SlideShare una empresa de Scribd logo
   ¿Qué es un sistema de control ?
    › En nuestra vida diaria existen numerosos objetivos
      que necesitan cumplirse.
   En el ámbito doméstico
    › Controlar la temperatura y humedad de casas y
      edificios
   En transportación
    › Controlar que un auto o avión se muevan de un
      lugar a otro en forma segura y exacta
   En la industria
    › Controlar un sinnúmero de variables en los
      procesos de manufactura
   En años recientes, los sistemas de control
    han asumido un papel cada vez más
    importante en el desarrollo y avance de la
    civilización moderna y la tecnología.
   Los sistemas de control se encuentran en
    gran cantidad en todos los sectores de la
    industria:
    › tales como control de calidad de los productos
      manufacturados, líneas de ensamble
      automático, control de máquinas-herramienta,
      tecnología espacial y sistemas de armas, control
      por computadora, sistemas de transporte,
      sistemas de potencia, robótica y muchos otros
   Satélites
 El campo de aplicación de los sistemas
  de control es muy amplia.
 Y una herramienta que se utiliza en el
  diseño de control clásico es
  precisamente:


    La transformada de Laplace
 En el estudio de los procesos es
  necesario considerar modelos
  dinámicos, es decir, modelos de
  comportamiento variable respecto al
  tiempo.
 Esto trae como consecuencia el uso de
  ecuaciones diferenciales respecto al
  tiempo para representar
  matemáticamente el comportamiento
  de un proceso.
   El comportamiento dinámico de los
    procesos en la naturaleza puede
    representarse de manera aproximada
    por el siguiente modelo general de
    comportamiento dinámico lineal:


   La transformada de Laplace es una
    herramienta matemática muy útil para
    el análisis de sistemas dinámicos lineales.
   De hecho, la transformada de Laplace
    permite       resolver    ecuaciones
    diferenciales  lineales mediante    la
    transformación       en   ecuaciones
    algebraicas con lo cual se facilita su
    estudio.

   Una vez que se ha estudiado el
    comportamiento de los sistemas
    dinámicos, se puede proceder a diseñar
    y analizar los sistemas de control de
    manera simple.
   MODELACIÓN MATEMÁTICA
    Suspensión de un automóvil
                    Fuerza de
                     entrada
             f(t)
                                    ∑ F = ma
                       z(t)         f (t ) − kz (t ) − b
                                                           dz (t )
                                                            dt
                                                                   =m
                                                                      d 2 z (t )
                                                                        dt 2

         m
                Desplazamiento,
               salida del sistema
               b
     k
Suspensión de un automóvil
                     dz (t )    d 2 z (t )
f (t ) − kz (t ) − b         =m
                      dt          dt 2
Aplicando la transformada de Laplace a cada término
(considerando condiciones iniciales igual a cero)
F ( s ) − kZ ( s ) − bsZ ( s ) = ms 2 Z ( s )
                [
F ( s ) = Z ( s ) ms 2 + bs + k   ]
Z ( s)             1
        =                                         Función de
F ( s ) ms 2 + bs + k                           transferencia
   MODELACIÓN MATEMÁTICA
    Circuito eléctrico




                        di (t )             1
         ei (t ) = L
                         dt
                                + Ri (t ) + ∫
                                            C
                                              i (t )dt

         1
         C  ∫   i (t )dt = eo (t )
Circuito eléctrico
              di (t )              1                      1
 ei (t ) = L
               dt
                      + Ri (t ) + ∫C
                                       i (t )dt
                                                         C     ∫i (t )dt = eo (t )

 Aplicando la transformada de Laplace
                                     1                    1
 E i ( s ) = LsI ( s ) + RI ( s ) +     I (s)                 I ( s ) = Eo ( s )
                                    Cs                   Cs
 Combinando las ecuaciones (despejando para I(s))
                                                1
 E i ( s ) = Ls[ CsEo ( s )] + R[ CsEo ( s )] +    [ CsEo ( s)]
                                                Cs
                  [
 E i ( s ) = Eo ( s ) LCs 2 + RCs + 1  ]
 Eo ( s )        1                                            Función de
          =
 Ei ( s ) LCs 2 + RCs + 1                                   transferencia
   Representa el comportamiento dinámico del
    proceso
   Nos indica como cambia la salida de un
    proceso ante=un cambio en la entrada
             Y (s) Cambio en la salida del proceso
                  X ( s ) Cambio en la entrada del proceso
                  Y ( s ) Respuesta del proceso
                         =
                  X (s)     Función forzante


   Diagrama de bloques
       Entrada del                                Salida del proceso
        proceso                  Proceso
                                                     (respuesta al
    (función forzante o
                                                       estímulo)
        estímulo)
Diagrama de bloques
        Suspensión de un automóvil

                        Entrada                                                    1                                 Salida
                       (Bache)
                                                                              ms 2 + bs + k                  (Desplazamiento
                                                                                                                del coche)
                                                                                                      -3
10                                                                                                 x 10
                                                                                              3

 8

                                                                                              2
 6


 4
                                                                                              1

 2

                                                                                              0
 0


-2                                                                                            -1


-4

                                                                                              -2
-6


-8                                                                                            -3


