, EJERCICIOS RESUELTOS DE PLANTEO DE ECUACIONESTEORÍA, EJERCICIOS RESUELTOS DE PLANTEO DE ECUACIONES
TEORÍA, EJERCICIOS RESUELTOS DE PLANTEO DE ECUACIONES
 
90502353 1º-eso-matematicas-ejercicios-resueltos-completo-1
90502353 1º-eso-matematicas-ejercicios-resueltos-completo-190502353 1º-eso-matematicas-ejercicios-resueltos-completo-1
90502353 1º-eso-matematicas-ejercicios-resueltos-completo-1
 
Cuaderno matematicas 2º verano
Cuaderno matematicas 2º veranoCuaderno matematicas 2º verano
Cuaderno matematicas 2º verano
 
Prueba parcial 6° basico
Prueba parcial 6° basicoPrueba parcial 6° basico
Prueba parcial 6° basico
 

Destacado

wikis
wikiswikis
Estructuras simples
Estructuras simplesEstructuras simples
Estructuras simples
María Fernanda Baron
 
201006[1]informe sobre el anteproyecto de ley responsabilidad medioambienal
201006[1]informe sobre el anteproyecto de ley responsabilidad medioambienal201006[1]informe sobre el anteproyecto de ley responsabilidad medioambienal
201006[1]informe sobre el anteproyecto de ley responsabilidad medioambienal
Centro Universitario Villanueva
 
Der Geschmack der Marke - Wilfried Leven
Der Geschmack der Marke - Wilfried LevenDer Geschmack der Marke - Wilfried Leven
Der Geschmack der Marke - Wilfried Leven
Plus PR - Agentur für Public Relations
 
Capacitación virtual
Capacitación  virtualCapacitación  virtual
Capacitación virtual
Americacapacitacion2
 
Paul klee
Paul kleePaul klee
Paul klee
noemicervera
 
Control de gestión
Control de gestiónControl de gestión
Control de gestión
Alin Gil Alarcon
 
Tagxedo Creador de nubes de palabras Valeska Ovalle de Pérez
Tagxedo Creador de nubes de palabras  Valeska Ovalle de PérezTagxedo Creador de nubes de palabras  Valeska Ovalle de Pérez
Tagxedo Creador de nubes de palabras Valeska Ovalle de Pérez
ValeskaOvalleUNIS-MAEU
 
Hotel Feldhof wellness und SPA 2014
Hotel Feldhof  wellness und SPA 2014Hotel Feldhof  wellness und SPA 2014
Hotel Feldhof wellness und SPA 2014
Dolcevita Hotels
 
Talentory.com: Stellenvermittlung für Arbeitgeber und Personalberatung
Talentory.com: Stellenvermittlung für Arbeitgeber und PersonalberatungTalentory.com: Stellenvermittlung für Arbeitgeber und Personalberatung
Talentory.com: Stellenvermittlung für Arbeitgeber und Personalberatung
Walter Schärer
 
Kreativ Reisen Österreich Projekt Präsentation
Kreativ Reisen Österreich Projekt PräsentationKreativ Reisen Österreich Projekt Präsentation
Kreativ Reisen Österreich Projekt Präsentation
Kreativ Reisen Österreich / Creativelena.com
 
Resolución del 6 x-2015 - admite apelación de absa y modifica el trámite de l...
Resolución del 6 x-2015 - admite apelación de absa y modifica el trámite de l...Resolución del 6 x-2015 - admite apelación de absa y modifica el trámite de l...
Resolución del 6 x-2015 - admite apelación de absa y modifica el trámite de l...
Luis Federico Arias
 
Strategien für eine gesicherte Unternehmenszukunft
Strategien für eine gesicherte UnternehmenszukunftStrategien für eine gesicherte Unternehmenszukunft
Strategien für eine gesicherte Unternehmenszukunft
Dr. Sven David
 
Las contribucciones
Las contribuccionesLas contribucciones
Las contribucciones
Tomas Fernandez
 
Weiter nach oben auf der Karriereleiter!
Weiter nach oben auf der Karriereleiter!Weiter nach oben auf der Karriereleiter!
Weiter nach oben auf der Karriereleiter!
flitzefee
 