-10
   0   1000   2000   3000   4000   5000   6000   7000   8000   9000   10000
                                                                                              -4
                                                                                                0          0.5   1     1.5    2   2.5      3
                                                                                                                                           4
                                                                                                                                        x 10
Diagrama de bloques
          Circuito eléctrico

                    Ei(s)                                  1                                Eo(s)
         (Voltaje de entrada)
                                                     LCs 2 + RCs + 1             (Voltaje de salida)

20
                                                                       10


18
                                                                       9


16
                                                                       8


14
                                                                       7


12
                                                                       6


10
                                                                       5


8
                                                                       4


6
                                                                       3


4
                                                                       2


2
                                                                       1


0
     0    0.5   1   1.5   2   2.5   3   3.5      4                     0
                                                                            0   0.5   1   1.5   2   2.5   3   3.5     4
                                                 4
                                              x 10                                                                    4
                                                                                                                    x10
   TEOREMA DE DIFERENCIACIÓN REAL
    (Es uno de los más utilizados para transformar
    las ecuaciones diferenciales)
   TEOREMA DE VALOR FINAL
    (Nos indica el valor en el cual se
    estabilizará la respuesta)



   TEOREMA DE VALOR INICIAL
    (Nos indica las condiciones iniciales)
Transformada Inversa De Laplace

                K1                 K2                           20             5007.25
Ts ( s ) =            Tv ( s ) +          W ( s)   Tv ( s ) =        W (s) =
             τ 1s + 1            τ 2s + 1                        s                s
                K1  20       K 2  5007.25 
Ts ( s ) =             +                  =
             τ 1s + 1  s  τ 2 s + 1  s    
              0.381883  20  − 7.573947 x10 −4  5007.25         7.63766           3.792464
Ts ( s ) =                +                               =                 −
           1.712995s + 1  s       1.712995s + 1        s   (1.712995s + 1) s (1.712995s + 1) s
Expansión en fracciones parciales
                4.458658          2.213928             a1       a         b1         b
Ts ( s ) =                  −                 =               + 2−                 − 2
           ( s + 0.583772) s ( s + 0.583772) s ( s + 0.583772) s ( s + 0.583772) s
Transformada Inversa De Laplace
                      4.458658                           4.458658
a1 = ( s + 0.583772) 
                      ( s + 0.583772) s 
                                                       =            = −7.6376
                                         s =−0.583772   − 0.583772
            4.458658                   4.458658
a2 = ( s )                     
            ( s + 0.583772 ) s       =          = 7.6376
                                s =0   0.583772
                      2.213928                            2.213928
b1 = ( s + 0.583772) 
                      ( s + 0.583772) s 
                                                       =−            = 3.792453
                                         s =−0.583772    − 0.583772
            2.213928                   2.213928
b2 = ( s ) 
            ( s + 0.583772) s 
                                     =−             = −3.792453
                               s =0    0.583772
                   7.637670       7.637670        3.792453      3.792453
Ts ( s ) = −                   +            +                 −
               ( s + 0.583772)         s      ( s + 0.583772)       s
Ts (t ) = −7.637670e −0.583772t + 7.637670 + 3.792453e −0.583772t − 3.792453 + Tss   (Tss = temperatura inicial de salida)
                   (               )             (              )
Ts (t ) = 7.637670 1 − e −0.583772t − 3.792453 1 − e −0.583772t + Tss
Temperatura del agua de salida – Lazo abierto
    (sin control)
                 Tv(s)                    K1                    Ts(s)
     (Aumento de la
  temperatura de vapor a
                                       τ 1s + 1           (Aumento en la
                                                          temperatura de
       la entrada )                                       agua a la salida)


  Temperatura del agua de salida – Lazo
    cerrado (con control)
 Valor   +                                          0.3819               Variable
                         Controlador              1.713s + 1            controlad
desead       -                         Acción
   o                                     de                                 a
                                       control
   ECUACIÓN DIFERENCIAL DE UN CONTROLADOR PID
                               1                de(t ) 
            m(t ) = Kc e(t ) +
                               τi ∫
                                   e(t )dt + τ d
                                                  dt 
                                                        

            Aplicando la transformada de Laplace
                              1                        
            M(s) = Kc E(s) +     E ( s ) + τ d sE ( s )
                             τis                       
            M (s)              1                         
                  = Kc E(s) +     E ( s ) + τ d sE ( s )
            E (s)             τis                        
            M (s)          1          
                  = Kc 1 +    + τ d s
            E (s)        τis          
Donde E(s) es la diferencia entre el valor deseado y el
  valor medido
El sistema de control automático
 Temperatura de agua a la salida – Lazo cerrado (con
   control)
      +
 Valor                   Kc1 + τ1s + τ d s                0.3819                             Variable
                                           
desead       -                  i          Acción       1.713s + 1                          controlad
   o                                            de                                                a
                                              control

  6                                                6



  5                                                5
                                                              X0
                                                               : .683
                                                              Y: 4.91
  4                                                4



  3                                                3



  2                                                2



  1                                                1



  0                                                0
  -1     0       1   2      3      4      5         0   0.5     1       1.5   2   2.5   3   3.5   4   4.5   5

Más contenido relacionado

La actualidad más candente

Transformada De Laplace
Transformada De LaplaceTransformada De Laplace
Transformada De Laplace
1712223955
 
transformada de laplace
transformada de laplacetransformada de laplace
transformada de laplace
Mai Gab
 