Next Web & Open Standards: LIIP Vortrag Internet-Briefing
Next Web & Open Standards: LIIP Vortrag Internet-BriefingNext Web & Open Standards: LIIP Vortrag Internet-Briefing
Next Web & Open Standards: LIIP Vortrag Internet-Briefing
Walter Schärer
 
La energía
La energíaLa energía
La energía
Pablo Rebolledo
 
21 ak nord i
21 ak nord i21 ak nord i
21 ak nord i
ICV_eV
 
Planificador de proyectos
Planificador de proyectosPlanificador de proyectos
Planificador de proyectos
marthamurillomosquera
 

Destacado (20)

wikis
wikiswikis
wikis
 
Estructuras simples
Estructuras simplesEstructuras simples
Estructuras simples
 
201006[1]informe sobre el anteproyecto de ley responsabilidad medioambienal
201006[1]informe sobre el anteproyecto de ley responsabilidad medioambienal201006[1]informe sobre el anteproyecto de ley responsabilidad medioambienal
201006[1]informe sobre el anteproyecto de ley responsabilidad medioambienal
 
Der Geschmack der Marke - Wilfried Leven
Der Geschmack der Marke - Wilfried LevenDer Geschmack der Marke - Wilfried Leven
Der Geschmack der Marke - Wilfried Leven
 
Capacitación virtual
Capacitación  virtualCapacitación  virtual
Capacitación virtual
 
Paul klee
Paul kleePaul klee
Paul klee
 
Control de gestión
Control de gestiónControl de gestión
Control de gestión
 
Tagxedo Creador de nubes de palabras Valeska Ovalle de Pérez
Tagxedo Creador de nubes de palabras  Valeska Ovalle de PérezTagxedo Creador de nubes de palabras  Valeska Ovalle de Pérez
Tagxedo Creador de nubes de palabras Valeska Ovalle de Pérez
 
Hotel Feldhof wellness und SPA 2014
Hotel Feldhof  wellness und SPA 2014Hotel Feldhof  wellness und SPA 2014
Hotel Feldhof wellness und SPA 2014
 
Talentory.com: Stellenvermittlung für Arbeitgeber und Personalberatung
Talentory.com: Stellenvermittlung für Arbeitgeber und PersonalberatungTalentory.com: Stellenvermittlung für Arbeitgeber und Personalberatung
Talentory.com: Stellenvermittlung für Arbeitgeber und Personalberatung
 
Kreativ Reisen Österreich Projekt Präsentation
Kreativ Reisen Österreich Projekt PräsentationKreativ Reisen Österreich Projekt Präsentation
Kreativ Reisen Österreich Projekt Präsentation
 
Resolución del 6 x-2015 - admite apelación de absa y modifica el trámite de l...
Resolución del 6 x-2015 - admite apelación de absa y modifica el trámite de l...Resolución del 6 x-2015 - admite apelación de absa y modifica el trámite de l...
Resolución del 6 x-2015 - admite apelación de absa y modifica el trámite de l...
 
Strategien für eine gesicherte Unternehmenszukunft
Strategien für eine gesicherte UnternehmenszukunftStrategien für eine gesicherte Unternehmenszukunft
Strategien für eine gesicherte Unternehmenszukunft
 
Las contribucciones
Las contribuccionesLas contribucciones
Las contribucciones
 
Weiter nach oben auf der Karriereleiter!
Weiter nach oben auf der Karriereleiter!Weiter nach oben auf der Karriereleiter!
Weiter nach oben auf der Karriereleiter!
 