Transformada De Laplace
Transformada De LaplaceTransformada De Laplace
Transformada De Laplace
guestb0069e3
 
Transformada de fourier y transformada inversa de fourier
Transformada de fourier y transformada inversa de fourierTransformada de fourier y transformada inversa de fourier
Transformada de fourier y transformada inversa de fourier
heyner20
 
G2 monografia transformada de laplace
G2 monografia transformada de laplaceG2 monografia transformada de laplace
G2 monografia transformada de laplaceCentro de Multimedios
 
Transformada inversa de laplace
Transformada inversa de laplaceTransformada inversa de laplace
Transformada inversa de laplaceDavid Palacios
 
Operador anulador
Operador anuladorOperador anulador
Operador anulador
germane123
 
Int superficie
Int superficieInt superficie
Int superficie
Eurin Sepulveda
 
Ejercicios Resueltos Series de Forurier
Ejercicios Resueltos Series de ForurierEjercicios Resueltos Series de Forurier
Ejercicios Resueltos Series de Forurier
Santiago Salinas Lopez
 
Ejercicios resueltos integrales dobles y triples
Ejercicios resueltos integrales dobles y triples Ejercicios resueltos integrales dobles y triples
Ejercicios resueltos integrales dobles y triples
manoleter
 
Funciones vectoriales-
Funciones vectoriales-Funciones vectoriales-
Funciones vectoriales-
ana maria
 
definición, aplicación e importancia de la transformada de Laplace en la inge...
definición, aplicación e importancia de la transformada de Laplace en la inge...definición, aplicación e importancia de la transformada de Laplace en la inge...
definición, aplicación e importancia de la transformada de Laplace en la inge...
hendrickp
 
Transformada de una Derivada
Transformada de una DerivadaTransformada de una Derivada
Transformada de una Derivada
Saul Olaf Loaiza Meléndez
 
Transformada de laplace
Transformada de laplaceTransformada de laplace
Transformada de laplace
RICARDOBOADALOPEZ
 
Transformada Directa de Laplace
Transformada Directa de LaplaceTransformada Directa de Laplace
Transformada Directa de Laplace
Edwin_Jack
 
Ejercicios (Series de Fourier)
Ejercicios (Series de Fourier)Ejercicios (Series de Fourier)
Ejercicios (Series de Fourier)ERICK CONDE
 
Propiedades de laplace
Propiedades de laplacePropiedades de laplace
Propiedades de laplace
luis hernandez
 
Conceptos Basicos De Ecuaciones Diferenciales
Conceptos Basicos De Ecuaciones DiferencialesConceptos Basicos De Ecuaciones Diferenciales
Conceptos Basicos De Ecuaciones Diferencialesceti
 
Aplicacion laplace
Aplicacion laplaceAplicacion laplace
Aplicacion laplace
jefferson Tatamues Nazate
 

La actualidad más candente (20)

Transformada De Laplace
Transformada De LaplaceTransformada De Laplace
Transformada De Laplace
 
transformada de laplace
transformada de laplacetransformada de laplace
transformada de laplace
 
Transformada De Laplace
Transformada De LaplaceTransformada De Laplace
Transformada De Laplace
 
Transformada de fourier y transformada inversa de fourier
Transformada de fourier y transformada inversa de fourierTransformada de fourier y transformada inversa de fourier
Transformada de fourier y transformada inversa de fourier
 
G2 monografia transformada de laplace
G2 monografia transformada de laplaceG2 monografia transformada de laplace
G2 monografia transformada de laplace
 
Transformada inversa de laplace
Transformada inversa de laplaceTransformada inversa de laplace
Transformada inversa de laplace
 
Operador anulador
Operador anuladorOperador anulador
Operador anulador
 
Int superficie
Int superficieInt superficie
Int superficie
 
Ejercicios Resueltos Series de Forurier
Ejercicios Resueltos Series de ForurierEjercicios Resueltos Series de Forurier
Ejercicios Resueltos Series de Forurier
 
Ejercicios resueltos integrales dobles y triples
Ejercicios resueltos integrales dobles y triples Ejercicios resueltos integrales dobles y triples
Ejercicios resueltos integrales dobles y triples
 
Funciones vectoriales-
Funciones vectoriales-Funciones vectoriales-
Funciones vectoriales-
 
definición, aplicación e importancia de la transformada de Laplace en la inge...
definición, aplicación e importancia de la transformada de Laplace en la inge...definición, aplicación e importancia de la transformada de Laplace en la inge...
definición, aplicación e importancia de la transformada de Laplace en la inge...
 
Transformada de una Derivada
Transformada de una DerivadaTransformada de una Derivada
Transformada de una Derivada
 
Transformada de laplace
Transformada de laplaceTransformada de laplace
Transformada de laplace
 
Transformada Directa de Laplace
Transformada Directa de LaplaceTransformada Directa de Laplace
Transformada Directa de Laplace
 
Ejercicios (Series de Fourier)
Ejercicios (Series de Fourier)Ejercicios (Series de Fourier)
Ejercicios (Series de Fourier)
 
Propiedades de laplace
Propiedades de laplacePropiedades de laplace
Propiedades de laplace
 
Serie de fourier
Serie de fourierSerie de fourier
Serie de fourier
 
Conceptos Basicos De Ecuaciones Diferenciales
Conceptos Basicos De Ecuaciones DiferencialesConceptos Basicos De Ecuaciones Diferenciales
Conceptos Basicos De Ecuaciones Diferenciales
 
Aplicacion laplace
Aplicacion laplaceAplicacion laplace
Aplicacion laplace
 

Destacado

Aplicaciones reales laplace instrumentacion y control
Aplicaciones reales laplace instrumentacion y controlAplicaciones reales laplace instrumentacion y control
Aplicaciones reales laplace instrumentacion y control
Yelibeth Boraure
 
TRANSFORMADA DE LAPLACE PARA CIRCUITOS ELÉCTRICOS
TRANSFORMADA DE LAPLACE PARA CIRCUITOS ELÉCTRICOSTRANSFORMADA DE LAPLACE PARA CIRCUITOS ELÉCTRICOS
TRANSFORMADA DE LAPLACE PARA CIRCUITOS ELÉCTRICOS
Israel Magaña
 
Estructura de datos presentacion y sesion 1
Estructura de datos presentacion y sesion 1Estructura de datos presentacion y sesion 1
Estructura de datos presentacion y sesion 1
Jesús Gómez Ávila
 
Introduccion a los sistemas de control
Introduccion a los sistemas de controlIntroduccion a los sistemas de control
Introduccion a los sistemas de controlHenry Alvarado
 
Transformada laplace diferenciales_ejercicios_resueltos
Transformada laplace diferenciales_ejercicios_resueltosTransformada laplace diferenciales_ejercicios_resueltos
Transformada laplace diferenciales_ejercicios_resueltosivanardila
 
Variables de instrumentacion..
Variables de instrumentacion..Variables de instrumentacion..
Variables de instrumentacion..Victoria' Worcs
 
Curso de electronica i fee 01 libro de texto
Curso de electronica i fee 01 libro de texto Curso de electronica i fee 01 libro de texto
Curso de electronica i fee 01 libro de texto federicoblanco
 

Destacado (9)

Aplicaciones Reales Laplace
Aplicaciones Reales LaplaceAplicaciones Reales Laplace
Aplicaciones Reales Laplace
 
Aplicaciones reales laplace instrumentacion y control
Aplicaciones reales laplace instrumentacion y controlAplicaciones reales laplace instrumentacion y control
Aplicaciones reales laplace instrumentacion y control
 
TRANSFORMADA DE LAPLACE PARA CIRCUITOS ELÉCTRICOS
TRANSFORMADA DE LAPLACE PARA CIRCUITOS ELÉCTRICOSTRANSFORMADA DE LAPLACE PARA CIRCUITOS ELÉCTRICOS
TRANSFORMADA DE LAPLACE PARA CIRCUITOS ELÉCTRICOS
 
Estructura de datos presentacion y sesion 1
Estructura de datos presentacion y sesion 1Estructura de datos presentacion y sesion 1
Estructura de datos presentacion y sesion 1
 
Introduccion a los sistemas de control
Introduccion a los sistemas de controlIntroduccion a los sistemas de control
Introduccion a los sistemas de control
 
Transformada laplace diferenciales_ejercicios_resueltos
Transformada laplace diferenciales_ejercicios_resueltosTransformada laplace diferenciales_ejercicios_resueltos
Transformada laplace diferenciales_ejercicios_resueltos
 
Variables de instrumentacion..
Variables de instrumentacion..Variables de instrumentacion..
Variables de instrumentacion..
 
Solucionario pablo alcalde
Solucionario pablo alcaldeSolucionario pablo alcalde
Solucionario pablo alcalde
 
Curso de electronica i fee 01 libro de texto
Curso de electronica i fee 01 libro de texto Curso de electronica i fee 01 libro de texto
Curso de electronica i fee 01 libro de texto
 

Similar a Aplicaciones La Transformada De Laplace

Aplicación de la transformada de la Laplace
Aplicación de la transformada de la LaplaceAplicación de la transformada de la Laplace
Aplicación de la transformada de la Laplacekmjrl_unefa
 
S_S de tiempo continuo_V2020.pptx
S_S de tiempo continuo_V2020.pptxS_S de tiempo continuo_V2020.pptx
S_S de tiempo continuo_V2020.pptx
CrazyGamerSL
 
Autolazo mason
Autolazo masonAutolazo mason
Autolazo mason
Nachomatic81
 
digitalizacion de controladores
digitalizacion de controladoresdigitalizacion de controladores
digitalizacion de controladores
Эрык Реки
 
Cuaderno de ejercicios_2012_r01
Cuaderno de ejercicios_2012_r01Cuaderno de ejercicios_2012_r01
Cuaderno de ejercicios_2012_r01
Jesus Mª Cuadrado
 
Cuaderno de ejercicios_2012_r01
Cuaderno de ejercicios_2012_r01Cuaderno de ejercicios_2012_r01
Cuaderno de ejercicios_2012_r01
YefBecerra
 
Cuaderno de ejercicios_2012_r01
Cuaderno de ejercicios_2012_r01Cuaderno de ejercicios_2012_r01
Cuaderno de ejercicios_2012_r01
District University of Bogotá
 
Transformada de laplace propiedades
Transformada de laplace propiedadesTransformada de laplace propiedades
Transformada de laplace propiedades
aquiles bailoyo
 