Next Web & Open Standards: LIIP Vortrag Internet-Briefing
Next Web & Open Standards: LIIP Vortrag Internet-BriefingNext Web & Open Standards: LIIP Vortrag Internet-Briefing
Next Web & Open Standards: LIIP Vortrag Internet-Briefing
 
La energía
La energíaLa energía
La energía
 
21 ak nord i
21 ak nord i21 ak nord i
21 ak nord i
 
Planificador de proyectos
Planificador de proyectosPlanificador de proyectos
Planificador de proyectos
 
10 Gebote der Fotografie
10 Gebote der Fotografie10 Gebote der Fotografie
10 Gebote der Fotografie
 

Similar a 2010f1n1

2010f1n3
2010f1n32010f1n3
2010f1n3
aldomat07
 
ONEM 2010: Fase N°1- Nivel 3
ONEM 2010: Fase N°1- Nivel 3ONEM 2010: Fase N°1- Nivel 3
ONEM 2010: Fase N°1- Nivel 3
aldomat07
 
2010f1n2
2010f1n22010f1n2
2010f1n2
aldomat07
 
JDEN
JDENJDEN
2010 1 nivel2
2010 1 nivel22010 1 nivel2
2010 1 nivel2
2010 1 nivel22010 1 nivel2
Eskeira
EskeiraEskeira
Eskeira
myelitz
 
1 s simulacro_presencial-ii_17conamat
1 s simulacro_presencial-ii_17conamat1 s simulacro_presencial-ii_17conamat
1 s simulacro_presencial-ii_17conamat
Eustaquio Agapito Guerrero Salazar
 
1 s simulacro_presencial-ii_17conamat
1 s simulacro_presencial-ii_17conamat1 s simulacro_presencial-ii_17conamat
1 s simulacro_presencial-ii_17conamat
Alan garcia
 
benjamin16.pdf
benjamin16.pdfbenjamin16.pdf
benjamin16.pdf
ssuser84dd2a
 
OLimpiadas
OLimpiadasOLimpiadas
OLimpiadas
Julia Ruiz
 
2011 1 nivel2
2011 1 nivel22011 1 nivel2
2011 1 nivel2
klorofila
 
Los favoritos ojm_2017
Los favoritos ojm_2017Los favoritos ojm_2017
Los favoritos ojm_2017
Solange Zambrano
 
Pruebas canguro
Pruebas canguroPruebas canguro
Pruebas canguro
gladys Potoy Carrillo
 
SECUENCIA DIDÁCTICA FRACCIONES Y NÚMEROS DECIMALES.docx
SECUENCIA DIDÁCTICA FRACCIONES Y NÚMEROS DECIMALES.docxSECUENCIA DIDÁCTICA FRACCIONES Y NÚMEROS DECIMALES.docx
SECUENCIA DIDÁCTICA FRACCIONES Y NÚMEROS DECIMALES.docx
AndreaPons6
 
COMPENDIO-2004-2021-ONEM-NIVEL-1.pdf
COMPENDIO-2004-2021-ONEM-NIVEL-1.pdfCOMPENDIO-2004-2021-ONEM-NIVEL-1.pdf
COMPENDIO-2004-2021-ONEM-NIVEL-1.pdf
TITO GILMER PACHECO PEREZ
 
Nivel i
Nivel iNivel i
Matemática recreativa
Matemática recreativaMatemática recreativa
Matemática recreativa
Moni Armani
 
3º eso 2014
3º eso 20143º eso 2014
3º eso 2014
Chemagutierrez73
 
Ulde pepe quispe_sare
Ulde pepe quispe_sareUlde pepe quispe_sare
Ulde pepe quispe_sare
ulde quispe
 

Similar a 2010f1n1 (20)

2010f1n3
2010f1n32010f1n3
2010f1n3
 
ONEM 2010: Fase N°1- Nivel 3
ONEM 2010: Fase N°1- Nivel 3ONEM 2010: Fase N°1- Nivel 3
ONEM 2010: Fase N°1- Nivel 3
 
2010f1n2
2010f1n22010f1n2
2010f1n2
 
JDEN
JDENJDEN
JDEN
 
2010 1 nivel2
2010 1 nivel22010 1 nivel2
2010 1 nivel2
 
2010 1 nivel2
2010 1 nivel22010 1 nivel2
2010 1 nivel2
 
Eskeira
EskeiraEskeira
Eskeira
 
1 s simulacro_presencial-ii_17conamat
1 s simulacro_presencial-ii_17conamat1 s simulacro_presencial-ii_17conamat
1 s simulacro_presencial-ii_17conamat
 