16182848-Clase4.ppt
16182848-Clase4.ppt16182848-Clase4.ppt
16182848-Clase4.ppt
JulioZennGarcaCorts
 
U2 FUNCION DE TRANSFERENCIA.pdf
U2 FUNCION DE TRANSFERENCIA.pdfU2 FUNCION DE TRANSFERENCIA.pdf
U2 FUNCION DE TRANSFERENCIA.pdf
ssusere26c75
 
Refresco laplace[1]
Refresco laplace[1]Refresco laplace[1]
Refresco laplace[1]20074117c
 
3er parcial Biocontroladores
3er parcial Biocontroladores3er parcial Biocontroladores
3er parcial Biocontroladores
MariannN1
 
calculo III.pdf
calculo III.pdfcalculo III.pdf
calculo III.pdf
HobertBarreramejia
 
Funcion de transferencia.ppt
Funcion de transferencia.pptFuncion de transferencia.ppt
Funcion de transferencia.ppt
araguilera
 
Transformada de laplace
Transformada de laplaceTransformada de laplace
Transformada de laplaceFremy Guedez
 

Similar a Aplicaciones La Transformada De Laplace (20)

Aplicación de la transformada de la Laplace
Aplicación de la transformada de la LaplaceAplicación de la transformada de la Laplace
Aplicación de la transformada de la Laplace
 
S_S de tiempo continuo_V2020.pptx
S_S de tiempo continuo_V2020.pptxS_S de tiempo continuo_V2020.pptx
S_S de tiempo continuo_V2020.pptx
 
Autolazo mason
Autolazo masonAutolazo mason
Autolazo mason
 
digitalizacion de controladores
digitalizacion de controladoresdigitalizacion de controladores
digitalizacion de controladores
 
Cuaderno de ejercicios_2012_r01
Cuaderno de ejercicios_2012_r01Cuaderno de ejercicios_2012_r01
Cuaderno de ejercicios_2012_r01
 
Cuaderno de ejercicios_2012_r01
Cuaderno de ejercicios_2012_r01Cuaderno de ejercicios_2012_r01
Cuaderno de ejercicios_2012_r01
 
Cuaderno de ejercicios_2012_r01
Cuaderno de ejercicios_2012_r01Cuaderno de ejercicios_2012_r01
Cuaderno de ejercicios_2012_r01
 
Transformada de laplace propiedades
Transformada de laplace propiedadesTransformada de laplace propiedades
Transformada de laplace propiedades
 
16182848-Clase4.ppt
16182848-Clase4.ppt16182848-Clase4.ppt
16182848-Clase4.ppt
 
U2 FUNCION DE TRANSFERENCIA.pdf
U2 FUNCION DE TRANSFERENCIA.pdfU2 FUNCION DE TRANSFERENCIA.pdf
U2 FUNCION DE TRANSFERENCIA.pdf
 
Matlabclase1
Matlabclase1Matlabclase1
Matlabclase1
 
Refresco laplace[1]
Refresco laplace[1]Refresco laplace[1]
Refresco laplace[1]
 
3er parcial Biocontroladores
3er parcial Biocontroladores3er parcial Biocontroladores
3er parcial Biocontroladores
 
calculo III.pdf
calculo III.pdfcalculo III.pdf
calculo III.pdf
 
Funcion de transferencia.ppt
Funcion de transferencia.pptFuncion de transferencia.ppt
Funcion de transferencia.ppt
 
Bode
BodeBode
Bode
 
Transformada de laplace
Transformada de laplaceTransformada de laplace
Transformada de laplace
 
Guia Especial
Guia EspecialGuia Especial
Guia Especial
 
Guia Especial
Guia EspecialGuia Especial
Guia Especial
 
Fundposori
FundposoriFundposori
Fundposori
 

Último

CATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIA
CATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIACATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIA
CATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIA
Fernando Tellado
 
Guía para hacer un Plan de Negocio para tu emprendimiento.pdf
Guía para hacer un Plan de Negocio para tu emprendimiento.pdfGuía para hacer un Plan de Negocio para tu emprendimiento.pdf
Guía para hacer un Plan de Negocio para tu emprendimiento.pdf
pppilarparedespampin
 
El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...
El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...
El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...
dntstartups
 
BANRURAL S.A Case Study, Guatemala. INCAE Business Review, 2010.
BANRURAL S.A Case Study, Guatemala. INCAE Business Review, 2010.BANRURAL S.A Case Study, Guatemala. INCAE Business Review, 2010.
BANRURAL S.A Case Study, Guatemala. INCAE Business Review, 2010.
Anna Lucia Alfaro Dardón - Ana Lucía Alfaro
 
INFORME ADMINISTRACIÓN EN PROPIEDAD HORIZONTAL
INFORME ADMINISTRACIÓN EN PROPIEDAD HORIZONTALINFORME ADMINISTRACIÓN EN PROPIEDAD HORIZONTAL
INFORME ADMINISTRACIÓN EN PROPIEDAD HORIZONTAL
dorislilianagarb
 
plan contable empresarial para empresass
plan contable empresarial para empresassplan contable empresarial para empresass
plan contable empresarial para empresass
SUSANJHEMAMBROSIOSEV1
 
Solicitud de cambio de un producto, a nivel empresarial.
Solicitud de cambio de un producto, a nivel empresarial.Solicitud de cambio de un producto, a nivel empresarial.
Solicitud de cambio de un producto, a nivel empresarial.
femayormisleidys
 
Diseño Organizacional e Inteligencia Artificial
Diseño Organizacional e Inteligencia ArtificialDiseño Organizacional e Inteligencia Artificial
Diseño Organizacional e Inteligencia Artificial
Israel Alcazar
 
MICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANO
MICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANOMICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANO
MICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANO
sergioandreslozanogi
 
SESION N° 01.pptx GESTION PROYECTOS UCV 2024
SESION N° 01.pptx GESTION PROYECTOS UCV 2024SESION N° 01.pptx GESTION PROYECTOS UCV 2024
SESION N° 01.pptx GESTION PROYECTOS UCV 2024
auyawilly
 
Exposicion Examen Final Arquitectura Empresarial CANVIA.pdf
Exposicion Examen Final Arquitectura Empresarial CANVIA.pdfExposicion Examen Final Arquitectura Empresarial CANVIA.pdf
Exposicion Examen Final Arquitectura Empresarial CANVIA.pdf
VictorBenjaminGomezS
 
Capacitación chatbot Wapi para enviar por whatsapp
Capacitación chatbot Wapi para enviar por whatsappCapacitación chatbot Wapi para enviar por whatsapp
Capacitación chatbot Wapi para enviar por whatsapp
acastropu
 
Trigonometria Plan-el mejor.pptxssssssss
Trigonometria Plan-el mejor.pptxssssssssTrigonometria Plan-el mejor.pptxssssssss
Trigonometria Plan-el mejor.pptxssssssss
QuerubinOlayamedina
 
Revista La Verdad - Edición Mayo 2024
Revista La Verdad  -  Edición  Mayo  2024Revista La Verdad  -  Edición  Mayo  2024
Revista La Verdad - Edición Mayo 2024
larevista
 
SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024
SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024
SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024
auyawilly
 
BIG DATA EN LOS NEGOCIOS CASO DE INMOBILIARIA
BIG DATA EN LOS NEGOCIOS CASO DE INMOBILIARIABIG DATA EN LOS NEGOCIOS CASO DE INMOBILIARIA
BIG DATA EN LOS NEGOCIOS CASO DE INMOBILIARIA
loidaeunicer
 
MODELO CONS1 NOTA1.pptx.....................................................
MODELO CONS1 NOTA1.pptx.....................................................MODELO CONS1 NOTA1.pptx.....................................................
MODELO CONS1 NOTA1.pptx.....................................................
75254036
 
Supply Chain Management Universidad César Vallejo
Supply Chain Management Universidad César VallejoSupply Chain Management Universidad César Vallejo
Supply Chain Management Universidad César Vallejo
jeuzouu
 
Evitando riesgos en la designación y en las actuaciones del comité de selecci...
Evitando riesgos en la designación y en las actuaciones del comité de selecci...Evitando riesgos en la designación y en las actuaciones del comité de selecci...
Evitando riesgos en la designación y en las actuaciones del comité de selecci...
Pedrorivera339137
 
Enfoque Estructuralista de la Administración.docx
Enfoque Estructuralista de la Administración.docxEnfoque Estructuralista de la Administración.docx
Enfoque Estructuralista de la Administración.docx
mariferbonilla2
 

Último (20)

CATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIA
CATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIACATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIA
CATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIA
 
Guía para hacer un Plan de Negocio para tu emprendimiento.pdf
Guía para hacer un Plan de Negocio para tu emprendimiento.pdfGuía para hacer un Plan de Negocio para tu emprendimiento.pdf
Guía para hacer un Plan de Negocio para tu emprendimiento.pdf
 
El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...
El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...
El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...
 
BANRURAL S.A Case Study, Guatemala. INCAE Business Review, 2010.
BANRURAL S.A Case Study, Guatemala. INCAE Business Review, 2010.BANRURAL S.A Case Study, Guatemala. INCAE Business Review, 2010.
BANRURAL S.A Case Study, Guatemala. INCAE Business Review, 2010.
 
INFORME ADMINISTRACIÓN EN PROPIEDAD HORIZONTAL
INFORME ADMINISTRACIÓN EN PROPIEDAD HORIZONTALINFORME ADMINISTRACIÓN EN PROPIEDAD HORIZONTAL
INFORME ADMINISTRACIÓN EN PROPIEDAD HORIZONTAL
 
plan contable empresarial para empresass
plan contable empresarial para empresassplan contable empresarial para empresass
plan contable empresarial para empresass
 
Solicitud de cambio de un producto, a nivel empresarial.
Solicitud de cambio de un producto, a nivel empresarial.Solicitud de cambio de un producto, a nivel empresarial.
Solicitud de cambio de un producto, a nivel empresarial.
 