1 s simulacro_presencial-ii_17conamat
1 s simulacro_presencial-ii_17conamat1 s simulacro_presencial-ii_17conamat
1 s simulacro_presencial-ii_17conamat
 
benjamin16.pdf
benjamin16.pdfbenjamin16.pdf
benjamin16.pdf
 
OLimpiadas
OLimpiadasOLimpiadas
OLimpiadas
 
2011 1 nivel2
2011 1 nivel22011 1 nivel2
2011 1 nivel2
 
Los favoritos ojm_2017
Los favoritos ojm_2017Los favoritos ojm_2017
Los favoritos ojm_2017
 
Pruebas canguro
Pruebas canguroPruebas canguro
Pruebas canguro
 
SECUENCIA DIDÁCTICA FRACCIONES Y NÚMEROS DECIMALES.docx
SECUENCIA DIDÁCTICA FRACCIONES Y NÚMEROS DECIMALES.docxSECUENCIA DIDÁCTICA FRACCIONES Y NÚMEROS DECIMALES.docx
SECUENCIA DIDÁCTICA FRACCIONES Y NÚMEROS DECIMALES.docx
 
COMPENDIO-2004-2021-ONEM-NIVEL-1.pdf
COMPENDIO-2004-2021-ONEM-NIVEL-1.pdfCOMPENDIO-2004-2021-ONEM-NIVEL-1.pdf
COMPENDIO-2004-2021-ONEM-NIVEL-1.pdf
 
Nivel i
Nivel iNivel i
Nivel i
 
Matemática recreativa
Matemática recreativaMatemática recreativa
Matemática recreativa
 
3º eso 2014
3º eso 20143º eso 2014
3º eso 2014
 
Ulde pepe quispe_sare
Ulde pepe quispe_sareUlde pepe quispe_sare
Ulde pepe quispe_sare
 

Más de aldomat07

SESION 1
SESION 1SESION 1
SESION 1
aldomat07
 
Geo1
Geo1Geo1
Geo1
aldomat07
 
SEGUNDA PARTE
SEGUNDA PARTESEGUNDA PARTE
SEGUNDA PARTE
aldomat07
 
PRIMERA PARTE
PRIMERA PARTEPRIMERA PARTE
PRIMERA PARTE
aldomat07
 
Sesión 01: Congruencia y Semejanza
Sesión 01: Congruencia y SemejanzaSesión 01: Congruencia y Semejanza
Sesión 01: Congruencia y Semejanza
aldomat07
 
Nociones básicas
Nociones básicasNociones básicas
Nociones básicas
aldomat07
 
Sesión 03
Sesión 03Sesión 03
Sesión 03
aldomat07
 
Primera practica dirigida
Primera practica dirigidaPrimera practica dirigida
Primera practica dirigida
aldomat07
 
Sesión 01 estadística
Sesión 01   estadísticaSesión 01   estadística
Sesión 01 estadística
aldomat07
 
TEORÍA- OPERADORES MATEMÁTICOS
TEORÍA- OPERADORES MATEMÁTICOSTEORÍA- OPERADORES MATEMÁTICOS
TEORÍA- OPERADORES MATEMÁTICOS
aldomat07
 
PRÁC5TO-OPERADORESMAT
PRÁC5TO-OPERADORESMATPRÁC5TO-OPERADORESMAT
PRÁC5TO-OPERADORESMAT
aldomat07
 
PRÁCT4TP-OPERADORESMAT
PRÁCT4TP-OPERADORESMATPRÁCT4TP-OPERADORESMAT
PRÁCT4TP-OPERADORESMAT
aldomat07
 
Teoría: Método Deductivo
Teoría: Método DeductivoTeoría: Método Deductivo
Teoría: Método Deductivo
aldomat07
 
TEORIA: Método deductivo
TEORIA: Método deductivoTEORIA: Método deductivo
TEORIA: Método deductivo
aldomat07
 
Método Deductivo
Método DeductivoMétodo Deductivo
Método Deductivo
aldomat07
 
Método Deductivo
Método DeductivoMétodo Deductivo
Método Deductivo
aldomat07
 
Tema 01 método inductivo
Tema 01   método inductivoTema 01   método inductivo
Tema 01 método inductivo
aldomat07
 