Diseño Organizacional e Inteligencia Artificial
Diseño Organizacional e Inteligencia ArtificialDiseño Organizacional e Inteligencia Artificial
Diseño Organizacional e Inteligencia Artificial
 
MICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANO
MICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANOMICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANO
MICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANO
 
SESION N° 01.pptx GESTION PROYECTOS UCV 2024
SESION N° 01.pptx GESTION PROYECTOS UCV 2024SESION N° 01.pptx GESTION PROYECTOS UCV 2024
SESION N° 01.pptx GESTION PROYECTOS UCV 2024
 
Exposicion Examen Final Arquitectura Empresarial CANVIA.pdf
Exposicion Examen Final Arquitectura Empresarial CANVIA.pdfExposicion Examen Final Arquitectura Empresarial CANVIA.pdf
Exposicion Examen Final Arquitectura Empresarial CANVIA.pdf
 
Capacitación chatbot Wapi para enviar por whatsapp
Capacitación chatbot Wapi para enviar por whatsappCapacitación chatbot Wapi para enviar por whatsapp
Capacitación chatbot Wapi para enviar por whatsapp
 
Trigonometria Plan-el mejor.pptxssssssss
Trigonometria Plan-el mejor.pptxssssssssTrigonometria Plan-el mejor.pptxssssssss
Trigonometria Plan-el mejor.pptxssssssss
 
Revista La Verdad - Edición Mayo 2024
Revista La Verdad  -  Edición  Mayo  2024Revista La Verdad  -  Edición  Mayo  2024
Revista La Verdad - Edición Mayo 2024
 
SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024
SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024
SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024
 
BIG DATA EN LOS NEGOCIOS CASO DE INMOBILIARIA
BIG DATA EN LOS NEGOCIOS CASO DE INMOBILIARIABIG DATA EN LOS NEGOCIOS CASO DE INMOBILIARIA
BIG DATA EN LOS NEGOCIOS CASO DE INMOBILIARIA
 
MODELO CONS1 NOTA1.pptx.....................................................
MODELO CONS1 NOTA1.pptx.....................................................MODELO CONS1 NOTA1.pptx.....................................................
MODELO CONS1 NOTA1.pptx.....................................................
 
Supply Chain Management Universidad César Vallejo
Supply Chain Management Universidad César VallejoSupply Chain Management Universidad César Vallejo
Supply Chain Management Universidad César Vallejo
 
Evitando riesgos en la designación y en las actuaciones del comité de selecci...
Evitando riesgos en la designación y en las actuaciones del comité de selecci...Evitando riesgos en la designación y en las actuaciones del comité de selecci...
Evitando riesgos en la designación y en las actuaciones del comité de selecci...
 
Enfoque Estructuralista de la Administración.docx
Enfoque Estructuralista de la Administración.docxEnfoque Estructuralista de la Administración.docx
Enfoque Estructuralista de la Administración.docx
 