Metodo inductivo
Metodo inductivoMetodo inductivo
Metodo inductivo
aldomat07
 
Problemas: MÉTODO INDUCTIVO 2015
Problemas: MÉTODO INDUCTIVO 2015Problemas: MÉTODO INDUCTIVO 2015
Problemas: MÉTODO INDUCTIVO 2015
aldomat07
 
Problemas: Método Inductivo 5to
Problemas: Método Inductivo 5toProblemas: Método Inductivo 5to
Problemas: Método Inductivo 5to
aldomat07
 

Más de aldomat07 (20)

SESION 1
SESION 1SESION 1
SESION 1
 
Geo1
Geo1Geo1
Geo1
 
SEGUNDA PARTE
SEGUNDA PARTESEGUNDA PARTE
SEGUNDA PARTE
 
PRIMERA PARTE
PRIMERA PARTEPRIMERA PARTE
PRIMERA PARTE
 
Sesión 01: Congruencia y Semejanza
Sesión 01: Congruencia y SemejanzaSesión 01: Congruencia y Semejanza
Sesión 01: Congruencia y Semejanza
 
Nociones básicas
Nociones básicasNociones básicas
Nociones básicas
 
Sesión 03
Sesión 03Sesión 03
Sesión 03
 
Primera practica dirigida
Primera practica dirigidaPrimera practica dirigida
Primera practica dirigida
 
Sesión 01 estadística
Sesión 01   estadísticaSesión 01   estadística
Sesión 01 estadística
 
TEORÍA- OPERADORES MATEMÁTICOS
TEORÍA- OPERADORES MATEMÁTICOSTEORÍA- OPERADORES MATEMÁTICOS
TEORÍA- OPERADORES MATEMÁTICOS
 
PRÁC5TO-OPERADORESMAT
PRÁC5TO-OPERADORESMATPRÁC5TO-OPERADORESMAT
PRÁC5TO-OPERADORESMAT
 
PRÁCT4TP-OPERADORESMAT
PRÁCT4TP-OPERADORESMATPRÁCT4TP-OPERADORESMAT
PRÁCT4TP-OPERADORESMAT
 
Teoría: Método Deductivo
Teoría: Método DeductivoTeoría: Método Deductivo
Teoría: Método Deductivo
 
TEORIA: Método deductivo
TEORIA: Método deductivoTEORIA: Método deductivo
TEORIA: Método deductivo
 
Método Deductivo
Método DeductivoMétodo Deductivo
Método Deductivo
 
Método Deductivo
Método DeductivoMétodo Deductivo
Método Deductivo
 
Tema 01 método inductivo
Tema 01   método inductivoTema 01   método inductivo
Tema 01 método inductivo
 
Metodo inductivo
Metodo inductivoMetodo inductivo
Metodo inductivo
 
Problemas: MÉTODO INDUCTIVO 2015
Problemas: MÉTODO INDUCTIVO 2015Problemas: MÉTODO INDUCTIVO 2015
Problemas: MÉTODO INDUCTIVO 2015
 
Problemas: Método Inductivo 5to
Problemas: Método Inductivo 5toProblemas: Método Inductivo 5to
Problemas: Método Inductivo 5to
 