Aplicaciones La Transformada De Laplace

  • 1.
  • 2. ¿Qué es un sistema de control ? › En nuestra vida diaria existen numerosos objetivos que necesitan cumplirse.  En el ámbito doméstico › Controlar la temperatura y humedad de casas y edificios  En transportación › Controlar que un auto o avión se muevan de un lugar a otro en forma segura y exacta  En la industria › Controlar un sinnúmero de variables en los procesos de manufactura
  • 3. En años recientes, los sistemas de control han asumido un papel cada vez más importante en el desarrollo y avance de la civilización moderna y la tecnología.  Los sistemas de control se encuentran en gran cantidad en todos los sectores de la industria: › tales como control de calidad de los productos manufacturados, líneas de ensamble automático, control de máquinas-herramienta, tecnología espacial y sistemas de armas, control por computadora, sistemas de transporte, sistemas de potencia, robótica y muchos otros
  • 4. Satélites
  • 5.  El campo de aplicación de los sistemas de control es muy amplia.  Y una herramienta que se utiliza en el diseño de control clásico es precisamente: La transformada de Laplace
  • 6.  En el estudio de los procesos es necesario considerar modelos dinámicos, es decir, modelos de comportamiento variable respecto al tiempo.  Esto trae como consecuencia el uso de ecuaciones diferenciales respecto al tiempo para representar matemáticamente el comportamiento de un proceso.
  • 7. El comportamiento dinámico de los procesos en la naturaleza puede representarse de manera aproximada por el siguiente modelo general de comportamiento dinámico lineal:  La transformada de Laplace es una herramienta matemática muy útil para el análisis de sistemas dinámicos lineales.
  • 8. De hecho, la transformada de Laplace permite resolver ecuaciones diferenciales lineales mediante la transformación en ecuaciones algebraicas con lo cual se facilita su estudio.  Una vez que se ha estudiado el comportamiento de los sistemas dinámicos, se puede proceder a diseñar y analizar los sistemas de control de manera simple.
  • 9. MODELACIÓN MATEMÁTICA Suspensión de un automóvil Fuerza de entrada f(t) ∑ F = ma z(t) f (t ) − kz (t ) − b dz (t ) dt =m d 2 z (t ) dt 2 m Desplazamiento, salida del sistema b k
  • 10. Suspensión de un automóvil dz (t ) d 2 z (t ) f (t ) − kz (t ) − b =m dt dt 2 Aplicando la transformada de Laplace a cada término (considerando condiciones iniciales igual a cero) F ( s ) − kZ ( s ) − bsZ ( s ) = ms 2 Z ( s ) [ F ( s ) = Z ( s ) ms 2 + bs + k ] Z ( s) 1 = Función de F ( s ) ms 2 + bs + k transferencia
  • 11. MODELACIÓN MATEMÁTICA Circuito eléctrico di (t ) 1 ei (t ) = L dt + Ri (t ) + ∫ C i (t )dt 1 C ∫ i (t )dt = eo (t )
  • 12. Circuito eléctrico di (t ) 1 1 ei (t ) = L dt + Ri (t ) + ∫C i (t )dt C ∫i (t )dt = eo (t ) Aplicando la transformada de Laplace 1 1 E i ( s ) = LsI ( s ) + RI ( s ) + I (s) I ( s ) = Eo ( s ) Cs Cs Combinando las ecuaciones (despejando para I(s)) 1 E i ( s ) = Ls[ CsEo ( s )] + R[ CsEo ( s )] + [ CsEo ( s)] Cs [ E i ( s ) = Eo ( s ) LCs 2 + RCs + 1 ] Eo ( s ) 1 Función de = Ei ( s ) LCs 2 + RCs + 1 transferencia
  • 13. Representa el comportamiento dinámico del proceso  Nos indica como cambia la salida de un proceso ante=un cambio en la entrada Y (s) Cambio en la salida del proceso X ( s ) Cambio en la entrada del proceso Y ( s ) Respuesta del proceso = X (s) Función forzante  Diagrama de bloques Entrada del Salida del proceso proceso Proceso (respuesta al (función forzante o estímulo) estímulo)
  • 14. Diagrama de bloques  Suspensión de un automóvil Entrada 1 Salida (Bache) ms 2 + bs + k (Desplazamiento del coche) -3 10 x 10 3 8 2 6 4 1 2 0 0 -2 -1 -4 -2 -6 -8 -3 -10 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 -4 0 0.5 1 1.5 2 2.5 3 4 x 10
  • 15. Diagrama de bloques  Circuito eléctrico Ei(s) 1 Eo(s) (Voltaje de entrada) LCs 2 + RCs + 1 (Voltaje de salida) 20 10 18 9 16 8 14 7 12 6 10 5 8 4 6 3 4 2 2 1 0 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4 x 10 4 x10
  • 16. TEOREMA DE DIFERENCIACIÓN REAL (Es uno de los más utilizados para transformar las ecuaciones diferenciales)
  • 17. TEOREMA DE VALOR FINAL (Nos indica el valor en el cual se estabilizará la respuesta)  TEOREMA DE VALOR INICIAL (Nos indica las condiciones iniciales)
  • 18. Transformada Inversa De Laplace K1 K2 20 5007.25 Ts ( s ) = Tv ( s ) + W ( s) Tv ( s ) = W (s) = τ 1s + 1 τ 2s + 1 s s K1  20  K 2  5007.25  Ts ( s ) =  +  = τ 1s + 1  s  τ 2 s + 1  s  0.381883  20  − 7.573947 x10 −4  5007.25  7.63766 3.792464 Ts ( s ) =  +  = − 1.712995s + 1  s  1.712995s + 1  s  (1.712995s + 1) s (1.712995s + 1) s Expansión en fracciones parciales 4.458658 2.213928 a1 a b1 b Ts ( s ) = − = + 2− − 2 ( s + 0.583772) s ( s + 0.583772) s ( s + 0.583772) s ( s + 0.583772) s
  • 19. Transformada Inversa De Laplace  4.458658  4.458658 a1 = ( s + 0.583772)   ( s + 0.583772) s   = = −7.6376   s =−0.583772 − 0.583772  4.458658  4.458658 a2 = ( s )    ( s + 0.583772 ) s  = = 7.6376   s =0 0.583772  2.213928  2.213928 b1 = ( s + 0.583772)   ( s + 0.583772) s   =− = 3.792453   s =−0.583772 − 0.583772  2.213928  2.213928 b2 = ( s )   ( s + 0.583772) s   =− = −3.792453   s =0 0.583772 7.637670 7.637670 3.792453 3.792453 Ts ( s ) = − + + − ( s + 0.583772) s ( s + 0.583772) s Ts (t ) = −7.637670e −0.583772t + 7.637670 + 3.792453e −0.583772t − 3.792453 + Tss (Tss = temperatura inicial de salida) ( ) ( ) Ts (t ) = 7.637670 1 − e −0.583772t − 3.792453 1 − e −0.583772t + Tss
  • 20. Temperatura del agua de salida – Lazo abierto (sin control) Tv(s) K1 Ts(s) (Aumento de la temperatura de vapor a τ 1s + 1 (Aumento en la temperatura de la entrada ) agua a la salida) Temperatura del agua de salida – Lazo cerrado (con control) Valor + 0.3819 Variable Controlador 1.713s + 1 controlad desead - Acción o de a control
  • 21. ECUACIÓN DIFERENCIAL DE UN CONTROLADOR PID  1 de(t )  m(t ) = Kc e(t ) +  τi ∫ e(t )dt + τ d dt   Aplicando la transformada de Laplace  1  M(s) = Kc E(s) + E ( s ) + τ d sE ( s )  τis  M (s)  1  = Kc E(s) + E ( s ) + τ d sE ( s ) E (s)  τis  M (s)  1  = Kc 1 + + τ d s E (s)  τis  Donde E(s) es la diferencia entre el valor deseado y el valor medido
  • 22. El sistema de control automático Temperatura de agua a la salida – Lazo cerrado (con control) + Valor Kc1 + τ1s + τ d s  0.3819 Variable   desead -  i Acción 1.713s + 1 controlad o de a control 6 6 5 5 X0 : .683 Y: 4.91 4 4 3 3 2 2 1 1 0 0 -1 0 1 2 3 4 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5