2010f1n1

  • 1. Ministerio VII Olimpiada Nacional Escolar de Matem´atica Sociedad Matem´atica de Educaci´on (ONEM 2010) Peruana Primera Fase - Nivel 1 17 de junio de 2010 - La prueba tiene una duraci´on m´axima de 2 horas. - No est´a permitido usar calculadoras, ni consultar apuntes o libros. - Utiliza solamente los espacios en blanco y los reversos de las hojas de esta prueba para realizar tus c´alculos. - Entrega solamente tu hoja de respuestas tan pronto consideres que has terminado con la prueba. En caso de empate se tomar´a en cuenta la hora de entrega. - Puedes llevarte las hojas con los enunciados de las preguntas. MARCA LA ALTERNATIVA CORRECTA EN LA HOJA DE RESPUESTAS 1. Diana naci´o dos a˜nos antes que Pedro y Ramiro tres a˜nos antes que Andr´es. Si Pedro es el hermano mayor de Esteban y Andr´es y, adem´as, Esteban naci´o tres a˜nos despu´es que Andr´es, ¿cu´al de los cinco es el menor? A) Diana B) Pedro C) Ramiro D) Esteban E) Andr´es 2. En una empresa trabajan 260 empleados. Por fiestas patrias, la empresa decidi´o regalar una casaca a la mitad de sus empleados, y por navidad, la empresa regal´o un pavo a la mitad de sus empleados. Si exactamente 8 empleados recibieron una camisa y un pavo durante el a˜no, ¿cu´antos empleados no recibieron ning´un regalo durante el a˜no? A) 7 B) 14 C) 16 D) 8 E) 11 3. Andrea, Braulio, Carlos, Dante y Esteban est´an sentados formando una ronda, en el orden in- dicado. Andrea dice el n´umero 53, Braulio el 52, Carlos el 51, Dante el 50, y as´ı sucesivamente. ¿Qui´en dice el n´umero 1? A) Andrea B) Carlos C) Braulio D) Esteban E) Braulio 4. La edad actual de Pedro es igual a la mitad de la edad actual de Luis. Hace 12 a˜nos la edad de Pedro era la cuarta parte de la edad de Luis. ¿Hace cu´antos a˜nos la edad de Pedro era la tercera parte de la edad de Luis? A) 6 B) 9 C) 10 D) 12 E) 10 5. ¿Cu´al es el resto de dividir el producto 2010 × 2011 × 2012 entre 12? A) 0 B) 2 C) 4 D) 6 E) 10 1
  • 2. Ministerio Primera Fase - Nivel 1 Sociedad Matem´atica de Educaci´on Peruana 6. En la pizarra est´an escritos todos los m´ultiplos de 5 que son mayores que 6 y menores que 135. ¿Cu´antos de esos n´umeros son impares? A) 11 B) 10 C) 25 D) 12 E) 13 7. En una Olimpiada se toman tres pruebas, con la misma cantidad de preguntas, para los niveles 1, 2 y 3. El jurado de la Olimpiada clasific´o cada problema como f´acil o dif´ıcil, y result´o que en total hab´ıa 13 problemas f´aciles y 11 dif´ıciles. Si la cantidad de problemas dif´ıciles del Nivel 1 es igual a la cantidad de problemas f´aciles del Nivel 2; y la cantidad de problemas dif´ıciles del Nivel 2 es igual a la cantidad de problemas f´aciles del Nivel 3, ¿cu´antos problemas f´aciles tiene la prueba del Nivel 1? A) 3 B) 4 C) 5 D) 6 E) 7 8. Pens´e en un n´umero de dos d´ıgitos menor que 50. Si duplicas este n´umero y le restas 12, obtienes un n´umero con los mismos d´ıgitos que el n´umero que pens´e, pero en orden inverso. ¿Cu´al es la suma de los d´ıgitos del n´umero que pens´e? A) 10 B) 9 C) 12 D) 8 E) 11 9. ¿Cu´antos resultados diferentes se pueden obtener luego de efectuar las operaciones indicadas 0 ± 1 ± 2 ± 3 ± 4, si cada signo ± puede ser igual a + ´o − ? A) 6 B) 11 C) 9 D) 10 E) 8 10. En el siguiente gr´afico se muestran cinco cuadrados, en los que se han pintado de negro sus 12 v´ertices (algunos v´ertices pertenecen a varios cuadrados). ¿Cu´antos cuadrados tienen todos sus v´ertices de color negro? Aclaraci´on. En el siguiente gr´afico, el cuadrado sombreado tambi´en tiene todos sus v´ertices de color negro. A) 5 B) 9 C) 10 D) 11 E) 12 2
  • 3. Ministerio Primera Fase - Nivel 1 Sociedad Matem´atica de Educaci´on Peruana 11. Decimos que un n´umero abc de tres d´ıgitos es bueno si a2 = b × c. Por ejemplo, 391 es bueno, pues 32 = 9 × 1. Hallar el menor n´umero bueno que no es m´ultiplo de 3. Dar como respuesta el producto de sus d´ıgitos. A) 1 B) 2 C) 8 D) 4 E) 6 12. ¿Cu´antos n´umeros como m´ınimo se deben borrar del siguiente tablero para que, con los n´umeros que queden, se cumpla que la suma de los n´umeros de cada fila y de cada columna es un n´umero par? 2 2 2 9 2 0 1 0 6 0 3 1 8 2 5 2 A) 6 B) 7 C) 8 D) 5 E) 9 13. Observe que: 13 = 1 23 = 3 + 5 33 = 7 + 9 + 11 43 = 13 + 15 + 17 + 19 53 = 21 + 23 + 25 + 27 + 29 Entonces 503 es igual a: A) 2061 + 2063 + · · · + 2157 + 2159 B) 2161 + 2163 + · · · + 2257 + 2259 C) 2257 + 2259 + · · · + 2353 + 2355 D) 2353 + 2355 + · · · + 2449 + 2451 E) 2451 + 2453 + · · · + 2547 + 2549 14. Magda tiene en una bolsa varias monedas de 2 soles y de 5 soles; adem´as, se sabe que tiene a lo mucho 100 soles en total. Si cada una de sus monedas de 2 soles la reemplaza por una moneda de 1 sol entonces tendr´ıa las dos terceras partes de su dinero inicial. Pero si cada una de sus monedas de 5 soles la reemplaza por una moneda de 1 sol entonces tendr´ıa m´as de 60 soles. ¿Cu´anto dinero tiene Magda? A) S/. 86 B) S/. 85 C) S/. 80 D) S/. 90 E) S/. 96 3
  • 4. Ministerio Primera Fase - Nivel 1 Sociedad Matem´atica de Educaci´on Peruana 15. Si las letras G, O, L, E y S representan d´ıgitos (no necesariamente diferentes) tales que GOL × GOL = GOLES. Calcular G + O + L + E + S. A) 1 B) 2 C) 4 D) 5 E) 7 16. Sean A y B dos enteros positivos. Decimos que A es hijo de B, si A < B, A es un divisor de B, y adem´as la suma de los d´ıgitos de A es igual a la suma de los d´ıgitos de B. Por ejemplo, 12 es hijo de 300, pues 12 < 300, 12 es un divisor de 300, y adem´as 1+2 = 3+0+0. ¿Cu´antos hijos tiene el n´umero 10010? A) 1 B) 2 C) 3 D) 4 E) 5 17. Hallar el mayor n´umero de tres d´ıgitos que sea igual al cuadrado del doble de la suma de sus d´ıgitos. Dar como respuesta el producto de los d´ıgitos de dicho n´umero. A) 12 B) 24 C) 20 D) 14 E) 32 18. El 8 de diciembre de 2009 ocurri´o algo curioso: si expresamos esa fecha en el formato 08.12.2009, se cumple que la suma de los cuatro primeros d´ıgitos es igual a la suma de los cuatro ´ultimos d´ıgitos; es decir, 0 + 8 + 1 + 2 = 2 + 0 + 0 + 9. ¿Cu´antas veces durante el a˜no 2010 ocurrir´a lo mismo? A) 10 B) 9 C) 12 D) 13 E) 8 19. En el siguiente arreglo triangular hay 28 monedas, que no necesariamente pesan lo mismo. Se sabe que la suma de los pesos de tres monedas cualesquiera mutuamente tangentes siempre es 70 gramos (por ejemplo, las tres monedas sombreadas son mutuamente tangentes) y que la suma de todas las monedas es igual a 650 gramos. Calcular la suma de los pesos de las tres monedas que est´an en los v´ertices del arreglo triangular. A) 65g B) 48g C) 28g D) 72g E) 60g 4
  • 5. Ministerio Primera Fase - Nivel 1 Sociedad Matem´atica de Educaci´on Peruana 20. En el Tablero 1 se han pintado 10 casillas de negro y notamos que se cumple la siguiente propiedad: “Cada cuadradito blanco tiene al menos un punto en com´un con alg´un cuadradito negro”. ¿Cu´al es la menor cantidad de casillas que se deben de pintar de negro en el Tablero 2 para que se cumpla la misma propiedad? Tablero 1 Tablero 2 A) 5 B) 3 C) 4 D) 6 E) 7 GRACIAS POR TU PARTICIPACI´ON 5